Neural Network Introduction

LING 575K Deep Learning for NLP Shane Steinert-Threlkeld April 7 2021

Announcements

- HW1 due tomorrow night, upload readme and hw1.tar.gz to Canvas
 - NB: separate files!
 - Do not put readme inside of tar.gz
- indices_to_tokens: no error handling
- You can/should use `Vocabulary.from_text_files` to build your vocab object
 - Factory design pattern allows for different initialization signatures in Python
 - E.g. from_csv in pandas, from_pretrained in huggingface (later this course)
- Note on *args and **kwargs
 - https://book.pythontips.com/en/latest/args_and_kwargs.html

*args and **kwargs

```
def add(a, b):
    return a + b
print(add(1, 2)) # 3
print(add(*(1, 2))) # 3
def add_any(*args):
    return sum(args)
print(add_any(1, 2, 3)) # 6
print(add_any(1, 2, 3, 4)) # 10
```

*args and **kwargs

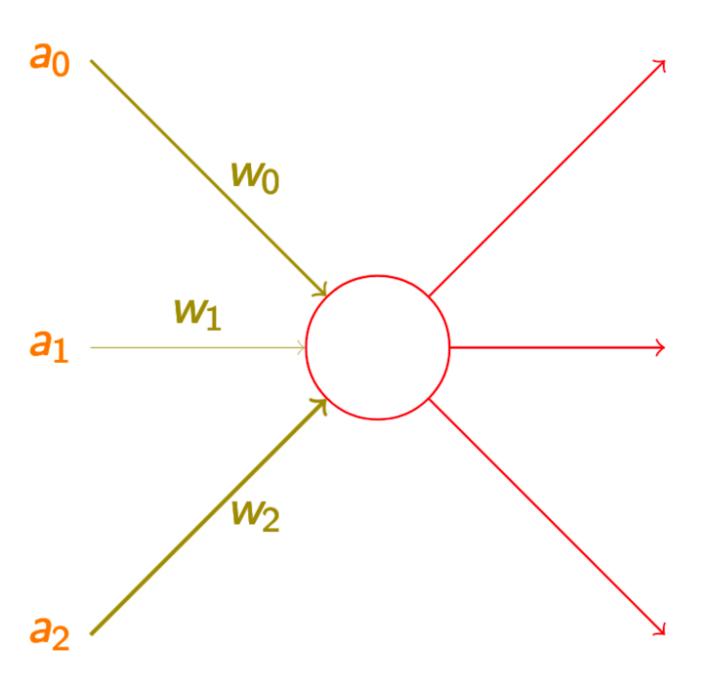
```
def keywords(name="Shane", course="575k"):
    return f"{name} is teaching {course}"
print(keywords(name="Agatha"))
print(keywords(**{"name": "Agatha"}))
def keywords_any(**kwargs):
    for key, value in kwargs.items():
        print(f"{key}: {value}")
keywords_any(name="Shane", course="575k"))
keywords_any(name="Shane", course="575k", foo="bar"))
keywords_any(**{"name": "Shane", "course": "575k"}))
```

Plan for Today

- Last time:
 - Prediction-based word vectors
 - Skip-gram with negative sampling [model + loss]
- Today: intro to feed-forward neural networks
 - Basic computation + expressive power
 - Multilayer perceptrons
 - Mini-batches
 - Hyper-parameters and regularization

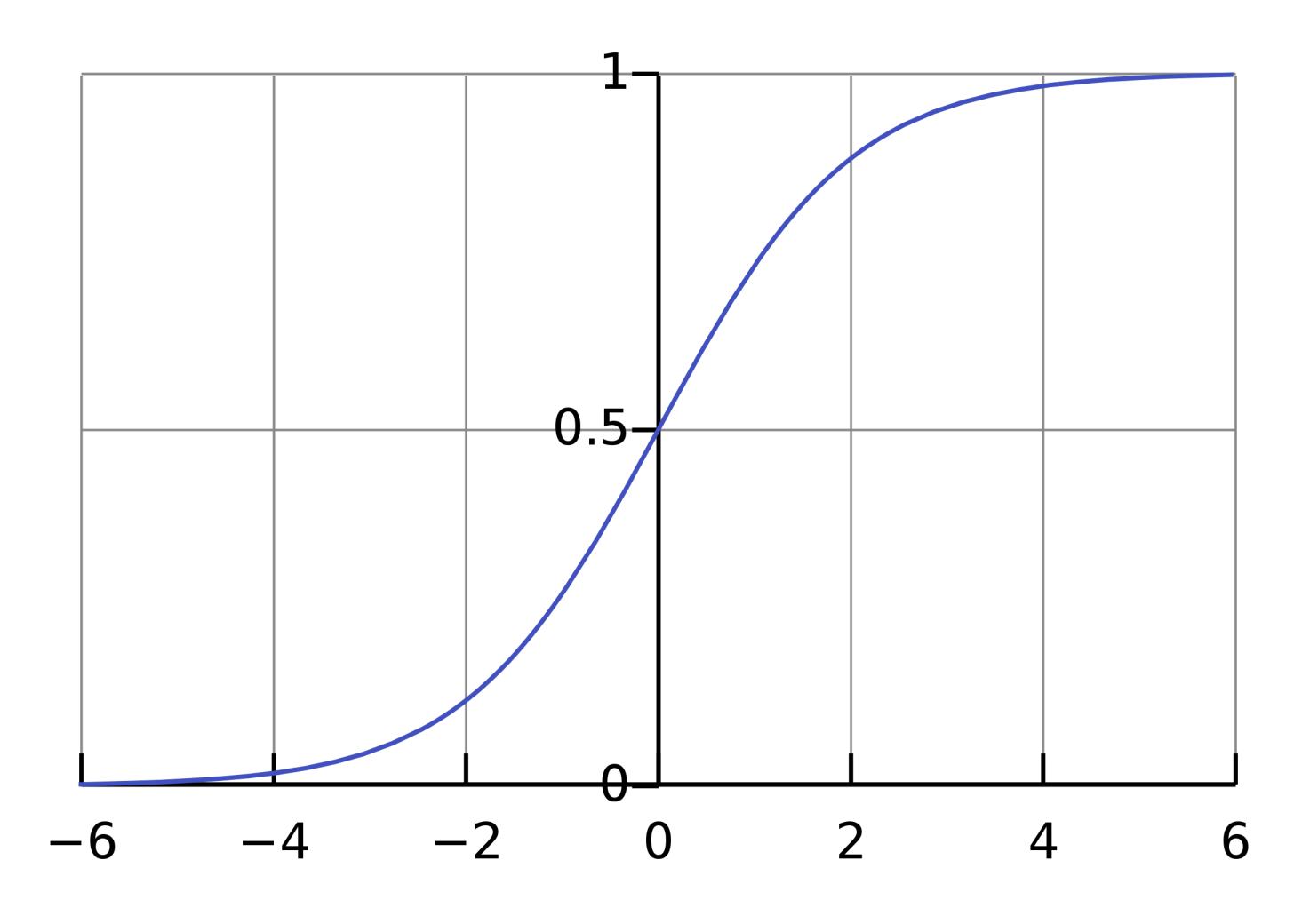
Computation: Basic Example

Artificial Neuron

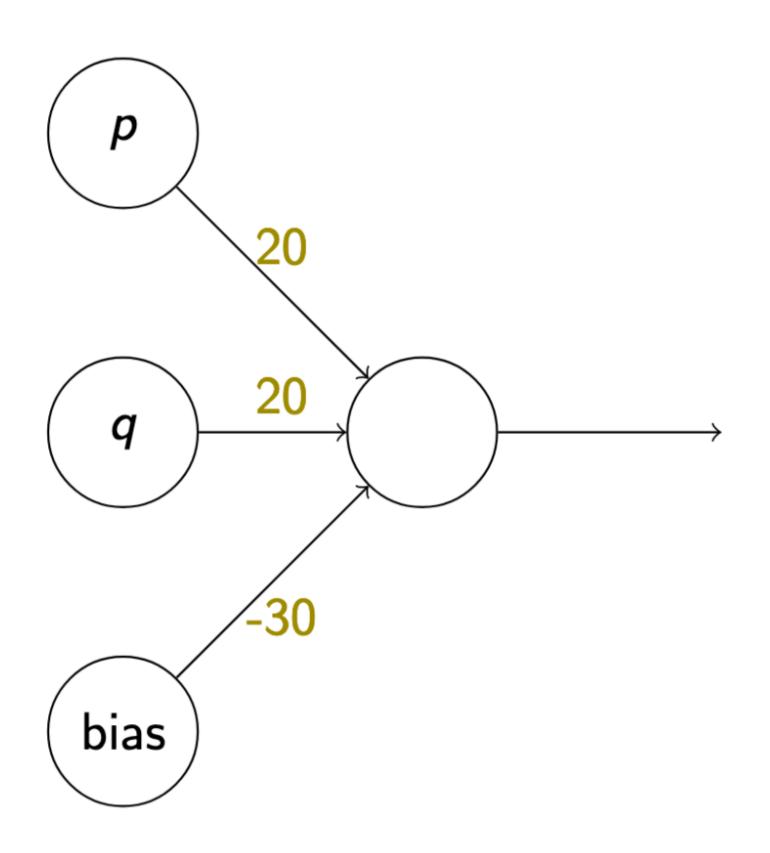


$$a = f(a_0 \cdot w_0 + a_1 \cdot w_1 + a_2 \cdot w_2)$$

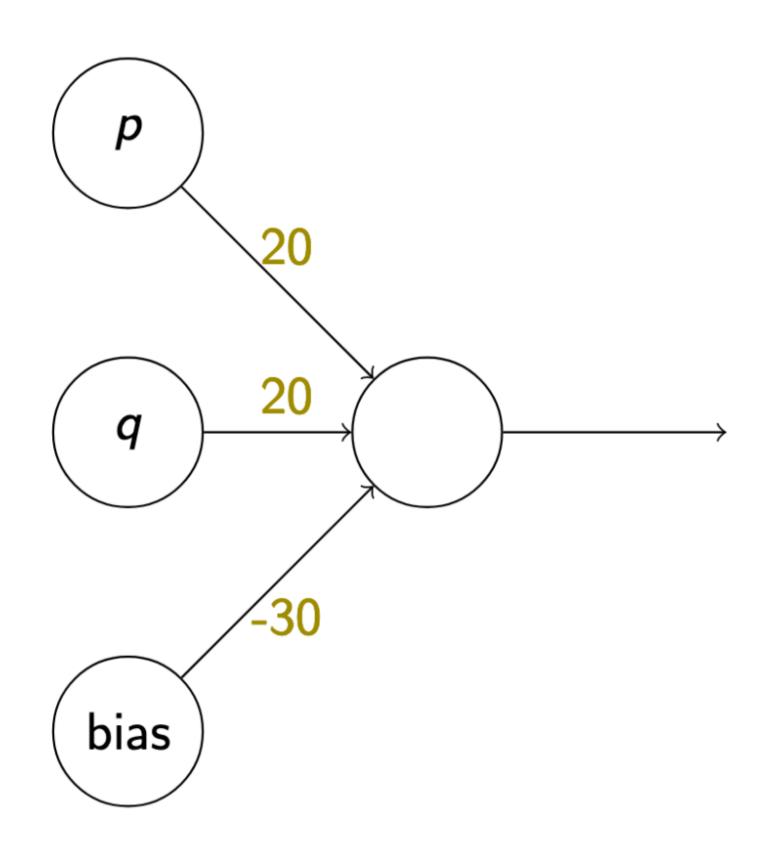
Activation Function: Sigmoid



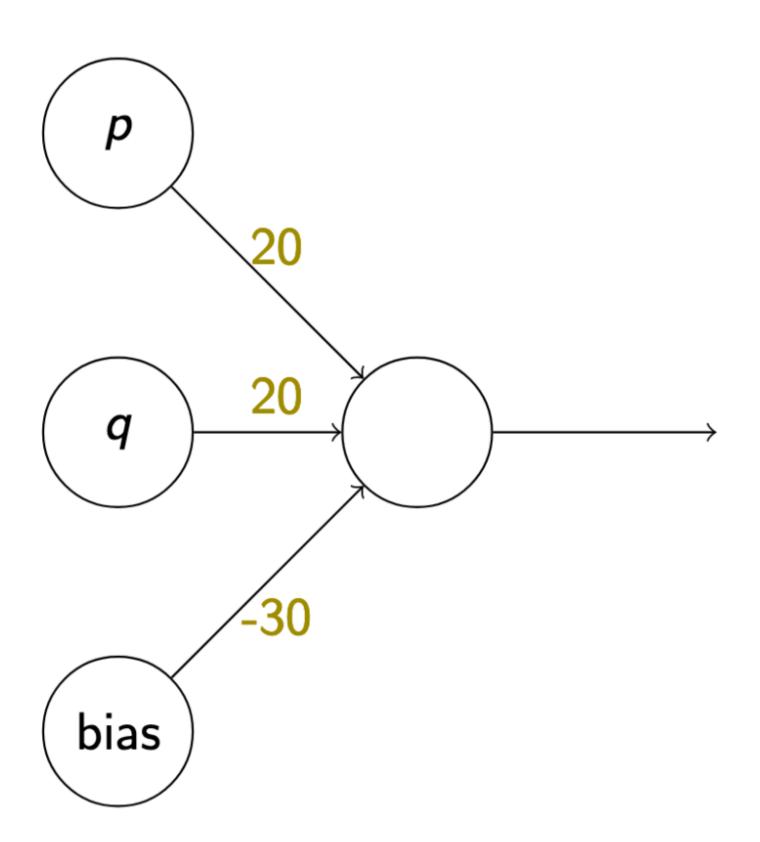
$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$



