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Introduction to Named Entity Recognition

US GPE unveils world's most powerful supercomputer, beats China GPE .The US GPE has unveiled the world's most powerful
supercomputer called 'Summit’, beating the previous record-holder China GPE 's Sunway TaihuLight ora . With a peak performance of

200,000 carpINAL trillion calculations per second ORDINAL |, itis over twice as fastas Sunway TalhuLight orG , which Is capable of 93,000

CARDINAL trillion calculations per second. Summit has 4,608 CARDINAL servers, which reportedly take up the size of two CARDINAL tennis
courts.

Named entity recognition (NER) seeks to locate and classify named entities in text into predefined
categories such as the names of persons, organizations, locations, expressions of times, quantities,
monetary values, percentages, etc.

The goal of NER is to tag a set of words in a sequence with a label representing the kind of entity the word
belongs to.

Named Entity Recognition is probably the first step in Information Extraction and it plays a key role in
extracting structured information from documents and conversational agents.



NER in action

In fact, the two major components of a Conversational bot’s NLU are Intent Classification and Entity
Extraction. Each word of the sentence is labeled using the IOB scheme (Inside-Outside-Beginning) with
an additional connection label to label words used to connect different named entities. These labels are
then used to extract entities from our command

Play ¥ Bohemian Rhapsody by Queen
@) B-Song [-Song Connect  B-Artist

Every NER algorithm proceeds as a sequence of the following steps -
1. Chunking and text representation - eg. New York represents one chunk
2. Inference and ambiguity resolution algorithms - eg. Washington can be a name or a location
3.  Modeling of Non-Local dependencies - eg. Garrett, garrett, and GARRETT should all be identified
as the same entity
4. Implementation of external knowledge resources



Transfer learning
and why is it
relevant

[

After supervised learning — Transfer Learning will be the

next driver of ML commercial success - Andrew NG

Humans have an inherent ability to transfer
knowledge across tasks. What we acquire as
knowledge while learning about one task, we utilize
in the same way to solve related tasks. The more
related the tasks, the easier it is for us to transfer, or
cross-utilize our knowledge. For example - know
math and statistics [1 Learn machine learning

In the above scenario, we don’t learn everything
from scratch when we attempt to learn new aspects
or topics. We transfer and leverage our knowledge
from what we have learnt in the past.

Thus, the key motivation, especially considering the
context of deep learning is the fact that most models
which solve complex problems need a whole lot of
data, and getting vast amounts of labeled data for
supervised models can be really difficult, considering
the time and effort it takes to label data points.



The Age of Transfer Learning

Transfer learning is a machine learning method where a

model developed for a task is reused as the starting Traditional ML Vs Transfer Learning
point for a model on a second task. e lsolated, single task learning: 1 e Learning of a new tasks relies on
Knowledge is not retained or the previous learned tasks:
accumulated. Learning is performed Learning process can be faster, more
. . . . w.0. considering past learned accurate and/or need less training data
Conventional machine learning and deep learning knowledge in other tasks
algorithms, so far, have been traditionally designed to N — J/ \\ S
H H H H ( atase! ) stem ataset 1 | lem
work in isolation. These algorithms are trained to solve ) md o ‘/' ad |
. . _ —_ I
specific tasks. The models have to be rebuilt from L
. . . Knowledge
scratch once the feature-space distribution changes. T
Transfer learning is the idea of overcoming the isolated :> LST,sTe,,? s Liys;?k,,'; ‘
ask 2 a

learning paradigm and utilizing knowledge acquired for
one task to solve related ones.



Overview of the presentation

The original state of the art in Discuss the influence of Implementation of our
Named Entity Recognition transfer learning to NER project
The paper proposed by With the other papers, we We talk about our proposed
Lample et al. (2016) - Neural see the influence of transfer hypothesis and analysis
Architectures for Named learning and especially methods.
Entity Recognition became language models in NER.

the state-of-the-artin NER

However it did not employ
any transfer learning
techniques.

Progression of NER systems from no incorporation of language models to language model based implementation.
_




I
Neural Architectures for Named Entity Recognition

Guillaume Lample® Miguel Ballesteros®#
Sandeep Subramanian® Kazuya Kawakami® Chris Dyer®
#Carnegie Mellon University *NLP Group, Pompeu Fabra University
{glample, sandeeps, kkawakam, cdyer}@cs.cmu.edu,
miguel.ballesteros@upf.edu

Proposed by Lample et. al (2016), this was the first work on NER to completely drop
hand-crafted features, i.e., they use no language-specific resources or features, just
embeddings.

