# FFNNs for Classification and Language Modeling

LING 575K Deep Learning for NLP Shane Steinert-Threlkeld April 14 2021







## Today's Plan

- Deep Averaging Networks for text classification
- Neural Probabilistic Language Model
- Additional Training Notes
  - Regularization
  - Early stopping
  - Hyper-parameter searching
- HW3 / edugrad / PyTorch







### Announcements

### • Running time:

- Many factors influence this, including the load on nodes on patas
- So don't worry too much about your raw numbers!
- Do: run in advance; it will take several hours
- Avoiding node 3 (thanks Levon):
  - Requirements = (Machine != "patas-n3.ling.washington.edu")
- Number of parameters: each real number is a parameter, as opposed to entire vectors/matrices





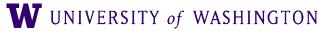
### Note on Random Seeds

- In word2vec.py / util.py:
- Random seed:
  - Behavior of pseudo-random number generators is determined by their "seed" value
  - If not specified, determined by e.g. # of seconds since 1970
  - Same seed —> same (non-random behavior)
- Sources of randomness in DL: shuffling the data each epoch, weight initialization, negative *sampling*, ...
- Very important for reproducibility!
  - In general, run on several seeds and report means / std's

# set random seed

util.set\_seed(args.seed)

def set\_seed(seed: int) -> None: """Sets various random seeds. random.seed(seed) np.random.seed(seed)











### Just try a different random seed 🤐

Programmers: You can't just rerun your program without changing it and expect it to work

Deep



### **Random Seeds and Reproducibility**

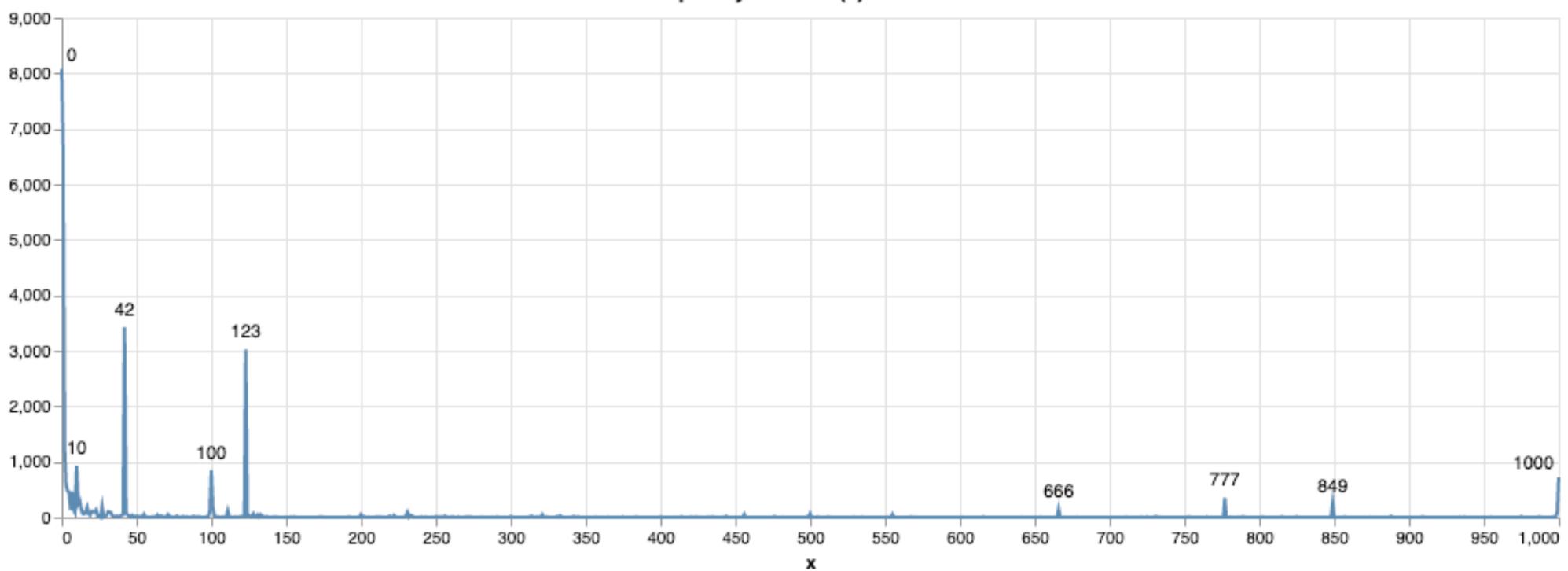
### infercoment Learning Practitioners:







- Ideally: "randomly generate" seeds, but save/store them!
- Random seed is not a hyper-parameter! (Some discussions in these threads.)



### Random Seeds, cont

### Frequency of "seed(x)" on Github



W UNIVERSITY of WASHINGTON





## **Deep Averaging Networks**





### **Deep Unordered Composition Rivals Syntactic Methods** for Text Classification

<sup>1</sup>University of Maryland, Department of Computer Science and UMIACS <sup>2</sup>University of Colorado, Department of Computer Science {miyyer,varunm,hal}@umiacs.umd.edu,Jordan.Boyd.Graber@colorado.edu

### Abstract

Many existing deep learning models for natural language processing tasks focus on learning the *compositionality* of their inputs, which requires many expensive computations. We present a simple deep neural network that competes with and, in some cases, outperforms such models on sen-

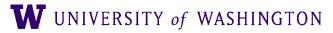
### Mohit Iyyer,<sup>1</sup> Varun Manjunatha,<sup>1</sup> Jordan Boyd-Graber,<sup>2</sup> Hal Daumé III<sup>1</sup>

results have shown that syntactic functions outperform unordered functions on many tasks (Socher et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions require more training time than unordered composition functions and are prohibitively expensive in the case of huge datasets or limited computing resources. For example, the recursive neural network (Section 2) computes costly matrix/tensor products











- Deep:
  - One or more hidden layers in a neural network







- Deep:
  - One or more hidden layers in a neural network
- Unordered:
  - Text is represented as a "bag of words"
  - No notion of syntactic order





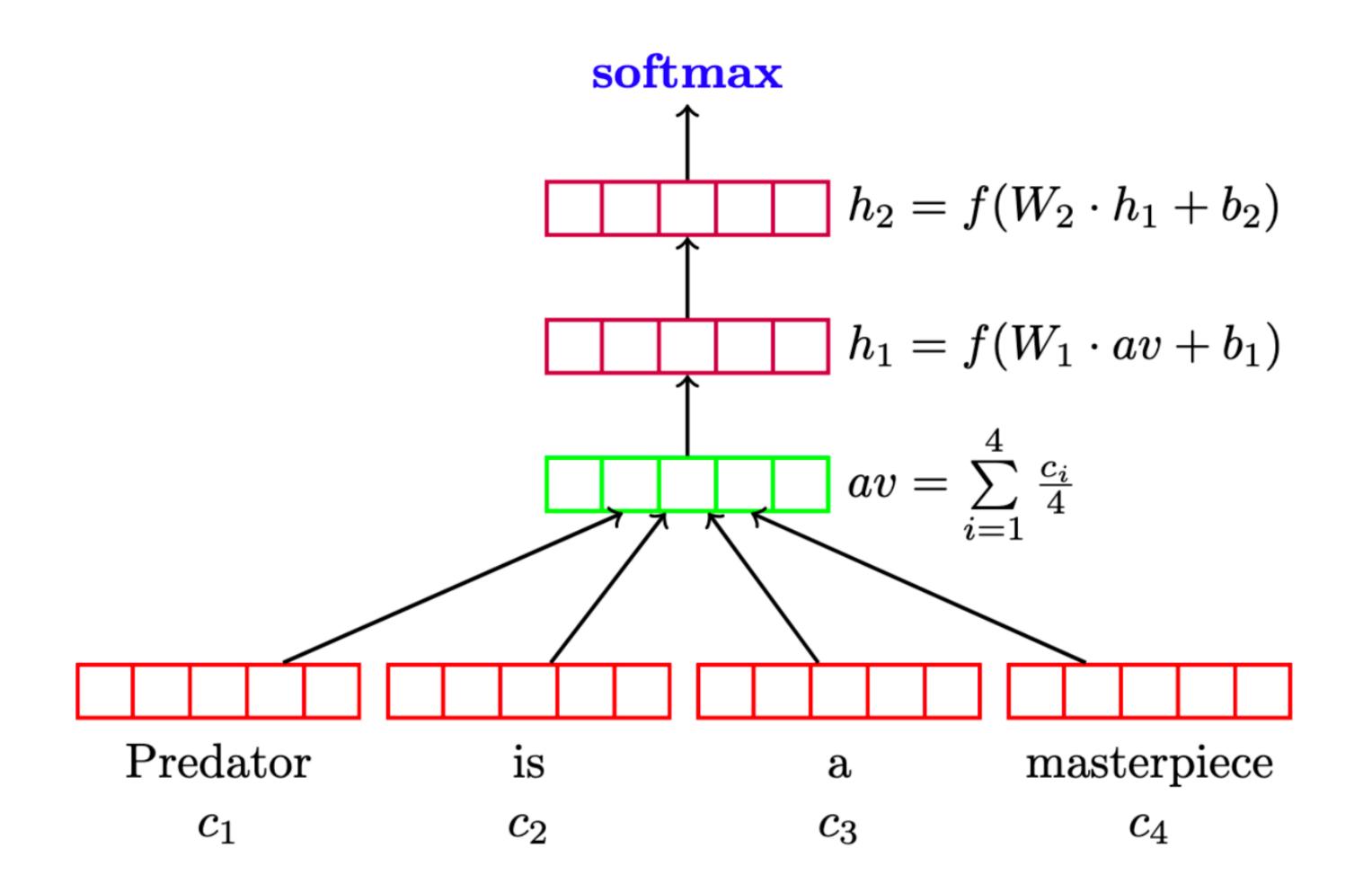


- Deep:
  - One or more hidden layers in a neural network
- Unordered:
  - Text is represented as a "bag of words"
  - No notion of syntactic order
- Classification:
  - Applied to several classification tasks, including SST
  - Via softmax layer





