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Announcements
● HW8 ref / HW9 test posted


● HW8: K, V, and transpose


● HW9:

● One-day free extension

● Parameter counting for self-attention: either include all biases or no biases in the 

linear transformations

● Vaswani et al used no biases, but some people since have
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Today’s Plan
● Survey of what we covered in the class

● Core progression

● Guest lectures

● Assignments


● Some pointers to what’s next


● Question time
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Learning Objectives
● Provide hands-on experience with building neural networks and using 

them for NLP tasks


● Theoretical understanding of building blocks

● Computation graphs + gradient descent

● Forward/backward API

● Chain rule for computing gradients [backpropagation]

● Various network architectures; their structure and biases
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Topics Covered
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Getting Started
● History


● Gradient descent optimization

● Regularization, mini-batches, etc.


● Word vectors / word2vec


● Main tasks: classification (sentiment analysis), language modeling
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Very potted history
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Neural Networks: Foundations
● Neural networks: intro

● Expressive power / limitations


● Computation graph abstraction


● Backpropagation
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XOR Network
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Computing XOR (not linearly-separable)
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Example: ReLU
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Example: ReLU
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Save and retrieve the input value!

local gradient upstream 
gradient

times

NB: list, one downstream gradient 
per input (in this case, one) 



Neural Networks, I
● Feed-forward networks

● Fixed size: average, fixed window of prep tokens


● Recurrent neural networks: sequence processors

● Vanishing gradients, gated variants (LSTM)

● Encoder-decoder / seq2seq architecture and tasks

● Attention mechanism
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Model Architecture, One Input
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Neural LM Architecture
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Neural LM Architecture
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Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

probabilities = softmax(hiddenW2 + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


RNN for Text Classification 
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JM sec 9.2.5



RNNs for Language Modeling

19

JM sec 9.2.3
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Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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Training an encoder-decoder RNN

22JM 11.3.1
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Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear + 
softmax

w′￼1

w′￼i

d2

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Neural Networks, II
● Transformers

● Core architecture

● Pre-training + Fine-tuning Paradigm


● Interpretability / analysis
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Lack of Parallelizability
● Modern hardware (e.g. 

GPUs) are very good at 
doing independent 
computations in parallel


● RNNs are inherently 
serial:

● Cannot compute future 

time steps without the past


● Bottleneck that makes 
scaling up difficult
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Full Transformer Encoder Block
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Transformer: Path Lengths + Parallelism
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Transformer: Path Lengths + Parallelism

28source (BERT paper)

Path lengths between 
tokens: 1

[constant, not linear]

Computation order:


Entire second layer: 1


Entire first layer: 0


Also not linear in 
sequence length! Can 
be parallelized.

https://www.aclweb.org/anthology/N19-1423.pdf


Decoder: Masking Out the Future
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QKT: total attention scores

maskij = {−∞ j > i
0 otherwise

MaskedAttention(Q, K, V) = softmax ( QKT

dk
+ mask) V

<S> Ceci n’ est pas une pipe

<S> 0 -inf -inf -inf -inf -inf -inf

Ceci 0 0 -inf -inf -inf -inf -inf

n’ 0 0 0 -inf -inf -inf -inf

est 0 0 0 0 -inf -inf -inf

pas 0 0 0 0 0 -inf -inf

une 0 0 0 0 0 0 -inf

pipe 0 0 0 0 0 0 0



Schematically
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Initial Results
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Comparison
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Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf


Cell dynamics for a syntax unit
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Examples
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Results

(performance improves if fine-tuned on this challenge set)



Guest lectures
● Angelina McMillan-Major: On the dangers of stochastic parrots


● Yonatan Bisk: Multimodality


● C.M. Downey: Multilingual NLP
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Assignments
● 1: Vocabulary + Data Statement


● 2: Word2Vec (raw numpy)


● 3: Computation graphs (word2vec in edugrad)


● 4: Deep Averaging Network classifier (edugrad)


● 5: Feed-forward language model (edugrad)


● 6: RNN text classifier


● 7: RNN language model


● 8: Seq2Seq + Attention [translation]


● 9: Pre-trained transformer classifier
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What’s Next?
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Learning Outcomes
● One way of operationalizing the goal: you can hopefully now read many/

most new papers at NLP conferences and understand what they’re doing

● Expressions like “we pre-tained a bi-directional LSTM language model on 

various tasks and then fine-tuned on a standard suite” are now parseable

● And with deeper / more hands-on familiarity with the models and their 

architectures, you are in a position to assess new developments as they come 
(and contribute to them as well!)
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Topics Not Covered
● Full suite of “tips and tricks” for training

● e.g. learning rate schedules

● Best methods for hyper parameter tuning


● Other architectures sometimes used: convolutional networks, tree-based 
RNNs


● Wide variety of NLP tasks: parsing, QA, toxic language detection, etc.


● NB: you are now well-positioned to read and learn about all of these on 
your own
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Where to Learn More
● Where to learn more?

● Read papers and chase references when confused

● Cornell’s course has lots of online materials: http://www.phontron.com/class/

nn4nlp2021/ 

● Stanford CS224U (pre-recorded videos) http://web.stanford.edu/class/cs224u/
● And CS224N (live lectures) http://web.stanford.edu/class/cs224n/ 


● NLP Newsletter: https://newsletter.ruder.io/ 


● ACL Anthology: https://www.aclweb.org/anthology/ [more and more videos too]


● Semantic Scholar / arXiv sanity similar paper searches

41
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Wrapping Up
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Course Evaluations
● Course evals are open now through June 4


● Please do fill them out as soon as possible!

● E.g. right now :)

● Help me:

● Improve the course for future iterations

● Get tenure ;)

43



Thank You!
● I’ve learned a lot from you all this quarter!  


● Hopefully you’re in a better place with regard to neural methods in NLP 
than when the course started.


● And congrats to everyone for handling such a workload amidst all of the 
challenges of the past year-plus.  Very awe-inspiring.


● So: thank you, and have a great summer / future!
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