
Transformers, II: Decoder, Limitations
LING 575K Deep Learning for NLP

Shane Steinert-Threlkeld
May 2 2022

1

Announcements
● HW4 ref (/ sym-links) available. NB: no ReLU immediately after embeddings

● Why a character-level language model for HW5?
● Primarily: compute efficiency. For SST data:
● Size of char vocab: ~70. Size of word vocab: ~13000.
● Softmax layer sums over the whole vocab (for denominator); becomes very expensive!
● NB: will talk today about “modern” approaches to solving this problem

● Secondarily: very impressive! Still can work quite well (e.g. char LSTM LMs from those
slides).

● Third: may learn interesting phenomena below the word level (e.g. morpheme discovery).
● NB: hard problem so models may not work as well as word-level, esp. small ones (e.g. HW5).

● See Ajda Gokcen’s Treehouse talk from last year on text granularity in NLP models

2

http://chimpanzee.ling.washington.edu/clms/home/treehouse-meetings/

Today’s Plan
● Wrap up Transformer Encoder

● Transformer Decoder
● Attention Masks

● Limitations
● Quadratic attention
● Sequential generation

● Subword Tokenization

3

Transformer Decoder

4

Decoder Block
● Like the encoder, the decoder is

many blocks stacked vertically

● Two slightly different ingredients:
● Masked self-attention
● Cross (encoder-decoder) attention

5

encoder

Masked Self-Attention

6

Masked Self-Attention
● Recall from seq2seq:
● Decoder a kind of conditional language model
● Predicts next tokens in output sequence, given the encoder representations
● [Can also be used on its own as an unconditional LM; more later]

● Problem: self-attention “looks to the future”
● Decoders should only be able to pay attention to previous positions

7

Masking Out the Future
● Key idea:
● Use a “mask” to block out

certain attention scores

● On the left:
● Tokens in the rows (as

queries) can not pay
attention to the tokens in the
columns (values) that are
shaded in

8

<S> Ceci n’ est pas une pipe

<S>

Ceci

n’

est

pas

une

pipe

Masking Out the Future

9

QKT: total attention scores

maskij = {−∞ j > i
0 otherwise

MaskedAttention(Q, K, V) = softmax (QKT

dk
+ mask) V

<S> Ceci n’ est pas une pipe

<S> 0 -inf -inf -inf -inf -inf -inf

Ceci 0 0 -inf -inf -inf -inf -inf

n’ 0 0 0 -inf -inf -inf -inf

est 0 0 0 0 -inf -inf -inf

pas 0 0 0 0 0 -inf -inf

une 0 0 0 0 0 0 -inf

pipe 0 0 0 0 0 0 0

Masked Self-Attention

10

● In a nutshell:
● Compute “raw” attention scores as before
● Add a mask to “zero out” the future positions in a sequence

● As in the encoder:
● This is one attention head, several used for multi-headed attention
● Q, K, V are generated by applying learned matrices for each head

Cross-Attention

11

Cross-Attention
● Recall the original application of attention: allowing a decoder to attend to

all of an encoder’s representations, instead of just the final one

● How can we apply this form in Transformer-land?
● What are the queries, keys, and values?

12

Cross-Attention
● Queries: decoder representations X

● Keys and values: top-layer encoder representations Z

● Learned weight matrices as beforeWq, Wk, Wv

13

CrossAttention = Attention (XWq, ZWk, ZWv)

Transformer Decoders
● Can be used any place you would use a

decoder

● Masked attention prevents “peeking into the
future”

● In seq2seq, for conditional language
modeling, e.g.
● Translation
● Summarization

● On its own, as a “pure” language model
● [NB: people now call this “causal language

modeling” sometimes]

14

source

https://arxiv.org/pdf/1810.04805.pdf

Transformer Decoders
● Can be used any place you would use a

decoder

● Masked attention prevents “peeking into the
future”

● In seq2seq, for conditional language
modeling, e.g.
● Translation
● Summarization

● On its own, as a “pure” language model
● [NB: people now call this “causal language

modeling” sometimes]

14

source

https://arxiv.org/pdf/1810.04805.pdf
https://twitter.com/nlpnoah/status/1370191318727626758

Transformer LM (Decoder-only) Results

15

● Character-level:

● NB: used several auxiliary losses

● GPT2 results (more next time)

● Zero-shot evaluation: trained on very large corpus, evaluated on standard
benchmarks

https://arxiv.org/pdf/1808.04444.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Full Transformer Encoder-Decoder

16

Transformer Architecture Summary
● Main building block: attention
● Encoder: self-attention
● Decoder: masked self-attention
● Decoder-encoder: cross-attention

● Position encodings/embeddings to inject information about sequence order

● Position-wise feed-forward networks for element-wise nonlinearities

● Residual connections + LayerNorm around every component

17

Transformers: Limitations

18

Quadratic Attention
● Attention computes similarity scores between all pairs of tokens
● : [seq_len, seq_len] shape

● In other words, size of attention is

● Prevents scaling to long sequences
● Document-level:
● Summarization
● QA
● …

● Big area of current research: linear(-ish) attention mechanisms.

QKT

O(n2)

19

Some Examples

20

● Longformer:

● Carefully control
positions attended to

● Linformer:

● Additional projection of
Keys/Values to smaller
space

● , with k a hyper-
parameter

● Survey paper

O(nk)

Inference speed does not
scale with seq length

https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2006.04768.pdf
https://arxiv.org/pdf/2009.06732.pdf

Recurrence in Generation
● Recall the basic method for generating from a decoder:
● Feed initial token (e.g. BOS, or just a word/character)
● Generate probability over next tokens
● Sample next token from this distribution
● Repeat until [EOS | max length | other criterion]

● This loop is unavoidable during generation
● Transformer’s gains on paralellizability: work for training, vanish for generation
● In fact, RNN decoders tend to be much faster at inference time

21

Mixed/Hybrid Architectures
● Encoder-decoder: a general architecture
● In principle, any model of the right type can be encoder and/or decoder

● “The Best of Both Worlds” for NMT
● Transformer encoder + RNN decoder

● Google Translate’s newest version
● “Transformer models have been demonstrated to be generally more effective at machine

translation than RNN models, but our work suggested that most of these quality gains were
from the transformer encoder, and that the transformer decoder was not significantly better
than the RNN decoder. Since the RNN decoder is much faster at inference time, we applied
a variety of optimizations before coupling it with the transformer encoder. The resulting
hybrid models are higher-quality, more stable in training, and exhibit lower latency.”

22

https://www.aclweb.org/anthology/P18-1008.pdf
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

Subword Tokenization

23

OOV and Vocab Size
● Word-level models:
● Tokenize training data
● Build vocabulary
● Learn representations

● Two problems:
● Cannot generalize at test time to OOV (out of vocab) words
● [various subtleties, tricks, etc, but generally true]
● Larger training data —> larger vocabulary
● Its own problems, e.g. very expensive softmax over vocab in decoders
● [Or put a cap on vocab size, but then miss lower-frequency words entirely.]

24

Finer Representation Levels
● One solution: character-level models
● Pros:
● Small vocabulary size
● No (or very little) OOV
● Cons:
● Much harder learning problems; need to learn everything about words, on top of

phrases, sentences, etc.

● In-between solution: sub-word tokenization
● Split words into pieces, but don’t go all the way down to character level
● Many methods: WordPiece, BytePair Encoding (BPE), …

25

WordPiece Embeddings
● Another solution to OOV problem, from NMT context (see Wu et al 2016)

● Main idea:
● Fix vocabulary size |V| in advance [e.g., for BERT: 30k]
● Choose |V| wordpieces (subwords) such that total number of wordpieces in the

corpus is minimized

● Frequent words aren’t split, but rarer ones are, e.g.:

● “Backpropagation was confusing at first, but now we grok it.”
● [“Back”, “##prop”, “##ag”, “##ation”, “was”, “confusing”, “at”, “first”, “,”, “but”,

“now”, “we”, “gro”, “##k”, “it”, “.”]

26

https://arxiv.org/pdf/1609.08144.pdf

Next Time
● This wraps up our general overview of the Transformer architecture

● Next time: why they have become so dominant in NLP in the last several
years
● Pre-training and fine-tuning paradigm
● General idea
● Several examples

● Then: how to interpret/analyze NLP models, followed by a series of special guest
lectures

27

