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Announcements
● Office hours:

● Shane: Wed 3-5PM [e.g. later today]

● Agatha: 

● Tuesday 4-5PM

● Wednesday 11:15AM-12:15PM

● [NB: this week, Thursday at 12PM]

● See Canvas announcement for Zoom password
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JD Says “Hi”

3



Today’s Plan
● Terminology / Notation


● Gradient Descent


● Word Vectors, intro


● Homework 1
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Basic Terminology / Notation
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Supervised Learning
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Supervised Learning
● Given: a dataset 
● : input for i-th example


● : output for i-th example


𝒟 = {(x1, y1), …, (xn, yn)}
xi ∈ X
yi ∈ Y
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Supervised Learning
● Given: a dataset 
● : input for i-th example


● : output for i-th example


𝒟 = {(x1, y1), …, (xn, yn)}
xi ∈ X
yi ∈ Y

● For example:

● Sentiment analysis:

● Input: bag of words representation of “This movie was great.”

● Output: 4 [on a scale 1-5]


● Language modeling:

● Input: “This movie was”

● Output: “great”
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Supervised Learning
● Given: a dataset 
● : input for i-th example


● : output for i-th example


𝒟 = {(x1, y1), …, (xn, yn)}
xi ∈ X
yi ∈ Y
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Supervised Learning
● Given: a dataset 
● : input for i-th example


● : output for i-th example


𝒟 = {(x1, y1), …, (xn, yn)}
xi ∈ X
yi ∈ Y

● Goal: learn a function  which:

● “Does well” on the given data 
● Generalizes well to unseen data

f : X → Y
𝒟
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Parameterized Functions
● A learning algorithm searches for a function  amongst a space of possible 

functions


● Parameters define a family of functions

● : general symbol for parameters


● : input x, parameters ; model/function output 

● Example: the family of linear functions 
●

● Later: neural network architecture defines the family of functions

f

θ
̂y = f(x; θ) θ ̂y

f(x) = mx + b
θ = {m, b}
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Loss Minimization
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● General form of optimization problem


● : loss function (“objective function”);

● How “close” is the model’s output to the true output


● : local (per-instance) loss, averaged over training instances

● More later: depends on the particular task, among other things


● View the loss as a function of the model’s parameters

ℒ( ̂y, y)

ℓ( ̂y, y)

ℒ( ̂Y, Y) =
1

|Y | ∑
i

ℓ( ̂y(xi), yi)

ℒ(θ) := ℒ( ̂Y, Y) = ℒ( f(X; θ), Y)



Loss Minimization
● The optimization problem:


● Example: (least-squares) linear regression

● ℓ( ̂y, y) = ( ̂y − y)2

10

θ* = arg min
θ

ℒ(θ)

m*, b* = arg min
m,b ∑

i

((mxi + b) − yi)2

source

https://en.wikipedia.org/wiki/Linear_regression


Learning: (Stochastic) Gradient Descent
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Gradient Descent: Basic Idea

12source

https://nikcheerla.github.io/deeplearningschool/
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Gradient Descent: Basic Idea
● The gradient of the loss w/r/t parameters tells which direction in parameter 

space to “walk” to make the loss smaller (i.e. to improve model outputs)


● Guaranteed to work in linear model case

● Can get stuck in local minima for non-linear functions, like NNs

● [More precisely: if loss is a convex function of the parameters, gradient descent 

is guaranteed to find an optimal solution.  For non-linear functions, the loss will 
generally not be convex.]
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Derivatives
● The derivative of a function of one real variable measures how much the 

output changes with respect to a change in the input variable 

14



Derivatives
● The derivative of a function of one real variable measures how much the 

output changes with respect to a change in the input variable 
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f(x) = x2 + 35x + 12
df
dx

= 2x + 35



Derivatives
● The derivative of a function of one real variable measures how much the 

output changes with respect to a change in the input variable 

14

f(x) = x2 + 35x + 12
df
dx

= 2x + 35

f(x) = ex

df
dx

= ex



Partial Derivatives
● A partial derivative of a function of several variables measures its 

derivative with respect one of those variables, with the others held 
constant.
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Partial Derivatives
● A partial derivative of a function of several variables measures its 
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f(x) = 10x3y2 + 5xy3 + 4x + y



Partial Derivatives
● A partial derivative of a function of several variables measures its 

derivative with respect one of those variables, with the others held 
constant.
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f(x) = 10x3y2 + 5xy3 + 4x + y

∂f
∂x

= 30x2y2 + 5y3 + 4



Partial Derivatives
● A partial derivative of a function of several variables measures its 

derivative with respect one of those variables, with the others held 
constant.