Lample, Guillaume, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. "Neural architectures for
named entity recognition." arXiv preprint arXiv:1603.01360 (2016).



State-of-the-art for NER

CRF Layer {

~

Bi-LSTM
encoder

Word
embeddings

The word embeddings are the concatenation of
two vectors,

o a vector made of character embeddings using two
LSTMs

o  and avector corresponding to word embeddings
trained on external data.

The rational behinds this idea is that many
languages have orthographic or morphological
evidence that a word or sequence of words is a
named-entity or not, so they use character-level
embeddings to try to capture these evidences.

The embeddings for each word in a sentence are
then passed through a forward and backward
LSTM, and the output for each word is then fed
into a CRF layer.



Examples of how using language models has helped accuracy scores of
Named Entity Recognition
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Transfer Learning Using Pre-trained Language Models

There are multiple possible
embeddings! Use it in a sentence.

Oh, okay. Here:
“Let's stick to improvisation in this
skit”

Oh in that case, the embedding is:
-0.02,-0.16, 0.12,-0.1 ....etc




Neural Architectures for Nested NER through Linearization

Jana Strakova and Milan Straka and Jan Hajic
Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
{strakova, straka, hajic}@ufal.mff.cuni.cz



Overview

Task:

e Nested Named Entity Recognition (NER)
e FlatNER

Architectures: Contextual Embeddings:
e L|STM-CRF e ELMo
® seq2seq e BERT
e Flair
Datasets:

ACE-2004 & 2005 (English)
GENIA (English)

CNEC (Czech)

CoNLL-2002 (Dutch & Spanish)
CoNLL-2003 (English & German)




Methodology (Data)

Nested NE BILOU Encoding:
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Datasets:

Split:

Nested NE Corpora:

ACE-2004, ACE-2005, GENIA, CNEC

Corpora used to evaluate Flat NER:

CoNLL-2002 (Dutch & Spanish), CoNLL-2003 (English & German)

Train portion used for training

Development portion used for hyperparameter tuning
Models trained on concatenated train+dev portions
Models evaluated on test portion



Methodology (Models)

1) LSTM-CRF

e Encoder: bi-directional LSTM Baseline Model Embeddings:

e Decoder: CRF
e pretrained (using word2Vec and FastText)

2) Sequence-to-sequence (seq2seq) e end-to-end (input forms, lemmas, POS tags)
e character-level (using bidirectional GRUs)
e Encoder: bi-directional LSTM
e Decoder: LSTM Contextual Word Embeddings:

e Hard attention on words whose label(s) is being predicted
e ELMo (for English)

Architecture Details: *  BERT (for all languages)
e Flair (for all languages except Spanish)
e Lazy Adam optimizer with3, =0.9 and B, =0.98
e Mini-batches of size 8
e Dropout withrate 0.5



Results

e seq2seq appears to be suitable for more complex/nested corpora
e LSTM-CRF simplicity is good for flat corpora with shorter and less overlapping entities
e Adding contextual embeddings beats previous literature in all cases aside from CoNLL-2003 German

Nested NER results (F1) Flat NER results (F1)

model ACE-2004 | ACE-2005 | GENIA | CNEC 1.0 model English | German | Dutch | Spanish
(Finkel and Manning, 2009)** = = 703 = (Gillick et al., 2016) 8650 | 7622 | 8284 | 8295
(Lu and Roth, 2015)** 62.8 62.5 70.3 — (Lample et al., 2016) 90.94 | 7876 | 81.74 | 85.75
(Muis and Lu, 2017)%* 64.5 63.1 70.8 - ELMo (Peters et al., 2018) 9222 - - -
g}(a“tyalf aggl(é;’idle’ 201 7230 [ 7o - Flair (Akbik et al., 2018) 93.09 | 88.32 - -

