
Libraries and Tools
🤗 Transformers, AllenNLP

LING575 Analyzing Neural Language Models
Shane Steinert-Threlkeld

February 6 2020

1

Outline
● Very helpful tools
● 🤗 Transformers
● AllenNLP
● Walk-through of a classifier and a tagger

● Second half: tips/tricks for experiment running and paper writing

2

🤗 Transformers
https://huggingface.co/transformers

3

https://huggingface.co/transformers

Where to get LMs to analyze?
● RNNs: see week 3 slides
● Josefewicz et al “Exploring the limits…”
● Gulordava et al “Colorless green ideas…”
● ELMo via AllenNLP (about which more later)

● Effectively a unique API for each model

● All (essentially) Transformer-based models: HuggingFace!

4

Overview of the Library
● Access to many variants of many very large LMs (BERT, RoBERTa,

XLNET, ALBERT, T5, language-specific models, …) with fairly consistent
API
● Build tokenizer + model from string for name or config
● Then use just like any PyTorch nn.Module

● Emphasis on ease-of-use
● E.g. low barrier-to-entry to using the models, including for analysis

● Interoperable with PyTorch or TensorFlow 2.0

5

Example: Tokenization

6See http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html (h/t Naomi Shapiro)

http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html

Example: Forward Pass

7

Outputs from the forward pass
● Outputs are always tuples of Tensors
● BERT, by default, gives two things:
● Top layer embeddings for each token.  

Shape: (batch_size, max_length, embedding_dimension)
● Pooled representation: embedding of ‘[CLS]’ token, passed through one tanh

layer 
Shape: (batch_size, embedding_dimension)

8

Getting more out of a model

9

from transformers import BertConfig, BertModel

config = BertConfig(
“bert-base-uncased”, output_attentions=True, output_hidden_states=True)

model = BertModel(config)

● Now, it’s a 4-tuple as output, additionally containing:
● Hidden states. A tuple of tensors, one for each layer. Length: # layers 

Shape of each: (batch_size, max_length, embedding_dimension)
● Attention heads: tuple of tensors, one for each layer. Length: # layers 

Shape of each: (batch_size, num_heads, max_length, max_length)

What the library does well
● Very easy tokenization

● Forward pass of models
● Exposing as many internals as possible
● All layers, attention heads, etc

● As unified an interface as possible
● But: different models have different properties, controlled by Configs
● Read the docs carefully!

10

What the library does not do
● Anything related to training
● Padding
● Batching
● Optimizing probe models, etc. Use PyTorch (or TF) for that

11

AllenNLP
https://allennlp.org/

12

https://allennlp.org/

Overview of AllenNLP
● Built on top of PyTorch

● Flexible data API

● Abstractions for common use cases in NLP
● e.g. take a sequence of representations and give me a single one

● Modular:
● Because of that, can swap in and out different options, for good experiments

● Declarative model-building / training via config files

● See https://github.com/allenai/writing-code-for-nlp-research-emnlp2018
● https://allennlp.org/tutorials
● https://github.com/jbarrow/allennlp_tutorial

13

https://github.com/allenai/writing-code-for-nlp-research-emnlp2018
https://allennlp.org/tutorials
https://github.com/jbarrow/allennlp_tutorial

Some Advantages
● Focus on modeling / experimenting, not writing boilerplate, e.g.:

● Training loop: 
 
 
 

● Not that complicated, but:
● Early stopping
● Check-pointing (saving best model(s))
● Generating and padding the batches
● Logging results
● ….  

14

for each epoch:
for each batch:
get model outputs on batch
compute loss
compute gradients
update parameters

allennlp train myexperiment.jsonnet

Example Abstractions
● TextFieldEmbedder

● Seq2SeqEncoder

● Seq2VecEncoder

● Attention

● …

● Allows for easy swapping of different choices at every level in your model.