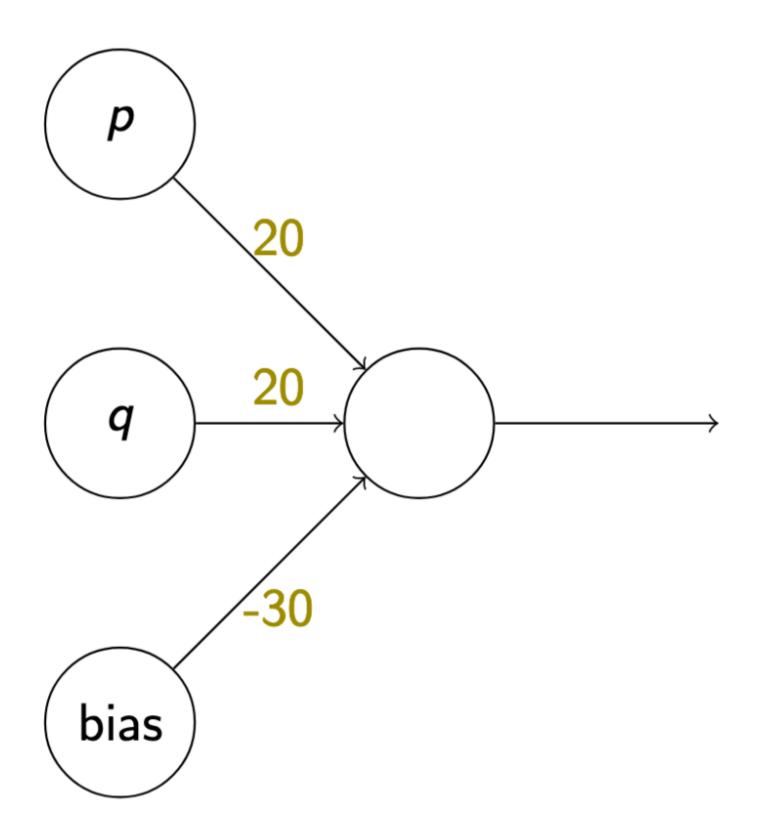
p q a



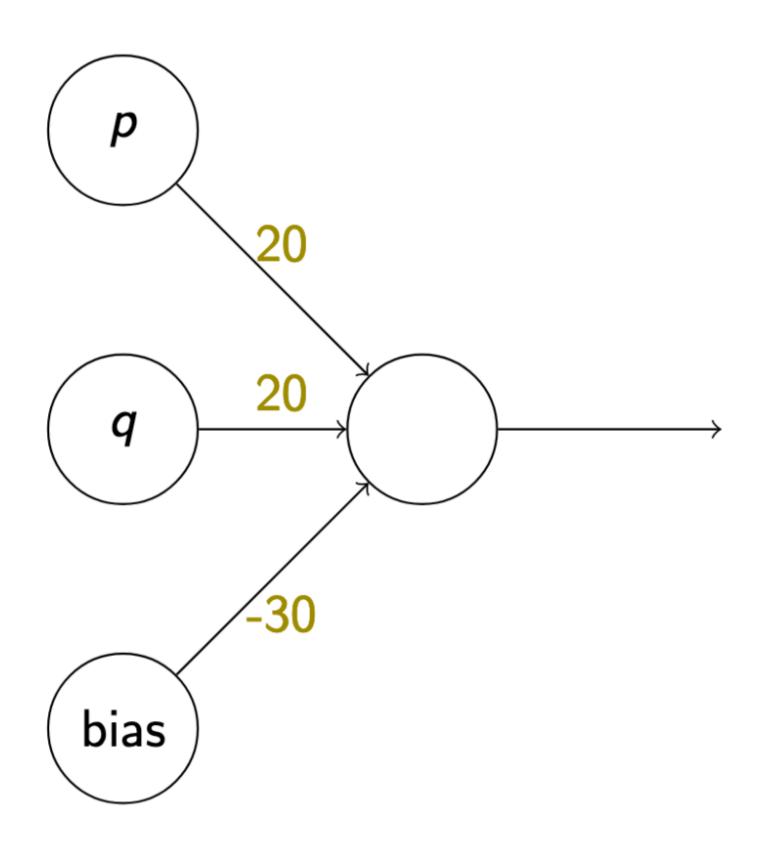
þ	q	a
1	1	1



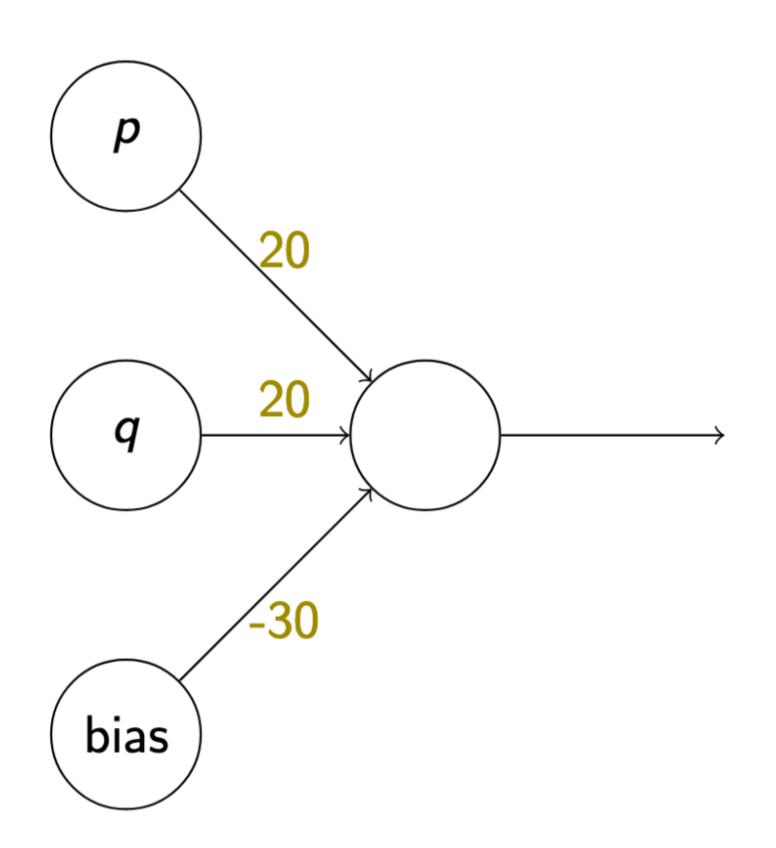
p	q	a
1	1	1
1	0	0



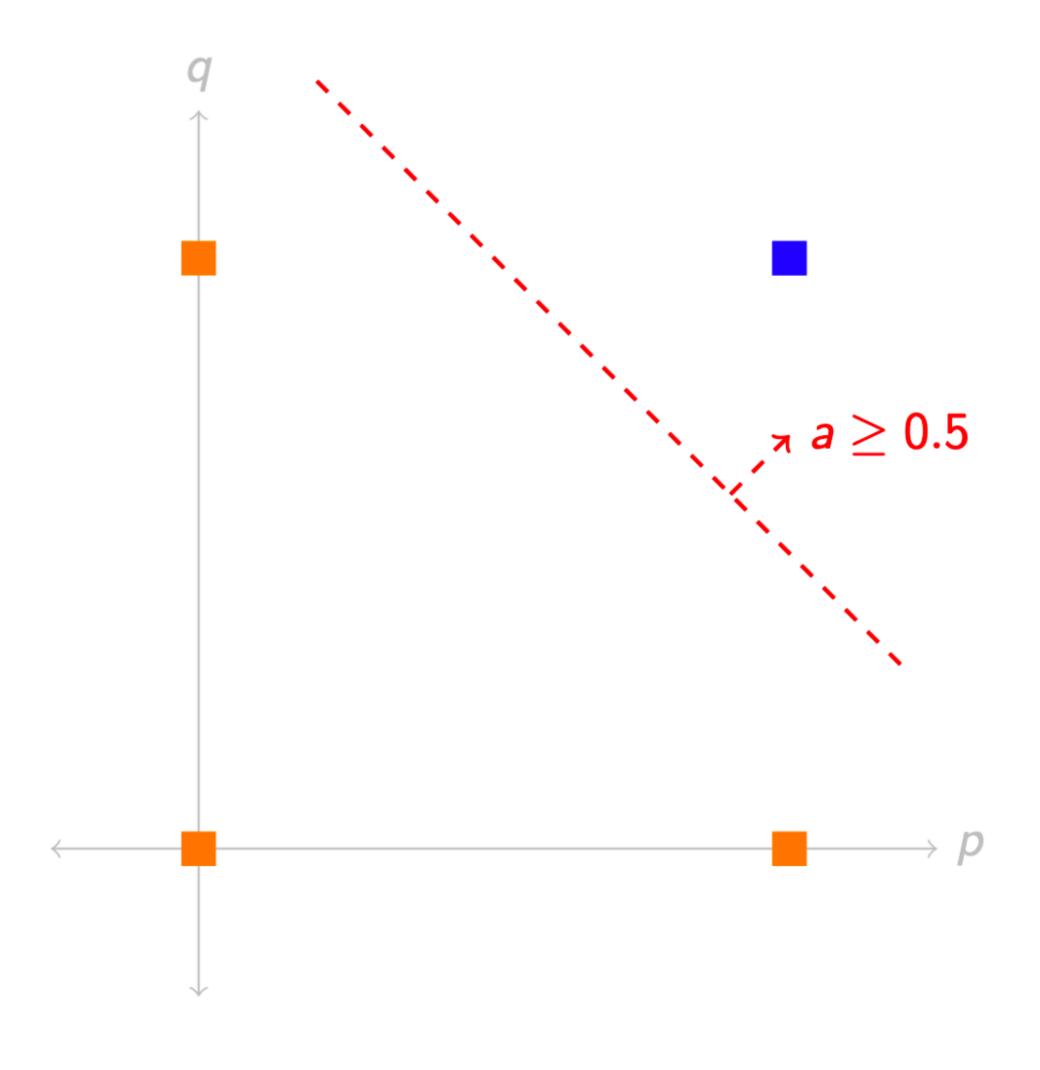
þ	q	a
1	1	1
1	0	0
0	1	0



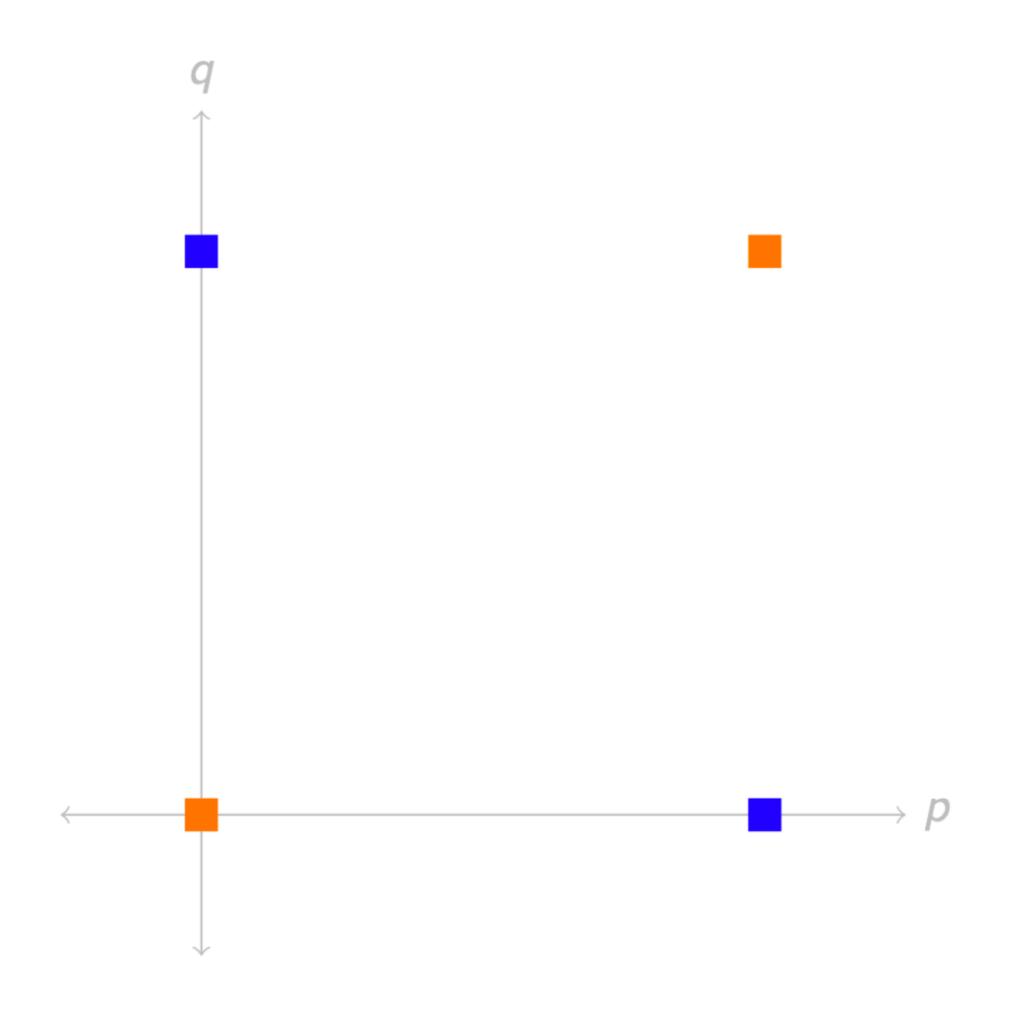
p	q	a
1	1	1
1	0	0
0	1	0
0	0	0



