Summary / Review

LING 575K Deep Learning for NLP Shane Steinert-Threlkeld June 1 2022

Today's Plan

- Survey of what we covered in the class
 - Core progression
 - Guest lectures
 - Assignments
- Some pointers to what's next
- Question time

Learning Objectives

- Provide hands-on experience with building neural networks and using them for NLP tasks
- Theoretical understanding of building blocks
 - Computation graphs + gradient descent
 - Forward/backward API
 - Chain rule for computing gradients [backpropagation]
 - Various network architectures; their structure and biases

Topics Covered

Getting Started

- History
- Gradient descent optimization
 - Regularization, mini-batches, etc.
- Word vectors / word2vec
- Main tasks: classification (sentiment analysis), language modeling

raw text

feature extraction

The SGNS Model $P(1 \mid w, c) = \sigma(E_w \cdot C_c)$

The SGNS Model $P(1 \mid w, c) = \sigma \left(E_w \cdot C_c \right)$ Target word embedding

The SGNS Model $P(1 \mid w, c) = \sigma \left(E_w \cdot C_c \right)$ Context word Target word embedding embedding

Similarity (dot-product)

Neural Networks: Foundations

- Neural networks: intro
 - Expressive power / limitations
- Computation graph abstraction
- Backpropagation

XOR Network

$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + w_{\text{nand}}^{\text{and}} \right)$$
$$= \sigma \left(\begin{bmatrix} a_{\text{or}} & a_{\text{nand}} \end{bmatrix} \begin{bmatrix} w_{\text{or}}^{\text{and}} \\ w_{\text{nand}}^{\text{and}} \end{bmatrix} + b^{\text{and}} \right)$$

$$\begin{bmatrix} nand \\ p \\ nand \\ q \end{bmatrix} + \begin{bmatrix} b \text{ or } b \text{ nand} \end{bmatrix} \begin{bmatrix} wand \\ wor \\ wand \\ wand \\ nand \end{bmatrix} + b^{and}$$

$f(x; a, b) = (ax + b)^2$

$f(x; a, b) = (ax + b)^2$

$$\frac{\partial e}{\partial e} = 1$$

 $f(x;a,b) = (ax+b)^2$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$f(x; a, b) = (ax + b)^2$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial c + b}{\partial b} = 10$$
$$b = 2$$

$f(x; a, b) = (ax + b)^2$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial c + b}{\partial b} = 10$$
$$b = 2$$

f(x; a, b)

$$b) = (ax+b)^2$$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial c + b}{\partial b} = 10$$
$$= 2$$

 $\frac{\partial e}{\partial x} = \frac{\partial e}{\partial c} \frac{\partial c}{\partial x} = 10a = 30$

f(x; a, b)

$$b) = (ax+b)^2$$

$$\frac{\partial e}{\partial e} = 1$$

$$\frac{\partial e}{\partial d} = 2d\frac{\partial e}{\partial e} = 10$$

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial b} = 10 \frac{\partial c + b}{\partial b} = 10$$
$$= 2$$

 $\frac{\partial e}{\partial x} = \frac{\partial e}{\partial c} \frac{\partial c}{\partial x} = 10a = 30$

Nodes in Computational Graph

- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

Nodes in Computational Graph

- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's

gradient

@tensor_op class relu(Operation): @staticmethod def forward(ctx, value): new_val = np.maximum(0, value) ctx.append(new_val) return new_val

@staticmethod def backward(ctx, grad_output): value = ctx[-1]return [(value > 0).astype(float) * grad_output]

@tensor_op class relu(Operation): @staticmethod def forward(ctx, value): new_val = np.maximum(0, value) ctx.append(new_val) return new_val

@staticmethod def backward(ctx, grad_output): value = ctx[-1]return [(value > 0).astype(float) * grad_output]

Save and retrieve the input value!

@tensor_op class relu(Operation): @staticmethod def forward(ctx, value): new_val = np.maximum(0, value) ctx.append(new_val) return new_val

@staticmethod def backward(ctx, grad_output): value = ctx[-1]return [(value > 0).astype(float) * grad_output] local gradient times

Save and retrieve the input value!

upstream gradient

@tensor_op
class relu(Operation):
 @staticmethod
 def forward(ctx, value):
 new_val = np.maximum(0, value)
 ctx.append(new_val)
 return new_val

@staticmethod
def backward(ctx, grad_output):
 value = ctx[-1]
 return [(value > 0).astype(float) * grad_output]
 local gradient times upstream

Neural Networks, I

- Feed-forward networks
 - Fixed size: average, fixed window of prep tokens
- Recurrent neural networks: sequence processors
 - Vanishing gradients, gated variants (LSTM)
 - Encoder-decoder / seq2seq architecture and tasks
 - Attention mechanism

Model Architecture, One Input

Model Architecture, One Input

Model Architecture, One Input

Neural LM Architecture

 W_t : one-hot vector

embeddings = concat($w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C$)

 W_t : one-hot vector

hidden = $tanh(embeddingsW^1 + b^1)$

embeddings = concat $(w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C)$

 W_t : one-hot vector

probabilities = softmax(hidden $W^2 + b^2$)

hidden = $tanh(embeddingsW^1 + b^1)$

embeddings = concat($w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C$)

 W_t : one-hot vector

RNN for Text Classification

JM sec 9.2.5

RNNs for Language Modeling

• Deep RNNs:

Source: RNN cheat sheet

• Deep RNNs:

• Bidirectional RNNs:

Source: RNN cheat sheet

• Deep RNNs:

Bidirectional RNNs:

Source: RNN cheat sheet

• Deep RNNs:

• Bidirectional RNNs:

Source: RNN cheat sheet

• Deep RNNs:

• Bidirectional RNNs:

Source: RNN cheat sheet

LSTMs

LSTMs

Training an encoder-decoder RNN

Alignment, example

Alignment, example

Ceci n'est pas une pipe.

