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Today’s Plan
● Deep Averaging Networks for text classification

● Neural Probabilistic Language Model

● Additional Training Notes
● Regularization
● Early stopping
● Hyper-parameter searching

● HW3 / edugrad / PyTorch
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Announcements
● Running time:
● Many factors influence this, including the load on nodes on patas
● So don’t worry too much about your raw numbers!
● Do: run in advance; it will take several hours

● Avoiding node 3 (thanks Levon):
● Requirements = ( Machine != "patas-n3.ling.washington.edu" )

● Number of parameters: each real number is a parameter, as opposed to 
entire vectors/matrices
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Note on Random Seeds
● In word2vec.py / util.py: 

● Random seed:
● Behavior of pseudo-random number generators is 

determined by their “seed” value
● If not specified, determined by e.g. # of seconds since 1970
● Same seed —> same (non-random behavior)

● Sources of randomness in DL: shuffling the data each 
epoch, weight initialization, negative sampling, …

● Very important for reproducibility!
● In general, run on several seeds and report means / std’s
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Random Seeds and Reproducibility
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Deep



Random Seeds, cont
● Ideally: “randomly generate” seeds, but save/store them!

● Random seed is not a hyper-parameter! (Some discussions in these threads.)
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https://twitter.com/milesaturpin/status/1251218514272301057
https://twitter.com/jakevdp/status/1247742792861757441


Deep Averaging Networks
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https://www.aclweb.org/anthology/P15-1162/


Deep, Unordered, Classification
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Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network
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Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

● Unordered:
● Text is represented as a “bag of words”
● No notion of syntactic order
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Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

● Unordered:
● Text is represented as a “bag of words”
● No notion of syntactic order

● Classification:
● Applied to several classification tasks, including SST
● Via softmax layer
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Model Architecture, One Input
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Model Architecture, One Input
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Model Architecture, One Input
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f(avW1 + b1)Word embeddings:
Pre-trained or learned



Hyper-parameters
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Hyper-parameters
● Embedding dimension
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Hyper-parameters
● Embedding dimension

● Number of hidden layers
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Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:
● Activation function
● Hidden dimension size
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Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:
● Activation function
● Hidden dimension size

● Exercise: find the values for these hyper-parameters in the paper
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Note on Embedding Layer
● Let  be the integer index of word 

● One-hot vector (t=4): 

● For  an embedding matrix of shape [vocab_size, embedding_dimension] 
and  the embedding for t:

● NB: direct look-up is faster than matrix multiplication, but the latter 
generalizes in useful ways that we will see soon

t w
wt = [0 0 0 1 ⋯ 0]

E
Et
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Batched Computation in DAN
● We saw how to pass one piece of text through the DAN

● How can we leverage larger batch sizes and their advantages?
● “Predator is a masterpiece”
● “Parasite won Best Picture for 2019”

● What issues here?

● Different lengths —> different number of embeddings —> different input 
size (intuitively)
● But we need a matrix of shape [batch_size, representation_size] for inputs
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Batching with Bag of Words
● Bag of words representation:
● {word1: 3, word36: 1, word651: 1, …}

● Let s be a sentence words  occurring  times:  

● Bag of words vector: 

● For every sentence, these vectors have the same size (vocab size)
● So they can be stacked into a matrix, of shape [batch_size, vocab_size]
● Divide each row by length of that sentence to get average of embeddings

ti counti bags := {ti : counti}

vecs := [3 0 ⋯ 1 ⋯ 1 ⋯]
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vecsE =
len(s)

∑
i=0

Eti



Output and Loss for Classification
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logits = hiddenW + b
̂y = probs = softmax(logits)
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Output and Loss for Classification
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logits = hiddenW + b
̂y = probs = softmax(logits)

ℓCE( ̂y, y) = −
|classes|

∑
i=0

yi log ̂yi

One hot for true class label



Results
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Results
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“Rivals syntactic 
methods”



Error Analysis
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Two Additional “Tricks”
● Word dropout
● A type of regularization [more later]

● Adagrad optimizer
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Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for  to all 0s for this examplewi
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Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for  to all 0s for this examplewi
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mask = [01110]
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Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for  to all 0s for this examplewi

