
Summary / Review
LING 575K Deep Learning for NLP

Shane Steinert-Threlkeld
June 1 2022

1

Today’s Plan
● Survey of what we covered in the class
● Core progression
● Guest lectures
● Assignments

● Some pointers to what’s next

● Question time

2

Learning Objectives
● Provide hands-on experience with building neural networks and using

them for NLP tasks

● Theoretical understanding of building blocks
● Computation graphs + gradient descent
● Forward/backward API
● Chain rule for computing gradients [backpropagation]
● Various network architectures; their structure and biases

3

Topics Covered

4

Getting Started
● History

● Gradient descent optimization
● Regularization, mini-batches, etc.

● Word vectors / word2vec

● Main tasks: classification (sentiment analysis), language modeling

5

Very potted history

6

raw text feature extraction
learned
linear

weights
output

raw text learned non-linear model output

The SGNS Model

7

P(1 |w, c) = σ (Ew ⋅ Cc)

The SGNS Model

7

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

The SGNS Model

7

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

The SGNS Model

7

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

The SGNS Model

7

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

sigmoid

σ(x) =
1

1 + e−x

Neural Networks: Foundations
● Neural networks: intro
● Expressive power / limitations

● Computation graph abstraction

● Backpropagation

8

XOR Network

9

aand = σ σ [ap aq]
wor

p wnand
p

wor
q wnand

q

+ [bor bnand]
wand

or

wand
nand

+ band

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

Computing XOR (not linearly-separable)

10

Backpropagation Example

11

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

Backpropagation Example

11

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

Backpropagation Example

11

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

Backpropagation Example

11

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10

Backpropagation Example

11

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂c + b

∂c
= 10

Backpropagation Example

11

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂c + b

∂c
= 10

∂e
∂x

=
∂e
∂c

∂c
∂x

= 10a = 30

Backpropagation Example

11

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂c + b

∂c
= 10

∂e
∂x

=
∂e
∂c

∂c
∂x

= 10a = 30
∂e
∂a

=
∂e
∂c

∂c
∂a

= 10x = 10

Nodes in Computational Graph
● Forward pass:
● Compute value given

parents’ values

● Backward pass:
● Compute parents’

gradients given children’s

12

Nodes in Computational Graph
● Forward pass:
● Compute value given

parents’ values

● Backward pass:
● Compute parents’

gradients given children’s

12

h = g(a, b)

a

b

h

Nodes in Computational Graph
● Forward pass:
● Compute value given

parents’ values

● Backward pass:
● Compute parents’

gradients given children’s

12

h = g(a, b)

a

b

h

∂L
∂h

Nodes in Computational Graph
● Forward pass:
● Compute value given

parents’ values

● Backward pass:
● Compute parents’

gradients given children’s

12

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

Nodes in Computational Graph
● Forward pass:
● Compute value given

parents’ values

● Backward pass:
● Compute parents’

gradients given children’s

12

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

∂L
∂a

=
∂L
∂h

∂h
∂a

∂L
∂b

=
∂L
∂h

∂h
∂b

Nodes in Computational Graph
● Forward pass:
● Compute value given

parents’ values

● Backward pass:
● Compute parents’

gradients given children’s

12

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

∂L
∂a

=
∂L
∂h

∂h
∂a

∂L
∂b

=
∂L
∂h

∂h
∂b

Upstream
gradient

Local
gradient

Downstream
gradient

Example: ReLU

13

Example: ReLU

13

Save and retrieve the input value!

Example: ReLU

13

Save and retrieve the input value!

local gradient upstream
gradient

times

Example: ReLU

13

Save and retrieve the input value!

local gradient upstream
gradient

times

NB: list, one downstream gradient
per input (in this case, one)

Neural Networks, I
● Feed-forward networks
● Fixed size: average, fixed window of prep tokens

● Recurrent neural networks: sequence processors
● Vanishing gradients, gated variants (LSTM)
● Encoder-decoder / seq2seq architecture and tasks
● Attention mechanism

14

Model Architecture, One Input

15

Model Architecture, One Input

15

f(avW1 + b1)

Model Architecture, One Input

15

f(avW1 + b1)Word embeddings:
Pre-trained or learned

Neural LM Architecture

16

Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

16

Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

16

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

16

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

16

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

probabilities = softmax(hiddenW2 + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

RNN for Text Classification

17

JM sec 9.2.5

RNNs for Language Modeling

18

JM sec 9.2.3

Two Extensions
● Deep RNNs:

19Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

19

● Bidirectional RNNs:

Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

19

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

19

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

19

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

LSTMs

20Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

20

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

20

Element-wise multiplication:
0: erase
1: retain

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

20

Element-wise multiplication:
0: erase
1: retain

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

20

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

20

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values

Add new values to memory

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

20

Element-wise multiplication:
0: erase
1: retain

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

20

Element-wise multiplication:
0: erase
1: retain

: which cells to outputot ∈ [0,1]m

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Training an encoder-decoder RNN

21JM 11.3.1

Alignment, example

22

Ceci n’ est pas une pipe
This
is
not
a
pipe

Alignment, example

22

Ceci n’ est pas une pipe

Ceci n’ est pas une pipe
This
is
not
a
pipe

Alignment, example

22

Ceci n’ est pas une pipe

This is not a pipe

Ceci n’ est pas une pipe
This
is
not
a
pipe

Alignment, example

22

Ceci n’ est pas une pipe

This is not a pipe

Ceci n’ est pas une pipe
This
is
not
a
pipe

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear +
softmax

w′ 1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

23w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear +
softmax

w′ 1

w′ i

d2

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Neural Networks, II
● Transformers
● Core architecture
● Pre-training + Fine-tuning Paradigm

● Interpretability / analysis

24

Lack of Parallelizability
● Modern hardware (e.g.