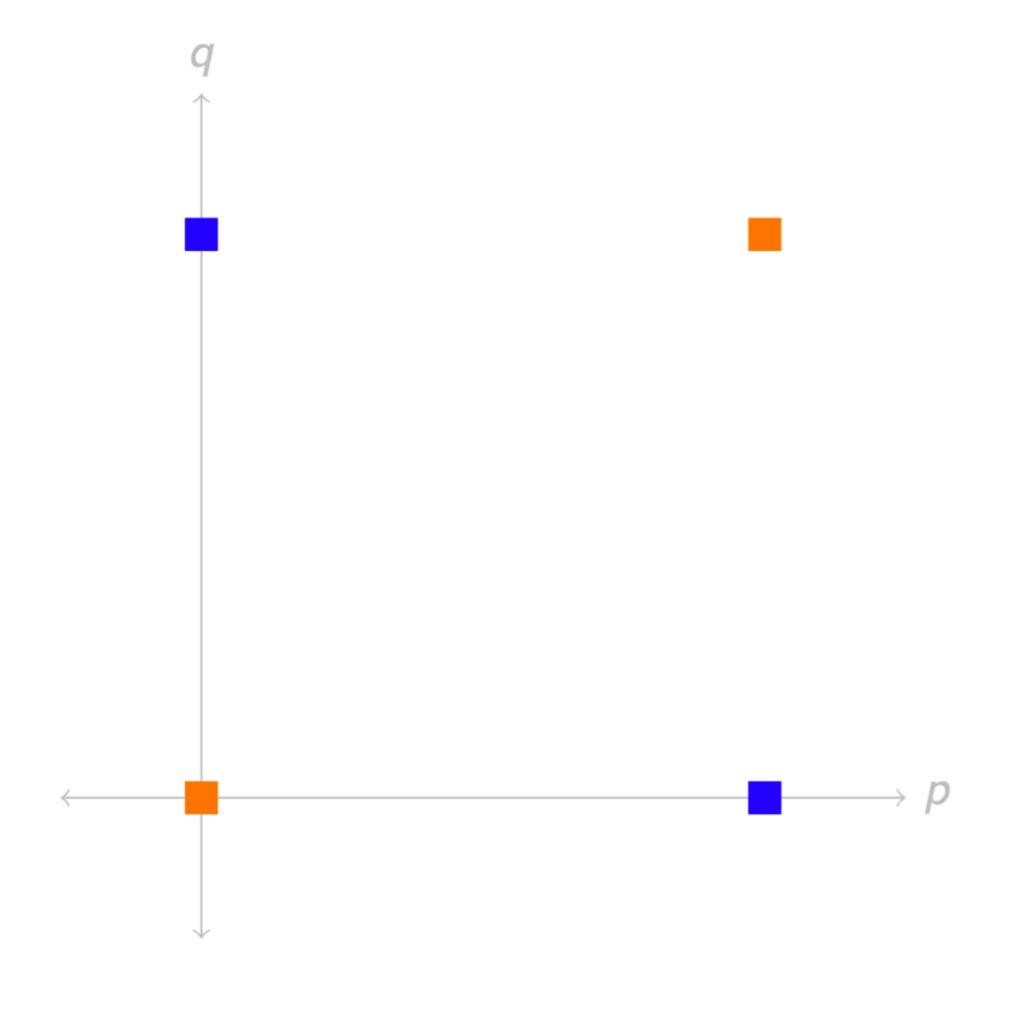
Computing 'and'



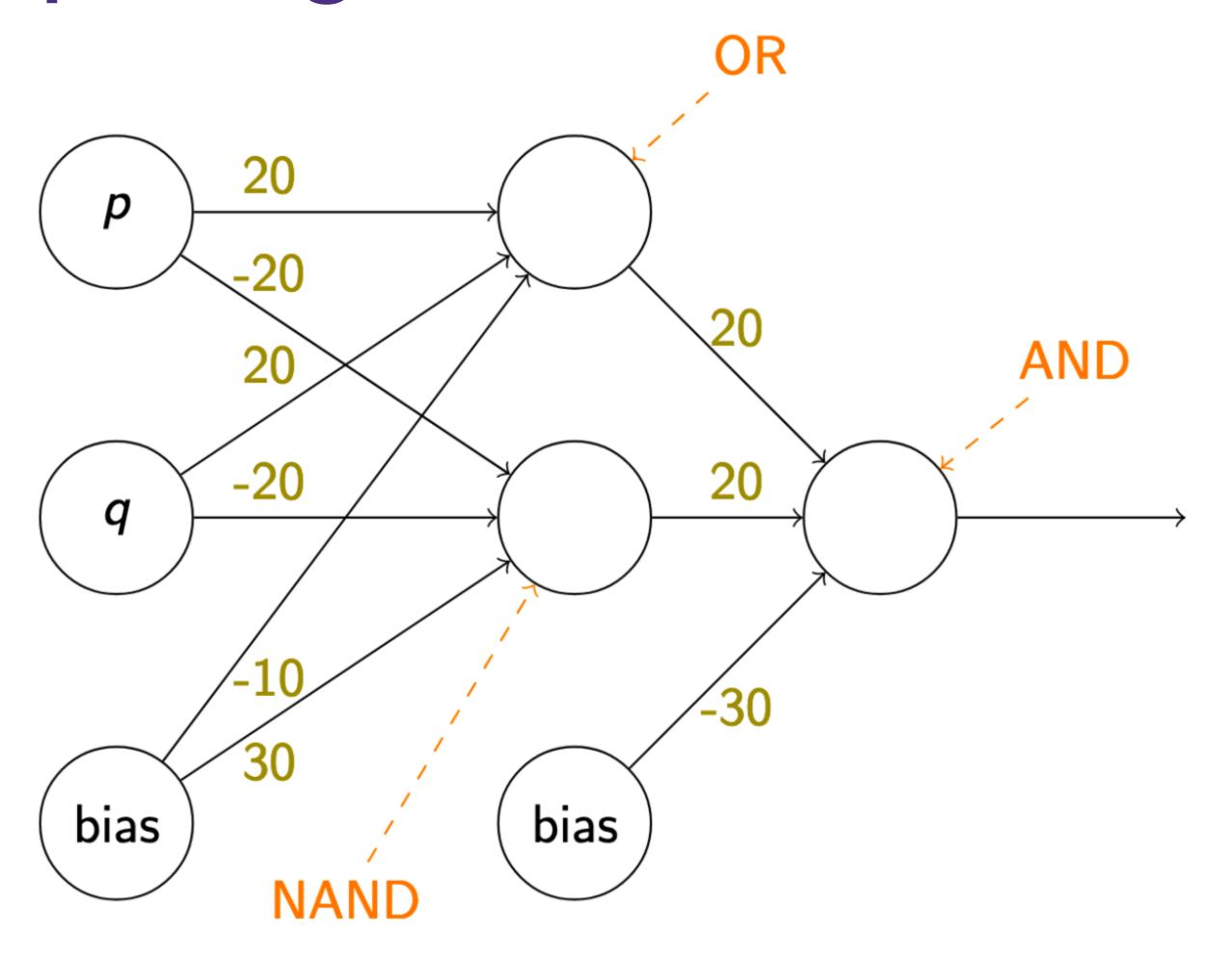
The XOR problem



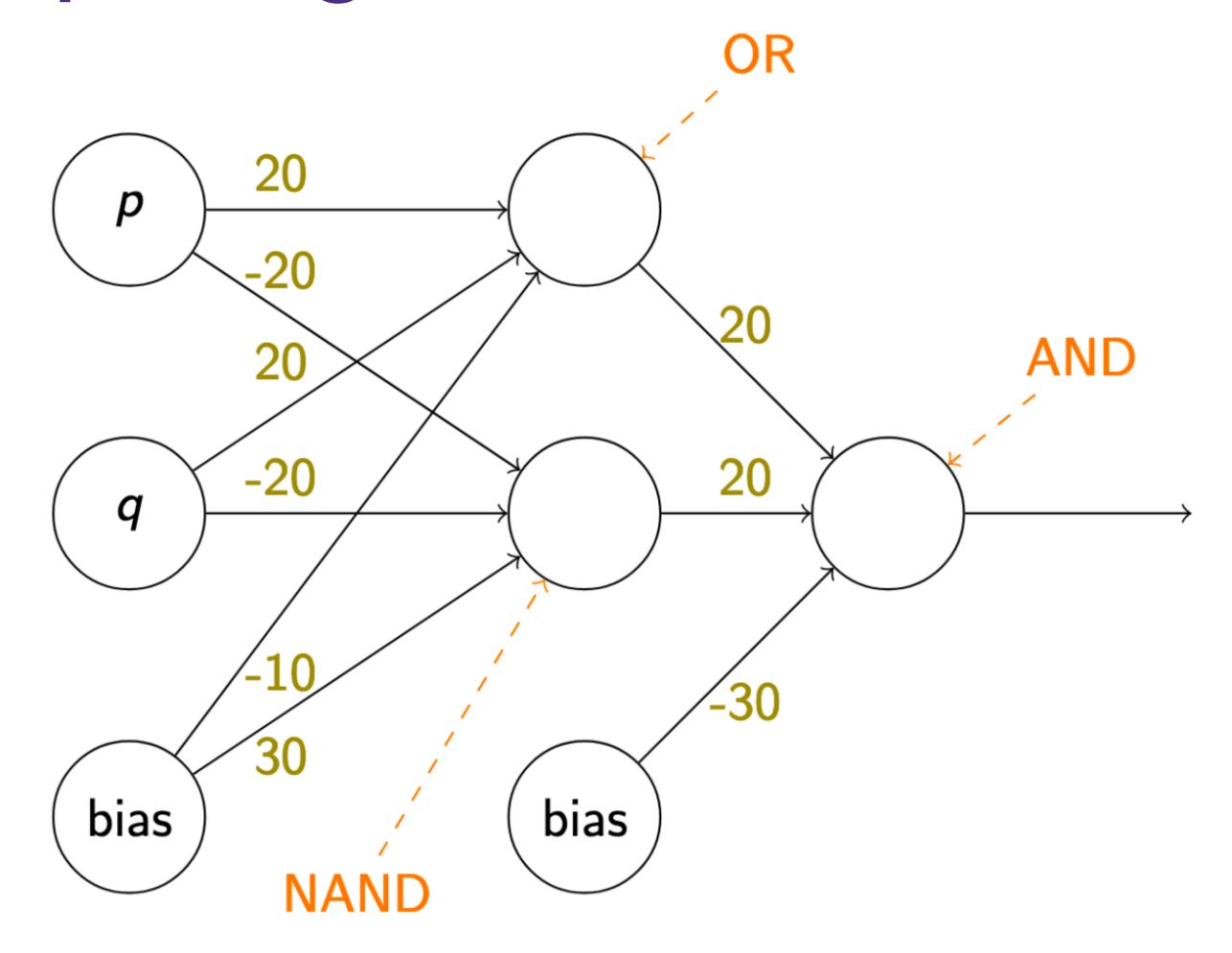
The XOR problem



Computing XOR

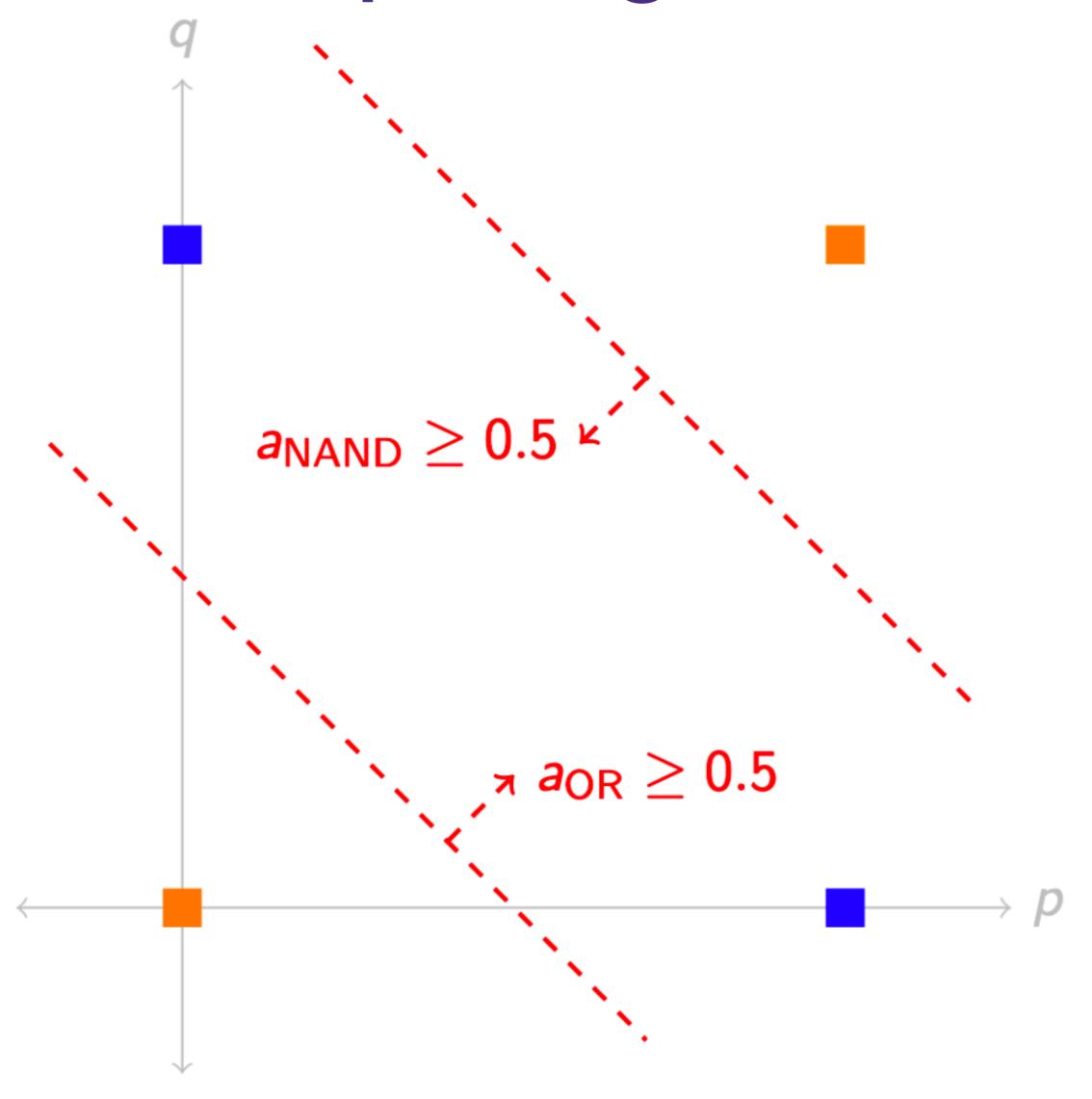


Computing XOR



Exercise: show that NAND behaves as described.

