# Investigating positional information in the Transformer Group 9

# Outline

#### Background & Motivation

- Related Work
  - Towards Understanding Position Embeddings
  - Do We Need Word Order Information for Cross-Lingual Sequence Labeling
  - Revealing the Dark Secrets of BERT
  - Accessing the Ability of Self-Attention Networks to Learn Word Order
- Probing for Position: Diagnostic Classifiers (DC) and Perturbed Training
  - Research Questions
  - Experiments & Tasks
- Initial results: DC on BERT, finetuning without positional embeddings

# **Background & Motivations**

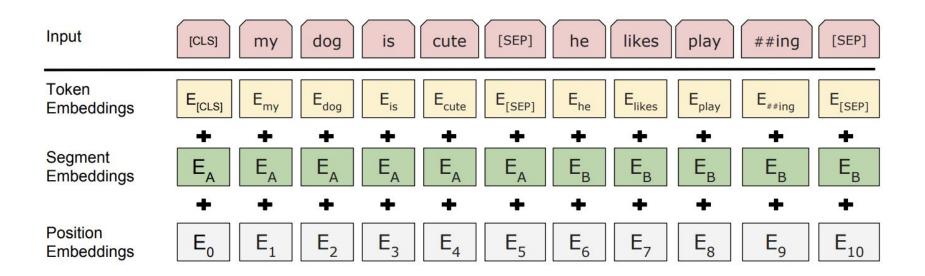
- Emergence of self-attention based models (e.g. Transformer, BERT) due to expensive sequential computation (e.g. RNN)
- Adding positional embeddings are the only ways to compensate the word order information captured in sequential models

$$f(j, pos) = f_{we}(j) + f_{pe}(pos)$$

- Positional embeddings/encodings have been comparatively understudied compared with word/sentence embeddings
- Absolute and Relative

### **Absolute Positional Embeddings**

#### **BERT Input**



# Outline

- Background & Motivation
- Related Work
  - Towards Understanding Position Embeddings
  - Do We Need Word Order Information for Cross-Lingual Sequence Labeling
  - Revealing the Dark Secrets of BERT
  - Accessing the Ability of Self-Attention Networks to Learn Word Order
- Probing for Position: Diagnostic Classifiers (DC) and Perturbed Training
  - Research Questions
  - Experiments & Tasks
- Initial results: DC on BERT, finetuning without positional embeddings

### **Towards Understanding Position Embeddings**

#### Rishi Bommasani

Department of Computer Science Cornell University Ithaca, NY, 14853, USA rb724@cornell.edu **Claire Cardie** 

Department of Computer Science Cornell University Ithaca, NY, 14853, USA cardie@cs.cornell.edu

# Towards Understanding Position Embeddings

- First work on probing positional embeddings of pretrained transformer based language models (BERT & GPT)
- Poses three questions towards understanding positional embedding
  - How are position embeddings produced by different models related?
  - How should we encode position?
  - Are position embeddings transferrable?
- Provides introductory results in tackling the first question

# Whether Positional Embeddings are Comparable?

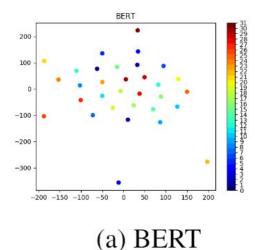
- Tokenization
  - BERT's Tokenizer WordPiece for English)
  - GPT's Tokenizer (BPE)
  - A simple white space tokenization algorithm which we found closely modeled our naïve judgments about absolute position

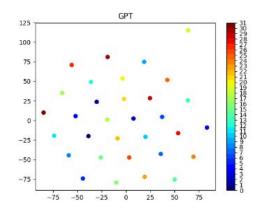
|       |       | Reference |       |
|-------|-------|-----------|-------|
|       | Human | BERT      | GPT   |
| Human | 100   | 21.19     | 18.84 |
| BERT  | 25.42 | 100       | 48.05 |
| GPT   | 22.78 | 48.46     | 100   |

Table 1: Average token alignment is given by the percentage of tokens in the reference that match the token at the same position in the candidate.