### Model Architecture, One Input

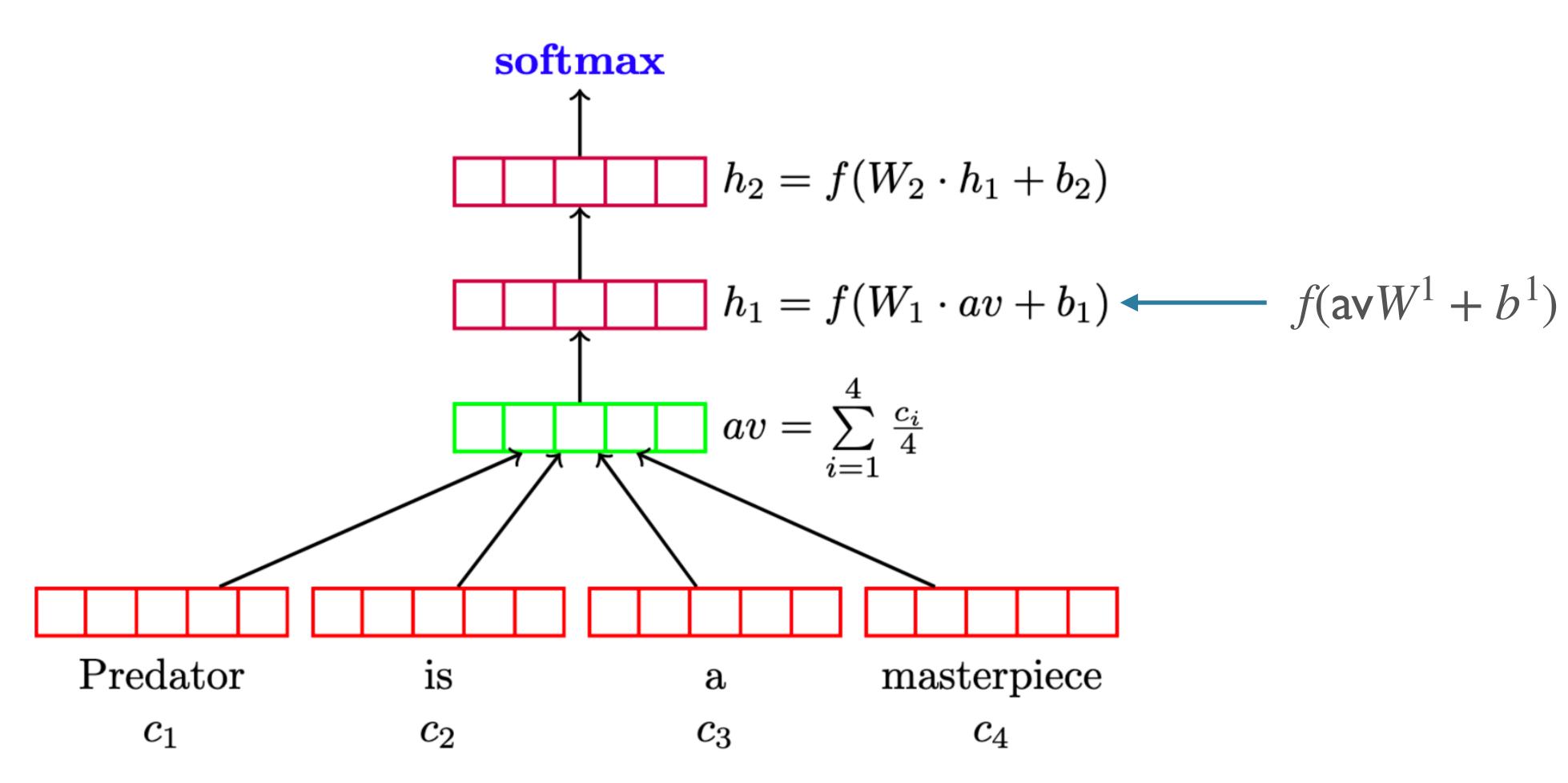








### Model Architecture, One Input

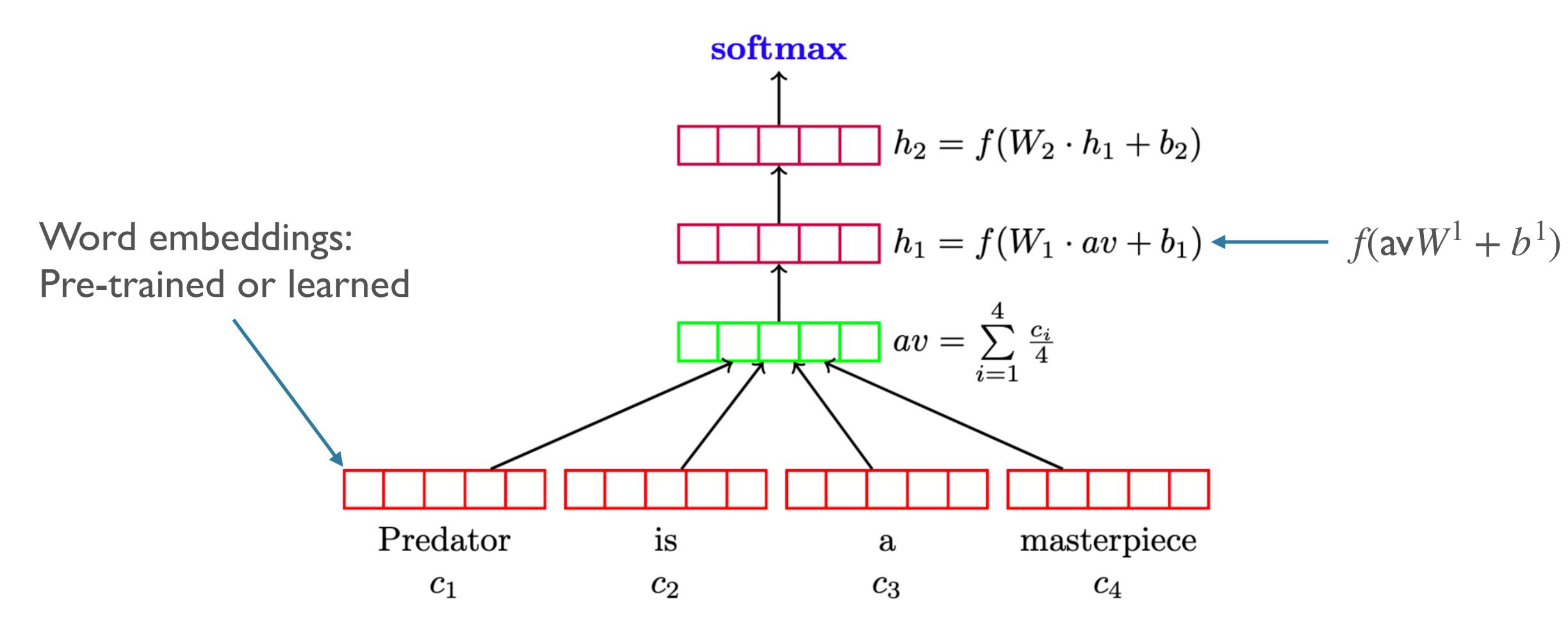








### Model Architecture, One Input





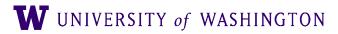






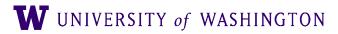


### • Embedding dimension





- Embedding dimension
- Number of hidden layers





- Embedding dimension
- Number of hidden layers
- For each layer:
  - Activation function
  - Hidden dimension size





- Embedding dimension
- Number of hidden layers
- For each layer:
  - Activation function
  - Hidden dimension size
- Exercise: find the values for these hyper-parameters in the paper





## Note on Embedding Layer

- Let t be the integer index of word w
- One-hot vector (t=4):  $w_t = [0 \ 0 \ 0 \ 1 \ \cdots \ 0]$
- and  $E_t$  the embedding for t:
- NB: direct look-up is faster than matrix multiplication, but the latter generalizes in useful ways that we will see soon

• For E an embedding matrix of shape [vocab\_size, embedding\_dimension]

 $E_t = w_t E$ 





### **Batched Computation in DAN**

- We saw how to pass one piece of text through the DAN
- How can we leverage larger batch sizes and their advantages?
  - "Predator is a masterpiece"
  - "Parasite won Best Picture for 2019"
- What issues here?
- size (intuitively)
  - But we need a matrix of shape [batch\_size, representation\_size] for inputs

### • Different lengths -> different number of embeddings -> different input







## Batching with Bag of Words

- Bag of words representation:
  - {word1: 3, word36: 1, word651: 1, …}
  - Let s be a sentence words  $t_i$  occurring count<sub>i</sub> times: bag<sub>s</sub> := { $t_i$  : count<sub>i</sub>}
- Bag of words vector:  $vec_s := \begin{bmatrix} 3 & 0 & \cdots & 1 & \cdots \end{bmatrix}$

- For every sentence, these vectors have the same size (vocab size) • So they can be stacked into a matrix, of shape [batch\_size, vocab\_size] • Divide each row by length of that sentence to get average of embeddings
- len(s)  $\operatorname{vec}_{s} E = \sum E_{t_i}$ i=0





### Output and Loss for Classification logits = hiddenW + b $\hat{y} = \text{probs} = \text{softmax}(\text{logits})$







# Output and Loss for Classification logits = hiddenW + b

 $\ell_{CE}(\hat{y}, y) = -$ 

- $\hat{y} = probs = softmax(logits)$

$$|classes| \sum_{i=0} y_i \log \hat{y}_i$$

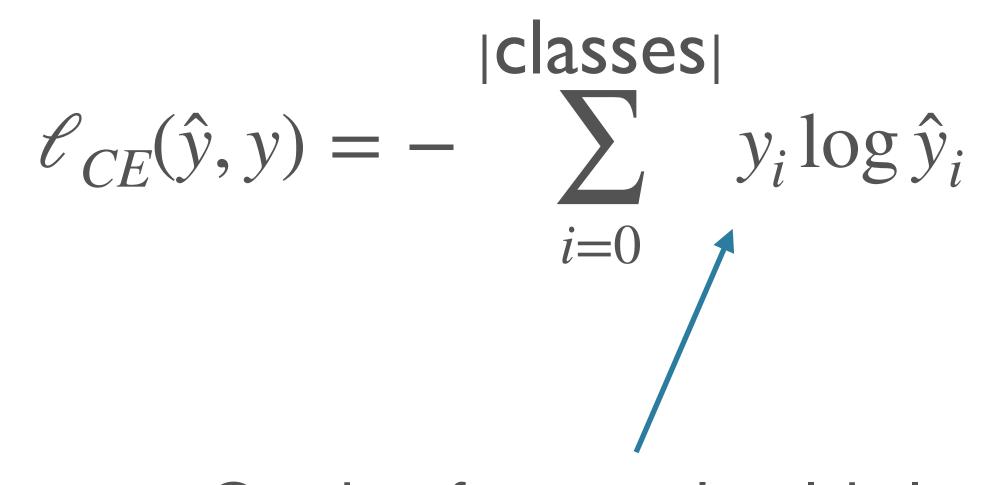






# Output and Loss for Classification logits = hiddenW + b

- $\hat{y} = probs = softmax(logits)$



One hot for true class label





Model

DAN-ROO **DAN-RAN** DAN

NBOW-RAI **NBOW** BiNB NBSVM-b

> RecNN\* RecNTN\* DRecNN TreeLSTM

### Results

| RT   | SST  |
|------|------|
|      | fine |
|      | 46.9 |
| 77.3 | 45.4 |
| 80.3 | 47.7 |
| 76.2 | 42.3 |
| 79.0 | 43.6 |
|      | 41.9 |
| 79.4 |      |
| 77.7 | 43.2 |
|      | 45.7 |
|      | 49.8 |
|      | 50.6 |
|      |      |