Computing XOR



Key Ideas

- Hidden layers compute high-level / abstract features of the input
 - Via training, will learn which features are helpful for a given task
 - Caveat: doesn't always learn much more than shallow features
- Doing so increases the expressive power of a neural network
 - Strictly more functions can be computed with hidden layers than without

Neural networks with one hidden layer are universal function approximators

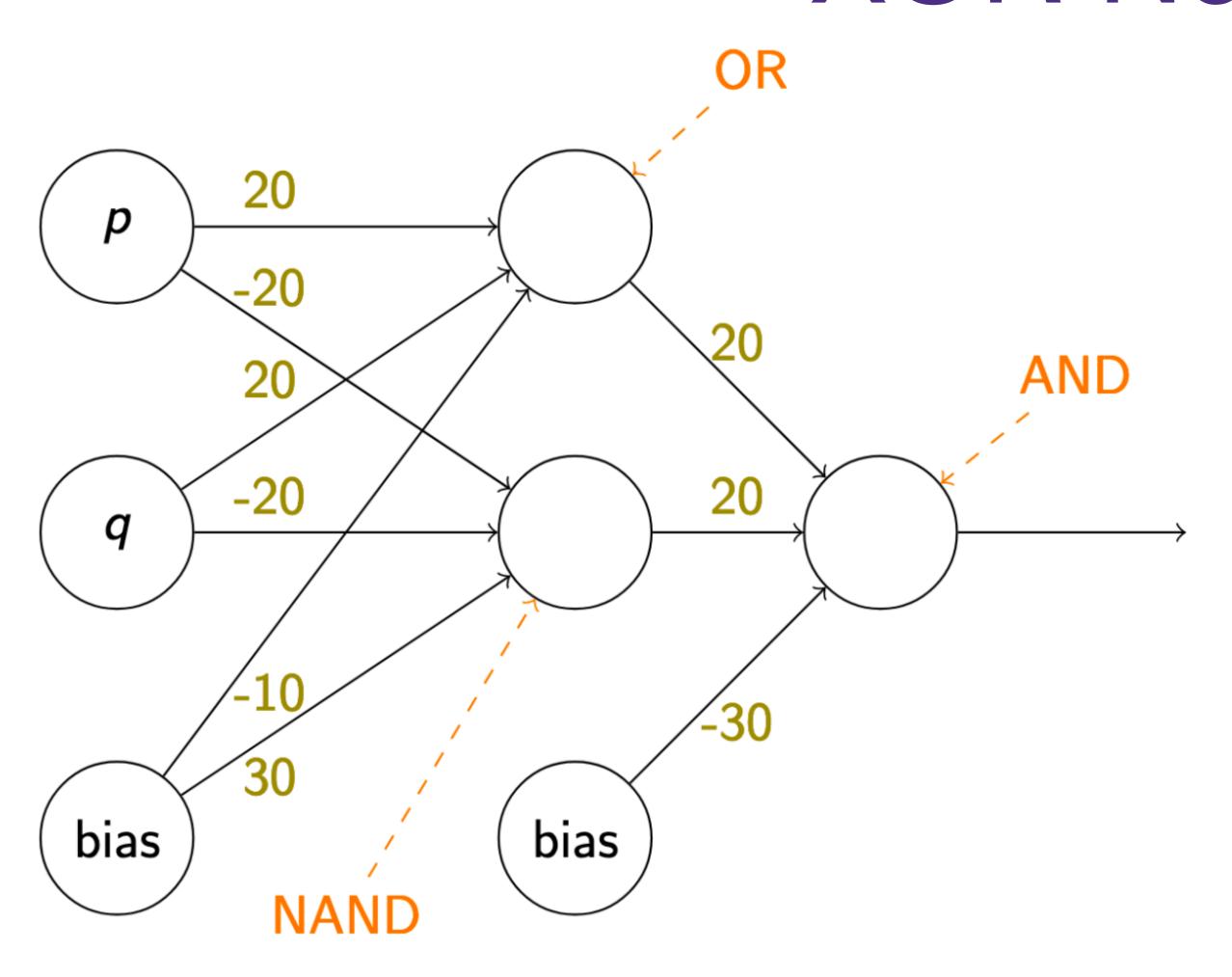
- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.

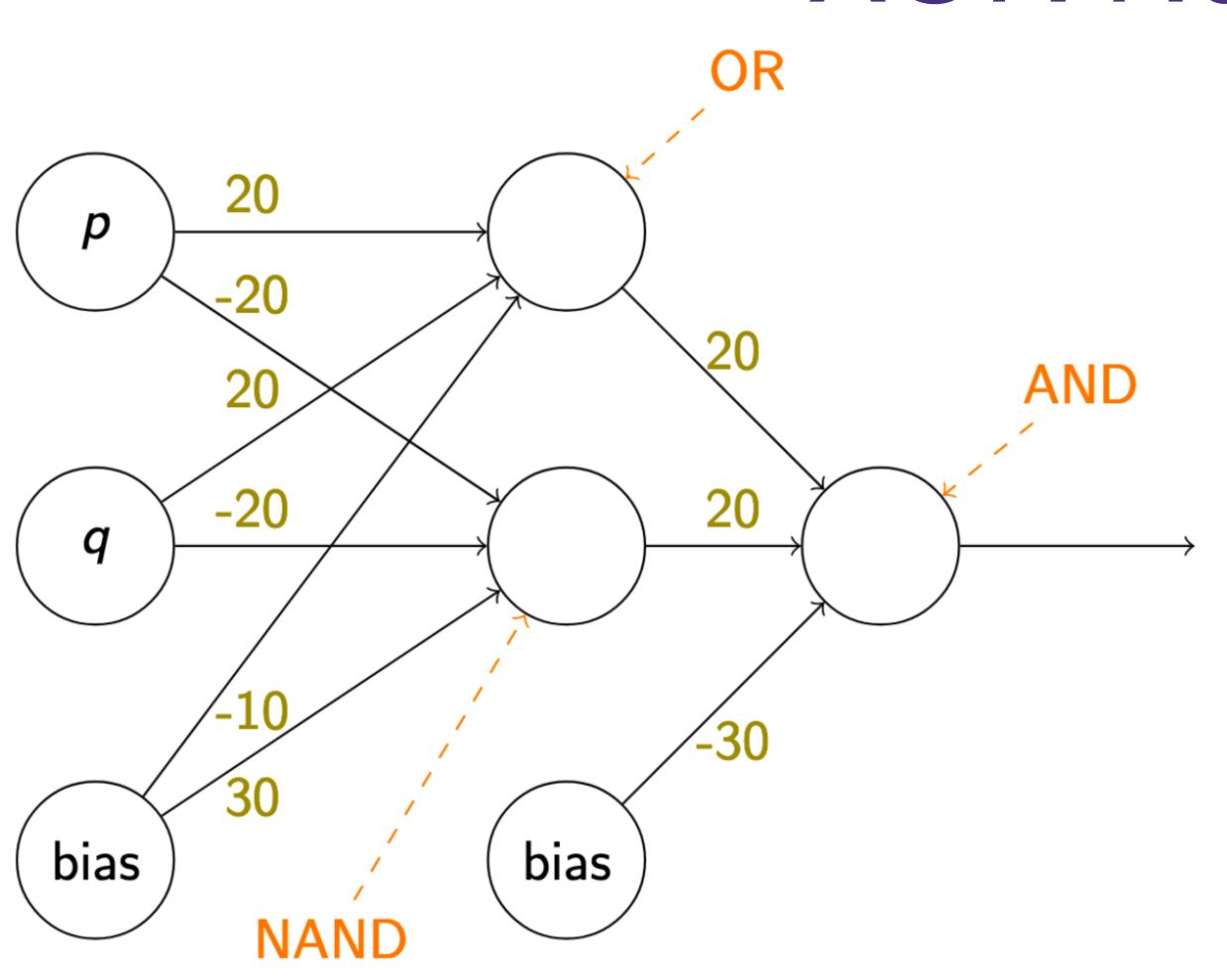
- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.
- Generalizations (diff activation functions, less bounded, etc.) exist.

- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
 - Size of the hidden layer is exponential in m
 - How does one find/learn such a good approximation?

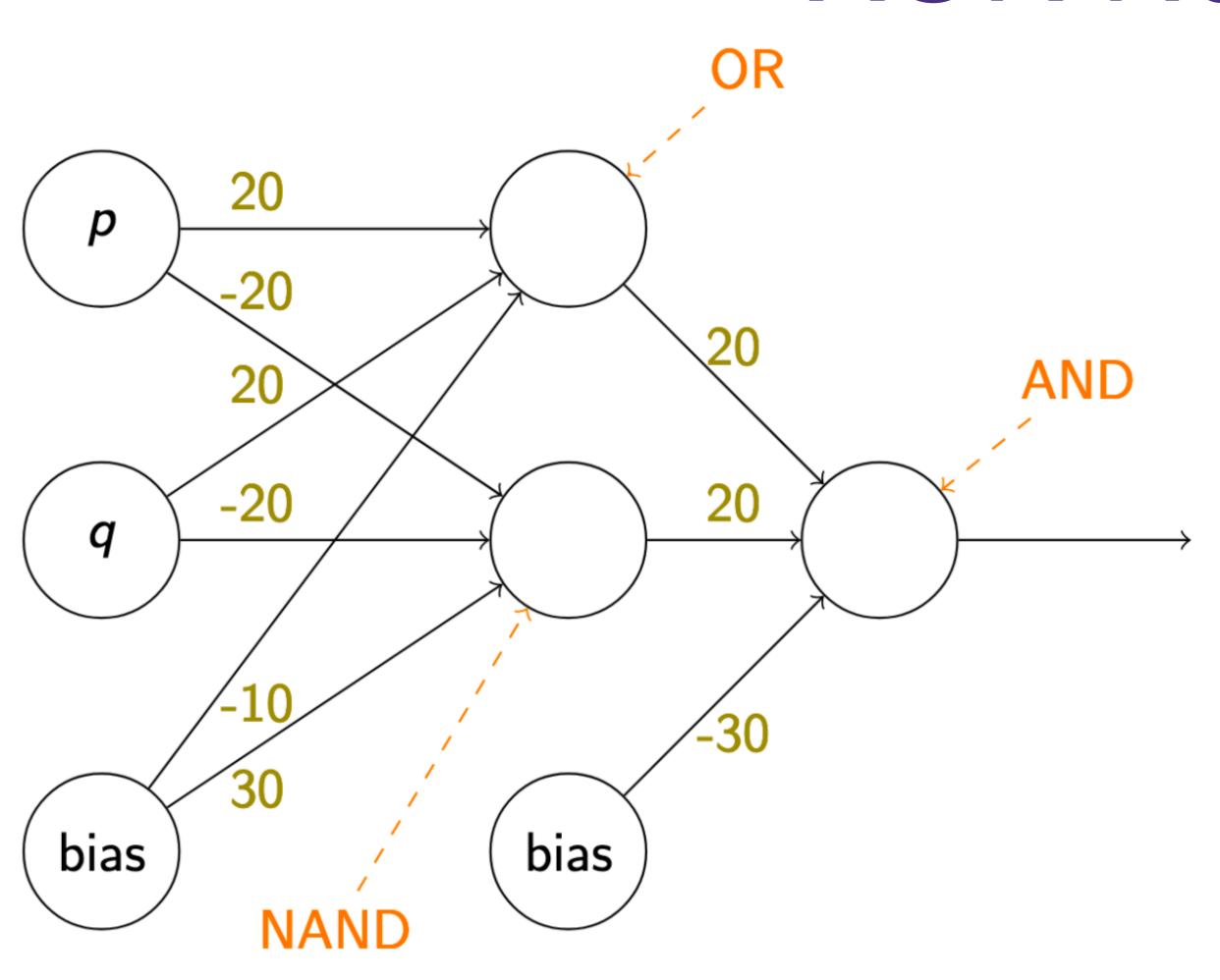
- Neural networks with one hidden layer are universal function approximators
- Let $f: [0,1]^m \to \mathbb{R}$ be continuous and $\epsilon > 0$. Then there is a one-hidden-layer neural network g with sigmoid activation such that $|f(\mathbf{x}) g(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in [0,1]^m$.
- Generalizations (diff activation functions, less bounded, etc.) exist.
- But:
 - Size of the hidden layer is exponential in m
 - How does one find/learn such a good approximation?
- Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