Ceci n' est pas une pipe

This is not a pipe

Ceci n' est pas une pipe

 $e_{ij} = \operatorname{softmax}(\alpha)_j$

$$\alpha_{ij} = a(h_j, d_i)$$
(dot product usually)

$$c_i = \sum_j e_{ij} h_j$$

 $e_{ij} = \operatorname{softmax}(\alpha)_i$

$$\alpha_{ij} = a(h_j, d_i)$$
(dot product usually)

$$c_i = \sum_j e_{ij} h_j$$

 $e_{ij} = \operatorname{softmax}(\alpha)_i$

$$\alpha_{ij} = a(h_j, d_i)$$
(dot product usually)

$$c_i = \sum_j e_{ij} h_j$$

 $e_{ij} = \operatorname{softmax}(\alpha)_i$

$$\alpha_{ij} = a(h_j, d_i)$$
(dot product usually)

Neural Networks, II

- Transformers
 - Core architecture
 - Pre-training + Fine-tuning Paradigm
- Interpretability / analysis

Lack of Parallelizability

- Modern hardware (e.g. GPUs) are very good at doing independent computations in parallel
- RNNs are inherently serial:
 - Cannot compute future time steps without the past
- Bottleneck that makes scaling up difficult

Students who ... enjoy

Lack of Parallelizability

- Modern hardware (e.g. GPUs) are very good at doing independent computations in parallel
- RNNs are inherently serial:
 - Cannot compute future time steps without the past
- Bottleneck that makes scaling up difficult

Students who ... enjoy

Lack of Parallelizability

- Modern hardware (e.g. GPUs) are very good at doing independent computations in parallel
- RNNs are inherently serial:
 - Cannot compute future time steps without the past
- Bottleneck that makes scaling up difficult

Students who ... enjoy

W UNIVERSITY of WASHINGTON

Transformer: Path Lengths + Parallelism

Transformer: Path Lengths + Parallelism

Path lengths between tokens: 1 [constant, not linear]

Transformer: Path Lengths + Parallelism

Computation order: Entire second layer: 1

Entire first layer: 0

Also not linear in sequence length! Can be parallelized.

Path lengths between tokens: 1 [constant, not linear]

Decoder: Masking Out the Future

$$QK^{T}: \text{ total attention scores}$$

$$\max_{ij} = \begin{cases} -\infty & j > i \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{MaskedAttention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}} + \operatorname{mask}\right) V$$

Schematically

Fine-Tuning

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Initial Results

Comparison

Source: BERT paper

W UNIVERSITY of WASHINGTON

Cell dynamics for a syntax unit

W UNIVERSITY of WASHINGTON

Examples

Head 5-4

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a coreferent mention to the head of an antecedent

(a)

(performance improves if fine-tuned on this challenge set)

Results

(b)

Guest lectures

- C.M. Downey: Multilingual NLP
- Jack Hessel: Multimodality
- Angelina McMillan-Major: Documenting stochastic parrots

Assignments

- 1: Vocabulary + Data Statement
- 2: Word2Vec (raw numpy)
- 3: Computation graphs (word2vec in edugrad)
- 4: Deep Averaging Network classifier (edugrad)
- 5: Feed-forward language model (edugrad)
- 6: RNN text classifier
- 7: RNN language model
- 8: Seq2Seq + Attention [translation]
- 9: Pre-trained transformer classifier

What's Next?

Learning Outcomes

- One way of operationalizing the goal: you can hopefully now read many/ most new papers at NLP conferences and understand what they're doing
 - Expressions like "we pre-trained a bi-directional LSTM language model on various tasks and then fine-tuned on a standard suite" are now parseable
 - And with deeper / more hands-on familiarity with the models and their architectures, you are in a position to assess new developments as they come (and contribute to them as well!)

Topics Not Covered

- Full suite of "tips and tricks" for training
 - e.g. learning rate schedules
 - Best methods for hyper parameter tuning
- Other architectures sometimes used: convolutional networks, tree-based RNNs
- Wide variety of NLP tasks: parsing, QA, toxic language detection, etc.
- NB: you are now well-positioned to read and learn about all of these on your own

- Where to learn more?
 - Read papers and chase references when confused
 - Cornell's course has lots of online materials: <u>http://www.phontron.com/class/</u> <u>nn4nlp2021/</u>
 - Stanford CS224U (pre-recorded videos) <u>http://web.stanford.edu/class/cs224u/</u> And CS224N (live lectures) <u>http://web.stanford.edu/class/cs224n/</u>
- NLP Newsletter: <u>https://newsletter.ruder.io/</u>
- ACL Anthology: https://www.aclweb.org/anthology/ [more and more videos too]
- Semantic Scholar / arXiv sanity similar paper searches

Where to Learn More

General Question Time

Wrapping Up

Course Evaluations

- Course evals are open now through June 3
- Please do fill them out as soon as possible!
 - E.g. right now :)
 - Help me:
 - Improve the course for future iterations
 - Get tenure ;)

Thank You!

- I've learned a lot from you all this quarter!
- Hopefully you're in a better place with regard to neural methods in NLP than when the course started.
- And congrats to everyone for handling such a workload amidst all of the challenges of the past year-plus. Very awe-inspiring.
- So: thank you, and have a great summer / future!