Model

DAN-ROO DAN-RAN DAN

NBOW-RAI **NBOW** BiNB NBSVM-ł

> RecNN\* **RecNTN**<sup>\*</sup> DRecNN TreeLSTN

### Results

|    | RT   | SST<br>fine |                   |
|----|------|-------------|-------------------|
| TC |      | 46.9        |                   |
| ND | 77.3 | 45.4        |                   |
|    | 80.3 | 47.7        |                   |
| ND | 76.2 | 42.3        | -<br>"Rivals synt |
|    | 79.0 | 43.6        | methods"          |
|    |      | 41.9        |                   |
| bi | 79.4 |             |                   |
| ĸ  | 77.7 | 43.2        |                   |
| *  |      | 45.7        |                   |
| J  |      | 49.8        |                   |
| Μ  |      | 50.6        |                   |
|    |      |             |                   |







### Sentence

a lousy movie that's not merely unwatchabl unlistenable

if you're **not** a prepubescent girl, you'll be britney spears' movie-starring debut whenever have you impatiently squinting at your watch blessed with immense physical prowess he may ahola is simply not an actor

who knows what exactly godard is on about in the his words and images do **n't** have to **add** up to you.

it's so good that its relentless, polished wit can **not** only **inept** school **productions**, but even **oliv** movie adaptation

too bad, but thanks to some lovely comedic m several fine performances, it's not a total loss

this movie was **not** good

this movie was good

this movie was **bad** 

the movie was **not bad** 

### Error Analysis

|                                            | DAN      | DRecNN   | Ground Truth |
|--------------------------------------------|----------|----------|--------------|
| ole, but also                              | negative | negative | negative     |
| laughing at<br>er it does n't              | negative | negative | negative     |
| y well be, but                             | positive | neutral  | negative     |
| this film, but<br>o <mark>mesmerize</mark> | positive | positive | positive     |
| an withstand<br>iver parker's              | negative | positive | positive     |
| moments and                                | negative | negative | positive     |
|                                            | negative | negative | negative     |
|                                            | positive | positive | positive     |
|                                            | negative | negative | negative     |
|                                            | negative | negative | positive     |

**V** UNIVERSITY *of* WASHINGTON







### **Two Additional "Tricks"**

- Word dropout
  - A type of *regularization* [more later]
- Adagrad optimizer

W UNIVERSITY of WASHINGTON







- For each input sequence, flip IVI coins with probability p
  - If the i'th coin lands tails, set embedding for  $w_i$  to all 0s for this example

### Word Dropout









- For each input sequence, flip IVI coins with probability p
  - If the i'th coin lands tails, set embedding for  $w_i$  to all 0s for this example

    - $vec_s = [20110]$ mask = [01110]
    - $vec_s \odot mask = [00110]$

### Word Dropout









- For each input sequence, flip IVI coins with probability p
  - If the i'th coin lands tails, set embedding for  $w_i$  to all 0s for this example

    - $vec_s = [20110]$ mask = [01110] -
    - $vec_s \odot mask = [00110]$

### Word Dropout

Generated randomly for each sentence







- "Adaptive Gradients"
  - Key idea: *adjust the learning rate* per parameter
  - Frequent features —> more updates
  - Adagrad will make the learning rate smaller for those

### Adagrad







• Let  $g_{t,i} := \nabla_{\theta_{t,i}} \mathscr{L}$ • SGD:  $\theta_{t+1,i} = \theta_{t,i} - \alpha g_{t,i}$ • Adagrad:  $\theta_{t+1,i} = \theta_{t,i} - \frac{\omega}{\sqrt{G_{t,i} + \epsilon}} g_{t,i}$  $G_{t,i} = \sum_{k,i}^{j} g_{k,i}^2$ k=0

### Adagrad







### • Pros:

- "Balances" parameter importance
- Less manual tuning of learning rate needed (0.01 default)
- Cons:
  - $G_{t,i}$  increases monotonically, so step-size always gets smaller
- Newer optimizers try to have the pros without the cons
- Resources:

  - Original paper (veeery math-y): <u>https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf</u> Overview of optimizers: <u>https://ruder.io/optimizing-gradient-descent/index.html#adagrad</u>

### Adagrad







Neural Probabilistic Language Model





# Language Modeling

• A language model parametrized by  $\theta$  computes  $P_{\theta}(w_1, \ldots, w_n)$ 

• Typically (though we'll see variations):  $P_{\theta}(w)$ 

• E.g. of labeled data: "Today is the third day of 575k." ->

- (<s>, Today)
- (<s> Today, is)
- (<s> Today is, the)
- (<s> Today is the, third)

$$w_1, \dots, w_n) = \prod_i P_{\theta}(w_i | w_1, \dots, w_{i-1})$$







### N-gram LMs

• Dominant approach for a long time uses n-grams:

$$P_{\theta}(w_i | w_1, \dots, w_{i-1}) \approx P_{\theta}(w_i | w_{i-1}, w_{i-2}, \dots, w_{i-n})$$

- Estimate the probabilities by counting in a corpus
  - Fancy variants (back-off, smoothing, etc)
- Some problems:
  - Huge number of parameters:  $\approx |V|^n$
  - Doesn't generalize to unseen n-grams







### Neural LM

- Core idea behind the Neural Probabilistic LM
  - Make n-gram assumption
  - But: learn word embeddings
  - "N-gram of word vectors"
  - Probabilities: represented by a neural network, not counts







- Number of parameters:
  - Significantly lower, thanks to "low"-dimensional embeddings
- Generalization: embeddings enable generalizing to similar words

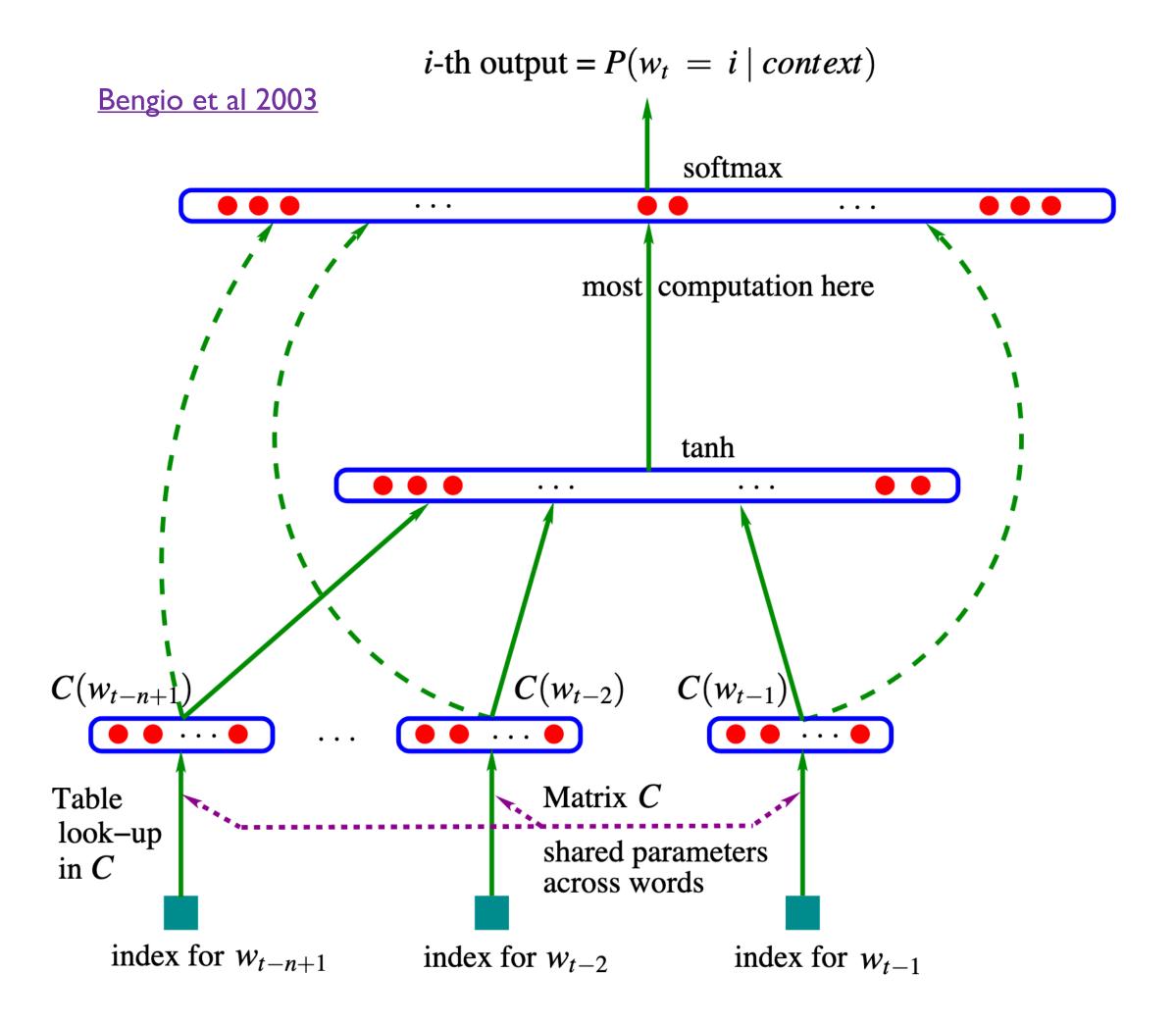
|                 | The c  |
|-----------------|--------|
| to              | A dog  |
| and likewise to | The ca |
|                 | A dog  |

### Pros of Neural LM

at is walking in the bedroom was running in a room at is running in a room g is walking in a bedroom The dog was walking in the room