# **Comparison Between BERT & GPT**

- Geometry
  - Tightness of clustering
  - Nearest neighbor sets





(b) GPT

### Do We Need Word Order Information for Cross-lingual Sequence Labeling

Zihan Liu, Pascale Fung

Center for Artificial Intelligence Research (CAiRE) Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong zliucr@connect.ust.hk, pascale@ece.ust.hk

# Positional Embeddings for Cross-Lingual Tasks

- Hypothesis
  - Cross-lingual models that fit into the source language word order might fail to handle target languages whose word orders are different

#### • Experiment Setup

- Zero-shot learning for various tasks (POS, NER, etc)
- Initialize word/position embeddings from mBERT
- For all the tasks, use English as the source language and other languages as target languages.
- Do not use any data sample in target languages, and select the final model based on the performance on the source language dev set

### Positional Embeddings for Cross-Lingual Tasks

#### Accuracy on the POS task

#### F1 on the NER task

|                                | es    | fr    | pt    | ru    | el    | AVG   |
|--------------------------------|-------|-------|-------|-------|-------|-------|
| TRS+Linear                     | 72.08 | 79.03 | 32.65 | 78.06 | 72.75 | 66.91 |
| OATRS+Linear                   | 72.70 | 80.16 | 33.05 | 78.64 | 75.01 | 67.91 |
| SHTRS+Linear                   | 72.21 | 78.43 | 32.81 | 77.82 | 75.48 | 67.35 |
| SHOATRS+Linear                 | 72.65 | 80.99 | 35.84 | 76.70 | 75.69 | 68.37 |
| mBERT+Linear (Fine-tune mBERT) |       |       |       |       |       |       |
| w/ word order                  | 84.31 | 89.05 | 54.30 | 84.19 | 84.35 | 79.24 |
| w/o word order                 | 84.73 | 89.18 | 54.56 | 86.17 | 85.66 | 80.06 |

|                    | es       | de    | nl    | AVG   |
|--------------------|----------|-------|-------|-------|
| TRS+Linear         | 57.43    | 47.78 | 63.15 | 56.12 |
| OATRS+Linear       | 58.29    | 45.97 | 66.34 | 56.87 |
| SHTRS+Linear       | 59.29    | 42.99 | 67.09 | 56.46 |
| SHOATRS+Linear     | 61.35    | 46.54 | 65.35 | 57.75 |
| mBERT+Linear (fine | -tune mE | BERT) |       |       |
| w/ word order      | 67.80    | 65.71 | 71.95 | 68.49 |
| w/o word order     | 69.33    | 65.60 | 73.18 | 69.37 |

TRS: Transformer (8 heads) OATRS: Order-agnostic Transformer (8 heads) SHTRS: Single-head Transformer (1 head) SHOATRS: Single-head Order-agnostic Transformer (1 head)

### **Revealing the Dark Secrets of BERT**

### Olga Kovaleva, Alexey Romanov, Anna Rogers, Anna Rumshisky Department of Computer Science University of Massachusetts Lowell Lowell, MA 01854 {okovalev, arum, aromanov}@cs.uml.edu

### Revealing the Dark Secrets of BERT

- Questions investigated:
  - What are the common attention patterns, how do they change during fine-tuning, and how does that impact the performance on a given task?
  - What linguistic knowledge is encoded in self-attention weights of the fine-tuned models and what portion of it comes from the pretrained BERT?
  - How different are the self-attention patterns of different heads, and how important are they for a given task?

### **Positional Information in Self-Attention Maps**

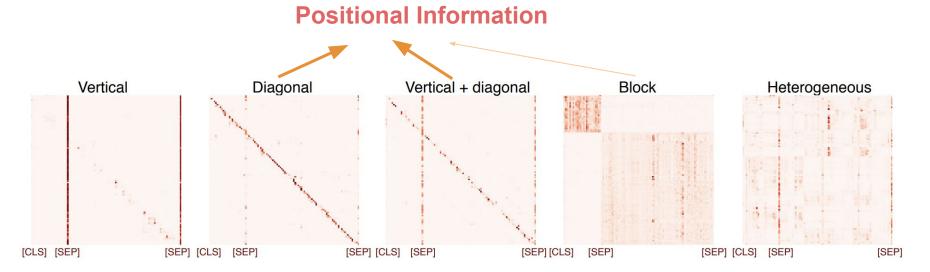


Figure 1: Typical self-attention classes used for training a neural network. Both axes on every image represent BERT tokens of an input example, and colors denote absolute attention weights (darker colors stand for greater weights). The first three types are most likely associated with language model pre-training, while the last two potentially encode semantic and syntactic information.

