
Analysis Methods

LING575 Analyzing Neural Language Models Shane Steinert-Threlkeld January 23 2020

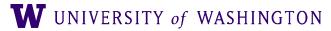
Recap

- Last time: a tour through current space of neural language models
- Architectures: recurrent vs. Transformer-based
- Pre-training task:
 - Pure LM
 - Masked LM
 - Variants (other ways of adding noise to input)
- Training data, protocol, ...

Today

- We will look at several prominent *analysis methods*
- By surveying some prominent exemplars of each kind of analysis
 - NOT exhaustive
 - Papers in the Reading List on the website are tagged for methods used, if you use "Group By > Keyword", so follow up there
- Try to keep in mind:
 - What's the logic behind each method
 - What can and can't we learn from it (and how can we tell that)

Outline

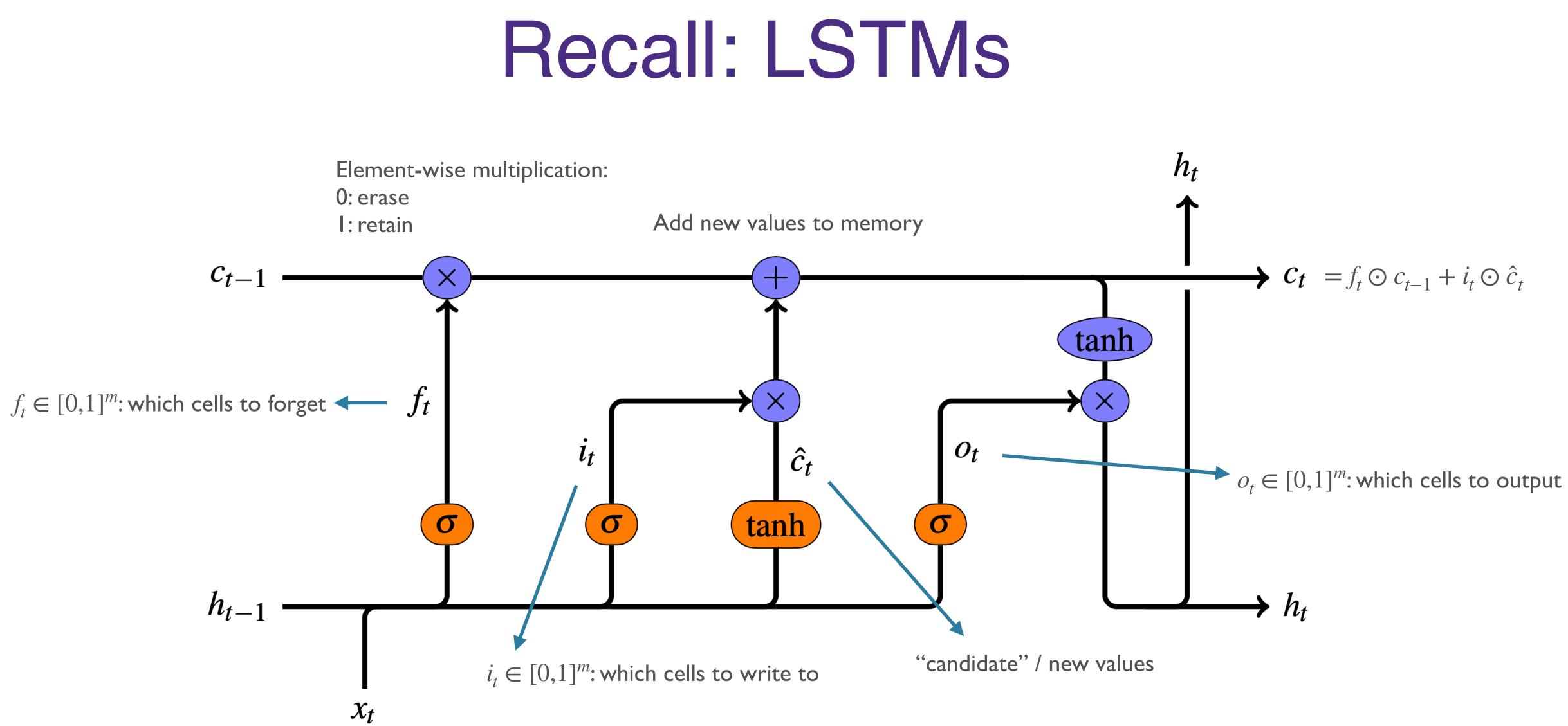

- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

Visualization / neuron-level analysis

Main Idea

- Individual neurons in a network have activations that depend on the input
- Check to see whether any of them have activations which depend on / correlate with (linguistically) interesting features of the input
- [Think of the alleged "Jennifer Anniston cells", aka grandmother cells]

VISUALIZING AND UNDERSTANDING RECURRENT **NETWORKS**


Andrej Karpathy* **Justin Johnson*** Li Fei-Fei Department of Computer Science, Stanford University {karpathy,jcjohns,feifeili}@cs.stanford.edu

ABSTRACT

Recurrent Neural Networks (RNNs), and specifically a variant with Long Short-Term Memory (LSTM), are enjoying renewed interest as a result of successful applications in a wide range of machine learning problems that involve sequential data. However, while LSTMs provide exceptional results in practice, the source of their performance and their limitations remain rather poorly understood. Using character-level language models as an interpretable testbed, we aim to bridge this gap by providing an analysis of their representations, predictions and error types. In particular, our experiments reveal the existence of interpretable cells that keep track of long-range dependencies such as line lengths, quotes and brackets. Moreover, our comparative analysis with finite horizon *n*-gram models traces the source of the LSTM improvements to long-range structural dependencies. Finally, we provide analysis of the remaining errors and suggests areas for further study.