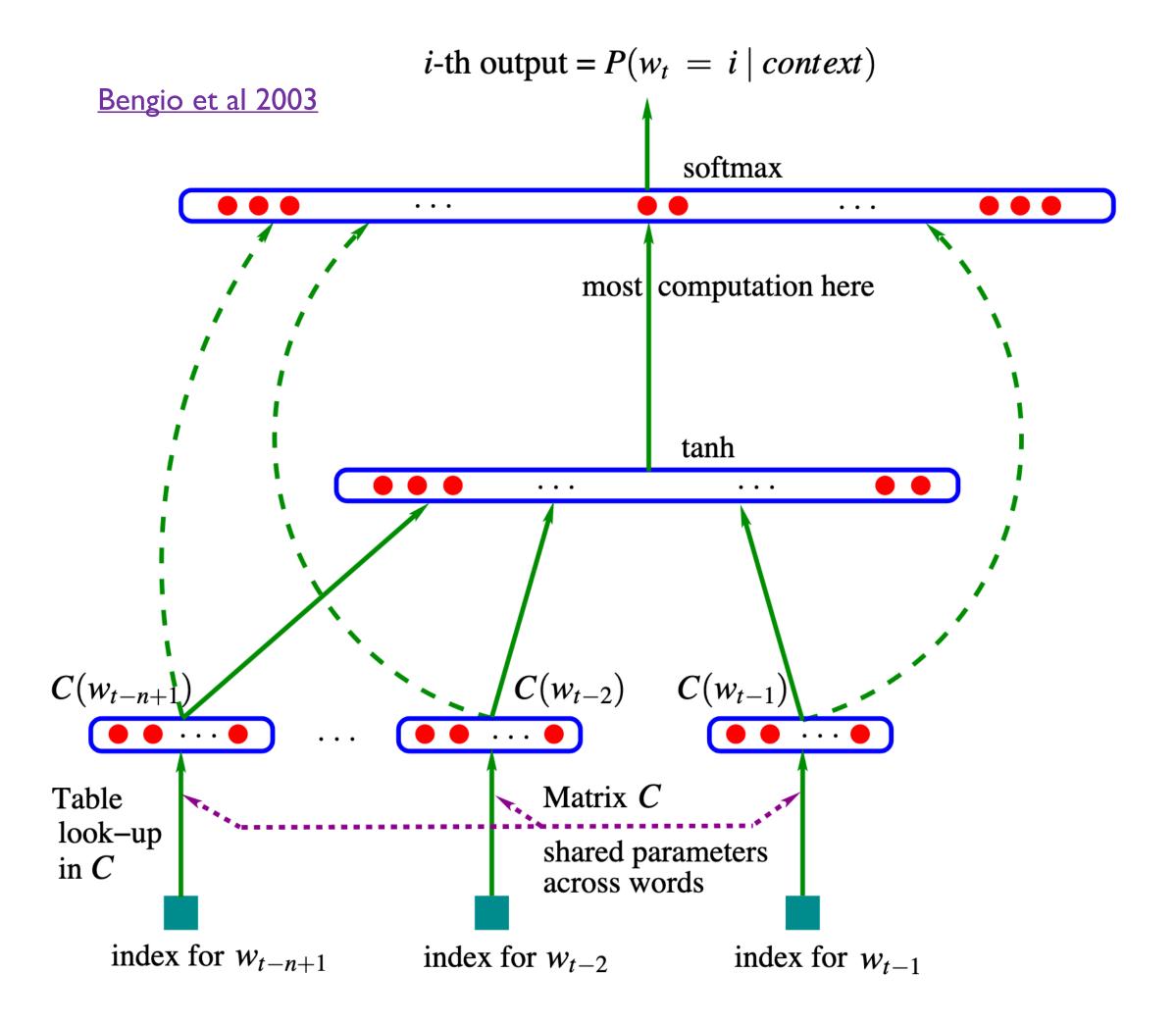




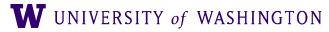








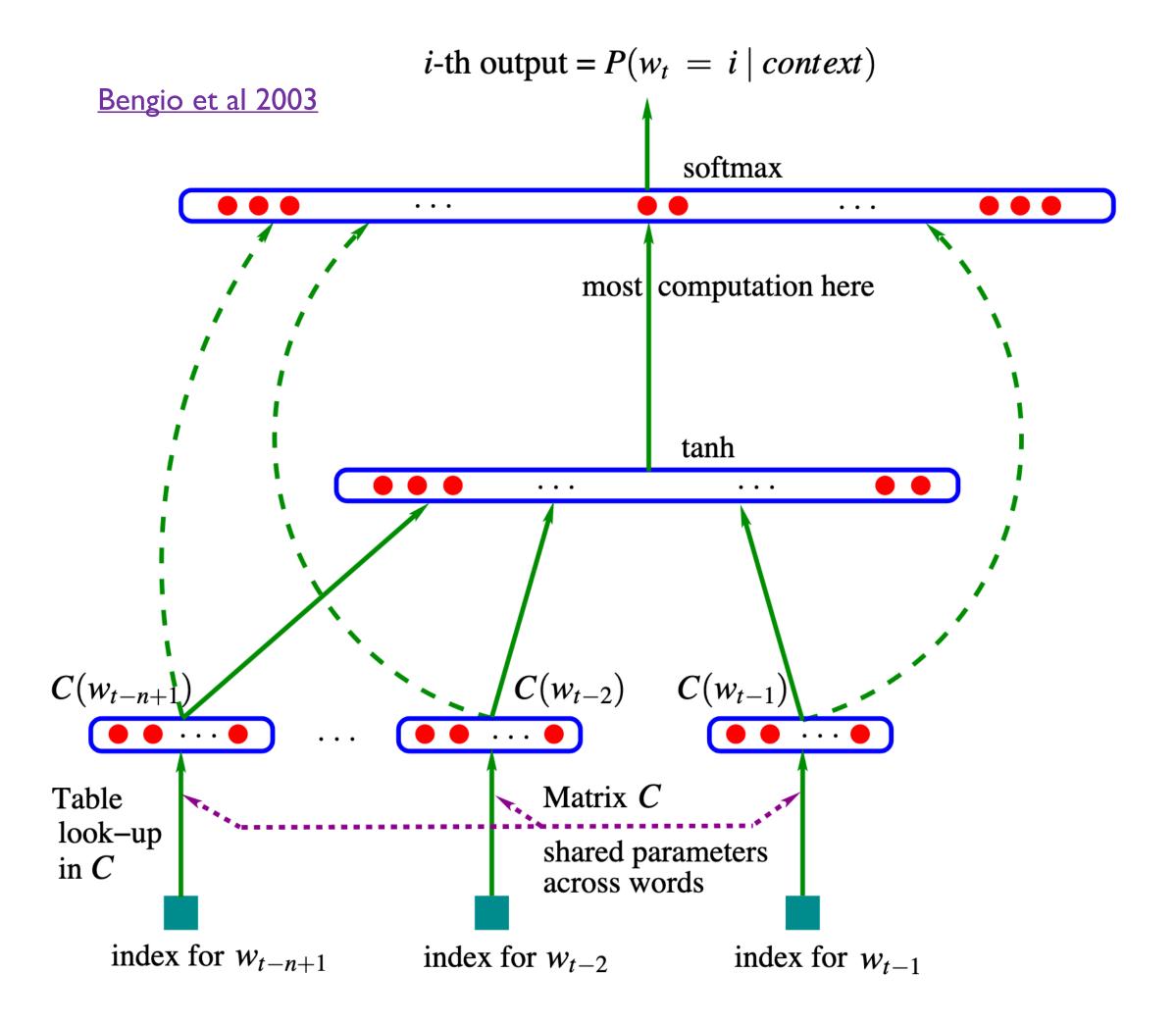
 $W_t$ : one-hot vector











#### embeddings = concat( $w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C$ )

 $W_t$ : one-hot vector

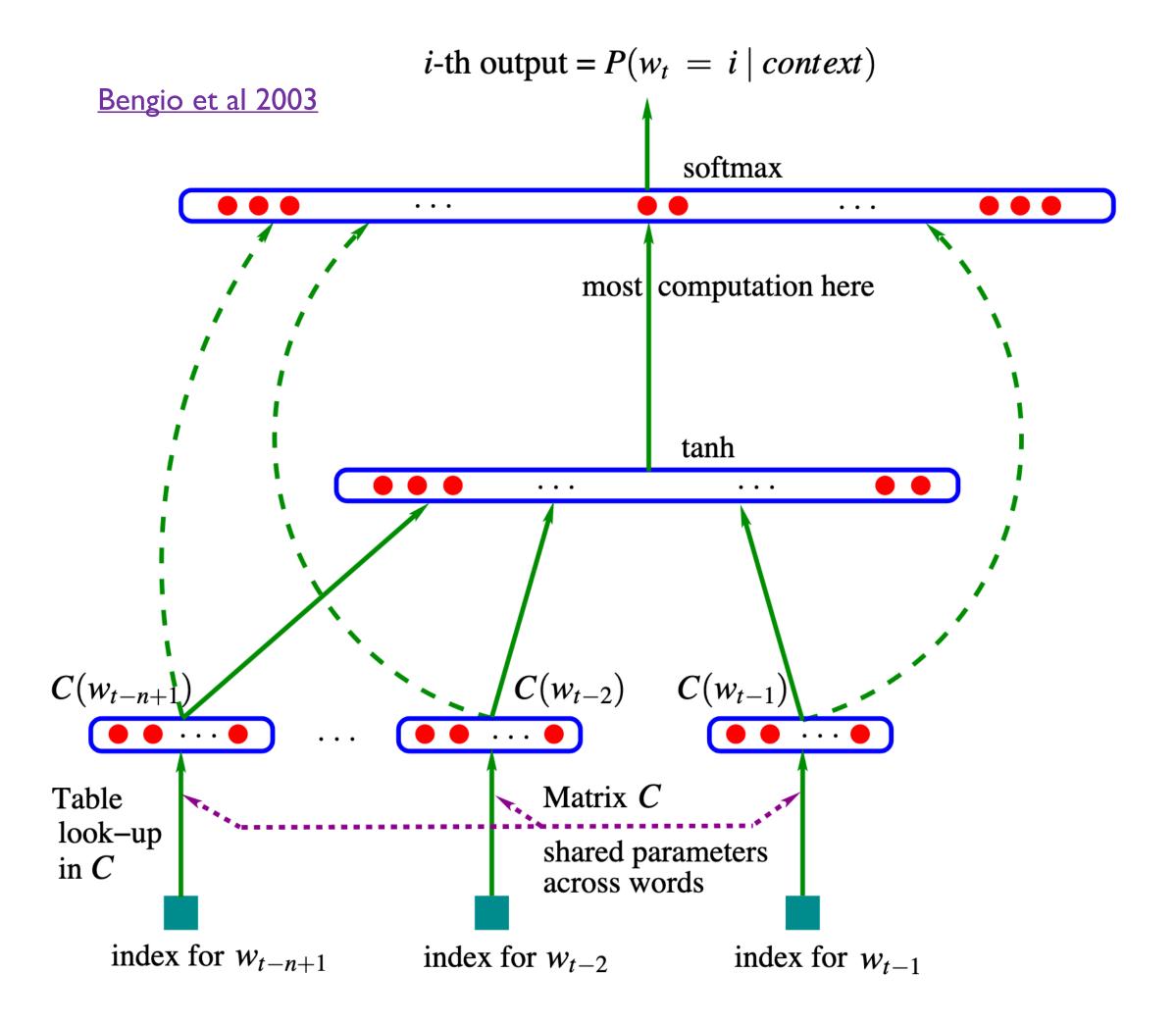
**W** UNIVERSITY of WASHINGTON











hidden =  $tanh(embeddingsW^1 + b^1)$ 

embeddings = concat $(w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C)$ 

 $W_t$ : one-hot vector

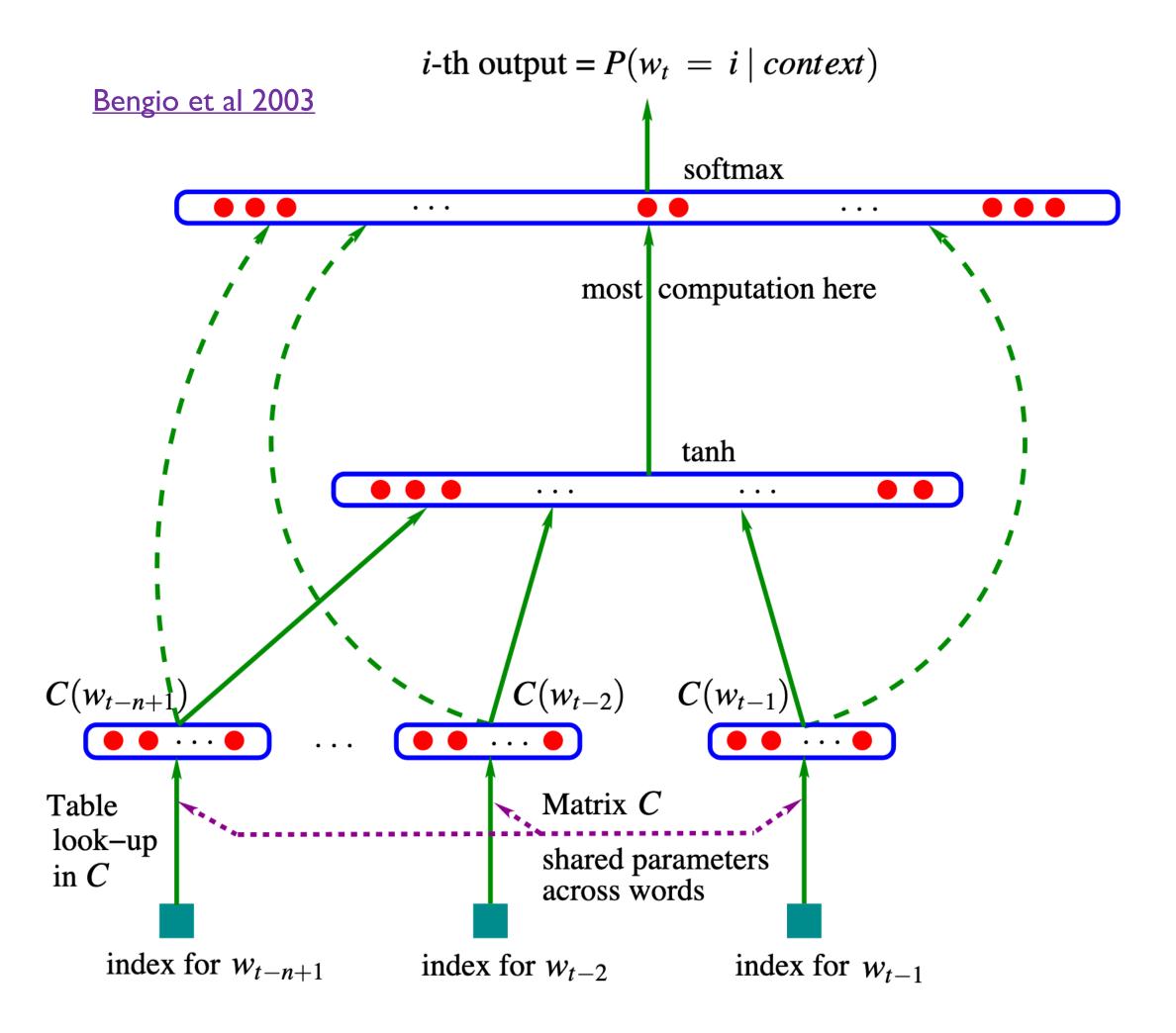
**W** UNIVERSITY of WASHINGTON











probabilities = softmax(hidden $W^2 + b^2$ )

hidden =  $tanh(embeddingsW^1 + b^1)$ 

embeddings = concat( $w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C$ )

 $W_t$ : one-hot vector

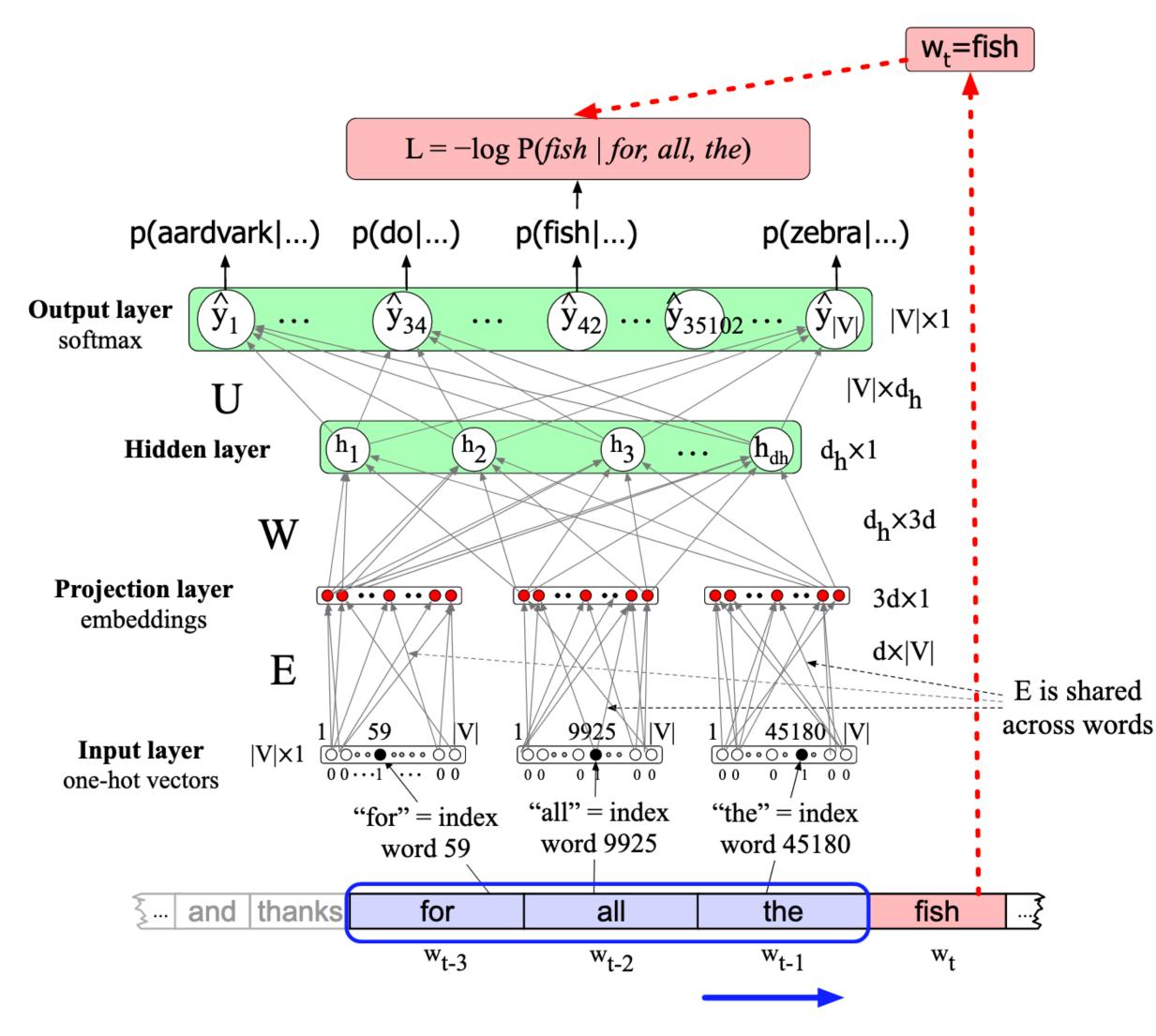








#### More Detailed Diagram of Architecture



JM sec 7.5

**W** UNIVERSITY of WASHINGTON







- Softmax + cross-entropy
  - Essentially, language modeling is IVI-way classification
  - Each word in the vocabulary is a class

#### Output and Loss







### **Evaluation of LMs**

- Extrinsic: use in other NLP systems
- Intrinsic: intuitively, want probability of a test corpus
- Perplexity: inverse probability, weig size of corpus
  - NB: lower is better!
  - Only comparable w/ same vocab

pp(W) = 
$$P(W_1 w_2 \cdots w_n)^{-1/N}$$
  
=  $\sqrt[N]{\frac{1}{P(w_1 w_2 \cdots w_n)}}$   
=  $\sqrt[N]{\frac{1}{P(w_1 w_2 \cdots w_n)}}$ 

**W** UNIVERSITY *of* WASHINGTON

 $= 2^{-\frac{1}{N} \sum_{i=0}^{|W|} \log P(w_i | w_1, \dots, w_{i-1})}$ 







#### Results

|                      | n | С    | h   | m  | direct | mix | train. | valid. | test. |
|----------------------|---|------|-----|----|--------|-----|--------|--------|-------|
| MLP1                 | 5 |      | 50  | 60 | yes    | no  | 182    | 284    | 268   |
| MLP2                 | 5 |      | 50  | 60 | yes    | yes |        | 275    | 257   |
| MLP3                 | 5 |      | 0   | 60 | yes    | no  | 201    | 327    | 310   |
| MLP4                 | 5 |      | 0   | 60 | yes    | yes |        | 286    | 272   |
