
Recurrent Neural Networks, I
LING 575K Deep Learning for NLP

Shane Steinert-Threlkeld
April 19 2021

1

Today’s Plan
● Last time:
● Deep Averaging Networks for text classification

● Neural Probabilistic Language Model

● Additional Training Notes
● Regularization
● Early stopping
● Hyper-parameter searching

● Intro to Recurrent Neural Networks

2

Announcements
● HW2 reference code (and symlinks from hw3) available now

● HW3 tests: hw3/test_all.py. NB: necessary, but not sufficient, to check correctness
of your code. `pytest test_all.py`, from your directory, with environment activated.

● Implementing ops in edugrad:
● You can use any numpy operations you want; goal it to understand forward/backward API
● https://github.com/shanest/edugrad
● Log: base e, don’t need to do special handling of bad input arguments (like 0)

● Edugrad is installed in the course conda environment, so be sure to activate it

● and static computation graphsf(x) = x2 × 3x

3

https://github.com/shanest/edugrad

Decorators
● @tensor_op in edugrad code: what is this??

● Example of a decorator
● Design pattern to extend an object with more functionality
● Decorators wrap their arguments, add features (e.g. registering in a central DB)

● In python, syntactic sugar:

● Canonical examples:
● @classmethod
● @staticmethod

4

https://en.wikipedia.org/wiki/Decorator_pattern

Decorator Demo

5

Unordered Models in the Large LM Era
● Last time: “Deep Unordered Composition Rivals Syntactic Methods for Text

Classification” —2015

● Brand new paper:

6

https://arxiv.org/pdf/2104.06644.pdf

Unordered Models in the Large LM Era
● Last time: “Deep Unordered Composition Rivals Syntactic Methods for Text

Classification” —2015

● Brand new paper:

6

https://arxiv.org/pdf/2104.06644.pdf

Unordered Models in the Large LM Era

7

Unordered Models in the Large LM Era
● “We observed overwhelmingly that MLM’s success is most likely not

[emphasis added] due to its ability to discover syntactic and semantic
mechanisms necessary for a traditional language processing pipeline.
Instead, our experiments suggest that MLM’s success can be mostly
explained by it having learned higher-order distributional statistics that
make for a useful prior for subsequent fine-tuning.”

8

Recurrent Neural Networks

9

RNNs: high-level

10

RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous classifier: average embeddings of words
● Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

10

RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous classifier: average embeddings of words
● Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

● RNNs process sequences of vectors
● Maintaining “hidden” state
● Applying the same operation at each step

10

RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous classifier: average embeddings of words
● Previous LM: n-gram assumption (i.e. fixed-size context of word embeddings)

● RNNs process sequences of vectors
● Maintaining “hidden” state
● Applying the same operation at each step

● Different RNNs:
● Different operations at each step
● Operation also called “recurrent cell”
● Other architectural considerations (e.g. depth; bidirectionally)

10

Long-distance dependencies, I: number
● Language modeling (fill-in-the-blank)
● The keys ____
● The keys on the table ____
● The keys next to the book on top of the table ____
● To get the number on the verb, need to look at the subject, which can be very far

away
● And number can disagree with linearly-close nouns

11

Selectional Restrictions
● The family moved from the city because they wanted a larger ____.

● The team moved from the city because they wanted a larger ____.

12

Selectional Restrictions
● The family moved from the city because they wanted a larger house.

● The team moved from the city because they wanted a larger market.

● Need models that can capture long-range dependencies like this.

● N-gram (whether count-based or neural) cannot. E.g., with n=4:
● P(word | “they wanted a larger”)

13

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

ht = f(xt, ht−1)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs

14

Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

Linear +
softmax

Linear +
softmax

Linear +
softmax

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Simple / Vanilla / Elman RNNs
● Same kind of feed-forward computation we’ve been studying, but:
● : sequence element at time t

● : hidden state of the model at previous time t-1
xt
ht−1

15

Simple / Vanilla / Elman RNNs
● Same kind of feed-forward computation we’ve been studying, but:
● : sequence element at time t

● : hidden state of the model at previous time t-1
xt
ht−1

15

Simple/“Vanilla” RNN: ht = tanh(xtWx + ht−1Wh + b)

Training: BPTT
● Backpropagation Through Time

● “Unroll” the network across time-steps

● Apply backprop to the “wide” network
● Each cell has the same parameters
● Gradients sum across time-steps
● Multi-variable chain rule

16source

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture05-rnnlm.pdf

Power of RNNs

17

Elman 1990

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

What trends do you notice?

http://www.apple.com

Power of RNNs

18

Elman 1990

Hierarchical clustering of Vanilla
RNN hidden states trained as
LM on synthetic data:

http://www.apple.com

Using RNNs

19

MLP e.g. image
captioning

Using RNNs

19

MLP

e.g. text classification

e.g. image
captioning

Using RNNs

19

MLP

e.g. text classification e.g. POS tagging

e.g. image
captioning

Using RNNs

19

MLP seq2seq (later)

e.g. text classification e.g. POS tagging

e.g. image
captioning

RNN for Text Classification

20

JM sec 9.2.5

RNNs for Language Modeling

21

JM sec 9.2.3

Two Extensions
● Deep RNNs:

22Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

22

● Bidirectional RNNs:

Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

22

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

22

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

22

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Batching in RNNs
● Intuitively, shape of inputs: [batch_size, seq_len, vocab_size]

● But what is sequence length??
● “This is the first example </s>”: 6
● “This is another </s>”: 4

23

Padding and Masking
● Step 1: pad all sequences in batch to be of the same length
● “This is the first example </s>”: 6
● “This is another </s> PAD PAD”: 6

● Step 2: build a “mask” (1 = True token, 0 = padding)

● Step 3: use mask to tell model what to ignore, either
● Select correct final states [classification]
● Multiply losses in tagging tasks [LM]

24

[1 1 1 1 1 1
1 1 1 1 0 0]

Summary
● RNNs allow for neural processing of sequential data

● In principle, should help models capture long-distance dependencies (e.g.
number agreement, selectional preferences, …)
● Maintain a state over time
● Repeatedly apply the same weights
● as opposed to n-gram models, which cannot build such dependencies

● Uses: classification, tagging

● Extensions: deep, bidirectional

25

Next Time
● Discuss a technical problem in training Vanilla RNNs
● Vanishing gradients

● Introduce gating-based RNNs
● LSTMs
● GRUs
● Strengths, weaknesses, differences

26