15

Overall Structure (Classification)

16

DatasetReader

Model

Trainer

Iterator

Basic Components: Dataset Reader
● Datasets are collections of Instances, which are collections of Fields
● For text classification, e.g.: one TextField, one LabelField
● Many more: https://allenai.github.io/allennlp-docs/api/data/fields/field/

● DatasetReaders….. read data sets. Two primary methods:
● _read(file): reads data from disk, yields Instances. By calling:
● text_to_instance (variable signature)
● Processing of the “raw” data from disk into final form
● Produces one Instance at a time

17

https://allenai.github.io/allennlp-docs/api/data/fields/field/

DatasetReader: Stanford Sentiment
Treebank

● One line from train.txt:  
(3 (2 (2 The) (2 Rock)) (4 (3 (2 is) (4 (2 destined) (2 (2 (2 (2 (2 to) (2 (2 be) (2 (2 the) (2 (2 21st) (2 (2 (2 Century) (2 's)) (2 (3 new) (2 (2 ``) (2 Conan)))))))) (2 '')) (2 and)) (3 (2 that) (3 (2 he) (3 (2 's) (3

(2 going) (3 (2 to) (4 (3 (2 make) (3 (3 (2 a) (3 splash)) (2 (2 even) (3 greater)))) (2 (2 than) (2 (2 (2 (2 (1 (2 Arnold) (2 Schwarzenegger)) (2 ,)) (2 (2 Jean-Claud) (2 (2 Van) (2 Damme)))) (2 or)) (2 (2

Steven) (2 Segal))))))))))))) (2 .)))

● Core of _read:

● Core of text_to_instance:

18

…

Model

19

Fine tune or not

Model

20

NB: frozen embeddings can be
pre-computed for efficiency

Where was BERT?
● In the PretrainedTransformerEmbedder
● AllenNLP has wrappers around HuggingFace
● But note: to extract more from a model, you’ll probably need to write your own

class, using the existing ones as inspiration

21

Config file (classifying_experiment.jsonnet)

22

Arguments to SSTReader!

@DatasetReader.register(“sst_reader”)

Config file (classifying_experiment.jsonnet)

23

allennlp train classifying_experiment.jsonnet \
--serialization-dir test \
--include-package classifying

TensorBoard

24

tensorboard --logdir /serialization_dir/log

Use SSH port forwarding to
view server-side results locally

Tagging
● The repository also has an example of training a

semantic tagger
● Like POS tagging, but with a richer set of “semantic” tags

● Issue: the data comes with its own tokenization:
● BERT: ['the', 'ya', '##zuka', 'are', 'the', 'japanese', 'mafia', ‘.’]

● Need to get word-level representations out of BERT’s
subword representations

25

Tagging: Modeling
● My example: keep track of which spans of BERT tokens the original words

correspond to
● Some complication in the DatasetReader because of this

● And then combine those representations with an arbitrary Seq2VecEncoder

● Since then (a few months ago), they’ve added a
PretrainedMismatchedTransformerEmbedder that has essentially the same
functionality
● (Spans are pooled by summing, not by an arbitrary Seq2Vec)
● Might be safest to use that (and corresponding MismatchedIndexer)

26

https://github.com/allenai/allennlp/blob/c188d0b4ac19f90a1d18ba7f57864111867f3c08/allennlp/modules/token_embedders/pretrained_transformer_mismatched_embedder.py

On These Libraries
● If you’re using transformer-based LMs, I strongly recommend HuggingFace

● But it’s possible that learning AllenNLP’s abstractions may cost you more
time than it saves in the short term

● As always, try and use the best tool for the job at hand

27

Other tools for experiment management
● Disclaimer: I’ve never used them!
● Might be over-kill in the short term

● Guild (entirely local): https://guild.ai/

● CodaLab: https://codalab.org/

● Weights and Biases: https://www.wandb.com/

● Neptune: https://neptune.ai/

28

https://guild.ai/
https://codalab.org/
https://www.wandb.com/
https://neptune.ai/

Using GPUs on Patas

29

Setting up local environment
● Two GPU nodes (getting a third one soon):
● 2xTesla P40
● 8xTesla M10

● For info on setting up your local environment to use these nodes in a fairly
painless way:
● https://www.shane.st/teaching/575/win20/patas-gpu.pdf
● Pay attention to cudatoolkit version!!

30

https://www.shane.st/teaching/575/win20/patas-gpu.pdf

Condor job file for patas

31

executable = run_exp_gpu.sh
getenv = True
error = exp.error
log = exp.log
notification = always
transfer_executable = false
request_memory = 8*1024
request_GPUs = 1
+Research = True
Queue

Example executable

32

#!/bin/sh
conda activate my-project

allennlp train tagging_experiment.jsonnet --serialization-dir test \
--include-package tagging \
--overrides "{'trainer': {'cuda_device': 1}}"