| MLP5                 | 5 |      | 50  | 30 | yes    | no  | 209    | 296    | 279   |
| MLP6                 | 5 |      | 50  | 30 | yes    | yes |        | 273    | 259   |
| MLP7                 | 3 |      | 50  | 30 | yes    | no  | 210    | 309    | 293   |
| MLP8                 | 3 |      | 50  | 30 | yes    | yes |        | 284    | 270   |
| MLP9                 | 5 |      | 100 | 30 | no     | no  | 175    | 280    | 276   |
| MLP10                | 5 |      | 100 | 30 | no     | yes |        | 265    | 252   |
| Del. Int.            | 3 |      |     |    |        |     | 31     | 352    | 336   |
| Kneser-Ney back-off  | 3 |      |     |    |        |     |        | 334    | 323   |
| Kneser-Ney back-off  | 4 |      |     |    |        |     |        | 332    | 321   |
| Kneser-Ney back-off  | 5 |      |     |    |        |     |        | 332    | 321   |
| class-based back-off | 3 | 150  |     |    |        |     |        | 348    | 334   |
| class-based back-off | 3 | 200  |     |    |        |     |        | 354    | 340   |
| class-based back-off | 3 | 500  |     |    |        |     |        | 326    | 312   |
| class-based back-off | 3 | 1000 |     |    |        |     |        | 335    | 319   |
| class-based back-off | 3 | 2000 |     |    |        |     |        | 343    | 326   |
| class-based back-off | 4 | 500  |     |    |        |     |        | 327    | 312   |
| class-based back-off | 5 | 500  |     |    |        |     |        | 327    | 312   |





### More Complete Picture of This Model

Simeng Sun and Mohit Iyyer College of Information and Computer Sciences University of Massachusetts Amherst {simengsun, miyyer}@cs.umass.edu

#### Abstract

Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of Bengio et al. (2003), which simply concatenates word embeddings within a fixed window and passes the result through a feed-forward network to predict the next word. When scaled up to modern hardware, this model (despite its many limitations) performs 1 1 1 1 1 1 11 11

**Revisiting Simple Neural Probabilistic Language Models** 

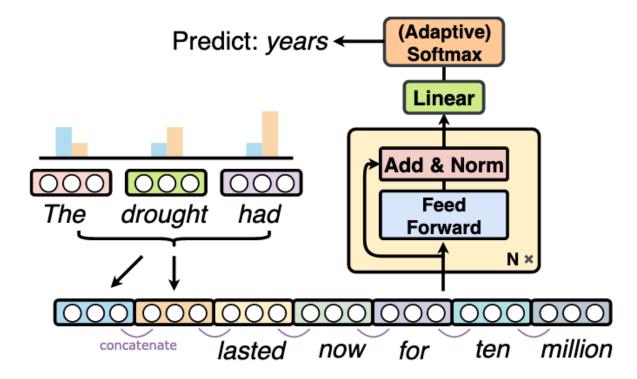
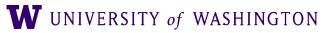