uetal., = % . = i
(Wang and Lu, 2018) 75.1 745 751 B BERT (Devlin et al., 2018) 92.80 — - -
(Strakovd et al.. 2016) ~ - ~ 81.20 LSTM-CRF 90.72 7989 | 87.42 | 86.34
LSTM-CRF 72.26 7L.62 76.23 80.28 LSTM-CRF+ELMo 92.58 - - -
LSTM-CRF+ELMo 78.72 78.36 75.94 _ LSTM-CRF+BERT 92.94 84.53 92.48 88.77
LSTM-CRF+BERT 81.48 79.95 77.80 85.67 LSTM-CRF+Flair 9225 8235 | 88.31 -
LSTM-CRF-+Flair 77.65 77.25 76.65 81.74 LSTM-CRF+BERT+ELMo 92.93 - - -
LSTM-CRF+BERT+ELMo 80.07 80.04 76.29 - LSTM-CRF+BERT+Flair 93.22 84.44 | 92.69 -
LSTM-CRF+BERT+Flair _ 81.22 80.82 77.91 85.70 LSTM-CRF+ELMo+BERT+Flair | 93.38 _ _ _
LSTZM'CR”ELM""BERT"F“” ?2- (1) g 2 gg ;g ff, = seq2seq 90.77 | 79.00 | 87.59 | 86.04
seq2seq i ! i ! _ B B
seq2seq+ELMo 81.94 81.95 77.33 - seq2seq+ELMo 243
seq2seq+BERT FypY oy L 5675 seq2seq+BERT 92.98 84.19 | 9246 | 88.81
seq2seqi+Flair 81.38 79.83 76.63 83.55 seq2seq+Flair 91.87 | 8268 | 88.67 -
seq2seq+BERT+ELMo 84.32 82.15 77.77 - seq2seq+BERT+ELMo 92.99 = = =
seq2seq+BERT+Flair 84.40 84.33 78.31 86.88 seq2seq+BERT+Flair 93.00 85.10 92.34 -
seq2seq+ELMo+BERT+Flair 84.07 83.41 78.01 - seq2seq+ELMo+BERT+Flair 93.07 - - -




Conclusion

e Written during advent of using pre-trained language models
for Transfer Learning

e Examined the differing strengths of two standard
architectures (LSTM-CRF & seq2seq) for NER

e Surpassed state-of-the-art results for NER using contextual
word embeddings



Transfer Learning in Biomedical Natural Language Processing: An
Evaluation of BERT and ELMo on Ten Benchmarking Datasets

Yifan Peng Shankai Yan Zhiyong Lu
National Center for Biotechnology Information
National Library of Medicine, National Institutes of Health
Bethesda, MD, USA
{vifan.peng, shankai.yan, zhiyong.lu}@nih.gov


https://arxiv.org/pdf/1906.05474.pdf

Overview

Introducing the BLUE (Biomedical Language Understanding Evaluation) benchmark

5 tasks, 10 datasets:

Sentence Similarity Relation Extraction Inference Task
e BIOSSES e DDI e MedNLI
e MedSTS e ChemProt

e i2b22010

Named Entity Recognition
e BC5CDR-disease Document Multilabel Classification
e BC5CDR-chemical e HoC

e ShARe/CLEF

Ran experiments using BERT and ELMo as two baseline models to better understand BLUE



Methodology - BERT

Training
e Pre-trained on PubMed abstracts and
MIMIC-III clinical notes

e 4 models:
o  BERT-Base (P)*
o  BERT-Large (P)
o  BERT-Base (P+M)**
o  BERT-Large (P+M)
e (P) models were trained on PubMed
abstracts only
e (P+M) models were trained on both
PubMed abstracts and MIMIC clinical

notes

Fine-tuning
e Sentence similarity
o  Pairs of sentences were combined into a single
sentence
e Named entity recognition
o  BIlOtagging
e Relation extraction
o  certain pairs of related named entities were
replaced with predefined tags
o  “Citalopram protected against the
RTI-76-induced inhibition of SERT binding”
o “@CHEMICAL$ protected against the
RTI-76-induced inhibition of @ GENE$ binding”



Methodology - ELMo

Training
e Pre-trained on PubMed abstracts

Fine-tuning
e Similar strategies as with BERT

e Sentence extraction

o  Transformed the sequences of word embeddings into sentence embeddings

e Named-entity recognition
Concatenated GloVe embeddings, character embeddings and ELMo embeddings of each token

O
Fed them to a Bi-LSTM-CRF implementation for sequence tagging

@)



Results

Our BERT

Task Metrics SOTA* ELMo BioBERT Base Base Large Large

® ®E+M) F)  (P+M)
MedSTS Pearson  83.6 68.6 84.5 845 848 84.6 83.2
BIOSSES Pearson  84.8 60.2 82.7 89.3 91.6 86.3 75.1
BC5CDR-disease F 84.1 83.9 85.9 86.6 854 82.9 83.8
BC5CDR-chemical F 93.3 91.5 93.0 935 924 91.7 91.1
ShARe/CLEFE F 70.0 75.6 72.8 754 771 72.7 74.4
DDI F 72.9 78.9 78.8 78.1 79.4 79.9 76.3
ChemProt F 64.1 66.6 71.3 72.5 69.2 74.4 65.1
i2b2 F 73.7 71.2 72.2 744 764 73.3 73.9
HoC F 81.5 80.0 82.9 85.3 83.1 87.3 85.3
MedNLI acc 73.5 71.4 80.5 822 84.0 81.5 83.8
Total 78.8 80.5 822 823 81.5 79.2