15

f(x) = 10x3y2 + 5xy3 + 4x + y

∂f
∂x

= 30x2y2 + 5y3 + 4

∂f
∂y

= 20x3y + 15xy2 + 1



Gradient
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Gradient
● The gradient of a function  is a vector function, returning all 

of the partial derivatives 
 
 
 
 
 
 

f(x1, x2, . . . xn)
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Gradient
● The gradient of a function  is a vector function, returning all 

of the partial derivatives 
 
 
 
 
 
 

f(x1, x2, . . . xn)

● The gradient is perpendicular to the level curve at a point
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Gradient
● The gradient of a function  is a vector function, returning all 

of the partial derivatives 
 
 
 
 
 
 

f(x1, x2, . . . xn)

● The gradient is perpendicular to the level curve at a point

● The gradient points in the direction of greatest rate of increase of f
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∇f = ⟨ ∂f
∂x1

,
∂f
∂x2

, …,
∂f
∂xn ⟩

f(x) = 4x2 + y2

∇f = ⟨8x,2y⟩



Gradient and Level Curves
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Gradient and Level Curves

17

f(x) = 4x2 + y2

∇f = ⟨8x,2y⟩

Level curves: f(x) = c

( 1.25,0)

(1,1)

(0, 5)

Q: what are the actual gradients 
at those points?



Gradient Descent and Level Curves
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source

https://en.wikipedia.org/wiki/Gradient_descent#/media/File:Gradient_descent.svg


Gradient Descent Algorithm
● Initialize 

● Repeat until convergence:

θ0

19

θn+1 = θn − α∇ℒ( ̂Y(θn), Y)
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Gradient Descent Algorithm
● Initialize 

● Repeat until convergence:

θ0

19

θn+1 = θn − α∇ℒ( ̂Y(θn), Y)

Learning rate

● High learning rate: big steps, may bounce and “overshoot” the target


● Low learning rate: small steps, smoother minimization of loss, but can be slow



Gradient Descent: Minimal Example
● Task: predict a target/true value 

● “Model”: 
● A single parameter: the actual guess


● Loss: Euclidean distance

y = 2
̂y(θ) = θ

20

ℒ( ̂y(θ), y) = ( ̂y − y)2 = (θ − y)2



Gradient Descent: Minimal Example
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Stochastic Gradient Descent

22



Stochastic Gradient Descent
● The above is called “batch” gradient descent

● Updates once per pass through the dataset

● Expensive, and slow; does not scale well
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Stochastic Gradient Descent
● The above is called “batch” gradient descent

● Updates once per pass through the dataset

● Expensive, and slow; does not scale well

● Stochastic gradient descent:


● Break the data into “mini-batches”: small chunks of the data


● Compute gradients and update parameters for each batch


● Mini-batch of size 1 = single example


● A noisy estimate of the true gradient, but works well in practice; more parameter updates
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Stochastic Gradient Descent
● The above is called “batch” gradient descent

● Updates once per pass through the dataset

● Expensive, and slow; does not scale well

● Stochastic gradient descent:


● Break the data into “mini-batches”: small chunks of the data


● Compute gradients and update parameters for each batch


● Mini-batch of size 1 = single example


● A noisy estimate of the true gradient, but works well in practice; more parameter updates

● Epoch: one pass through the whole training data
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Stochastic Gradient Descent

23

initialize parameters / build model


for each epoch:


data = shuffle(data)

batches = make_batches(data)


for each batch in batches:


outputs = model(batch)

loss = loss_fn(outputs, true_outputs)

compute gradients

update parameters



Word Vectors, Intro
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

25

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.5122&rep=rep1&type=pdf
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.
● We make tezgüino from corn.
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Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.
● Everybody likes tezgüino.
● Tezgüino makes you drunk.
● We make tezgüino from corn.

● Tezguino; corn-based alcoholic beverage. (From Lin, 1998a)

25

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.5122&rep=rep1&type=pdf


Distributional Similarity
● How can we represent the “company” of a word?
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Distributional Similarity
● How can we represent the “company” of a word?

● How can we make similar words have similar representations?
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Why use word vectors?
● With words, a feature is a word identity

● Feature 5: 'The previous word was  "terrible"'

● requires exact same word to be in training and test

● One-hot vectors:
● “terrible”: [0 0 0 0 0 0 1 0 0 0 … 0]

● Length = size of vocabulary

● All words are as different from each other

● e.g. “terrible” is as different from “bad” as from “awesome”
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Why use word vectors?
● With embeddings (= vectors): 

● Feature is a word vector

● 'The previous word was vector [35,22,17, …]

● Now in the test set we might see a similar vector [34,21,14, …]

● We can generalize to similar but unseen words! 