GPUs) are very good at
doing independent
computations in parallel

● RNNs are inherently
serial:
● Cannot compute future

time steps without the past

● Bottleneck that makes
scaling up difficult

25

Students who … enjoy

Lack of Parallelizability
● Modern hardware (e.g.

GPUs) are very good at
doing independent
computations in parallel

● RNNs are inherently
serial:
● Cannot compute future

time steps without the past

● Bottleneck that makes
scaling up difficult

25

Students who … enjoy

0

1

1

2

t

k

t+1

k+1 t+k

Lack of Parallelizability
● Modern hardware (e.g.

GPUs) are very good at
doing independent
computations in parallel

● RNNs are inherently
serial:
● Cannot compute future

time steps without the past

● Bottleneck that makes
scaling up difficult

25

Students who … enjoy

0

1

1

2

t

k

t+1

k+1 t+k
Number of computation
steps required: linear in
sequence length

Full Transformer Encoder Block

26

Transformer: Path Lengths + Parallelism

27source (BERT paper)

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

27source (BERT paper)

Path lengths between
tokens: 1
[constant, not linear]

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

27source (BERT paper)

Path lengths between
tokens: 1
[constant, not linear]

Computation order:

Entire second layer: 1

Entire first layer: 0

Also not linear in
sequence length! Can
be parallelized.

https://www.aclweb.org/anthology/N19-1423.pdf

Decoder: Masking Out the Future

28

QKT: total attention scores

maskij = {−∞ j > i
0 otherwise

MaskedAttention(Q, K, V) = softmax (QKT

dk
+ mask) V

<S> Ceci n’ est pas une pipe

<S> 0 -inf -inf -inf -inf -inf -inf

Ceci 0 0 -inf -inf -inf -inf -inf

n’ 0 0 0 -inf -inf -inf -inf

est 0 0 0 0 -inf -inf -inf

pas 0 0 0 0 0 -inf -inf

une 0 0 0 0 0 0 -inf

pipe 0 0 0 0 0 0 0

Schematically

29

Initial Results

30

Comparison

31

Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf

Cell dynamics for a syntax unit

32

Examples

33

34

Results

(performance improves if fine-tuned on this challenge set)

Guest lectures
● C.M. Downey: Multilingual NLP

● Jack Hessel: Multimodality

● Angelina McMillan-Major: Documenting stochastic parrots

35

Assignments
● 1: Vocabulary + Data Statement

● 2: Word2Vec (raw numpy)

● 3: Computation graphs (word2vec in edugrad)

● 4: Deep Averaging Network classifier (edugrad)

● 5: Feed-forward language model (edugrad)

● 6: RNN text classifier

● 7: RNN language model

● 8: Seq2Seq + Attention [translation]

● 9: Pre-trained transformer classifier

36

What’s Next?

37

Learning Outcomes
● One way of operationalizing the goal: you can hopefully now read many/

most new papers at NLP conferences and understand what they’re doing
● Expressions like “we pre-trained a bi-directional LSTM language model on

various tasks and then fine-tuned on a standard suite” are now parseable
● And with deeper / more hands-on familiarity with the models and their

architectures, you are in a position to assess new developments as they come
(and contribute to them as well!)

38

Topics Not Covered
● Full suite of “tips and tricks” for training
● e.g. learning rate schedules
● Best methods for hyper parameter tuning

● Other architectures sometimes used: convolutional networks, tree-based
RNNs

● Wide variety of NLP tasks: parsing, QA, toxic language detection, etc.

● NB: you are now well-positioned to read and learn about all of these on
your own

39

Where to Learn More
● Where to learn more?
● Read papers and chase references when confused
● Cornell’s course has lots of online materials: http://www.phontron.com/class/

nn4nlp2021/
● Stanford CS224U (pre-recorded videos) http://web.stanford.edu/class/cs224u/
● And CS224N (live lectures) http://web.stanford.edu/class/cs224n/

● NLP Newsletter: https://newsletter.ruder.io/

● ACL Anthology: https://www.aclweb.org/anthology/ [more and more videos too]

● Semantic Scholar / arXiv sanity similar paper searches

40

http://www.phontron.com/class/nn4nlp2021/
http://www.phontron.com/class/nn4nlp2021/
http://web.stanford.edu/class/cs224u/
http://web.stanford.edu/class/cs224n/
https://newsletter.ruder.io/
https://www.aclweb.org/anthology/

General Question Time

41

Wrapping Up

42

Course Evaluations
● Course evals are open now through June 3

● Please do fill them out as soon as possible!
● E.g. right now :)
● Help me:
● Improve the course for future iterations
● Get tenure ;)

43

Thank You!
● I’ve learned a lot from you all this quarter!

● Hopefully you’re in a better place with regard to neural methods in NLP
than when the course started.

● And congrats to everyone for handling such a workload amidst all of the
challenges of the past year-plus. Very awe-inspiring.

● So: thank you, and have a great summer / future!

44