### Self-attention Classes for Downstream Tasks

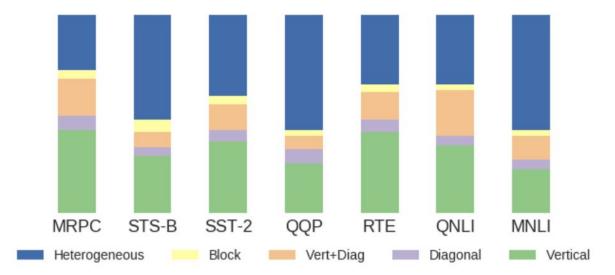


Figure 2: Estimated percentages of the identified selfattention classes for each of the selected GLUE tasks.

#### Assessing the Ability of Self-Attention Networks to Learn Word Order

Baosong Yang<sup>†</sup> Longyue Wang<sup>‡</sup> Derek F. Wong<sup>†</sup> Lidia S. Chao<sup>†</sup> Zhaopeng Tu<sup>‡\*</sup> <sup>†</sup>NLP<sup>2</sup>CT Lab, Department of Computer and Information Science, University of Macau nlp2ct.baosong@gmail.com, {derekfw,lidiasc}@umac.mo <sup>‡</sup>Tencent AI Lab {vinnylywang, zptu}@tencent.com

### Accessing the Ability of Self-Attention Networks to Learn Word Order

- Focus on the following research questions
  - Is recurrence structure obligate for learning word order?
  - Is the model architecture the critical factor for learning word order in the downstream tasks such as machine translation?
  - Is position embedding powerful enough to capture word order information for SAN?

### Ability of Self-Attention Networks (SAN) to Learn Word Order

#### **A Probing Task**

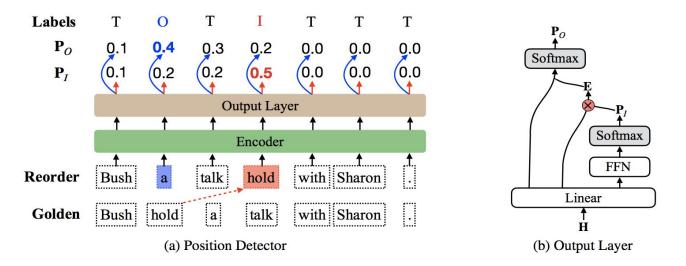


Figure 1: Illustration of (a) the position detector, where (b) the output layer is build upon a randomly initialized or pre-trained encoder. In this example, the word "hold" is moved to another place. The goal of this task is to predict the inserted position "T" and the original position "O" of "hold".

### Compare SAN vs RNN

#### Trained on the word reordering detection (WRD) task data

| Models        | Insert | Original | Both |
|---------------|--------|----------|------|
| RNN           | 78.4   | 73.4     | 68.2 |
| <b>S</b> ĀN - | 73.2   | 66.0     | 60.1 |
| DiSAN         | 79.6   | 70.1     | 68.0 |

serted and original positions respectively, and "Both"

denotes detecting both positions.

(a) RNN (b) SAN Table 1: Accuracy on the WRD task. "Insert" and Figure 2: Illustration of (a) RNN; (b) SAN; and (c) "Original" denotes the accuracies of detecting the in-DiSAN. Colored arrows denote parallel operations.

(c) DiSAN

### Compare SAN vs RNN

- First train (both encoder and decode) on bilingual NMT corpus
- Then fix the parameters of the encoder, only train the parameters of the output layer on WRD data

| Model     | Translation |       | Detection                |                          |          |  |
|-----------|-------------|-------|--------------------------|--------------------------|----------|--|
| WIOUEI    | En⇒De       | En⇒Ja | En $\Rightarrow$ De Enc. | $En \Rightarrow Ja Enc.$ | WRD Enc. |  |
| RNN       | 26.8        | 42.9  | 33.9                     | 29.0                     | 68.2     |  |
| SĀN       | 27.3        | 43.6  | 41.6                     | 32.8                     | 60.1     |  |
| - Pos_Emb | 11.5        | _     | 0.3                      | _                        | 0.3      |  |
| DiSAN     | 27.6        | 43.7  | 39.7                     | 31.2                     | 68.0     |  |
| - Pos_Emb | 27.0        | 43.1  | 40.1                     | 31.0                     | 62.8     |  |

Table 2: Performances of NMT encoders pre-trained on WMT14 En $\Rightarrow$ De and WAT17 En $\Rightarrow$ Ja data. "Translation" denotes translation quality measured in BLEU scores, while "Detection" denotes the accuracies on WRD task. "En $\Rightarrow$ De Enc." denotes NMT encoder trained with translation objective on the En $\Rightarrow$ De data. We also list the detection accuracies of WRD encoders ("WRD Enc.") for comparison. "- Pos\_Emb" indicates removing positional embeddings from SAN- or DiSAN-based encoder. Surprisingly, *SAN-based NMT encoder achieves the best accuracy on the WRD task*, which contrasts with the performances of WRD encoders (the last column).