28



● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”

Vectors: A Refresher
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● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”
● a⃗=〈2,4〉

Vectors: A Refresher

29

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-6

-5

-4

-3

-2

1

2

3

4

5

6

y-axis

x-axis

a



● A vector is a list of numbers

● Each number can be thought of as representing a “dimension”
● a⃗=〈2,4〉
● b⃗=〈-4,3〉

Vectors: A Refresher
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● A vector is a list of numbers


● Each number can be thought of as representing a “dimension”

● a⃗=〈2,4〉
● b⃗=〈-4,3〉

Vectors: A Refresher
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● A vector is a list of numbers


● Each number can be thought of as representing a “dimension”

● a⃗=〈2,4〉
● b⃗=〈-4,3〉

Vectors: A Refresher
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Vectors: A Refresher
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xkcd.com/388

https://xkcd.com/388/


Vectors: A Refresher

32

xkcd.com/388

WTF, Grapefruit?

https://xkcd.com/388/


Basic vector operations
● Addition: 

● Subtraction: 

● Scalar multiplication: 

●
Length: 

x + y = ⟨x0 + y0, …, xn + yn⟩
x − y = ⟨x0 − y0, …, xn − yn⟩

kx = ⟨kx0, …, kxn⟩
∥x∥ = ∑

i

x2
i

33



Vector Distances: 
Manhattan & Euclidean

● Manhattan Distance

● (Distance as cumulative horizontal + vertical moves) 


● Euclidean Distance


● Too sensitive to extreme values

34

dmanhattan(x, y) = ∑
i

∣ xi − yi ∣

deuclidean(x, y) = ∑
i

(xi − yi)2



Vector Distances: 
Manhattan & Euclidean

● Manhattan Distance

● (Distance as cumulative horizontal + vertical moves) 


● Euclidean Distance


● Too sensitive to extreme values

34

manhattan

euclidean

a⃗

b⃗

dmanhattan(x, y) = ∑
i

∣ xi − yi ∣

deuclidean(x, y) = ∑
i

(xi − yi)2



Vector Similarity: 
Dot Product

● Produces real number scalar 
from product of vectors’  
components


● Biased toward longer (larger magnitude) vectors

● In our case, vectors with fewer zero counts

35

simdot(x, y) = x ⋅ y = ∑
i

xi × yi



● If you normalize the dot product for vector magnitude…


● …result is same as cosine of angle between the vectors.

Vector Similarity: 
Cosine

36

simcos(x, y) =
x ⋅ y

∥x∥∥y∥
=

∑i xi × yi

∑i x2
i ∑i y2

i



Bag of Words Vectors
● Represent ‘company’ of word such that similar words will have similar 

representations

● ‘Company’ = context
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Bag of Words Vectors
● Represent ‘company’ of word such that similar words will have similar 

representations

● ‘Company’ = context

● Word represented by context feature vector

● Many alternatives for vector

● Initial representation:

● ‘Bag of words’ feature vector


● Feature vector length N, where N is size of vocabulary

● fi+=1 if wordi within window size w of word

37



Bag of Words Vectors
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Bag of Words Vectors
● Usually re-

weighted, with 
e.g. tf-idf, ppmi


● Still sparse


● Very high-
dimensional: |V|
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Homework 1
[posting this afternoon]
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Learning Goals
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● Get basic infrastructure [Anaconda, environment] set up for this course

● Build the very first building block for our NLP models: a Vocabulary

● Reflect on dataset documentation, using data that we will use throughout 
the course



1. Installing Anaconda
● Anaconda lets you manage local environments for python and other tools

● Avoid version conflicts across multiple projects

● Get exactly the versions of packages you need

● Helps reproducibility as well


● We’ve provided an environment in `/dropbox/20-21/575k/env`


● Install:

● wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-

x86_64.sh


● sh Anaconda3-2020.11-Linux-x86_64.sh


● run_hw1.sh shows you how to activate the environment

41



2. Implementing a Vocabulary
● At the base of every NLP system is a Vocabulary object, containing:

● Token —> index

● Index —> token

● These provide the interface between strings (tokens), and integer indices that 

will be used in our models (e.g. for looking up embeddings)


● /dropbox/20-21/575k/hw1/vocabulary.py


● #TODO: comments tell you where to write your own code


● Write small script to save various vocabularies from the SST dataset [see 
next slide]
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3. Data Statement for SST
● For many assignments in this course, we will be using the Stanford Sentiment 

Treebank
● Input: movie reviews

● Output: discrete ratings (0-4) of the sentiment from very negative to very positive

● Simple/cleaned version available in /dropbox/20-21/575k/data/sst/


● Data Statements for NLP [Emily M Bender and Batya Friedman]

● Best practices for documenting dataset creation

● Can help understand and mitigate biased models by clearly identifying the nature and 

source of the data [e.g. which populations]

● For this assignment: answer (to the best of your ability, given the documentation of SST) 

the relevant questions that should go into a data statement

43

https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html
https://www.aclweb.org/anthology/Q18-1041/


Next Time
● Skip-Gram with Negative Sampling

● How optimization framework applies to this problem


● Introduction of two tasks that we will use throughout the class

● Language modeling

● Text classification [sentiment analysis]

44


