
Summary / Review
LING 575K Deep Learning for NLP

Shane Steinert-Threlkeld

June 2 2021

1

Announcements
● HW8 ref / HW9 test posted

● HW8: K, V, and transpose

● HW9:

● One-day free extension

● Parameter counting for self-attention: either include all biases or no biases in the

linear transformations

● Vaswani et al used no biases, but some people since have

2

Today’s Plan
● Survey of what we covered in the class

● Core progression

● Guest lectures

● Assignments

● Some pointers to what’s next

● Question time

3

Learning Objectives
● Provide hands-on experience with building neural networks and using

them for NLP tasks

● Theoretical understanding of building blocks

● Computation graphs + gradient descent

● Forward/backward API

● Chain rule for computing gradients [backpropagation]

● Various network architectures; their structure and biases

4

Topics Covered

5

Getting Started
● History

● Gradient descent optimization

● Regularization, mini-batches, etc.

● Word vectors / word2vec

● Main tasks: classification (sentiment analysis), language modeling

6

Very potted history

7

raw text feature extraction
learned
linear

weights
output

raw text learned non-linear model output

The SGNS Model

8

P(1 |w, c) = σ (Ew ⋅ Cc)

The SGNS Model

8

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

The SGNS Model

8

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

The SGNS Model

8

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

The SGNS Model

8

P(1 |w, c) = σ (Ew ⋅ Cc)

Target word
embedding

Context word
embedding

Similarity (dot-product)

sigmoid

σ(x) =
1

1 + e−x

Neural Networks: Foundations
● Neural networks: intro

● Expressive power / limitations

● Computation graph abstraction

● Backpropagation

9

XOR Network

10

aand = σ σ [ap aq]
wor

p wnand
p

wor
q wnand

q

+ [bor bnand]
wand

or

wand
nand

+ band

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)

= σ [aor anand]
wand

or

wand
nand

+ band

Computing XOR (not linearly-separable)

11

Backpropagation Example

12

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

Backpropagation Example

12

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

Backpropagation Example

12

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

Backpropagation Example

12

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10

Backpropagation Example

12

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂c + b

∂c
= 10

Backpropagation Example

12

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂c + b

∂c
= 10

∂e
∂x

=
∂e
∂c

∂c
∂x

= 10a = 30

Backpropagation Example

12

a x

× b

+

(⋅)2

a = 3 x = 1

b = 2
c = ax = 3

d = c + b = 5

e = d2 = 25

f(x; a, b) = (ax + b)2

∂e
∂e

= 1

∂e
∂d

= 2d
∂e
∂e

= 10

∂e
∂b

=
∂e
∂d

∂d
∂b

= 10
∂c + b

∂b
= 10∂e

∂c
=

∂e
∂d

∂d
∂c

= 10
∂c + b

∂c
= 10

∂e
∂x

=
∂e
∂c

∂c
∂x

= 10a = 30
∂e
∂a

=
∂e
∂c

∂c
∂a

= 10x = 10

Nodes in Computational Graph
● Forward pass:

● Compute value given

parents’ values

● Backward pass:

● Compute parents’

gradients given children’s

13

Nodes in Computational Graph
● Forward pass:

● Compute value given

parents’ values

● Backward pass:

● Compute parents’

gradients given children’s

13

h = g(a, b)

a

b

h

Nodes in Computational Graph
● Forward pass:

● Compute value given

parents’ values

● Backward pass:

● Compute parents’

gradients given children’s

13

h = g(a, b)

a

b

h

∂L
∂h

Nodes in Computational Graph
● Forward pass:

● Compute value given

parents’ values

● Backward pass:

● Compute parents’

gradients given children’s

13

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

Nodes in Computational Graph
● Forward pass:

● Compute value given

parents’ values

● Backward pass:

● Compute parents’

gradients given children’s

13

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

∂L
∂a

=
∂L
∂h

∂h
∂a

∂L
∂b

=
∂L
∂h

∂h
∂b

Nodes in Computational Graph
● Forward pass:

● Compute value given

parents’ values

● Backward pass:

● Compute parents’

gradients given children’s

13

h = g(a, b)

a

b

h

∂L
∂h

∂h
∂a
∂h
∂b

∂L
∂a

=
∂L
∂h

∂h
∂a

∂L
∂b

=
∂L
∂h

∂h
∂b

Upstream
gradient

Local
gradient

Downstream
gradient

Example: ReLU

14

Example: ReLU

14

Save and retrieve the input value!