# Outline

- Background & Motivation
- Related Work
  - Towards Understanding Position Embeddings
  - Do We Need Word Order Information for Cross-Lingual Sequence Labeling
  - Revealing the Dark Secrets of BERT
  - Accessing the Ability of Self-Attention Networks to Learn Word Order

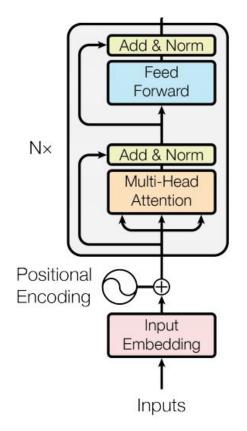
#### • Probing for Position: Diagnostic Classifiers (DC) and Perturbed Training

- Research Questions
- Experiments & Tasks
- Initial results: DC on BERT, finetuning without positional embeddings

### **Research Questions**

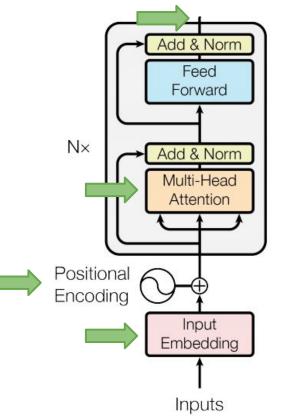
- 1. What positional information is contained in different parts of the Transformer architecture?
- 2. How important are positional embeddings (and positional information in general) for different types of NLP tasks?

### **Position Prediction with Diagnostic Classifiers**



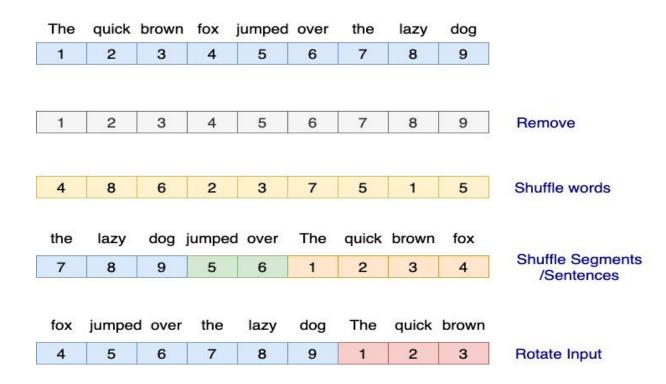
Train a single feed-forward layer to predict the absolute position of each input to BERT at various points in the model

# Position Prediction with Diagnostic Classifiers



Train a single feed-forward layer to predict the absolute position of each input to BERT at various points in the model

# Perturbed Training for BERT



### **Experimental Setup and Evaluation**

| Experiment            | Model            | Evaluation metrics |  |  |
|-----------------------|------------------|--------------------|--|--|
| Diagnostic Classifier | Pre-trained BERT | DC Metrics         |  |  |
|                       | Fine-tuned BERT  | DC Metrics         |  |  |
| Perturbation Training | Pre-trained BERT | LM Perplexity      |  |  |
|                       | Fine-tuned BERT  | Task Metrics       |  |  |

Table 3: Experimental Setup

| Task                   | Dataset                     | Evaluation metrics |  |
|------------------------|-----------------------------|--------------------|--|
| Syntax parsing         | Universal Dependencies (UD) | LAS/UAS            |  |
| Coreference resolution | OntoNotes                   | F1                 |  |
| Summarization          | CNN/Daily mail              | ROUGE              |  |
| Text Classification    | 20 News Group/SST           | Accuracy           |  |
| <b>GLUE NLI Tasks</b>  | RTE, MNLI                   | GLUE NLI metrics   |  |
| QA Tasks               | SQuaD/BoolQ/SWAG            | F1/Accuracy        |  |