19

vecs = [20110]
mask = [01110]

vecs ⊙ mask = [00110]

Generated randomly 
for each sentence



Adagrad
● “Adaptive Gradients”
● Key idea: adjust the learning rate per parameter
● Frequent features —> more updates
● Adagrad will make the learning rate smaller for those 
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Adagrad
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● Let 

● SGD: 

● Adagrad:

gt,i := ∇θt,i
ℒ

θt+1,i = θt,i − αgt,i

θt+1,i = θt,i −
α

Gt,i + ϵ
gt,i

Gt,i =
t

∑
k=0

g2
k,i



Adagrad
● Pros: 
● “Balances” parameter importance
● Less manual tuning of learning rate needed (0.01 default)

● Cons:
●  increases monotonically, so step-size always gets smaller

● Newer optimizers try to have the pros without the cons

● Resources:
● Original paper (veeery math-y): https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
● Overview of optimizers: https://ruder.io/optimizing-gradient-descent/index.html#adagrad 

Gt,i
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https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://ruder.io/optimizing-gradient-descent/index.html#adagrad


Neural Probabilistic Language Model
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Language Modeling
● A language model parametrized by  computes

● Typically (though we’ll see variations):

● E.g. of labeled data: “Today is the third day of 575k.” —> 
● (<s>, Today)
● (<s> Today, is)
● (<s> Today is, the)
● (<s> Today is the, third)

θ
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Pθ(w1, …, wn)

Pθ(w1, …, wn) = ∏
i

Pθ(wi |w1, …, wi−1)



N-gram LMs
● Dominant approach for a long time uses n-grams:

● Estimate the probabilities by counting in a corpus
● Fancy variants (back-off, smoothing, etc)

● Some problems:
● Huge number of parameters: 
● Doesn’t generalize to unseen n-grams

≈ |V |n
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Pθ(wi |w1, …, wi−1) ≈ Pθ(wi |wi−1, wi−2, …, wi−n)



Neural LM
● Core idea behind the Neural Probabilistic LM
● Make n-gram assumption
● But: learn word embeddings
● “N-gram of word vectors”
● Probabilities: represented by a neural network, not counts
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Pros of Neural LM
● Number of parameters:
● Significantly lower, thanks to “low”-dimensional embeddings

● Generalization: embeddings enable generalizing to similar words
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Neural LM Architecture
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Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Neural LM Architecture
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Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Neural LM Architecture

28

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Neural LM Architecture

28

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

probabilities = softmax(hiddenW2 + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


More Detailed Diagram of Architecture
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JM sec 7.5



Output and Loss
● Softmax + cross-entropy
● Essentially, language modeling is |V|-way classification
● Each word in the vocabulary is a class
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Evaluation of LMs
● Extrinsic: use in other NLP systems

● Intrinsic: intuitively, want probability of a test 
corpus

● Perplexity: inverse probability, weighted by 
size of corpus
● NB: lower is better!
● Only comparable w/ same vocab
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PP(W) = P(w1w2⋯wn)−1/N

= N
1

P(w1w2⋯wn)

= N
1

∏|W|
i=0 P(wi |w1, …, wi−1)

= 2− 1
N ∑|W|

i=0 log P(wi|w1,…,wi−1)



Results
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More Complete Picture of This Model

33source (NAACL ’21)

https://arxiv.org/pdf/2104.03474.pdf


Additional Training Notes:  
Regularization and Hyper-Parameters
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Overfitting
● Over-fitting: model too closely mimics the training data
● Therefore, cannot generalize well

● Common when models are “over-parameterized”
● E.g. fitting a high-degree polynomial

● Key questions:
● How to detect overfitting?
● How to prevent it?
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Train, Dev, Test Set Splits
● Split total data into three chunks: train, dev (aka valid), test
● Common: 70/15/15, 80/10/10%

● Train: used for individual model training, as we’ve seen so far

● Dev/valid:
● Evaluation during training
● Hyper-parameter tuning
● Model selection

● Test:
● Final evaluation; DO NOT TOUCH otherwise
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Early stopping
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source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933