Example: ReLU

14

Save and retrieve the input value!

local gradient upstream
gradient

times

Example: ReLU

14

Save and retrieve the input value!

local gradient upstream
gradient

times

NB: list, one downstream gradient
per input (in this case, one)

Neural Networks, I
● Feed-forward networks

● Fixed size: average, fixed window of prep tokens

● Recurrent neural networks: sequence processors

● Vanishing gradients, gated variants (LSTM)

● Encoder-decoder / seq2seq architecture and tasks

● Attention mechanism

15

Model Architecture, One Input

16

Model Architecture, One Input

16

f(avW1 + b1)

Model Architecture, One Input

16

f(avW1 + b1)Word embeddings:

Pre-trained or learned

Neural LM Architecture

17

Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

17

Bengio et al 2003

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

17

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

17

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural LM Architecture

17

Bengio et al 2003

embeddings = concat(wt−1C, wt−2C, …, wt−(n+1)C)

hidden = tanh(embeddingsW1 + b1)

probabilities = softmax(hiddenW2 + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

RNN for Text Classification

18

JM sec 9.2.5

RNNs for Language Modeling

19

JM sec 9.2.3

Two Extensions
● Deep RNNs:

20Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Two Extensions
● Deep RNNs:

20

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

LSTMs

21Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

21

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

21

Element-wise multiplication: 
0: erase 
1: retain

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

21

Element-wise multiplication: 
0: erase 
1: retain

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

21

Element-wise multiplication: 
0: erase 
1: retain

“candidate” / new values: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

21

Element-wise multiplication: 
0: erase 
1: retain

“candidate” / new values

Add new values to memory

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

21

Element-wise multiplication: 
0: erase 
1: retain

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

21

Element-wise multiplication: 
0: erase 
1: retain

: which cells to outputot ∈ [0,1]m

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m

Steinert-Threlkeld and Szymanik 2019; Olah 2015

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Training an encoder-decoder RNN

22JM 11.3.1

Alignment, example

23

Ceci n’ est pas une pipe
This
is
not
a
pipe

Alignment, example

23

Ceci n’ est pas une pipe

Ceci n’ est pas une pipe
This
is
not
a
pipe

Alignment, example

23

Ceci n’ est pas une pipe

This is not a pipe

Ceci n’ est pas une pipe
This
is
not
a
pipe

Alignment, example

23

Ceci n’ est pas une pipe

This is not a pipe

Ceci n’ est pas une pipe
This
is
not
a
pipe

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear +
softmax

w′￼1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Adding Attention

24w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear +
softmax

w′￼1

w′￼i

d2

Badhanau et al 2014

https://arxiv.org/abs/1409.0473

Neural Networks, II
● Transformers

● Core architecture

● Pre-training + Fine-tuning Paradigm

● Interpretability / analysis

25

Lack of Parallelizability
● Modern hardware (e.g.

GPUs) are very good at
doing independent
computations in parallel

● RNNs are inherently
serial:

● Cannot compute future

time steps without the past

● Bottleneck that makes
scaling up difficult

26

Students who … enjoy

Lack of Parallelizability
● Modern hardware (e.g.

GPUs) are very good at
doing independent
computations in parallel

● RNNs are inherently
serial:

● Cannot compute future

time steps without the past

● Bottleneck that makes
scaling up difficult

26

Students who … enjoy

0

1

1

2

t

k

t+1

k+1 t+k

Lack of Parallelizability
● Modern hardware (e.g.