Performance of various models on BLUE benchmark tasks



Conclusion

e BERT-Base trained on both PubMed abstracts and MIMIC-|1l notes performed
best across all tasks

e BERT-Base (P+M) also outperforms state-of-the-art models in most tasks

e Innamed-entity recognition, BERT-Base (P) had the best performance



Introduction

BioBERT: a pre-trained biomedical language
representation model for biomedical text mining
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Overview

BioBERT is a domain specific language representation model pre-trained on large scale biomedical
corpora. Directly applying the advancements in NLP to biomedical text mining often yields
unsatisfactory results due to a word distribution shift from general domain corpora to biomedical

corpora
Tasks:

e Pre-trainthe BioBERT model
e Finetune BioBERT on popular medical NLP tasks like NER, Relationship extraction(RE) and

Question-Answering

Datasets:

e Training: PubMed Abstracts(4.5B words), PMC(13.5B words)
e Evaluation: NCBI Disease (Dogan et al., 2014, 2010 i2b2/VA (Uzuner et al., 2011), BC5CDR (Li et
al., 2016), BC4CHEMD (Krallinger et al., 2015), Species-800 (Pafilis et al., 2013), BioASQ



ILlustration

Pre-training of BioBERT

Pre-training Corpora

BioBERT Pre-training

\

Pubmed 4.5B words

PMC 13.5B words
7

Weight Initialization

-

@X®)

| =

Pre-trained BioBERT with

biomedical domain corpora
& b

Fine-tuning of BioBERT
Task-Specific Datasets BioBERT Fine-tuning
(r N\ (7 a\
Named Entity Recognition the adult renal failure cause ...
NCBI disease, BC2GM, ... PO O B I O —
J \. y,
Floc e . B, (" Varntsinthe @GENES region )
Relation Extraction contribute to @DISEASES susceptibilty
EU-ADR, ChemProt, ...
\ ) v P True )
\ f—k S— F\
Question Answering What does mTOR stands for?
BioASQ 5b, BioASQ 6b, ... P mammalian target of rapamycin
\ 7 Q %/




Approach

e BioBERT uses the Word-Piece tokenization like BERT to handle OOV issues(medical domain terms
are usually not found in colloquial english)
e For computational efficiency, whenever the Wiki + Books corpora were used, the weights were
initialized with the pre-trained BERT Base model
e Hardware:
o  8NVIDIAV100 (32 GB) GPUs for pre-training. Training time was 23 days for BioBert v1.1!
] BERT was trained in 3.3 days on four DGX-2H nodes (a total of 64 Volta GPUs)
o  Single NVIDIA Titan Xp(12GB) GPU for fine-tuning on each task

m  Finetuningis computationally simpler, with training time was less than 1 hour
m  20epochstoreach highest performance on NER dataset


https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/dgx-2h-datasheet-us-nvidia-841283-r5.pdf

Results

e Domain specific language models like BioBERT seem to perform better than generic purpose BERT

BERT BioBERT v1.0 BioBERT v1.1

Type Datasets Metrics SOTA (Wiki + Books) (+ PubMed) (+ PMCQC) (+ PubMed + PMC) (+ PubMed)
Disease NCBI disease P 88.30 84.12 86.76 86.16 89.04 88.22
R 89.00 87.19 88.02 89.48 89.69 91.25
¥ 88.60 85.63 87.38 87.79 89.36 89.71
2010 i2b2/VA P 87.44 84.04 85.37 85.55 87.50 86.93
R 86.25 84.08 85.64 85.72 85.44 86.53
¥ 86.84 84.06 85.51 85.64 86.46 86.73
BCSCDR P 89.61 81.97 85.80 84.67 85.86 86.47
R 83.09 82.48 86.60 85.87 87.27 87.84
F 86.23 82.41 86.20 85.27 86.56 87.15
Drug/chem. BCSCDR P 94.26 90.94 92.52 92 .46 93.27 93.68
R 92.38 91.38 92.76 92.63 93.61 93.26
¥ 93.31 91.16 92.64 92.54 93.44 93.47
BC4CHEMD P 92.29 91.19 9177 91.65 92.23 92.80
R 90.01 88.92 90.77 90.30 90.61 91.92
| O 91.14 90.04 91.26 90.97 91.41 92.36
Gene/protein BC2GM P 81.81 81.17 81.72 82.86 85.16 84.32
R 81.57 82.42 83.38 84.21 83.65 85.12
¥ 81.69 81.79 82.54 83.53 84.40 84.72
JNLPBA P 74.43 69.57 71.11 717 72.68 72.24
R 83.22 81.20 83.11 82.76 83.21 83.56
F 78.58 74.94 76.65 76.53 77.59 77.49
Species LINNAEUS P 92.80 91.17 91.83 91.62 93.84 90.77
R 94.29 84.30 84.72 85.48 86.11 85.83
¥ 93.54 87.60 88.13 88.45 89.81 88.24
Species-800 74.34 69.35 70.60 71.54 72.84 72.80
R 75.96 74.05 75.75 74.71 & £ 7o 75.36
¥ 74.98 71.63 73.08 73.09 75.31 74.06




