
Edugrad
LING 575k Deep Learning for NLP

Shane Steinert-Threlkeld

1

Edugrad, intro
● https://github.com/shanest/edugrad

● Minimal re-implementation of PyTorch API, for educational purposes
● Forward/backward API for operations
● Automatic differentiation via backprop
● Dynamic computation graph

● Why? Modern DL libraries have so much additional cruft that you cannot
chase back lots of method calls to their implementations.
● E.g. what really happens when you call `loss.backward()`?

● NB: no performance optimizations, no GPU usage, etc. in edugrad

2

https://github.com/shanest/edugrad

Edugrad: Tensor
● Tensor: wrapper around a numpy

array (stored in .value attribute)
● value: np array
● grad: current gradient! (Set to 0

initially, populated during back
propagation)

● Primary operators overloaded: +, -, **
(raise to a power)
● More on implementation of those in a

second

3

Edugrad: Operation
● Operation: defines forward/backward
● Operates on np arrays, not Tensors

● @tensor_op:
● Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor outputs
● And which builds the computation graph

dynamically
● @: decorator; equivalent to: add = tensor_op(add)

● Basic ops provided:
● https://github.com/shanest/edugrad/blob/master/

edugrad/ops.py

4

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: Operation
● Operation: defines forward/backward
● Operates on np arrays, not Tensors

● @tensor_op:
● Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor outputs
● And which builds the computation graph

dynamically
● @: decorator; equivalent to: add = tensor_op(add)

● Basic ops provided:
● https://github.com/shanest/edugrad/blob/master/

edugrad/ops.py

4

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: Operation
● Operation: defines forward/backward
● Operates on np arrays, not Tensors

● @tensor_op:
● Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor outputs
● And which builds the computation graph

dynamically
● @: decorator; equivalent to: add = tensor_op(add)

● Basic ops provided:
● https://github.com/shanest/edugrad/blob/master/

edugrad/ops.py

4

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: nn.Module
● edugrad.nn.Module:
● As in PyTorch, basic model class
● Stores parameters [accessed via .parameters()]
● Can be nested (modules within modules)
● Implements `forward`

● Defining a custom module:
● Sub-class nn.Module
● Initialize params in __init__
● Implement custom forward method

5

Edugrad: Linear Module example

6

Edugrad: Linear Module example

6

Always do this
first!!

Edugrad: Linear Module example

6

Always do this
first!!

Define
parameters

Edugrad: Linear Module

7

Edugrad: Basic Training Demo
● https://github.com/shanest/edugrad/blob/

master/examples/toy_half_sum/main.py
● Trains an MLP on f(x) = sum(x)/2 for bit

vectors x

● MLP as a nn.Module:

● NB: don’t hard-code hyper-parameters like
this :)

8

https://github.com/shanest/edugrad/blob/master/examples/toy_half_sum/main.py
https://github.com/shanest/edugrad/blob/master/examples/toy_half_sum/main.py

Training Loop

9

