
FFNNs for Classification and Language
Modeling

LING 575K Deep Learning for NLP
Shane Steinert-Threlkeld

April 14 2021

1

Today’s Plan
● Deep Averaging Networks for text classification

● Neural Probabilistic Language Model

● Additional Training Notes
● Regularization
● Early stopping
● Hyper-parameter searching

● HW3 / edugrad / PyTorch

2

Announcements
● Running time:
● Many factors influence this, including the load on nodes on patas
● So don’t worry too much about your raw numbers!
● Do: run in advance; it will take several hours

● Avoiding node 3 (thanks Levon):
● Requirements = (Machine != "patas-n3.ling.washington.edu")

● Number of parameters: each real number is a parameter, as opposed to
entire vectors/matrices

3

Note on Random Seeds
● In word2vec.py / util.py:

● Random seed:
● Behavior of pseudo-random number generators is

determined by their “seed” value
● If not specified, determined by e.g. # of seconds since 1970
● Same seed —> same (non-random behavior)

● Sources of randomness in DL: shuffling the data each
epoch, weight initialization, negative sampling, …

● Very important for reproducibility!
● In general, run on several seeds and report means / std’s

4

Random Seeds and Reproducibility

5

Deep

Random Seeds, cont
● Ideally: “randomly generate” seeds, but save/store them!

● Random seed is not a hyper-parameter! (Some discussions in these threads.)

6source

https://twitter.com/milesaturpin/status/1251218514272301057
https://twitter.com/jakevdp/status/1247742792861757441

Deep Averaging Networks

7

8

https://www.aclweb.org/anthology/P15-1162/

Deep, Unordered, Classification

9

Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

9

Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

● Unordered:
● Text is represented as a “bag of words”
● No notion of syntactic order

9

Deep, Unordered, Classification
● Deep:
● One or more hidden layers in a neural network

● Unordered:
● Text is represented as a “bag of words”
● No notion of syntactic order

● Classification:
● Applied to several classification tasks, including SST
● Via softmax layer

9

Model Architecture, One Input

10

Model Architecture, One Input

10

f(avW1 + b1)

Model Architecture, One Input

10

f(avW1 + b1)Word embeddings:
Pre-trained or learned

Hyper-parameters

11

Hyper-parameters
● Embedding dimension

11

Hyper-parameters
● Embedding dimension

● Number of hidden layers

11

Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:
● Activation function
● Hidden dimension size

11

Hyper-parameters
● Embedding dimension

● Number of hidden layers

● For each layer:
● Activation function
● Hidden dimension size

● Exercise: find the values for these hyper-parameters in the paper

11

Note on Embedding Layer
● Let be the integer index of word

● One-hot vector (t=4):

● For an embedding matrix of shape [vocab_size, embedding_dimension]
and the embedding for t:

● NB: direct look-up is faster than matrix multiplication, but the latter
generalizes in useful ways that we will see soon

t w
wt = [0 0 0 1 ⋯ 0]

E
Et

12

Et = wtE

Batched Computation in DAN
● We saw how to pass one piece of text through the DAN

● How can we leverage larger batch sizes and their advantages?
● “Predator is a masterpiece”
● “Parasite won Best Picture for 2019”

● What issues here?

● Different lengths —> different number of embeddings —> different input
size (intuitively)
● But we need a matrix of shape [batch_size, representation_size] for inputs

13

Batching with Bag of Words
● Bag of words representation:
● {word1: 3, word36: 1, word651: 1, …}

● Let s be a sentence words occurring times:

● Bag of words vector:

● For every sentence, these vectors have the same size (vocab size)
● So they can be stacked into a matrix, of shape [batch_size, vocab_size]
● Divide each row by length of that sentence to get average of embeddings

ti counti bags := {ti : counti}

vecs := [3 0 ⋯ 1 ⋯ 1 ⋯]

14

vecsE =
len(s)

∑
i=0

Eti

Output and Loss for Classification

15

logits = hiddenW + b
̂y = probs = softmax(logits)

Output and Loss for Classification

15

logits = hiddenW + b
̂y = probs = softmax(logits)

ℓCE(̂y, y) = −
|classes|

∑
i=0

yi log ̂yi

Output and Loss for Classification

15

logits = hiddenW + b
̂y = probs = softmax(logits)

ℓCE(̂y, y) = −
|classes|

∑
i=0

yi log ̂yi

One hot for true class label

Results

16

Results

16

“Rivals syntactic
methods”

Error Analysis

17

Two Additional “Tricks”
● Word dropout
● A type of regularization [more later]