Figure 1: A modernized version of the neural probabilistic language model of Bengio et al. (2003), which

source (NAACL '21)







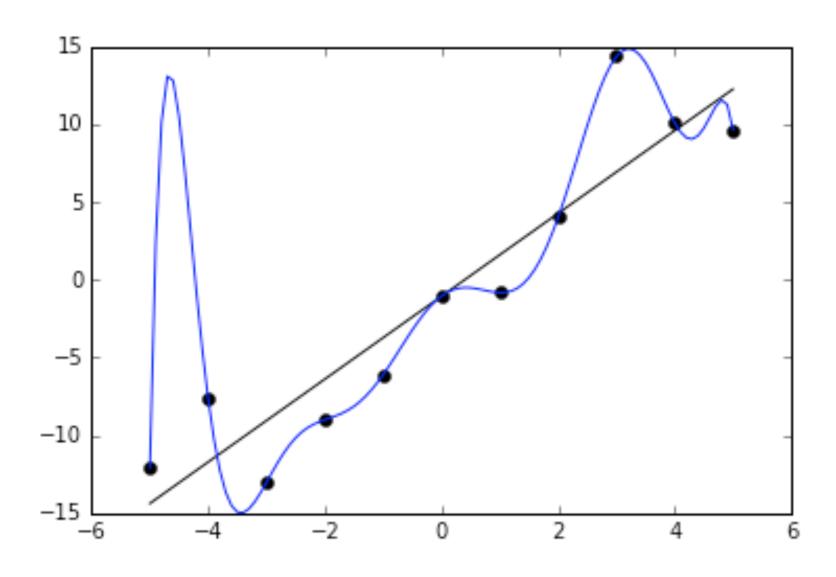
#### Additional Training Notes: Regularization and Hyper-Parameters





### Overfitting

- Over-fitting: model too closely mimics the training data
  - Therefore, cannot *generalize* well
- Common when models are "over-parameterized"
  - E.g. fitting a high-degree polynomial
- Key questions:
  - How to detect overfitting?
  - How to prevent it?







- Split total data into three chunks: train, dev (aka valid), test
  - Common: 70/15/15, 80/10/10%
- Train: used for individual model training, as we've seen so far
- Dev/valid:
  - Evaluation during training
  - Hyper-parameter tuning
  - Model selection
- Test:
- Final evaluation; DO NOT TOUCH otherwise

#### Train, Dev, Test Set Splits

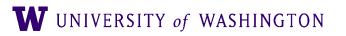
















#### • One: Pick # of epochs, hope for no overfitting

# Early stopping

<u>source</u>







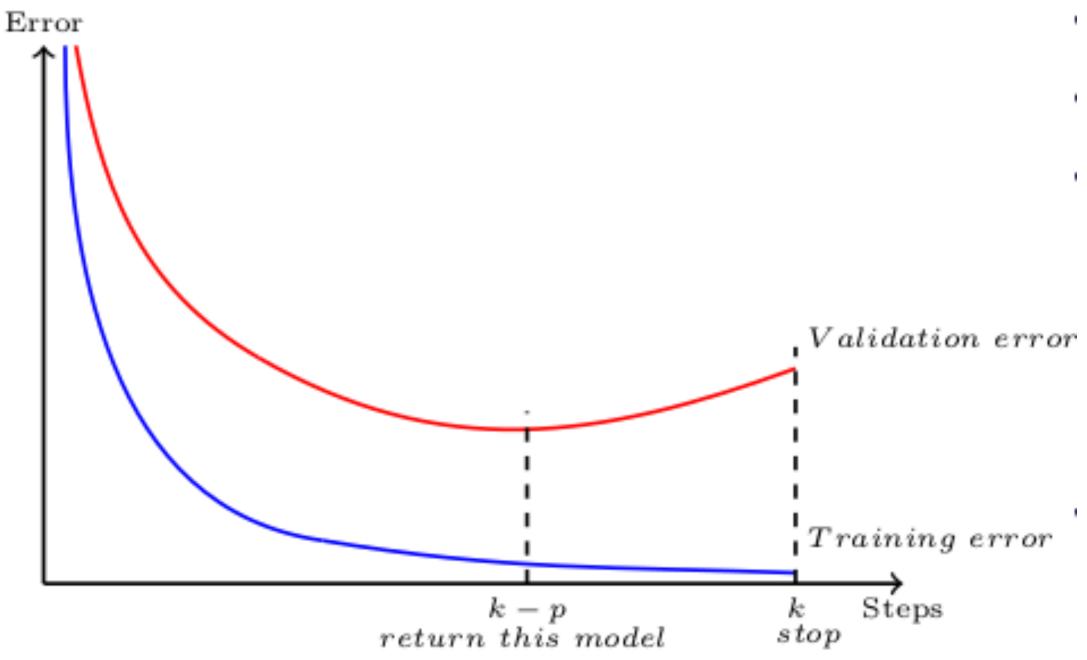
- One: Pick # of epochs, hope for no overfitting
- Better: pick max # of epochs, and "patience"
  - Halt when validation error does not improve over patience-many epochs







- One: Pick # of epochs, hope for no overfitting
- Better: pick max # of epochs, and "patience"
  - Halt when validation error does not improve over patience-many epochs



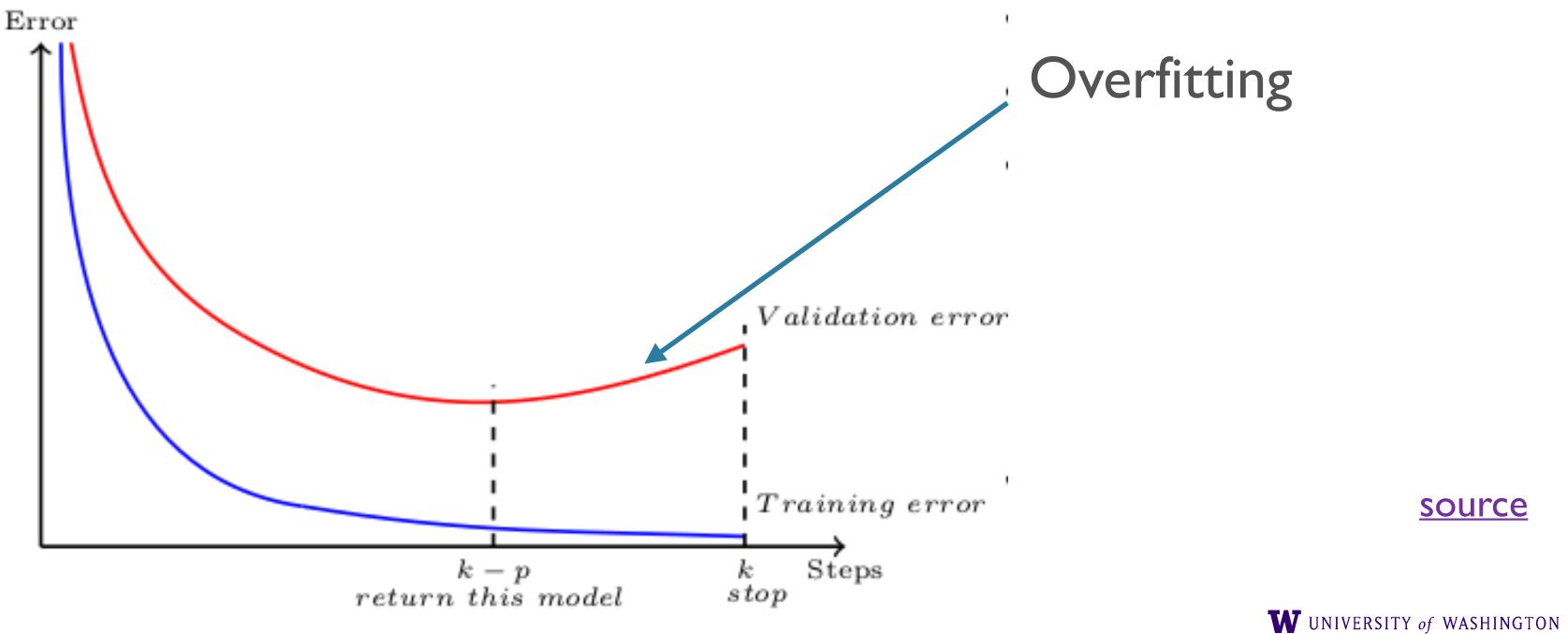
source

W UNIVERSITY of WASHINGTON





- One: Pick # of epochs, hope for no overfitting
- Better: pick max # of epochs, and "patience"
  - Halt when validation error does not improve over patience-many epochs







### Regularization

- NNs are often *overparameterized*, so regularization helps
- L1/L2:  $\mathscr{L}'(\theta, y) = \mathscr{L}(\theta, y) + \lambda \|\theta\|^2$
- Dropout:
  - *During training*, randomly turn off X% of neurons in each layer
  - (Don't do this during testing/predicting)
- **Batch Normalization / Layer Norm**
- NB: <u>batch size</u>

**Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned:  $\gamma, \beta$ **Output:**  $\{y_i = BN_{\gamma,\beta}(x_i)\}$  $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean  $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance  $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize  $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)$ // scale and shift







## Hyper-parameters

- In addition to the model architecture ones mentioned earlier
- Optimizer: SGD, Adam, Adagrad, RMSProp, ....
  - Optimizer-specific hyper-parameters: learning rate, alpha, beta, ...
  - NB: backprop computes gradients; optimizer uses them to update parameters
- Regularization: L1/L2, Dropout, BN, ...
  - regularizer-specific ones: e.g. dropout rate
- Batch size
- Number of epochs to train for
  - Early stopping criterion (e.g. number of epochs, "patience")







### A note on hyper-parameter tuning

- Grid search: specify range of values for each hyper-parameter, try all possible combinations thereof
- Random search: specify possible values for all parameters, randomly sample values for each, stop when some criterion is met

Bergstra and Bengio 2012



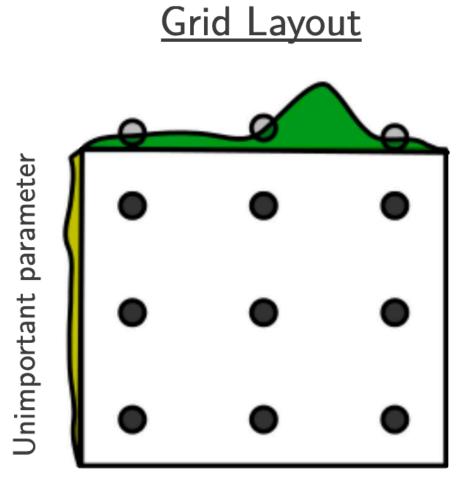




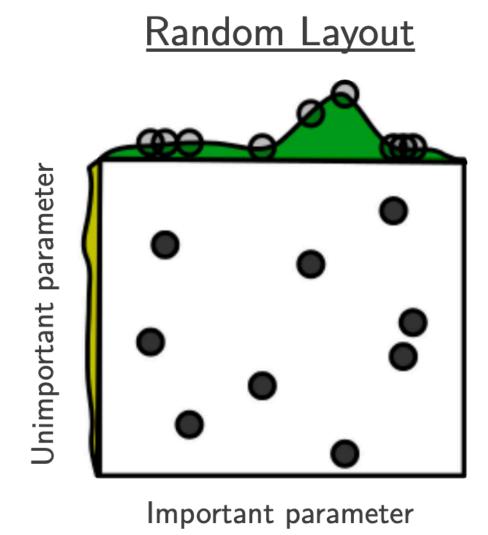


### A note on hyper-parameter tuning

- Grid search: specify range of values for each hyper-parameter, try all possible combinations thereof
- Random search: specify possible values for all parameters, randomly sample values for each, stop when some criterion is met