Feed-forward networks aka Multi-layer perceptrons (MLP)





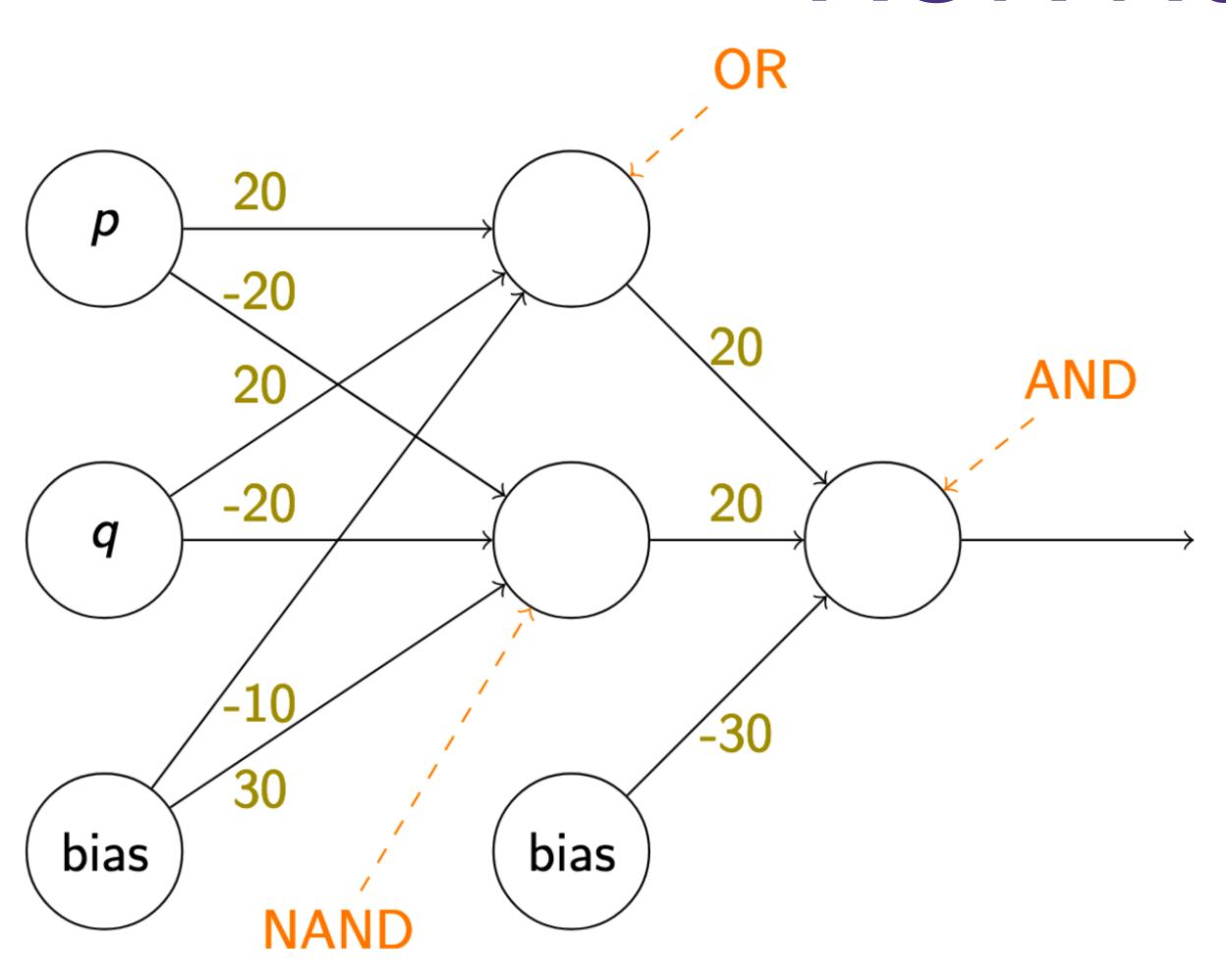
$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + b^{\text{and}} \right)$$



$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + b^{\text{and}} \right)$$

$$= \sigma \left[a_{\text{or}} \quad a_{\text{nand}} \right] \left[w_{\text{or}}^{\text{and}} \right] + b^{\text{and}}$$

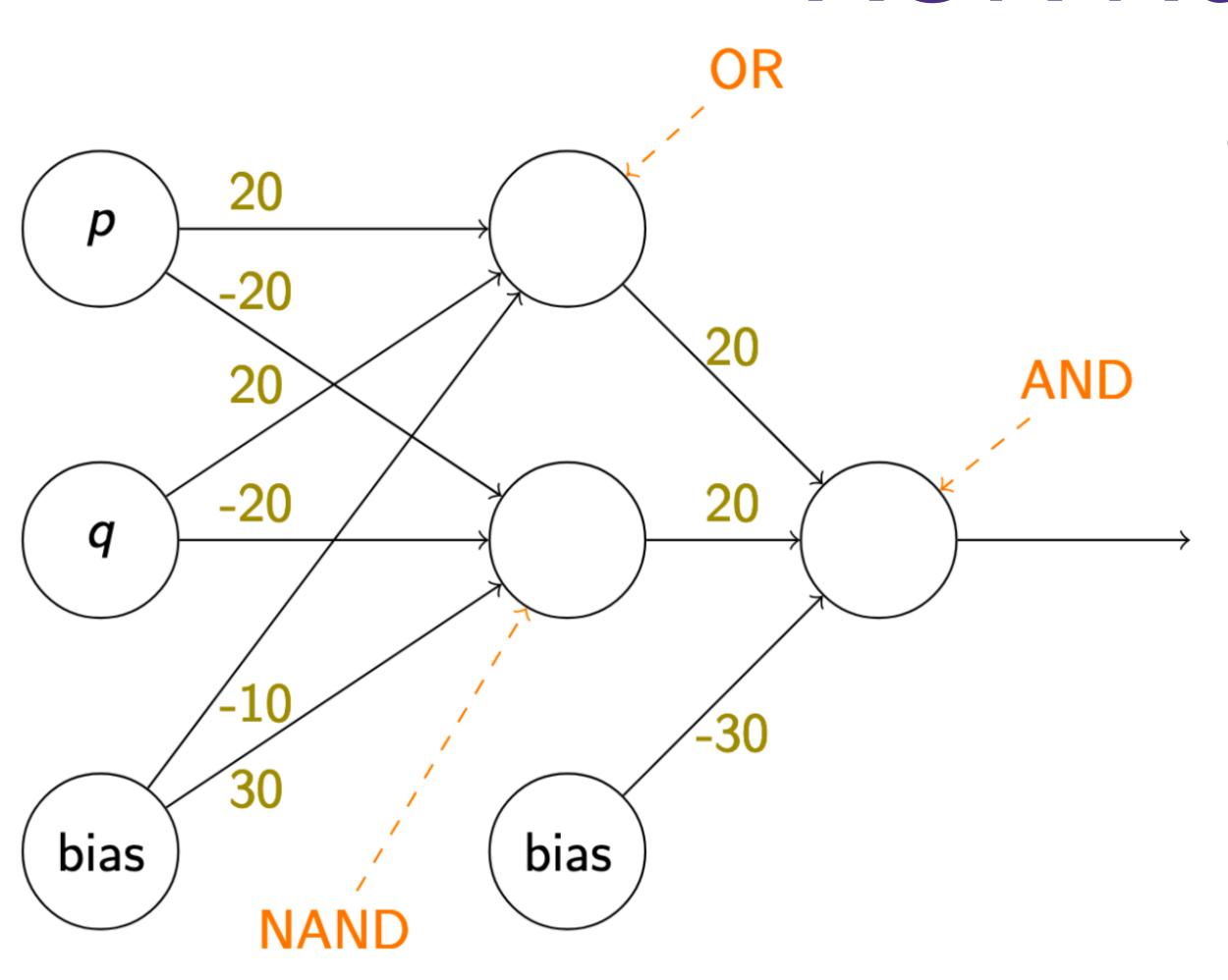
$$= \sigma \left[a_{\text{or}} \quad a_{\text{nand}} \right] \left[w_{\text{or}}^{\text{and}} \right] + b^{\text{and}}$$



$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + b^{\text{and}} \right)$$

$$= \sigma \left[a_{\text{or}} \quad a_{\text{nand}} \right] \left[w_{\text{or}}^{\text{and}} \right] + b^{\text{and}}$$

$$= \left[w_{\text{or}}^{\text{and}} \right] \left[w_{\text{nand}}^{\text{and}} \right] + b^{\text{and}}$$

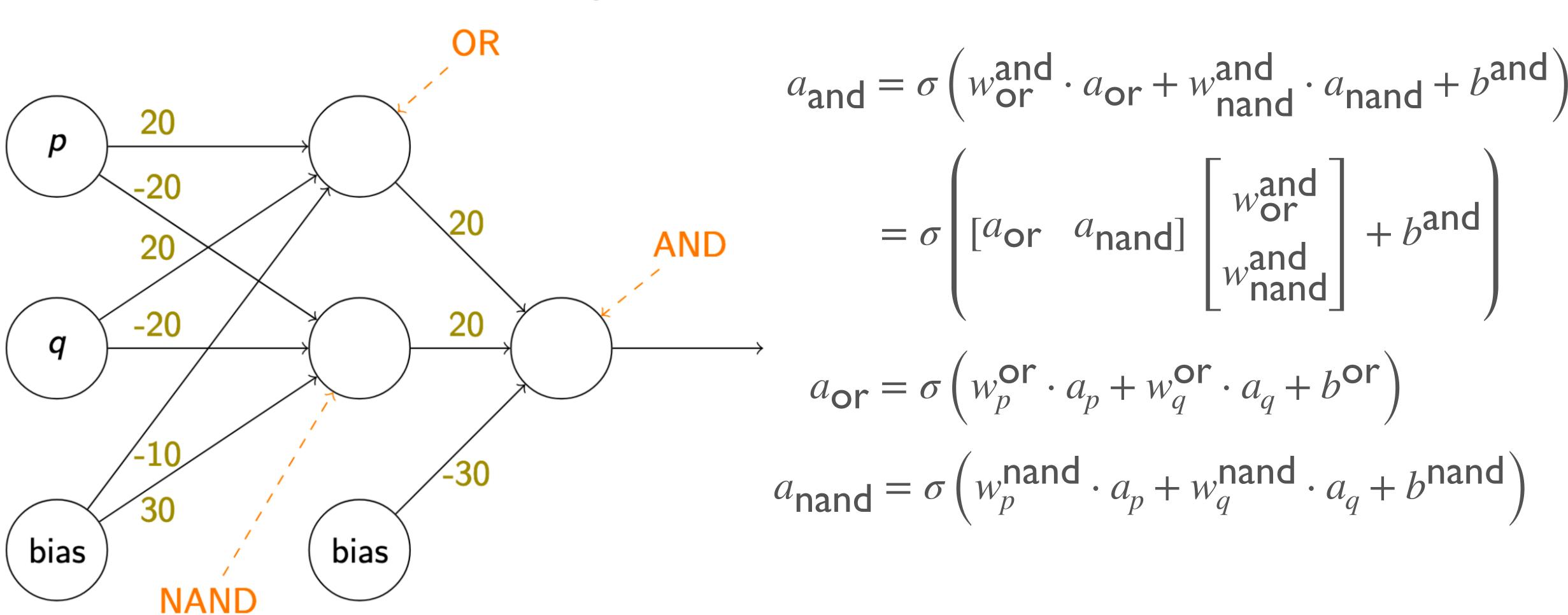


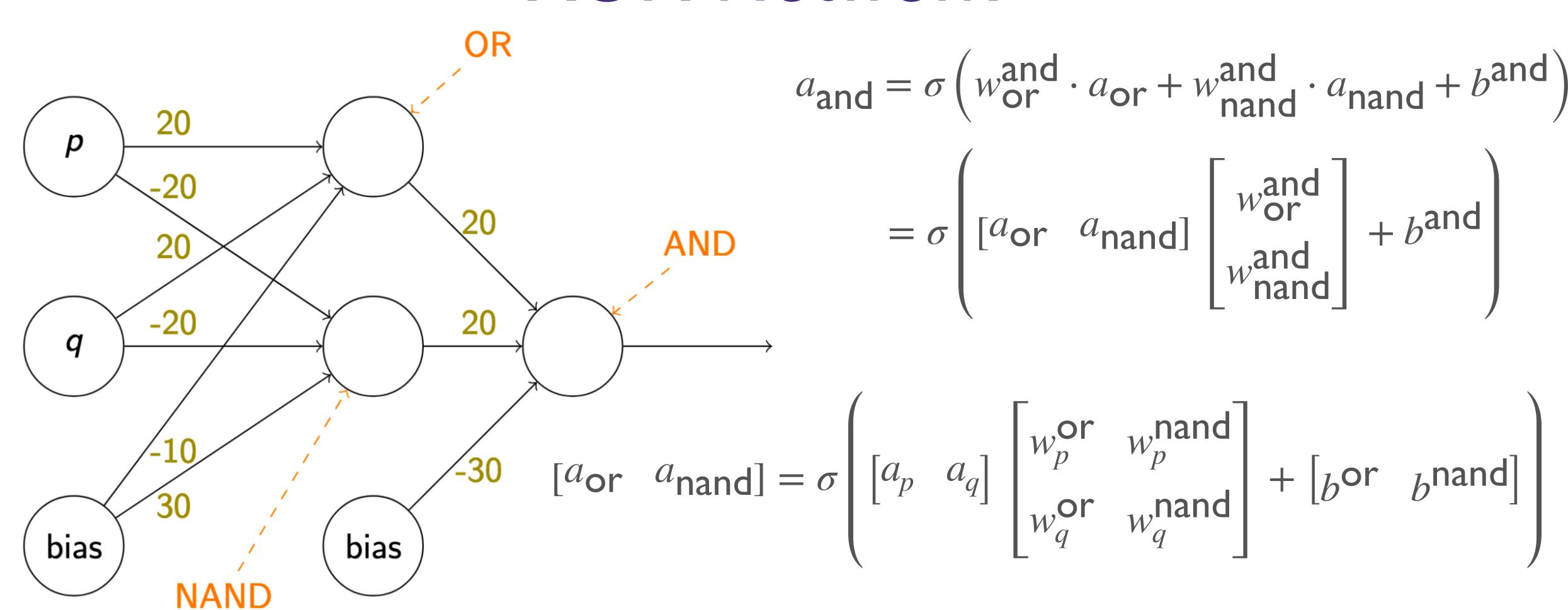
$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + b^{\text{and}} \right)$$