● Adagrad optimizer

18

Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

19

Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

19

vecs = [20110]
mask = [01110]

vecs ⊙ mask = [00110]

Word Dropout
● For each input sequence, flip |V| coins with probability p
● If the i’th coin lands tails, set embedding for to all 0s for this examplewi

19

vecs = [20110]
mask = [01110]

vecs ⊙ mask = [00110]

Generated randomly
for each sentence

Adagrad
● “Adaptive Gradients”
● Key idea: adjust the learning rate per parameter
● Frequent features —> more updates
● Adagrad will make the learning rate smaller for those

20

Adagrad

21

● Let

● SGD:

● Adagrad:

gt,i := ∇θt,i
ℒ

θt+1,i = θt,i − αgt,i

θt+1,i = θt,i −
α

Gt,i + ϵ
gt,i

Gt,i =
t

∑
k=0

g2
k,i

Adagrad
● Pros:
● “Balances” parameter importance
● Less manual tuning of learning rate needed (0.01 default)

● Cons:
● increases monotonically, so step-size always gets smaller

● Newer optimizers try to have the pros without the cons

● Resources:
● Original paper (veeery math-y): https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
● Overview of optimizers: https://ruder.io/optimizing-gradient-descent/index.html#adagrad

Gt,i

22

https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://ruder.io/optimizing-gradient-descent/index.html#adagrad

Neural Probabilistic Language Model

23

Language Modeling
● A language model parametrized by computes

● Typically (though we’ll see variations):

● E.g. of labeled data: “Today is the third day of 575k.” —>
● (<s>, Today)
● (<s> Today, is)
● (<s> Today is, the)
● (<s> Today is the, third)

θ

24

Pθ(w1, …, wn)

Pθ(w1, …, wn) = ∏
i

Pθ(wi |w1, …, wi−1)

N-gram LMs
● Dominant approach for a long time uses n-grams:

● Estimate the probabilities by counting in a corpus
● Fancy variants (back-off, smoothing, etc)

● Some problems:
● Huge number of parameters:
● Doesn’t generalize to unseen n-grams

≈ |V |n

25

Pθ(wi |w1, …, wi−1) ≈ Pθ(wi |wi−1, wi−2, …, wi−n)

Neural LM
● Core idea behind the Neural Probabilistic LM
● Make n-gram assumption
● But: learn word embeddings
● “N-gram of word vectors”
● Probabilities: represented by a neural network, not counts

26

Pros of Neural LM
● Number of parameters:
● Significantly lower, thanks to “low”-dimensional embeddings

● Generalization: embeddings enable generalizing to similar words

27

Neural LM Architecture

28

Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

28

Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

28

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

28

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

28

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

probabilities = softmax(hiddenW2 + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

More Detailed Diagram of Architecture

29

JM sec 7.5

Output and Loss
● Softmax + cross-entropy
● Essentially, language modeling is |V|-way classification
● Each word in the vocabulary is a class

30

Evaluation of LMs
● Extrinsic: use in other NLP systems

● Intrinsic: intuitively, want probability of a test
corpus

● Perplexity: inverse probability, weighted by
size of corpus
● NB: lower is better!
● Only comparable w/ same vocab

31

PP(W) = P(w1w2⋯wn)−1/N

= N
1

P(w1w2⋯wn)

= N
1

∏|W|
i=0 P(wi |w1, …, wi−1)

= 2− 1
N ∑|W|

i=0 log P(wi|w1,…,wi−1)

Results

32

More Complete Picture of This Model

33source (NAACL ’21)

https://arxiv.org/pdf/2104.03474.pdf

Additional Training Notes:  
Regularization and Hyper-Parameters

34

Overfitting
● Over-fitting: model too closely mimics the training data
● Therefore, cannot generalize well

● Common when models are “over-parameterized”
● E.g. fitting a high-degree polynomial

● Key questions:
● How to detect overfitting?
● How to prevent it?

35

Train, Dev, Test Set Splits
● Split total data into three chunks: train, dev (aka valid), test
● Common: 70/15/15, 80/10/10%

● Train: used for individual model training, as we’ve seen so far

● Dev/valid:
● Evaluation during training
● Hyper-parameter tuning
● Model selection

● Test:
● Final evaluation; DO NOT TOUCH otherwise

36

Early stopping

37

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

37

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs

37

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs

37

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs

37

source

Overfitting

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

Regularization
● NNs are often overparameterized,

so regularization helps

● L1/L2:

● Dropout:
● During training, randomly turn off X%

of neurons in each layer
● (Don’t do this during testing/predicting)
● Batch Normalization / Layer Norm
● NB: batch size 🤯