Important parameter



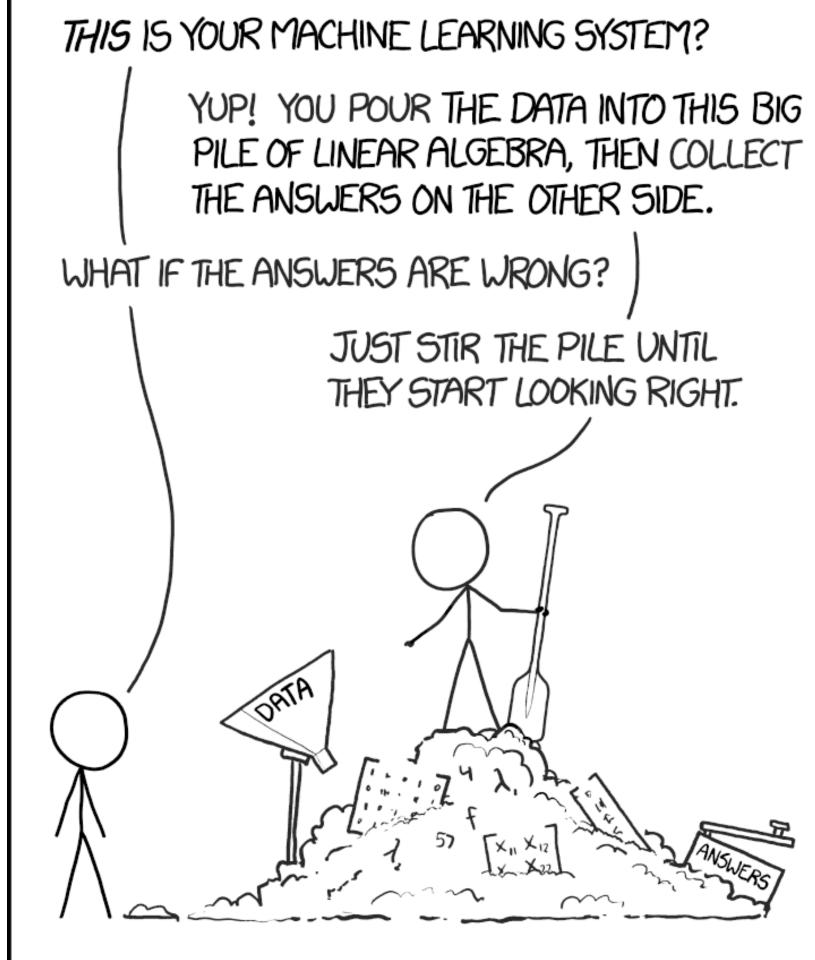
Bergstra and Bengio 2012





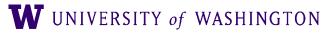






### Craft/Art of Deep Learning

#### https://xkcd.com/1838/







#### Some Practical Pointers

- Hyper-parameter tuning and the like are not the focus of this course
- For some helpful hand-on advice about training NNs from scratch, debugging under "silent failures", etc:
  - http://karpathy.github.io/2019/04/25/recipe/



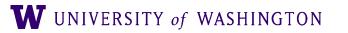




### Hyper-parameter Tuning



#### h/t CM Downey









Homework 3







### SGNS in Computation Graphs

- Learning goals:
  - Deepen understanding / familiarity with computation graphs
  - Develop understanding of back propagation
  - Implement several operations in forward/backward API
- Main objective:
  - Implementing Skip-gram with Negative Sampling in <u>edugrad</u>, a minimal / barebones implementation of the PyTorch API
  - Components: sigmoid, log, element-wise multiplication, dot products





### Edugrad







## Edugrad, intro

- https://github.com/shanest/edugrad
- Minimal re-implementation of PyTorch API, for educational purposes
  - Forward/backward API for operations
    - Automatic differentiation via backprop
  - Dynamic computation graph
- Why? Modern DL libraries have so much additional cruft that you cannot chase back lots of method calls to their implementations.
  - E.g. what really happens when you call `loss.backward()`?
- NB: no performance optimizations, no GPU usage, etc. in edugrad

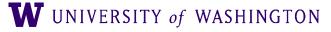




### Edugrad: Tensor

- Tensor: wrapper around a numpy array (stored in .value attribute)
  - value: np array
  - grad: current gradient! (Set to 0 initially, populated during back propagation)
- Primary operators overloaded: +, -, \*\* (raise to a power)
  - More on implementation of those in a second

```
>>> import numpy as np
>>> from edugrad.tensor import Tensor
>>> t1 = Tensor(np.array([[1, 2], [3, 4]]))
>>> t2 = Tensor(np.array([[1, 2], [3, 4]]))
>>> t1 + t2
<edugrad.tensor.Tensor object at 0x7f97a81d5940>
>>> (t1 + t2).value
array([[2, 4],
       [6, 8]])
```



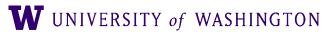






## Edugrad: Operation

- Operation: defines forward/backward
  - Operates on np arrays, *not* Tensors
- @tensor\_op:
  - Takes an Operation, turns it into a method that takes Tensor arguments and returns Tensor outputs
    - And which *builds the computation graph*
  - @: <u>decorator</u>; add = tensor\_op(add)
- Basic ops provided:
  - https://github.com/shanest/edugrad/blob/master/ edugrad/ops.py





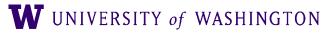


## Edugrad: Operation

- Operation: defines forward/backward
  - Operates on np arrays, *not* Tensors
- @tensor\_op:
  - Takes an Operation, turns it into a method that takes Tensor arguments and returns Tensor outputs
    - And which *builds the computation graph*
  - @: <u>decorator</u>; add = tensor\_op(add)
- Basic ops provided:
  - https://github.com/shanest/edugrad/blob/master/ edugrad/ops.py

@tensor\_op class add(Operation): @staticmethod def forward(ctx, a, b): return a + b

> @staticmethod def backward(ctx, grad\_output): return grad\_output, grad\_output









- Operation: defines forward/backward
  - Operates on np arrays, *not* Tensors
- @tensor\_op:
  - Takes an Operation, turns it into a method that takes Tensor arguments and returns Tensor outputs
    - And which *builds the computation graph*
  - @: <u>decorator</u>; add = tensor\_op(add)
- Basic ops provided:
  - https://github.com/shanest/edugrad/blob/master/ edugrad/ops.py

#### Edugrad: Operation

@tensor\_op class add(Operation): @staticmethod def forward(ctx, a, b): return a + b

> @staticmethod def backward(ctx, grad\_output): return grad\_output, grad\_output **U 1 1 1**

>>> from edugrad.ops import add >>> add(t1, t2).value array([[2, 4], [6, 8]])

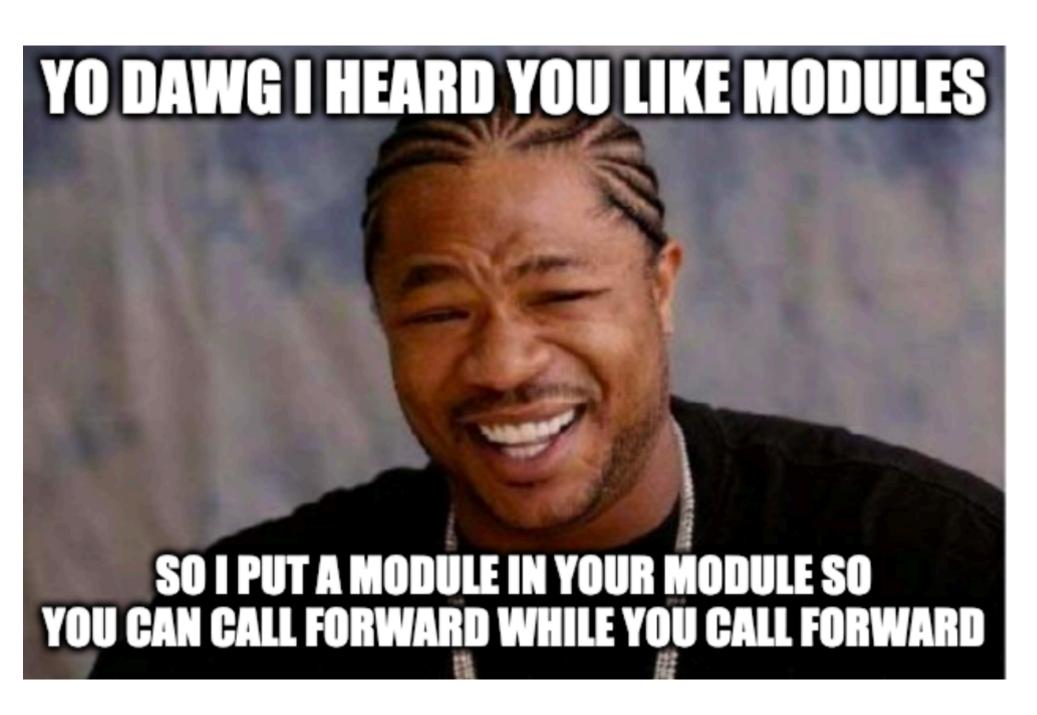






# Edugrad: nn.Module

- edugrad.nn.Module:
  - As in PyTorch, basic model class
  - Stores parameters [accessed via .parameters()]
  - Can be nested (modules within modules)
  - Implements `forward`
- Defining a custom module:
  - Sub-class nn.Module
  - Initialize params in \_\_\_init\_\_\_
  - Implement custom forward method







### Edugrad: Linear Module example

```
class Linear(Module):
```

```
def __init__(
   self,
    input_size: int,
   output_size: int,
   bias: bool = True,
```

```
):
```

"""A Linear module computes defines weights W, optionally biases b, and computers wX + b.

Weight vector will have shape (input size, output size)

#### Args:

input\_size: dimension of input vectors output\_size: dimension of output vectors initializer: how to initialize weights and biases bias: whether or not to include the bias term; not needed for, e.g. embeddings .....

```
super(Linear, self).__init__()
scale = 1 / np.sqrt(input_size)
self.has_bias = bias
if self.has_bias:
    # biases initialize to 0
```

self.weight = Tensor(uniform\_initializer((input\_size, output\_size), scale=scale), name="W")

self.bias = Tensor(uniform\_initializer((output\_size,), scale=scale), name="b")

**W** UNIVERSITY of WASHINGTON





```
class Linear(Module):
```

```
def __init__(
   self,
    input_size: int,
   output_size: int,
   bias: bool = True,
```

```
):
```

"""A Linear module computes defines weights W, optionally biases b, and computers wX + b.