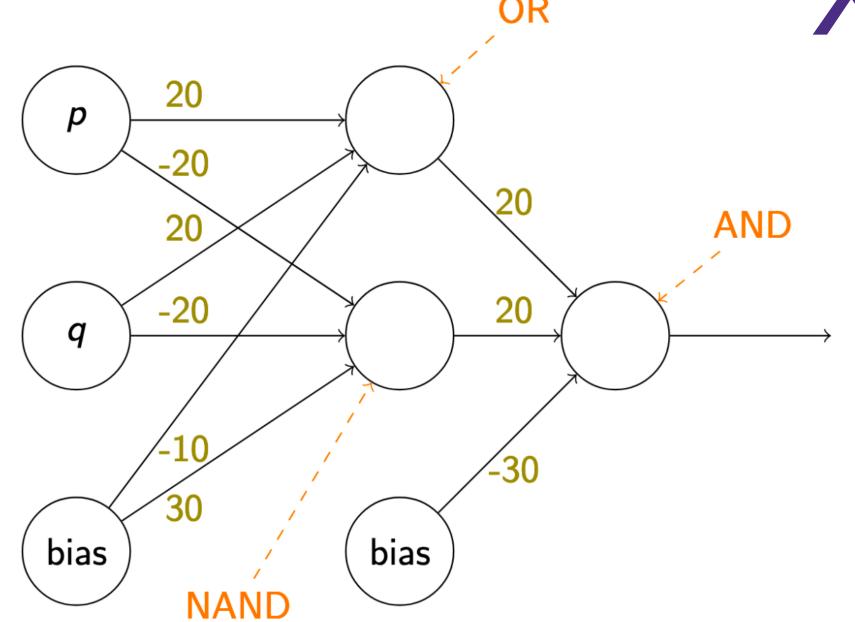
$$= \sigma \left[a_{\text{or}} \quad a_{\text{nand}} \right] \left[w_{\text{or}}^{\text{and}} \right] + b^{\text{and}}$$

$$= \sigma \left[a_{\text{or}} \quad a_{\text{nand}} \right] \left[w_{\text{nand}}^{\text{and}} \right] + b^{\text{and}}$$

$$a_{\text{or}} = \sigma \left(w_p^{\text{or}} \cdot a_p + w_q^{\text{or}} \cdot a_q + b^{\text{or}} \right)$$







$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + b^{\text{and}} \right)$$

$$= \sigma \left([a_{\text{or}} \quad a_{\text{nand}}] \begin{bmatrix} w_{\text{or}} \\ w_{\text{or}} \end{bmatrix} + b^{\text{and}} \right)$$

$$a_{\text{and}} = \sigma \left(\sigma \left(\begin{bmatrix} a_p & a_q \end{bmatrix} \begin{bmatrix} w_p^{\text{or}} & w_p^{\text{nand}} \\ w_q^{\text{or}} & w_q^{\text{nand}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} & b^{\text{nand}} \end{bmatrix} \right) \begin{bmatrix} w_p^{\text{and}} \\ w_p^{\text{and}} \end{bmatrix} + b^{\text{and}}$$

Generalizing

$$a_{\text{and}} = \sigma \left(\sigma \left(\begin{bmatrix} a_p & a_q \end{bmatrix} \begin{bmatrix} w_p^{\text{or}} & w_p^{\text{nand}} \\ w_q^{\text{or}} & w_q^{\text{nand}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} & b^{\text{nand}} \end{bmatrix} \right) \begin{bmatrix} w_p^{\text{and}} \\ w_p^{\text{and}} \end{bmatrix} + b^{\text{and}}$$

Generalizing

$$a_{\text{and}} = \sigma \left(\sigma \left(\begin{bmatrix} a_p & a_q \end{bmatrix} \begin{bmatrix} w_p^{\text{or}} & w_p^{\text{nand}} \\ w_q^{\text{or}} & w_q^{\text{nand}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} & b^{\text{nand}} \end{bmatrix} \right) \begin{bmatrix} w_p^{\text{and}} \\ w_p^{\text{and}} \end{bmatrix} + b^{\text{and}}$$

$$\hat{y} = f_2 \left(f_1 \left(xW^1 + b^1 \right) W^2 + b^2 \right)$$

Generalizing

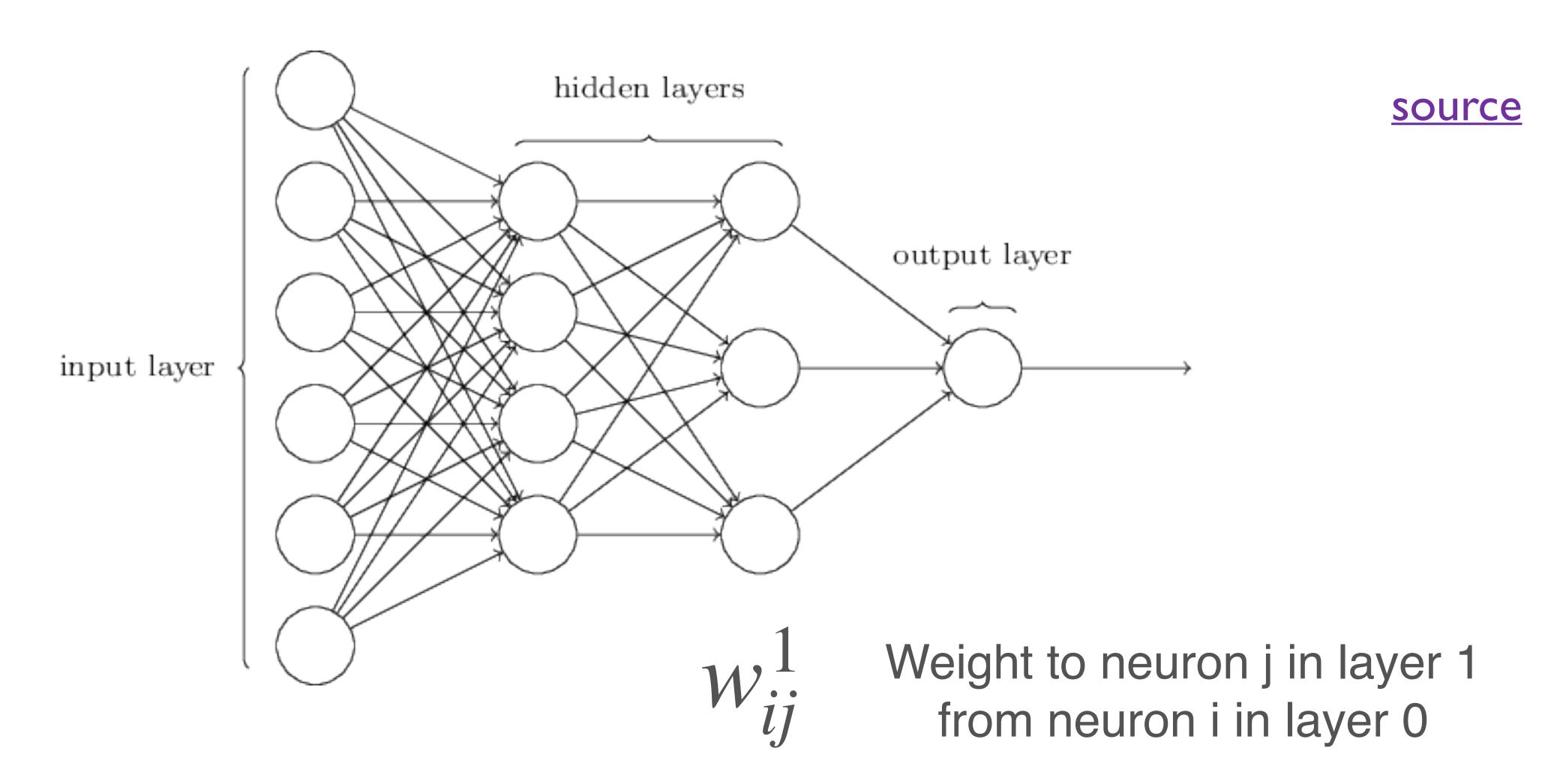
$$a_{\text{and}} = \sigma \left(\sigma \left(\begin{bmatrix} a_p & a_q \end{bmatrix} \begin{bmatrix} w_p^{\text{or}} & w_p^{\text{nand}} \\ w_q^{\text{or}} & w_q^{\text{nand}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} & b^{\text{nand}} \end{bmatrix} \right) \begin{bmatrix} w_p^{\text{and}} \\ w_p^{\text{and}} \end{bmatrix} + b^{\text{and}}$$

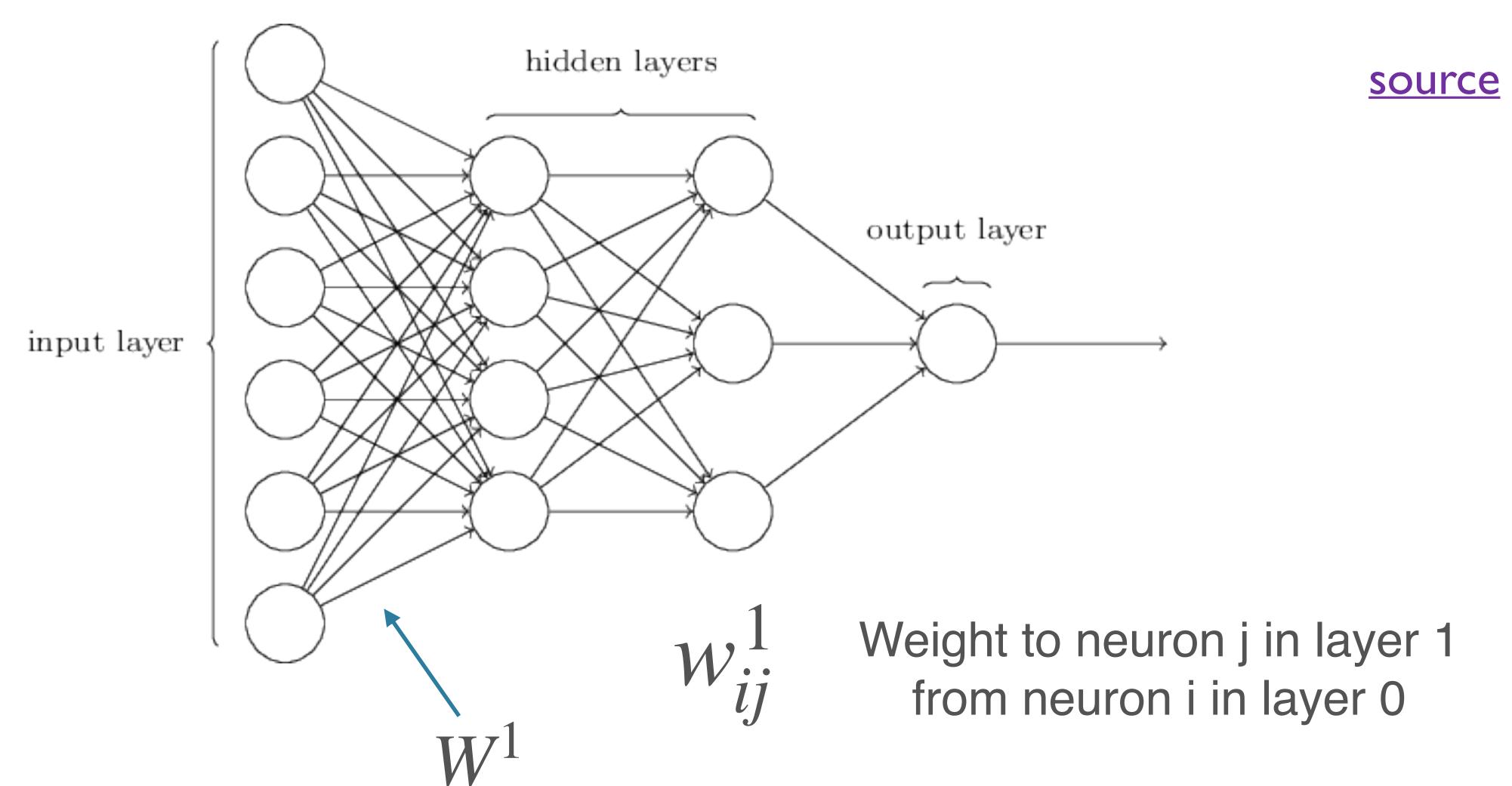
$$\hat{y} = f_2 \left(f_1 \left(xW^1 + b^1 \right) W^2 + b^2 \right)$$