Domain specific NER

Table 9. Prediction samples from BERT and BioBERT on NER and QA datasets

Task Dataset Model Sample
NER NCBI disease BERT WT1 missense mutations, associated with male pseudohermaphroditism in Denys—Drash syn-
drome, fail to ...
BioBERT WT1 missense mutations, associated with male pseudohermaphroditism in Denys—Drash syn-
drome, fail to . ..
BCSCDR (Drug/Chem.) BERT ... a case of oral penicillin anaphylaxis is described, and the terminology . ..
BioBERT ... a case of oral penicillin anaphylaxis is described, and the terminology . ..
BC2GM BERT Like the DMA, but unlike all other mammalian class IT A genes, the zebrafish gene codes for
two cysteine residues . . .
BioBERT Like the DMA, but unlike all other mammalian class IT A genes, the zebrafish gene codes for
two cysteine residues . . .
QA BioASQ 6b-factoid Q: Which type of urinary incontinence is diagnosed with the Q tip test?
BERT A total of 25 women affected by clinical stress urinary incontinence (SUI) were enrolled.
After undergoing (...) Q-tip test, ...
BioBERT A total of 25 women affected by clinical stress urinary incontinence (SUI) were enrolled.
After undergoing (...) Q-tip test, ...
Q: Which bacteria causes erythrasma?
BERT Corynebacterium minutissimum is the bacteria that leads to cutaneous eruptions of eryth-
rasma ...
BioBERT Corynebacterium minutissimum is the bacteria that leads to cutaneous eruptions of eryth-

rasma...




Conclusions

BioBERT obtains higher F1 scores in biomedical NER (0.62% improvement over SOTA)
BioBERT can recognize biomedical named entities that BERT cannot and can find the exact
boundaries of named entities (although no accuracy scores are presented in the paper)
Pre-training on domain specific tasks is essential to achieve better results

Minimal task-specific architectural modifications required to build domain specific language
models



Our project

We propose to analyze the use of language models for the task of Named Entity Recognition. This
analysis ties in to the concept of transfer learning and for this project, we will examine how language
models like BERT and ELMo learn named entities when trained on a specific task.

This analysis also extends from general Named Entity Recognition to domain-specific NER. We do our
experiments on two datasets, the general NER dataset from CoNLL and the Movie Dataset from MIT.

Specifically, when a language model is trained on named entities, which layer identifies a named entity,
which layers produce the associations with named entities and how a language representation model
can understand word associations.



Proposed Implementation

We will convert the problem into a sequence labeling task where the objective is to learn the
IOB tags for the tokens. We will be using the “bert-base-cased” variant of BERT as it is more
suited for the NER task.
We will be using the AllenNLP framework to run our experiments which will allow us to track
our runs by adjusting the configurations and ensuring reproducibility of the results.
We intend to run our experiments on two datasets

o Ageneral dataset - the CoNLL dataset

o Adomain specific dataset - Movie dataset from MIT
Our test set will be a list of sentences with manually annotated 10B tags and we will be
comparing the f1 scores from the two models as our comparison metric.
We wish to contrast how BERT and ELMo are trained on the task and the kind of scores the
produce at the time of training on a general as well domain-specific NER.



AllenNLP Framework

e The AllenNLP framework allows us to treat each step in our algorithm as a black box

e With minimal changes to the main code we can pick and choose how we want to implement
a particular task. For example - with few changes, we can use word embeddings from BERT
or ELMo or GloVe

e Theframework is almost like a black box - we specify the input, some config settings and the
algorithm and the framework takes care of the implementation details

e We can also run several experiments on our project - for example compare NER with a CRF
as the final layer versus a LSTM or an HMM etc

e It also allows us to customize the pipeline which bodes well for domain specific learning as
well



Questions?