Early stopping
● One: Pick # of epochs, hope for no overfitting
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Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs
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Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs
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source

Overfitting

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933


Regularization
● NNs are often overparameterized, 

so regularization helps

● L1/L2: 

● Dropout:
● During training, randomly turn off X% 

of neurons in each layer
● (Don’t do this during testing/predicting)
● Batch Normalization / Layer Norm
● NB: batch size 🤯
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ℒ′ (θ, y) = ℒ(θ, y) + λ∥θ∥2

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/abs/1609.04836


Hyper-parameters
● In addition to the model architecture ones mentioned earlier

● Optimizer: SGD, Adam, Adagrad, RMSProp, ….
● Optimizer-specific hyper-parameters: learning rate, alpha, beta, …
● NB: backprop computes gradients; optimizer uses them to update parameters

● Regularization: L1/L2, Dropout, BN, …
● regularizer-specific ones: e.g. dropout rate

● Batch size

● Number of epochs to train for
● Early stopping criterion (e.g. number of epochs, “patience”)
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A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all 

possible combinations thereof

● Random search: specify possible values for all parameters, randomly 
sample values for each, stop when some criterion is met

40

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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Craft/Art of Deep Learning

41

https://xkcd.com/1838/ 

https://xkcd.com/1838/


Some Practical Pointers
● Hyper-parameter tuning and the like are not the focus of this course

● For some helpful hand-on advice about training NNs from scratch, 
debugging under “silent failures”, etc:
● http://karpathy.github.io/2019/04/25/recipe/ 
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http://karpathy.github.io/2019/04/25/recipe/


Hyper-parameter Tuning
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h/t CM Downey



Homework 3
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SGNS in Computation Graphs
● Learning goals:
● Deepen understanding / familiarity with computation graphs
● Develop understanding of back propagation
● Implement several operations in forward/backward API

● Main objective:
● Implementing Skip-gram with Negative Sampling in edugrad, a minimal / bare-

bones implementation of the PyTorch API
● Components: sigmoid, log, element-wise multiplication, dot products
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https://github.com/shanest/edugrad


Edugrad
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Edugrad, intro
● https://github.com/shanest/edugrad 

● Minimal re-implementation of PyTorch API, for educational purposes
● Forward/backward API for operations
● Automatic differentiation via backprop
● Dynamic computation graph

● Why?  Modern DL libraries have so much additional cruft that you cannot 
chase back lots of method calls to their implementations.
● E.g. what really happens when you call `loss.backward()`?

● NB: no performance optimizations, no GPU usage, etc. in edugrad
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https://github.com/shanest/edugrad


Edugrad: Tensor
● Tensor: wrapper around a numpy 

array (stored in .value attribute)
● value: np array
● grad: current gradient!  (Set to 0 

initially, populated during back 
propagation)

● Primary operators overloaded: +, -, ** 
(raise to a power)
● More on implementation of those in a 

second
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Edugrad: Operation
● Operation: defines forward/backward
● Operates on np arrays, not Tensors

● @tensor_op:
● Takes an Operation, turns it into a method that 

takes Tensor arguments and returns Tensor 
outputs
● And which builds the computation graph
● @: decorator; add = tensor_op(add)

● Basic ops provided: 
● https://github.com/shanest/edugrad/blob/master/

edugrad/ops.py 
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Edugrad: nn.Module
● edugrad.nn.Module: 
● As in PyTorch, basic model class
● Stores parameters [accessed via .parameters()]
● Can be nested (modules within modules)
● Implements `forward`

● Defining a custom module:
● Sub-class nn.Module
● Initialize params in __init__
● Implement custom forward method
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Edugrad: Linear Module example
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Edugrad: Linear Module example
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Always do this 
first!!



Edugrad: Linear Module example
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Always do this 
first!!

Define 
parameters



Edugrad: Linear Module
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Edugrad: Basic Training Demo
● https://github.com/shanest/edugrad/blob/

master/examples/toy_half_sum/main.py
● Trains an MLP on f(x) = sum(x)/2 for bit 

vectors x

● MLP as a nn.Module:

● NB: don’t hard-code hyper-parameters like 
this :)
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Training Loop
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