38

ℒ′ (θ, y) = ℒ(θ, y) + λ∥θ∥2

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/abs/1609.04836

Hyper-parameters
● In addition to the model architecture ones mentioned earlier

● Optimizer: SGD, Adam, Adagrad, RMSProp, ….
● Optimizer-specific hyper-parameters: learning rate, alpha, beta, …
● NB: backprop computes gradients; optimizer uses them to update parameters

● Regularization: L1/L2, Dropout, BN, …
● regularizer-specific ones: e.g. dropout rate

● Batch size

● Number of epochs to train for
● Early stopping criterion (e.g. number of epochs, “patience”)

39

A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all

possible combinations thereof

● Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

40

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all

possible combinations thereof

● Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

40

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Craft/Art of Deep Learning

41

https://xkcd.com/1838/

https://xkcd.com/1838/

Some Practical Pointers
● Hyper-parameter tuning and the like are not the focus of this course

● For some helpful hand-on advice about training NNs from scratch,
debugging under “silent failures”, etc:
● http://karpathy.github.io/2019/04/25/recipe/

42

http://karpathy.github.io/2019/04/25/recipe/

Hyper-parameter Tuning

43

h/t CM Downey

Homework 3

44

SGNS in Computation Graphs
● Learning goals:
● Deepen understanding / familiarity with computation graphs
● Develop understanding of back propagation
● Implement several operations in forward/backward API

● Main objective:
● Implementing Skip-gram with Negative Sampling in edugrad, a minimal / bare-

bones implementation of the PyTorch API
● Components: sigmoid, log, element-wise multiplication, dot products

45

https://github.com/shanest/edugrad

Edugrad

46

Edugrad, intro
● https://github.com/shanest/edugrad

● Minimal re-implementation of PyTorch API, for educational purposes
● Forward/backward API for operations
● Automatic differentiation via backprop
● Dynamic computation graph

● Why? Modern DL libraries have so much additional cruft that you cannot
chase back lots of method calls to their implementations.
● E.g. what really happens when you call `loss.backward()`?

● NB: no performance optimizations, no GPU usage, etc. in edugrad

47

https://github.com/shanest/edugrad

Edugrad: Tensor
● Tensor: wrapper around a numpy

array (stored in .value attribute)
● value: np array
● grad: current gradient! (Set to 0

initially, populated during back
propagation)

● Primary operators overloaded: +, -, **
(raise to a power)
● More on implementation of those in a

second

48

Edugrad: Operation
● Operation: defines forward/backward
● Operates on np arrays, not Tensors

● @tensor_op:
● Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor
outputs
● And which builds the computation graph
● @: decorator; add = tensor_op(add)

● Basic ops provided:
● https://github.com/shanest/edugrad/blob/master/

edugrad/ops.py

49

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: Operation
● Operation: defines forward/backward
● Operates on np arrays, not Tensors

● @tensor_op:
● Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor
outputs
● And which builds the computation graph
● @: decorator; add = tensor_op(add)

● Basic ops provided:
● https://github.com/shanest/edugrad/blob/master/

edugrad/ops.py

49

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: Operation
● Operation: defines forward/backward
● Operates on np arrays, not Tensors

● @tensor_op:
● Takes an Operation, turns it into a method that

takes Tensor arguments and returns Tensor
outputs
● And which builds the computation graph
● @: decorator; add = tensor_op(add)

● Basic ops provided:
● https://github.com/shanest/edugrad/blob/master/

edugrad/ops.py

49

https://timber.io/blog/decorators-in-python/
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py
https://github.com/shanest/edugrad/blob/master/edugrad/ops.py

Edugrad: nn.Module
● edugrad.nn.Module:
● As in PyTorch, basic model class
● Stores parameters [accessed via .parameters()]
● Can be nested (modules within modules)
● Implements `forward`

● Defining a custom module:
● Sub-class nn.Module
● Initialize params in __init__
● Implement custom forward method

50

Edugrad: Linear Module example

51

Edugrad: Linear Module example

51

Always do this
first!!

Edugrad: Linear Module example

51

Always do this
first!!

Define
parameters

Edugrad: Linear Module

52

Edugrad: Basic Training Demo
● https://github.com/shanest/edugrad/blob/

master/examples/toy_half_sum/main.py
● Trains an MLP on f(x) = sum(x)/2 for bit

vectors x

● MLP as a nn.Module:

● NB: don’t hard-code hyper-parameters like
this :)

53

https://github.com/shanest/edugrad/blob/master/examples/toy_half_sum/main.py
https://github.com/shanest/edugrad/blob/master/examples/toy_half_sum/main.py

Training Loop

54

