
Word Vectors [word2vec]

1

LING 575K Deep Learning for NLP
Shane Steinert-Threlkeld

April 4 2022

Announcements
● Thanks for all the discussion on Canvas :)

● File / env permissions: thanks to everyone for pointing them out! Let me know if
any others persist (user error on recursive application)

● max_size: not including special tokens like <unk> (cf lines 43-44 in vocabulary.py)

● Python 3.9:
● The code makes heavy use of type hinting
● Improves readability / future-proofing
● Works well with code completers, static type checkers like mypy
● Including native type hinting for many data structures, which is new to 3.9
● So be sure to run in the environment we provide, which includes 3.9

2

https://docs.python.org/3/library/typing.html
http://mypy-lang.org/

Announcements
● Developing / testing locally vs on patas:
● We grade on patas, so your code must run there (and you should check that it does

before submitting)
● Developing on patas:
● Using vim, emacs, …
● Some editors allow remote editing, e.g. SSH Plugin for VSCode
● Developing locally:
● Download `environment.yml` from our dropbox, and `conda env create --file

environment.yml`
● This should give you a local environment that matches the one we provide on patas
● NB: we (teaching staff) have not tested this, so consider it alpha/beta :)

3

Beware of Frequency!

4
source

https://twitter.com/TerribleMaps/status/1129765180987117569

Today’s Plan
● Last time:
● Loss minimization
● Gradient descent
● Why word vectors

● Today:
● Count-based word vectors [briefly]
● Prediction-based word vectors
● In particular: skip-gram with negative sampling
● Two tasks:
● Language modeling
● Sentiment analysis

5

Prediction-Based Models [Word2Vec]

6

Prediction-based Embeddings
● Skip-gram and Continuous Bag of Words (CBOW) models

7

Prediction-based Embeddings
● Skip-gram and Continuous Bag of Words (CBOW) models

● Intuition:
● Words with similar meanings share similar contexts
● Instead of counting:
● Train models to learn to predict context words
● Models train embeddings that make current word more like nearby words and

less like distance words

7

Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW):
● P(word |context)

● Input: (wt-1, wt-2, wt+1, wt+2 …)

● Output: p(wt)

8

Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW):
● P(word |context)

● Input: (wt-1, wt-2, wt+1, wt+2 …)

● Output: p(wt)

● Skip-gram:
● P(context |word)

● Input: wt

● Output: p(wt-1, wt-2, wt+1, wt+2 …)

8

Embeddings:
Skip-Gram vs. Continuous Bag of Words

● Continuous Bag of Words (CBOW):
● P(word |context)

● Input: (wt-1, wt-2, wt+1, wt+2 …)

● Output: p(wt)

● Skip-gram:
● P(context |word)

● Input: wt

● Output: p(wt-1, wt-2, wt+1, wt+2 …)

8

Mikolov et al 2013a (the OG word2vec paper)

https://arxiv.org/abs/1301.3781

● Learns two embeddings
● W : word, matrix of shape [vocab_size, embedding_dimension]

● C : context embedding, matrix of same shape

Skip-Gram Model

9

p(wk |wj) =
eCk⋅Wj

∑i eCi⋅Wj

● Learns two embeddings
● W : word, matrix of shape [vocab_size, embedding_dimension]

● C : context embedding, matrix of same shape

● Prediction task:
● Given a word, predict each neighbor word in window

● Compute p(wk|wj) as proportional to ck · wj

● For each context position
● Convert to probability via softmax

Skip-Gram Model

9

p(wk |wj) =
eCk⋅Wj

∑i eCi⋅Wj

Parameters and Hyper-parameters
● The embedding dimension is a hyper-parameter
● Chosen by the modeler / practitioner
● Not updated during the course of learning / training
● Other examples we’ve seen so far:
● Learning rate for SGD
● Will talk more about how to choose hyper-parameters later

● Parameters: parts of the model that are updated by the learning algorithm

10

Power of Prediction-based Embeddings
● Count-based embeddings:
● Very high-dimensional (|V|)
● Sparse
● Pro: features are interpretable [“occurred with word W N times in corpus”]

● Prediction-based embeddings:
● “Low”-dimensional (typically ~300-1200)
● Dense
● Con: features are not immediately interpretable
● i.e. what does “dimension 36 has value -9.63” mean?