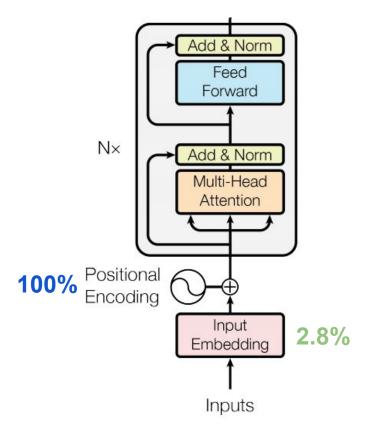
Table 3: Downstream Tasks

# Outline

- Background & Motivation
- Related Work
  - Towards Understanding Position Embeddings
  - Do We Need Word Order Information for Cross-Lingual Sequence Labeling
  - Revealing the Dark Secrets of BERT
  - Accessing the Ability of Self-Attention Networks to Learn Word Order
- Probing for Position: Diagnostic Classifiers (DC) and Perturbed Training
  - Research Questions
  - Experiments & Tasks

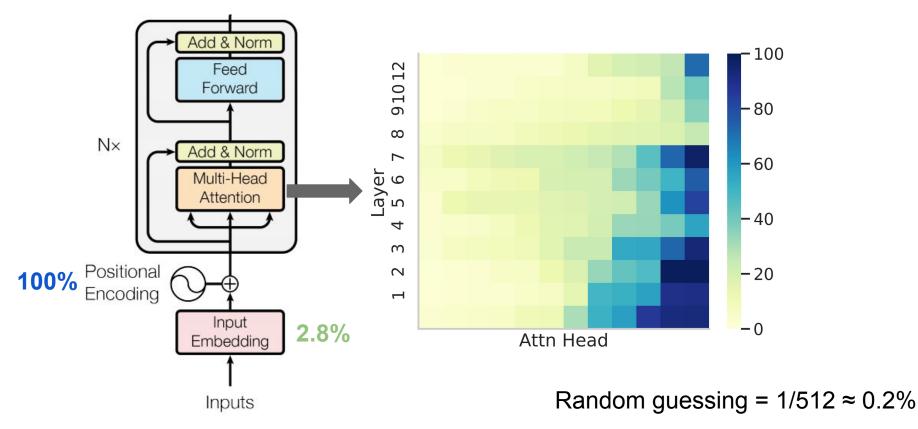
• Initial results: DC on BERT, finetuning without positional embeddings

### **Position Prediction Accuracy on BERT**

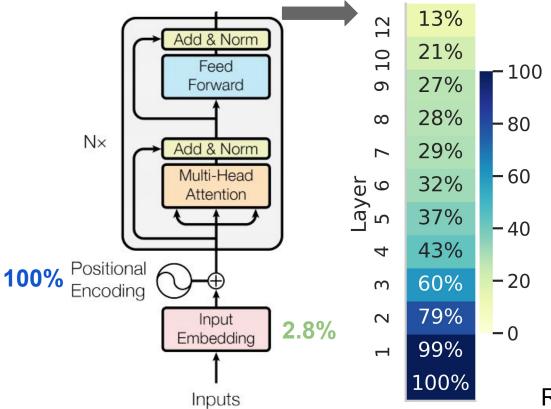


Random guessing =  $1/512 \approx 0.2\%$ 

### **Initial Position Prediction Accuracy on BERT**



### **Initial Position Prediction Accuracy on BERT**



Random guessing =  $1/512 \approx 0.2\%$ 

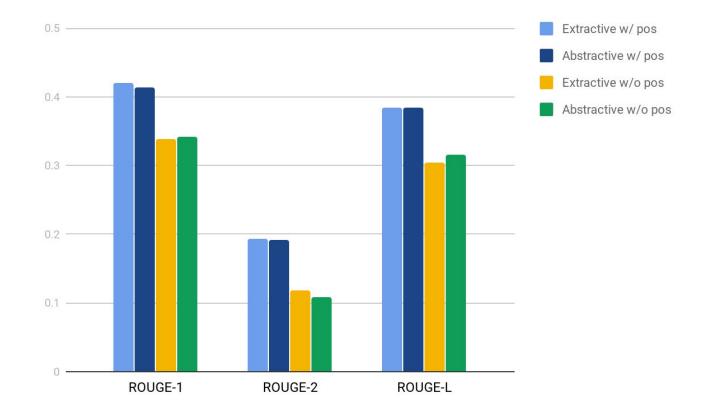
### Results on removing position embeddings in BERT