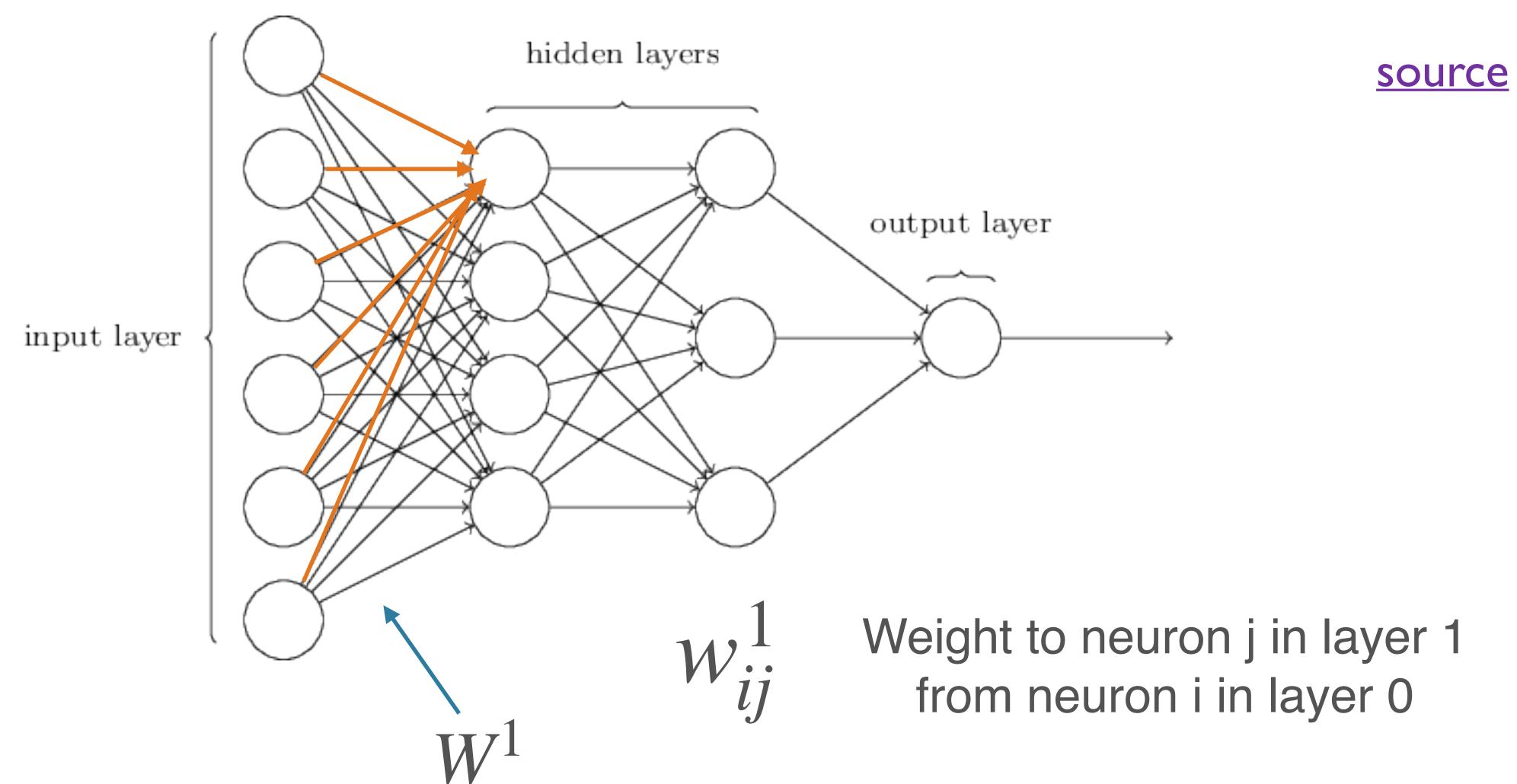
$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

Some terminology

- Our XOR network is a feed-forward neural network with one hidden layer
 - Aka a multi-layer perceptron (MLP)
- Input nodes: 2; output nodes: 1
- Activation function: sigmoid







$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$x = \begin{bmatrix} x_0 & x_1 & \cdots & x_{n_0} \end{bmatrix}$$

Shape: $(1, n_0)$

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$x = \begin{bmatrix} x_0 & x_1 & \cdots & x_{n_0} \end{bmatrix}$$

Shape: $(1, n_0)$

$$W^{1} = \begin{bmatrix} w_{00}^{1} & w_{10}^{1} & \cdots & w_{0n_{1}}^{1} \\ w_{10}^{1} & w_{11}^{1} & \cdots & w_{1n_{1}}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{0}0}^{1} & w_{n_{0}1}^{1} & \cdots & w_{n_{0}n_{1}}^{1} \end{bmatrix}$$

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$x = \begin{bmatrix} x_0 & x_1 & \cdots & x_{n_0} \end{bmatrix}$$

Shape: $(1, n_0)$

$$W^{1} = \begin{bmatrix} w_{00}^{1} & w_{10}^{1} & \cdots & w_{0n_{1}}^{1} \\ w_{10}^{1} & w_{11}^{1} & \cdots & w_{1n_{1}}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{0}0}^{1} & w_{n_{0}1}^{1} & \cdots & w_{n_{0}n_{1}}^{1} \end{bmatrix}$$

Shape: (n_0, n_1)

 n_0 : number of neurons in layer 0 (input)

 n_1 : number of neurons in layer 1

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$x = \begin{bmatrix} x_0 & x_1 & \cdots & x_{n_0} \end{bmatrix}$$

Shape: $(1, n_0)$

$$b^1 = \begin{bmatrix} b_0^1 & b_1^1 & \cdots & b_{n_1}^1 \end{bmatrix}$$

Shape: $(1, n_1)$

$$W^{1} = \begin{bmatrix} w_{00}^{1} & w_{10}^{1} & \cdots & w_{0n_{1}}^{1} \\ w_{10}^{1} & w_{11}^{1} & \cdots & w_{1n_{1}}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{0}0}^{1} & w_{n_{0}1}^{1} & \cdots & w_{n_{0}n_{1}}^{1} \end{bmatrix}$$

Shape: (n_0, n_1)

 n_0 : number of neurons in layer 0 (input)

 n_1 : number of neurons in layer 1

Parameters of an MLP

- Weights and biases
 - For each layer $l: n_l(n_{l-1} + 1)$
 - $n_l n_{l-1}$ weights; n_l biases
- With *n* hidden layers (considering the output as a hidden layer):

$$\sum_{i=1}^{n} n_i (n_{i-1} + 1)$$

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...

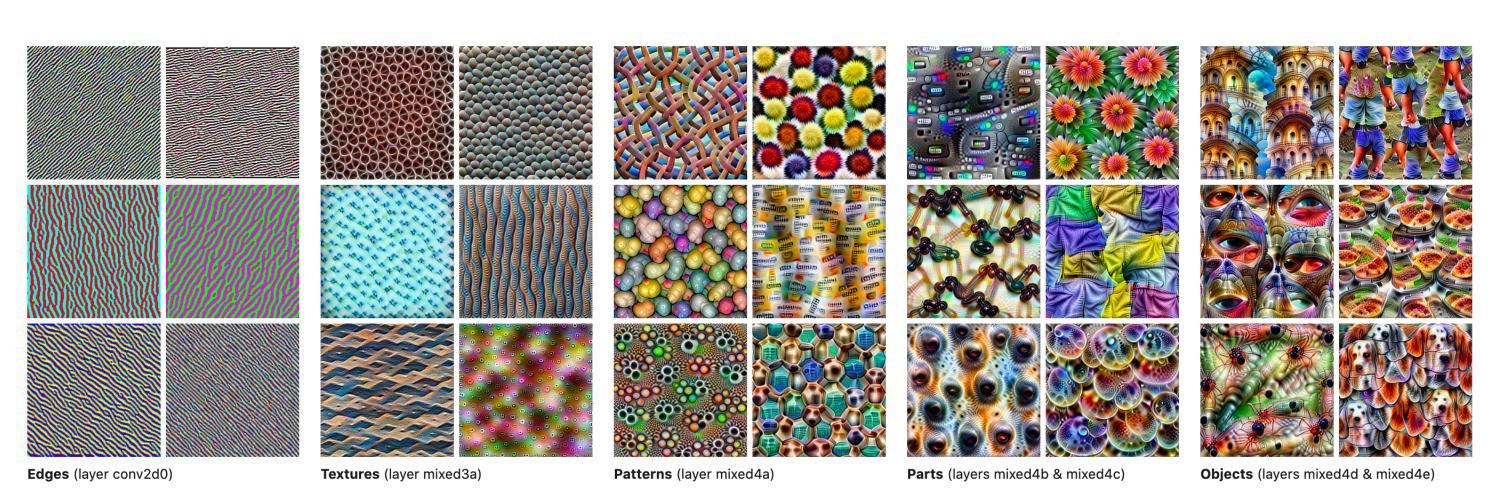
- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers
- For each hidden layer:
 - Size
 - Activation function

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
 - Output: 1 for binary classification or simple regression, number of labels for classification, ...
- Number of hidden layers
- For each hidden layer:
 - Size
 - Activation function
- Others: initialization, regularization (and associated values), learning rate / training, ...

The Deep in Deep Learning

- The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function
- Empirical drawbacks: Super-exponentially many neurons; hard to discover
- "Deep and narrow" >> "Shallow and wide"
 - In principle allows hierarchical features to be learned
 - More well-behaved w/r/t optimization



source

Activation Functions

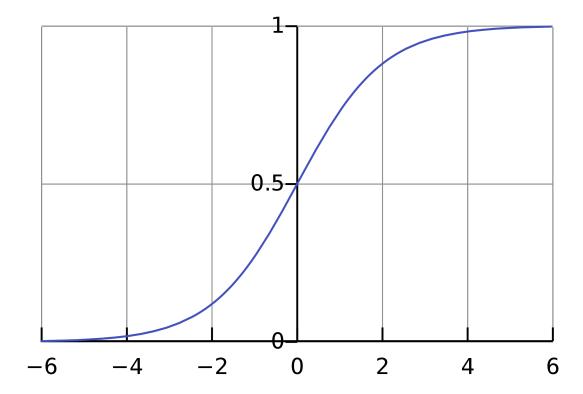
- Note: non-linear activation functions are essential
- MLP: linear transformation, followed by a point-wise non-linearity, repeated several times over
- Without the non-linearity, would just have several linear transformations
 - Composition of linear transformations is also linear!

Activation Functions

- Note: non-linear activation functions are essential
- MLP: linear transformation, followed by a point-wise non-linearity, repeated several times over
- Without the non-linearity, would just have several linear transformations
 - Composition of linear transformations is also linear!