11

Relationships via Offsets

12

MAN

WOMAN

UNCLE

AUNT

KING

QUEEN

Mikolov et al 2013b

https://www.aclweb.org/anthology/N13-1090/

Relationships via Offsets

12

MAN

WOMAN

UNCLE

AUNT

KING

QUEEN KING

QUEEN
KINGS

QUEENS

Mikolov et al 2013b

https://www.aclweb.org/anthology/N13-1090/

One More Example

13

Mikolov et al 2013c

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

One More Example

14

Caveat Emptor

15

Linzen 2016, a.o.

Bolukbasi et al 2016

https://www.aclweb.org/anthology/W16-2503/
http://www.apple.com

Skip-Gram with Negative Sampling (SGNS)

16

Training The Skip-Gram Model
● Issue:
● Denominator computation is very expensive

● Strategy:
● Approximate by negative sampling (efficient

approximation to Noise Contrastive Estimation):
● + example: true context word
● – example: k other words, randomly sampled

17

p(wk |wj) =
Ck ⋅ Wj

∑i Ci ⋅ Wj

Negative Sampling, Idea
● Skip-Gram:

● : what is the probability that occurred in the context of
● Classifier with |V| classes

● Negative sampling:

● : what is the probability that was a true co-occurrence?

●
● Probability that was not a true co-occurrence
● Examples of “fake” co-occurrences = negative samples
● Binary classifier

P(wk |wj) wk wj

P(+ |wk, wj) (wk, wj)
P(− |wk, wj) = 1 − P(+ |wk, wj)

(wk, wj)

18

Generating Positive Examples

19

Generating Positive Examples
● Iterate through the corpus. For each word: add all words within a

window_size of the current word as a positive pair.

19

Generating Positive Examples
● Iterate through the corpus. For each word: add all words within a

window_size of the current word as a positive pair.
● NB: window_size is a hyper-parameter

19

Negative Samples
● For each positive (w, c) sample, generate num_negatives samples
● (w, c’), where c’ is different from c
● NB: num_negatives is another hyper-parameter

20

Negative Samples, up-weighting
● It’s also common to “upsample” less frequent words

● Instead of sampling from raw frequencies from the corpus, raise them to a
power to “flatten” the distribution

21

The Data, Summary
● X = pairs of words

● Y = {0, 1}
● 1 = + (positive example), 0 = - (negative example)

● Example pairs:
● ((“apricot”, “tablespoon”), 1)
● ((“apricot”, “jam”), 1)
● ((“apricot”, “aardvark”), 0)
● ((“apricot”, “my”), 0)

(x, y)

22

The Model
● So what is (more specifically,)?

● As before, learns two embeddings
● E : word, matrix of shape [vocab_size, embedding_dimension]
● : embedding for word w [row of the matrix]

● C : context embedding, matrix of same shape

P(1 |w, c) P(1 |w, c; θ)

Ew

23

The Model

24

P(1 |w, c) = σ (Ew ⋅ Cc)

The Model

24

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

The Model

24

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

The Model

24

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

The Model

24

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

sigmoid

σ(x) =
1

1 + e−x

The Model

25

P(1 |w, c) = σ (Ew ⋅ Cc)
● Target and context words that are more similar to each other (have more

similar embeddings) have a higher probability of being a positive example.

Learning
● What are the parameters?

● What is the loss?

26

Learning: Parameters

27

Learning: Loss
● We want our model to:
● Assign high [c+ is a positive context word]

● Assign low [c is a positive context word]
● Equivalently: assign high

P(1 |w, c+)
P(1 |w, c−)

P(0 |w, c−)

28

Loss: Binary Cross-Entropy

29

ℓBCE(̂y, y) := − y log ̂y − (1 − y)log(1 − ̂y)

● y = 1:

● y = 0:

● So: negative log probability that the model assigns to the true label.

● Exercise: show that this is a special case of cross-entropy between two
probability distributions:

−log(̂y) = − log P(1 |w, c)
−log(1 − ̂y) = − log P(0 |w, c)

H(p, q) = − ∑
i

pi log qi

Training Loop w/ Negative Samples

30

initialize parameters / build model

for each epoch:

positives = shuffle(positives)

for each example in positives:

positive_output = model(example)
generate k negative samples
negative_outputs = [model(negatives)]
compute gradients
update parameters

Combo Loss

31

LCE = − log P(1,0,0,…,0 |w, c+, c−1, c−2, …, c−k)

= − log P(1 |w, c+)
k

∏
i=1

P(0 |w, c−i)