GPUs) are very good at
doing independent
computations in parallel

● RNNs are inherently
serial:

● Cannot compute future

time steps without the past

● Bottleneck that makes
scaling up difficult

26

Students who … enjoy

0

1

1

2

t

k

t+1

k+1 t+k
Number of computation
steps required: linear in
sequence length

Full Transformer Encoder Block

27

Transformer: Path Lengths + Parallelism

28source (BERT paper)

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

28source (BERT paper)

Path lengths between
tokens: 1

[constant, not linear]

https://www.aclweb.org/anthology/N19-1423.pdf

Transformer: Path Lengths + Parallelism

28source (BERT paper)

Path lengths between
tokens: 1

[constant, not linear]

Computation order:

Entire second layer: 1

Entire first layer: 0

Also not linear in
sequence length! Can
be parallelized.

https://www.aclweb.org/anthology/N19-1423.pdf

Decoder: Masking Out the Future

29

QKT: total attention scores

maskij = {−∞ j > i
0 otherwise

MaskedAttention(Q, K, V) = softmax (QKT

dk
+ mask) V

<S> Ceci n’ est pas une pipe

<S> 0 -inf -inf -inf -inf -inf -inf

Ceci 0 0 -inf -inf -inf -inf -inf

n’ 0 0 0 -inf -inf -inf -inf

est 0 0 0 0 -inf -inf -inf

pas 0 0 0 0 0 -inf -inf

une 0 0 0 0 0 0 -inf

pipe 0 0 0 0 0 0 0

Schematically

30

Initial Results

31

Comparison

32

Source: BERT paper

https://arxiv.org/pdf/1810.04805.pdf

Cell dynamics for a syntax unit

33

Examples

34

35

Results

(performance improves if fine-tuned on this challenge set)

Guest lectures
● Angelina McMillan-Major: On the dangers of stochastic parrots

● Yonatan Bisk: Multimodality

● C.M. Downey: Multilingual NLP

36

Assignments
● 1: Vocabulary + Data Statement

● 2: Word2Vec (raw numpy)

● 3: Computation graphs (word2vec in edugrad)

● 4: Deep Averaging Network classifier (edugrad)

● 5: Feed-forward language model (edugrad)

● 6: RNN text classifier

● 7: RNN language model

● 8: Seq2Seq + Attention [translation]

● 9: Pre-trained transformer classifier

37

What’s Next?

38

Learning Outcomes
● One way of operationalizing the goal: you can hopefully now read many/

most new papers at NLP conferences and understand what they’re doing

● Expressions like “we pre-tained a bi-directional LSTM language model on

various tasks and then fine-tuned on a standard suite” are now parseable

● And with deeper / more hands-on familiarity with the models and their

architectures, you are in a position to assess new developments as they come
(and contribute to them as well!)

39

Topics Not Covered
● Full suite of “tips and tricks” for training

● e.g. learning rate schedules

● Best methods for hyper parameter tuning

● Other architectures sometimes used: convolutional networks, tree-based
RNNs

● Wide variety of NLP tasks: parsing, QA, toxic language detection, etc.

● NB: you are now well-positioned to read and learn about all of these on
your own

40

Where to Learn More
● Where to learn more?

● Read papers and chase references when confused

● Cornell’s course has lots of online materials: http://www.phontron.com/class/

nn4nlp2021/

● Stanford CS224U (pre-recorded videos) http://web.stanford.edu/class/cs224u/
● And CS224N (live lectures) http://web.stanford.edu/class/cs224n/

● NLP Newsletter: https://newsletter.ruder.io/

● ACL Anthology: https://www.aclweb.org/anthology/ [more and more videos too]

● Semantic Scholar / arXiv sanity similar paper searches

41

http://www.phontron.com/class/nn4nlp2021/
http://www.phontron.com/class/nn4nlp2021/
http://web.stanford.edu/class/cs224u/
http://web.stanford.edu/class/cs224n/
https://newsletter.ruder.io/
https://www.aclweb.org/anthology/

Wrapping Up

42

Course Evaluations
● Course evals are open now through June 4

● Please do fill them out as soon as possible!

● E.g. right now :)

● Help me:

● Improve the course for future iterations

● Get tenure ;)

43

Thank You!
● I’ve learned a lot from you all this quarter!

● Hopefully you’re in a better place with regard to neural methods in NLP
than when the course started.

● And congrats to everyone for handling such a workload amidst all of the
challenges of the past year-plus. Very awe-inspiring.

● So: thank you, and have a great summer / future!

44

