
LING 575K HW6

Due 11PM on May 12, 2022

In this assignment, you will

• Develop understanding of recurrent neural networks

• Implement components of data processing

• Implement key pieces of two variants of a recurrent model architecture

All files referenced herein may be found in /dropbox/21-22/575k/hw6/ on patas.

1 Recurrent Neural Network Encoders [30 pts]

Q1: Understanding RNNs [10 pts]

• What is the main limitation of feed-forward neural networks that is overcome by recurrent networks,
and how do recurrent networks achieve this? [6 pts]

• The Vanilla RNN equation has the form ht = f(ht−1, xt). What extra ‘ingredient’ does the LSTM
add to this general form? What problem is the LSTM designed to solve? [4 pts]

Q2: LSTM Update One of the “central” equations in the LSTM computation is the following:

ct = ft � ct−1 + it � ĉt

This equation performs an essential update of one part of the LSTM. Please answer: [10 pts]

• What is ct?

• What is the range of ft and what is its purpose?

• What is the range of it and what is its purpose?

• What is ĉt?

• In your own words, describe how this equation implements the central “update” inside of an LSTM.

Q3: Counting parameters Let de be the dimension of word embeddings and dh the hidden state size.
Focusing on just the recurrent cell (and so ignoring the embedding and output layers): [10 pts]

• How many parameters are there in a Vanilla RNN cell? [4 pts]

• How many parameters are there in an LSTM cell? [6 pts]

Note: for this problem, you can assume that the RNN cell is at the ‘bottom’ of a possibly-deep RNN, so
the inputs to the cell are word embeddings, not earlier layers’ hidden states.

1



2 Implementing an RNN Sentiment Classifier [30 pts]

In the coding portion of this assignment, you will implement (components of) a classifier for the Stanford
Sentiment Treebank, using RNNs as encoders. In particular, the model will take the final hidden state of
an RNN that has read reviews as input in order to predict the sentiment labels thereof. Here, you will
implement some data pre-processing and two major types of RNN “cell” (i.e. one time-step of computation).
These are then used in other RNN modules that we provide to process entire sequences.

Q1: Data processing The reviews in the SST dataset come in various lengths. In the previous models
we have looked at in the class, this has not been an issue because they rely either on a bag-of-words repre-
sentation (Deep Averaging Network) or a fixed-sized window of previous tokens (Feed-Forward Language
Model). RNNs, however, require the use of padding : given a batch of reviews of various lengths, we pad
the shorter sequences with a special padding token so that all sequences are as long as the longest one.
In data.py, please implement the pad batch method. Please read the method signature and docstring
carefully for details on the input and output. [5 pts]

Q2: Vanilla RNN Cell The “cell” of an RNN does one time-step of computation. For a Vanilla RNN,
we saw that this was

ht = tanh (Whht−1 + bh + Wxxt + bx)

where ht−1 is the previous hidden state, xt is the current input, and the W s and bs are parameters for
linear transformations.
In model.py, implement this computation in VanillaRNNCell.forward. The initializer defines the linear
layers that you will need. [10 pts]

Q3: LSTM Cell An LSTM cell computes the next hidden state and memory based on the previous
hidden state and memory together with the current input. Please consult these slides for the entire set of
equations (and details about motivation).
In model.py, implement this computation in LSTMCell.forward. The initializer defines the linear layers
that you will need. [15 pts]

3 Running the Classifier [15 pts]

run.py contains a basic training loop for SST classification, using the last hidden state of an RNN. It will
record the training and dev loss at each epoch, and save the best model according to dev loss. At the end,
it samples 10 random dev data points and prints the review, the gold label, and the model’s prediction.

Q1: Four different runs By default, a Vanilla RNN will be used. You can use an LSTM by specifying
--lstm as a command-line argument. Following this paper, we have added dropout to the non-recurrent
connections (i.e. from the inputs and to the output) of the model.
Please run each of the following variations. For each run, include in your readme.pdf: the best dev loss,
the epoch at which the best dev loss was achieved, and the best model’s dev accuracy. [8 pts]

• Vanilla RNN, default parameters. (This is just run.py with no command-line arguments.)

• Vanilla RNN, with L2 regularization (via --l2) at 1e-4 and dropout (via --dropout) at 0.5.

• LSTM, default parameters.

• LSTM, with L2 regularization (via --l2) at 1e-4 and dropout (via --dropout) at 0.5.

2

https://www.shane.st/teaching/575k/spr21/slides/8_lstm.pdf
https://arxiv.org/abs/1409.2329


Q2: Inspecting outputs For the fourth run above, please include in your readme.pdf the 10 random
dev examples, with gold labels and model predictions here. In 2-3 sentences, describe what you see and
observe any trends in what the model gets right and what (and/or how) it gets things wrong. [7 pts]

4 Testing your code

In the dropbox folder for this assignment, we will include a file test all.py with a few very simple unit
tests for the methods that you need to implement. You can verify that your code passes the tests by
running pytest from your code’s directory, with the course’s conda environment activated.

Submission Instructions

In your submission, include the following:

• readme.(txt|pdf) that includes your answers to §1 and §3.

• hw6.tar.gz containing:

– run hw6.sh. This should contain the code for activating the conda environment and your run
commands for §3 above. You can use run hw2.sh from the previous assignment as a template.

– data.py

– model.py

3


	Recurrent Neural Network Encoders [30 pts]
	Implementing an RNN Sentiment Classifier [30 pts]
	Running the Classifier [15 pts]
	Testing your code