= − log P(1 |w, c+) −
k

∑
i=1

log P(0 |w, c−i)

Learning: Intuitively

32

Tasks: Text Classification (Sentiment
Analysis), Language Modeling

33

Text Classification
● Many different specific tasks
● Input: text of some kind
● Output: finite number of categories (usually fairly few)

34

Examples
● Spam detection:
● Input: e-mail
● Output: spam vs. not spam

● Intent classification:
● Input: message from user to chatbot
● Output: domain-specific intents
● e.g. place new order, ask for hours, update cart, unknown

35

Sentiment Analysis
● Input: text

● Output: sentiment labels
● e.g. negative, positive
● e.g. very negative, somewhat negative, neutral, somewhat positive, very positive
● e.g. # of stars

● Example inputs:
● Product reviews
● Movie reviews
● Social media posts

36

Stanford Sentiment Treebank
● For many assignments in this class, we will use the Stanford Sentiment

Treebank
● Input: movie reviews from Rotten Tomatoes
● Output: discrete ratings (0-4) of the sentiment from very negative to very positive
● Simple/cleaned version available in /dropbox/21-22/575k/data/sst/

37

https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html

Stanford Sentiment Treebank
● 11,855 sentences
● originally 10,662, but a parser split some into more than one
● [full dataset includes annotations for every node of a parse tree]
● Train = 8544; dev = 1101; test = 2210

● Annotation on Mechanical Turk:
● 25 positions for a slider
● 3 annotations per sentence
● Avg score in [0, 1], mapped to 5 discrete labels

38

SST Examples
● grenier is terrific , bringing an unforced , rapid-fire delivery to toback 's heidegger - and

nietzsche-referencing dialogue .
● 4

● made me unintentionally famous -- as the queasy-stomached critic who staggered from the
theater and blacked out in the lobby .
● 1

● a fascinating , dark thriller that keeps you hooked on the delicious pulpiness of its lurid fiction .
● 3

● beresford nicely mixes in as much humor as pathos to take us on his sentimental journey of
the heart .
● 3

39

Language Modeling
● A language model parametrized by computes

● Typically (though we’ll see variations):

● E.g. of labeled data: “Today is the third day of 575k.” —>
● (<s>, Today)
● (<s> Today, is)
● (<s> Today is, the)
● (<s> Today is the, third)

θ

40

Pθ(w1, …, wn)

Pθ(w1, …, wn) = ∏
i

Pθ(wi |w1, …, wi−1)

Language Modeling

41

Language Modeling
● A good language model should produce good general-purpose and transferable

representations

41

Language Modeling
● A good language model should produce good general-purpose and transferable

representations

● Linguistic knowledge:
● The bicycles, even though old, were in good shape because ____ …
● The bicycle, even though old, was in good shape because ____ …

41

Language Modeling
● A good language model should produce good general-purpose and transferable

representations

● Linguistic knowledge:
● The bicycles, even though old, were in good shape because ____ …
● The bicycle, even though old, was in good shape because ____ …

● World knowledge:
● The University of Washington was founded in _____
● Seattle had a huge population boom as a launching point for expeditions to _____

41

Data for LM is cheap

42

Data for LM is cheap

42

Data for LM is cheap

42

Text

Language Model Pre-training
● A currently powerful paradigm for training models for NLP tasks:
● Pre-train a large language model on a large amount of raw text
● Fine-tune a small model on top of the LM for the task you care about
● [or use the LM as a general feature extractor]

● More on this use case later in the course

43

LMs for Generation
● By iteratively sampling from the distribution of an LM, one can generate text [in the style of

the training data]

● Samples from a character-level recurrent LM on (i) Shakespeare and (ii) Linux source code:

44source

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Costs of LMs

● For more on the reactions to this paper: https://faculty.washington.edu/ebender/stochasticparrots.html

● More later this quarter as well

45

https://faculty.washington.edu/ebender/stochasticparrots.html
https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf

Classifiers and LMs in This Class
● For the next several weeks, we will develop different neural architectures

for both classification and language modeling
● For LM, using the text of reviews in SST as our raw texts

● Conceptually, LM training is just |V|-way classification
● But very different at inference time
● Some different modeling assumptions will arise as well

46

Next Time
● Introduction to Neural Networks
● Feed-forward architecture
● Basic notation, expressive power
● Parameters and hyper-parameters
● Some more info on training

47