| Task Category           | Task                                       | with<br>Pos | w/o<br>Pos | Abs<br>Diff | % Diff |
|-------------------------|--------------------------------------------|-------------|------------|-------------|--------|
| Span Extraction         | SQuAD (F1)                                 | 87.5        | 29.9       | 57.6        | 65.8   |
| Input Tagging           | Coreference Resolution (F1)                | 67.4        | 44.6       | 22.8        | 33.8   |
| Sentence Decoding       | CNN/Daily mail (Abstractive summarization) | 0.191       | 0.109      | 0.08        | 42.9   |
| Sentence Classification | CNN/Daily mail (Extractive summarization)  | 0.193       | 0.119      | 0.07        | 38.3   |
| Classification          | SWAG (Accuracy)                            | 79.1        | 66.7       | 12.4        | 15.7   |
| Classification          | SST (Accuracy)                             | 92.4        | 87.0       | 5.4         | 5.8    |
| Classification          | MNLI                                       | 80.4        | 76.9       | 3.5         | 4.4    |
| Classification          | MNLI-MM                                    | 81.0        | 76.8       | 4.2         | 5.2    |
| Classification          | RTE                                        | 65.0        | 58.8       | 6.2         | 9.5    |
| Classification          | QNLI                                       | 87.5        | 83.6       | 3.9         | 4.5    |

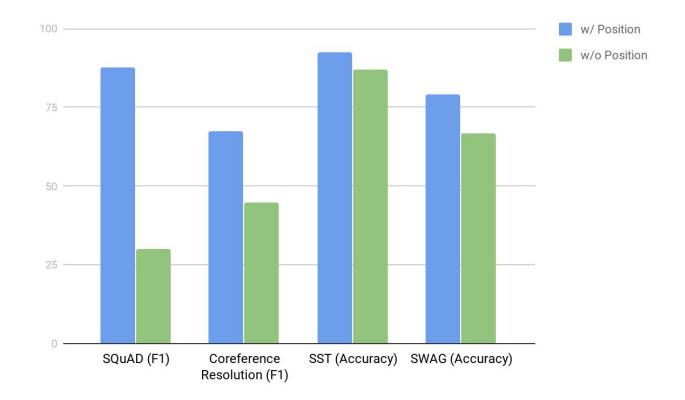
### Results on removing position embeddings in BERT

| Task Category           | Task                                       | with<br>Pos | w/o<br>Pos | Abs<br>Diff | % Diff |
|-------------------------|--------------------------------------------|-------------|------------|-------------|--------|
| Span Extraction         | SQuAD (F1)                                 | 87.5        | 29.9       | 57.6        | 65.8   |
| Input Tagging           | Coreference Resolution (F1)                | 67.4        | 44.6       | 22.8        | 33.8   |
| Sentence Decoding       | CNN/Daily mail (Abstractive summarization) | 0.191       | 0.109      | 0.08        | 42.9   |
| Sentence Classification | CNN/Daily mail (Extractive summarization)  | 0.193       | 0.119      | 0.07        | 38.3   |
| Classification          | SWAG (Accuracy)                            | 79.1        | 66.7       | 12.4        | 15.7   |
| Classification          | SST (Accuracy)                             | 92.4        | 87.0       | 5.4         | 5.8    |
| Classification          | MNLI                                       | 80.4        | 76.9       | 3.5         | 4.4    |
| Classification          | MNLI-MM                                    | 81.0        | 76.8       | 4.2         | 5.2    |
| Classification          | RTE                                        | 65.0        | 58.8       | 6.2         | 9.5    |
| Classification          | QNLI                                       | 87.5        | 83.6       | 3.9         | 4.5    |

### **Summarization Results**



### **Question Answering/Text Classification Results**



### Natural Language Inference



### **Observations**

- Deeper layers capture less position information than earlier ones in BERT
- Position embeddings matter less for classification tasks
  - But are important for sequence-based tasks (sequence tagging, span prediction, etc.)

### **Observations**

- Deeper layers capture less position information than earlier ones in BERT
- Position embeddings matter less for classification tasks
  - But are important for sequence-based tasks (sequence tagging, span prediction, etc.)

# Next Steps...

- Finetune on downstream tasks with other perturbed training schemes
- Run position DC on finetuned models to see how they capture position
- Analysis of model errors from missing positional information