Weight vector will have shape (input size, output size)

#### Args:

input\_size: dimension of input vectors output\_size: dimension of output vectors initializer: how to initialize weights and biases 11 11 11 super(Linear, self).\_\_init\_\_()

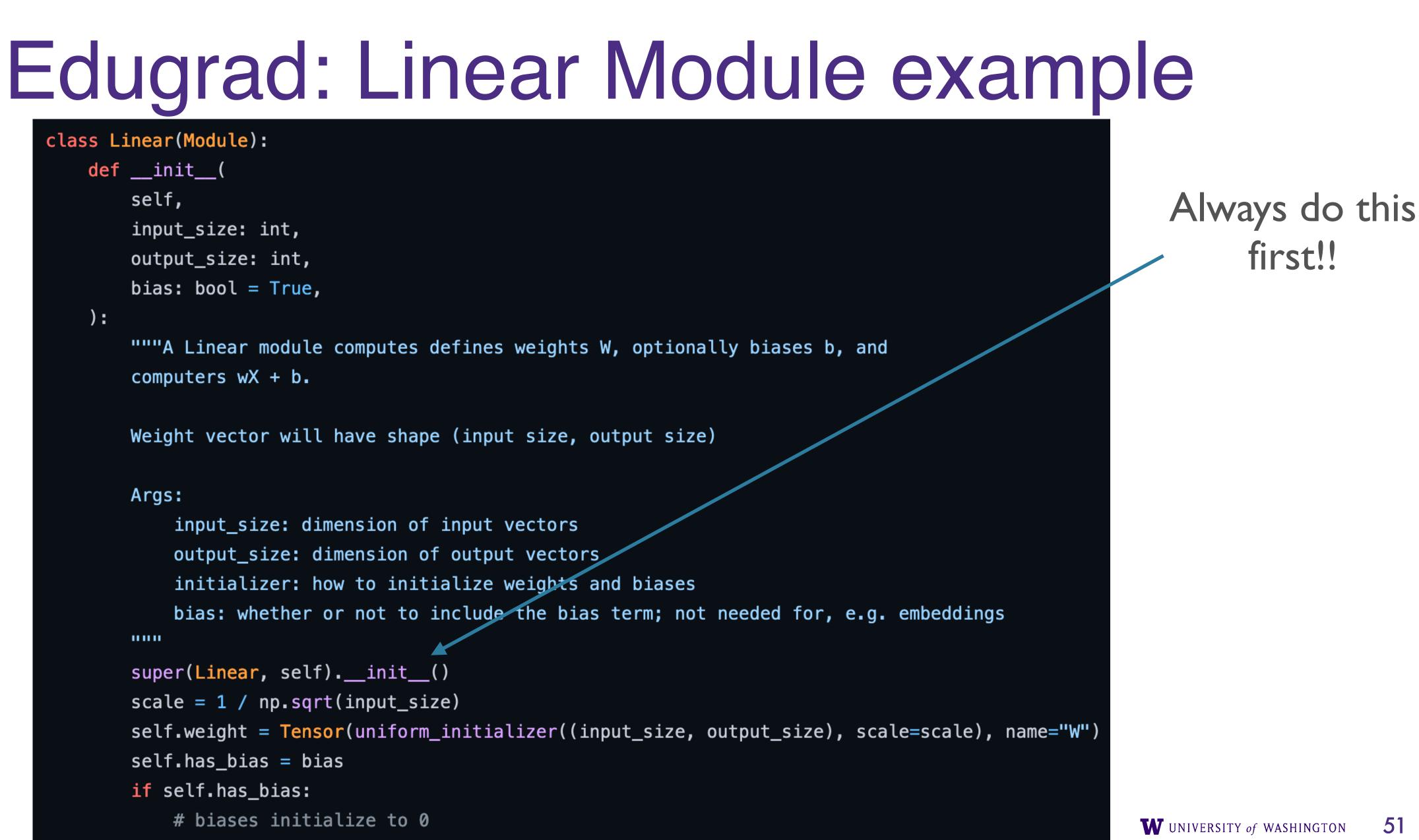
scale = 1 / np.sqrt(input\_size)

self.has\_bias = bias

if self.has\_bias:

# biases initialize to 0

self.bias = Tensor(uniform\_initializer((output\_size,), scale=scale), name="b")









```
class Linear(Module):
```

```
def __init__(
   self,
    input_size: int,
   output_size: int,
   bias: bool = True,
```

```
):
```

"""A Linear module computes defines weights W, optionally biases b, and computers wX + b.

Weight vector will have shape (input size, output size)

#### Args:

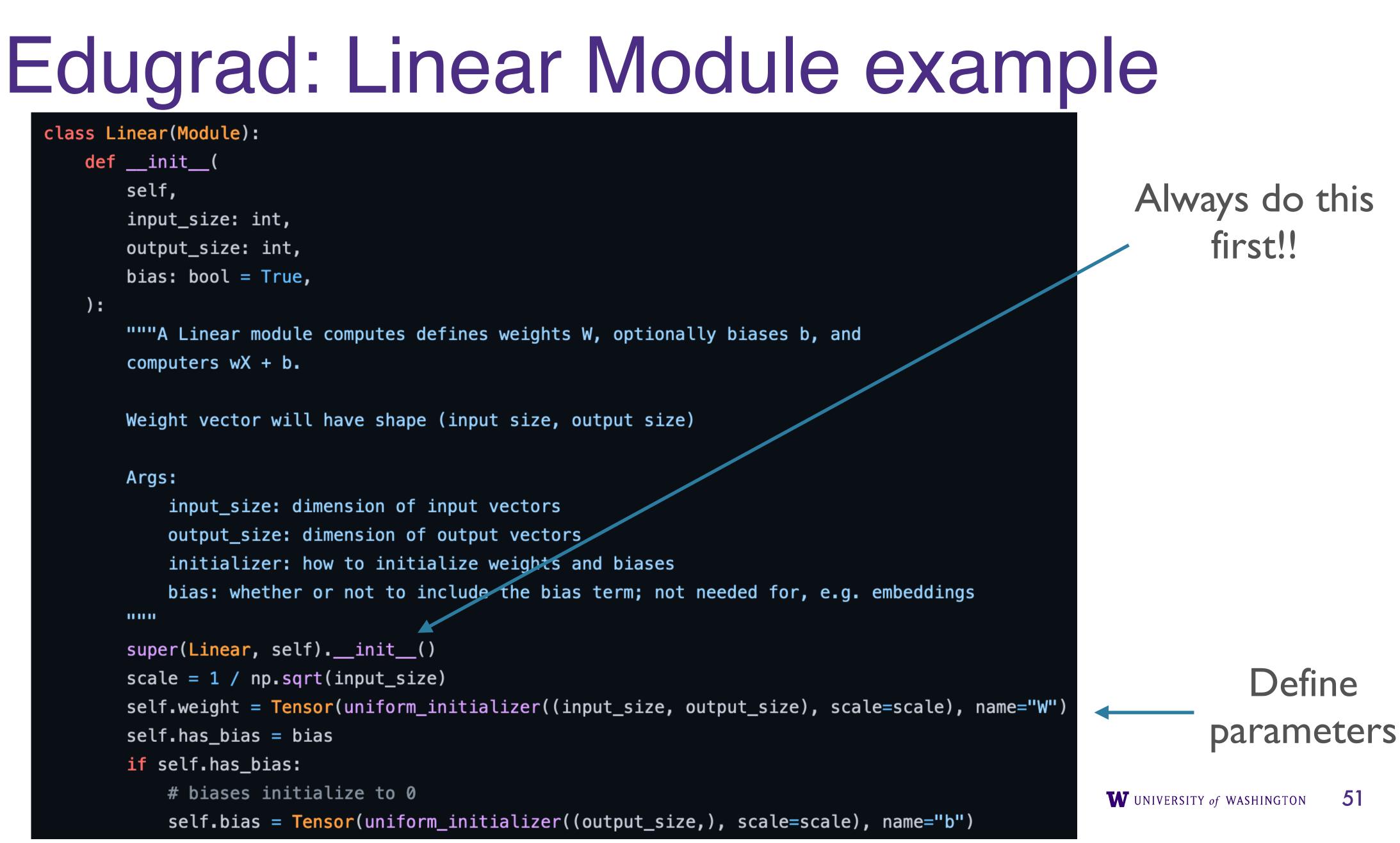
input\_size: dimension of input vectors output\_size: dimension of output vectors initializer: how to initialize weights and biases 11 11 11 super(Linear, self).\_\_init\_\_()

scale = 1 / np.sqrt(input\_size)

self.has\_bias = bias

if self.has\_bias:

# biases initialize to 0





## Edugrad: Linear Module

def forward(self, inputs: Tensor): mul\_node = ops.matmul(inputs, self.weight) if self.has\_bias: return ops.add(mul\_node, expanded\_biases) return mul\_node

# NOTE: this is a hack-ish way of handling shape issues with biases expanded\_biases = ops.copy\_rows(self.bias, num=inputs.value.shape[0])







# Edugrad: Basic Training Demo

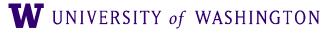
- https://github.com/shanest/edugrad/blob/ master/examples/toy\_half\_sum/main.py
  - Trains an MLP on f(x) = sum(x)/2 for bit vectors x
- MLP as a nn.Module:

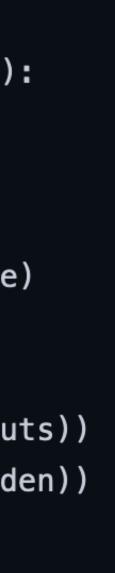
• NB: don't hard-code hyper-parameters like this :)

cl

| .ass MLP(      | nn.Module):                                                                                                                                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| su<br>se<br>se | <pre>init(self, input_size, output_size) per(MLP, self)init() If.fc1 = nn.Linear(input_size, 32) If.fc2 = nn.Linear(32, 32) If.output = nn.Linear(32, output_size)</pre> |
| hi             | rward(self, inputs):<br>dden = edugrad.ops.relu(self.fc1(inpu<br>dden = edugrad.ops.relu(self.fc2(hidd                                                                   |

return self.output(hidden)









## Training Loop

model = MLP(input\_size, 1) optimizer = edugrad.optim.SGD(model.parameters(), lr=1e-3) train\_iterator = edugrad.data.BatchIterator(batch\_size=batch\_size)

for epoch in range(num\_epochs):  $total_loss = 0.0$ for batch in train\_iterator(inputs, targets): predicted = model(batch.inputs) optimizer.zero\_grad() loss.backward() optimizer.step() total\_loss += loss.value

- loss = edugrad.ops.mse\_loss(predicted, batch.targets)

print(f"Epoch {epoch} loss: {total\_loss / train\_iterator.num\_batches}")