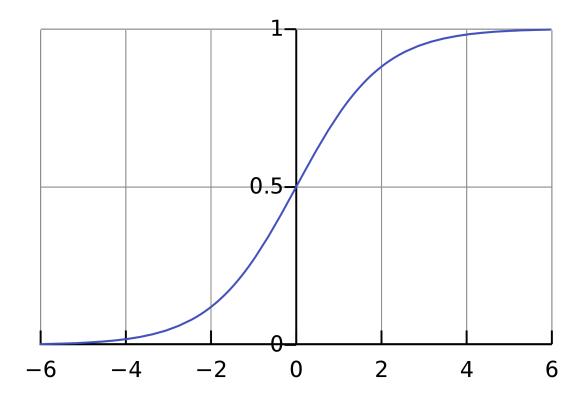
$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

sigmoid



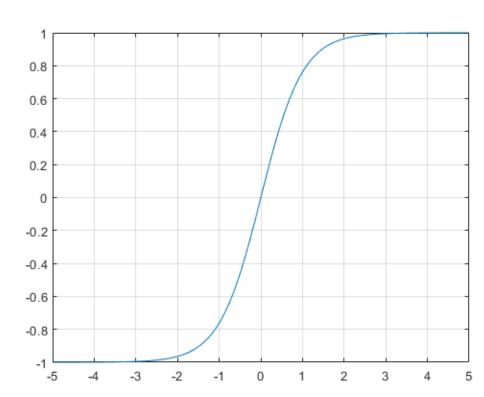
$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

sigmoid



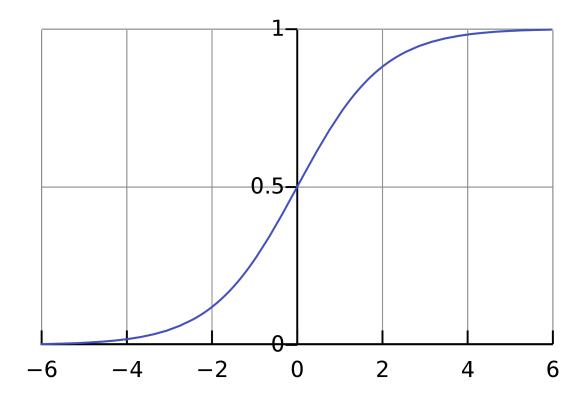
$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

tanh



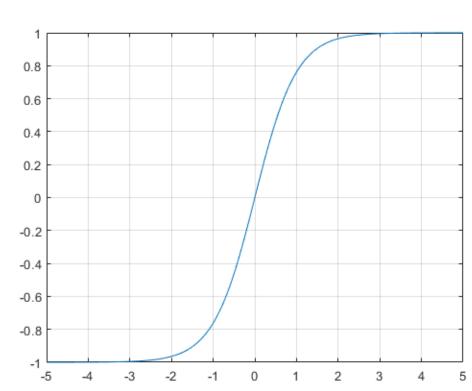
$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

sigmoid



$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

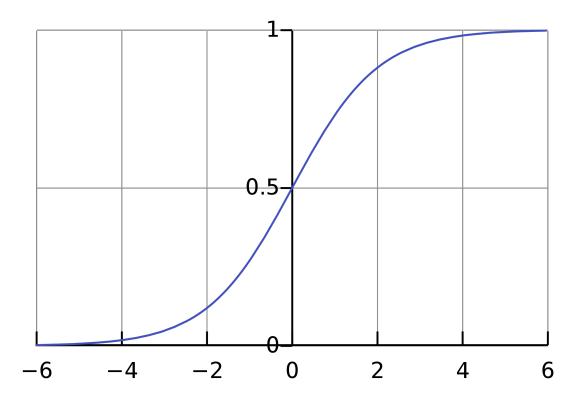
tanh



$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$

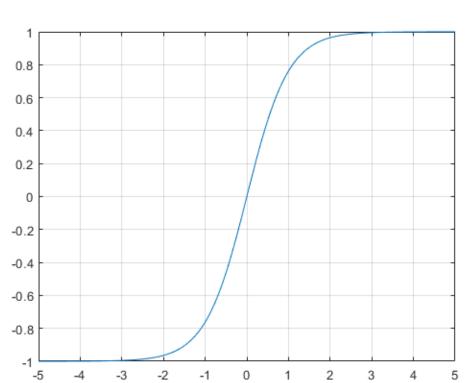
Problem: derivative "saturates" (nearly 0) everywhere except near origin

sigmoid

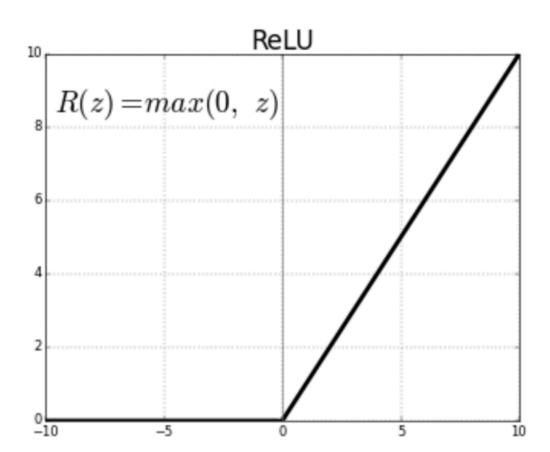


$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

tanh

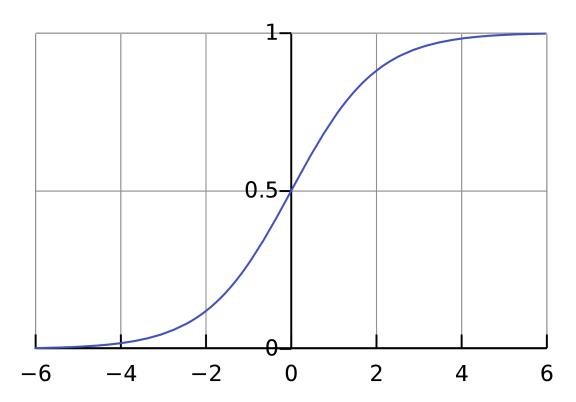


$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$



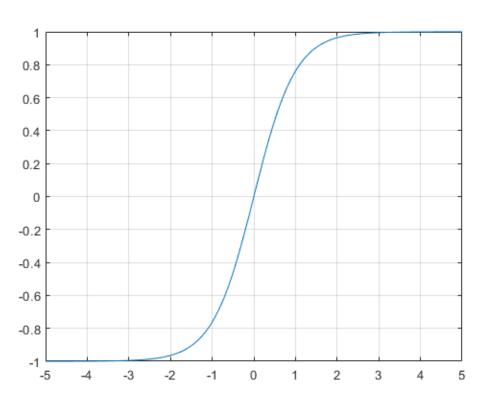
Problem: derivative "saturates" (nearly 0) everywhere except near origin

sigmoid

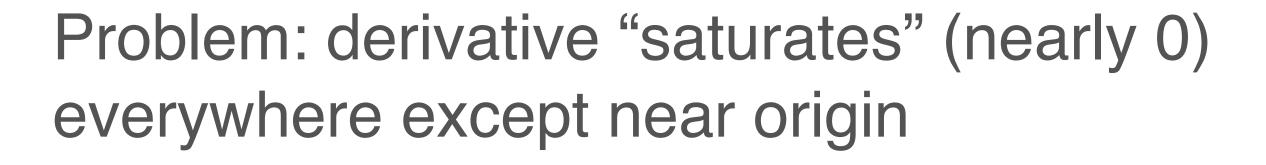


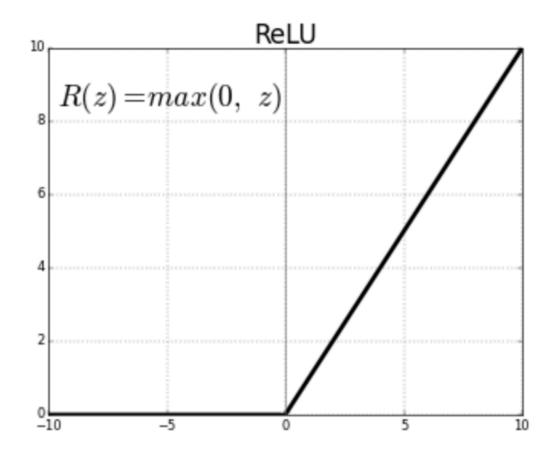
$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

tanh



$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(2x) - 1$$





- Use ReLU by default
- Generalizations:
 - Leaky
 - ELU
 - Softplus
 - ...

Activation Functions: Output Layer

- Depends on the task!
- Regression (continuous output(s)): none!
 - Just use final linear transformation
- Binary classification: sigmoid
 - Also for multi-label classification
- Multi-class classification: softmax
 - Terminology: the inputs to a softmax are called *logits*
 - [there are sometimes other uses of the term, so beware]

$$softmax(x)_i = \frac{e^{x_i}}{\sum_i e^{x_j}}$$

Mini-batch computation

Computing with a Single Input

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$x = \begin{bmatrix} x_0 & x_1 & \cdots & x_{n_0} \end{bmatrix}$$
Shape: $(1, n_0)$

$$b^1 = \begin{bmatrix} b_0^1 & b_1^1 & \cdots & b_{n_1}^1 \end{bmatrix}$$

Shape: $(1, n_1)$

$$W^{1} = \begin{bmatrix} w_{00}^{1} & w_{10}^{1} & \cdots & w_{0n_{1}}^{1} \\ w_{10}^{1} & w_{11}^{1} & \cdots & w_{1n_{1}}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{0}0}^{1} & w_{n_{0}1}^{1} & \cdots & w_{n_{0}n_{1}}^{1} \end{bmatrix}$$

Shape: (n_0, n_1)

 n_0 : number of neurons in layer 0 (input)

 n_1 : number of neurons in layer 1

Stochastic Gradient Descent

```
initialize parameters / build model
for each epoch:
 data = shuffle(data)
 batches = make batches(data)
 for each batch in batches:
  outputs = model(batch)
  loss = loss fn(outputs, true outputs)
  compute gradients
  update parameters
```

Computing with Mini-batches

Bad idea:

```
for each batch in batches:
  for each datum in batch:
    outputs = model(datum)
    loss = loss_fn(outputs, true_outputs)
    compute gradients
    update parameters
```

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(X W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(X W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_1^0 & \dots & x_{n_0}^0 \\ x_1^0 & x_1^1 & \dots & x_{n_0}^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_1^n & \dots & x_{n_0}^n \end{bmatrix}$$

Shape: (n, n_0)

n: batch_size

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(X W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_1^0 & \dots & x_{n_0}^0 \\ x_1^0 & x_1^1 & \dots & x_{n_0}^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_1^n & \dots & x_{n_0}^n \end{bmatrix} \quad W^1 = \begin{bmatrix} w_{00}^1 & w_{01}^1 & \dots & w_{0n_1}^1 \\ w_{10}^1 & w_{11}^1 & \dots & w_{1n_1}^1 \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_00}^1 & w_{n_01}^1 & \dots & w_{n_0n_1}^1 \end{bmatrix}$$

Shape: (n, n_0)

n: batch_size

Computing with a Batch of Inputs

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(X W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_1^0 & \dots & x_{n_0}^0 \\ x_1^0 & x_1^1 & \dots & x_{n_0}^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_1^n & \dots & x_{n_0}^n \end{bmatrix} \quad W^1 = \begin{bmatrix} w_{00}^1 & w_{01}^1 & \dots & w_{0n_1}^1 \\ w_{10}^1 & w_{11}^1 & \dots & w_{1n_1}^1 \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_00}^1 & w_{n_01}^1 & \dots & w_{n_0n_1}^1 \end{bmatrix}$$

Shape: (n_0, n_1)

Shape: (n, n_0) n: batch_size

 n_0 : number of neurons in layer 0 (input)

 n_1 : number of neurons in layer 1

Computing with a Batch of Inputs

$$\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(X W^1 + b^1 \right) W^2 + b^2 \right) \cdots \right) W^n + b^n \right)$$

$$X = \begin{bmatrix} x_0^0 & x_1^0 & \dots & x_{n_0}^0 \\ x_1^0 & x_1^1 & \dots & x_{n_0}^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_1^n & \dots & x_{n_0}^n \end{bmatrix}$$

Shape: (n, n_0) n: batch_size

$$X = \begin{bmatrix} x_0^0 & x_1^0 & \dots & x_{n_0}^0 \\ x_1^0 & x_1^1 & \dots & x_{n_0}^1 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_1^n & \dots & x_{n_0}^n \end{bmatrix} \quad W^1 = \begin{bmatrix} w_{00}^1 & w_{01}^1 & \dots & w_{0n_1}^1 \\ w_{10}^1 & w_{11}^1 & \dots & w_{1n_1}^1 \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_00}^1 & w_{n_01}^1 & \dots & w_{n_0n_1}^1 \end{bmatrix} \quad b^1 = \begin{bmatrix} b_0^1 & b_1^1 & \dots & b_{n_1}^1 \\ b_0^1 & b_1^1 & \dots & b_{n_1}^1 \end{bmatrix}$$
 Shape: $(1, n_1)$ Added to each row of XW^1

$$b^1 = \begin{bmatrix} b_0^1 & b_1^1 & \dots & b_{n_1}^1 \end{bmatrix}$$

Shape: (n_0, n_1)

 n_0 : number of neurons in layer 0 (input)

 n_1 : number of neurons in layer 1

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/tensors to be a batch size
 - Produce a sequence of representations, for each item in the batch
 - e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/tensors to be a batch size
 - Produce a sequence of representations, for each item in the batch
 - e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)
- In principle, can be higher than 2-dimensional
 - Images: (batch_size, width, height, 3)
 - Sequences: (batch_size, seq_len, representation_size)

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/tensors to be a batch size
 - Produce a sequence of representations, for each item in the batch
 - e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)
- In principle, can be higher than 2-dimensional
 - Images: (batch_size, width, height, 3)
 - Sequences: (batch_size, seq_len, representation_size)
- Two comments:
 - In your code, annotate every tensor with a comment saying intended shape
 - When debugging, look at shapes early on!!

Homework 2

Learning Goals

- Understand skip-gram with negative sampling in more detail
 - Compute various derivatives in order to get the gradient of the loss with respect to the parameters
- Learn how to translate math into code, for
 - The model forward pass
 - Gradient computations

Understanding Word2Vec

- Count parameters
- Understand sigmoid, and the role it plays in SGNS
 - Compute its derivative
- ullet Compute the gradient of L_{CE} with respect to parameters
 - Done in stages
 - Uses:
 - Logarithm rules
 - Derivative of logarithm
 - Addition / product / chain rule for derivatives

Implementing Word2Vec

- SGNS will be implemented in raw numpy
- We provide the entire training loop, but various methods that are called need to be filled in
 - Data processing: generating positive and negative samples
 - Model computation: implement the $P(1 | w, c; \theta)$ computation
 - ullet Gradient computation: compute $\,
 abla L_{CE} \, ext{w/r/t} \,$ each of the relevant parameters

Training Word Vectors

- Finally, you will train word vectors by iterating through the SST training set
- Plot the vectors of a list of words, using PCA for dimensionality reduction
 - We provide all of this code!
- Describe any trends you see in the embeddings

Next Time

- Further abstraction: computation graph
- Backpropagation algorithm for computing gradients
 - Using forward/backward API for nodes in a comp graph