Steinert-Threlkeld and Szymanik 2019; Olah 2015 W UNIVERSITY of WASHINGTON

Protocol

- Train character-level LSTM LMs on various text
- Visually inspect whether any memory cells (elements of c_t) have activations which depend on interesting features

Interpretable cell 1: line position

Cell sensitive to position in line:

t	h	а	t		i	t		р	1	a	i	n	1	у		a	n	d		i	n	d	u	b	i	t	а	b	1	у		p
С	u	t	t	i	n	g		0	f	f		t	h	e		е	n	е	m	у	1	s		r	е	t	r	е	a	t		a
l	i	n	е		0	f		a	С	t	i	0	n	-	-	t	h	е		0	n	е		Κ	u	t	u	z	0	v		a
d	е	m	a	n	d	е	d	-	-	n	a	m	е	1	у	,		S	i	m	р	1	у		t	0		f	0	1	1	C
a	t		a		С	0	n	t	i	n	u	a	1	1	у		i	n	С	r	е	a	s	i	n	g		s	р	e	е	C
r	е	а	С	h	i	n	g		i	t	s		g	0	a	1			I	t		f	1	е	d		1	i	k	е		a
t	0		b	1	0	С	k		i	t	s		р	a	t	h			т	h	i	s		W	a	s		S	h	0	W	n
n	a	d	е		f	0	r		С	r	0	S	S	i	n	g		a	s		b	у		W	h	a	t		t	0	0	k
b	r	0	k	е		d	0	W	n	,		u	n	а	r	m	е	d		s	0	1	d	i	е	r	s	,		р	е	C
N	h	0		W	е	r	е		W	i	t	h		t	h	е		F	r	е	n	С	h		t	r	a	n	s	р	0	r
p	r	е	S	S	е	d		f	0	r	W	a	r	d		i	n	t	0		b	0	a	t	S		a	n	d		i	n
S	u	r	r	е	n	d	е	r																								
	t cldart mb v p	thu lieteroarh whr	tha cut lin dem ata rea to d oro who pre	that cutt line dema atac brade brok who pres	that cutti line deman at a reach to bl made broke who w press	that i cuttin line o demand at a c reachi to blo made f broke who we presse	that it cutting line of demande at a co reachin to bloc made fo broke d who wer pressed	that it cutting line of demanded at a con reaching to block made for broke do who were pressed	that it p cutting o line of a demanded- at a cont reaching to block made for broke dow who were pressed f	that it pl cutting of line of ac demanded at a conti reaching i to block i made for c broke down who were w pressed fo	that it pla cutting off line of act demandedn at a contin reaching it to block it made for cr broke down, who were wi	that it plai cutting off line of acti demandedna at a continu reaching its to block its made for cro broke down, who were wit pressed forw	that it plain cutting off t line of actio demanded nam at a continua reaching its to block its made for cros broke down, u who were with pressed forwa	that it plainl cutting off th line of action demanded name at a continual reaching its g to block its p made for cross broke down, un who were with pressed forwar	that it plainly cutting off the line of action- demandednamel at a continuall reaching its go to block its pa made for crossi broke down, una who were with t pressed forward	that it plainly cutting off the line of action demandednamely at a continually reaching its goa to block its pat made for crossin broke down, unar who were with th pressed forward	that it plainly a cutting off the e line of actiont demandednamely, at a continually reaching its goal to block its path made for crossing broke down, unarm who were with the pressed forward i	that it plainly an cutting off the en line of actionth demandednamely, at a continually i reaching its goal. to block its path. made for crossing broke down, unarme who were with the pressed forward in	that it plainly and cutting off the ene line of actionthe demandednamely, s at a continually in reaching its goal. to block its path. made for crossing a broke down, unarmed who were with the F pressed forward int	that it plainly and cutting off the enem line of actionthe demandednamely, si at a continually inc reaching its goal. I to block its path. T made for crossing as broke down, unarmed who were with the Fr pressed forward into	that it plainly and i cutting off the enemy line of actionthe o demandednamely, sim at a continually incr reaching its goal. It to block its path. Th made for crossing as broke down, unarmed s who were with the Fre pressed forward into	that it plainly and in cutting off the enemy' line of actionthe on demandednamely, simp at a continually incre reaching its goal. It to block its path. Thi made for crossing as b broke down, unarmed so who were with the Fren pressed forward into b	that it plainly and ind cutting off the enemy's line of actionthe one demandednamely, simpl at a continually increa reaching its goal. It f to block its path. This made for crossing as by broke down, unarmed sol who were with the Frenc pressed forward into bo	that it plainly and indu cutting off the enemy's line of actionthe one demandednamely, simply at a continually increas reaching its goal. It fl to block its path. This made for crossing as by broke down, unarmed sold who were with the French pressed forward into boa	that it plainly and indub cutting off the enemy's r line of actionthe one K demandednamely, simply at a continually increasi reaching its goal. It fle to block its path. This w made for crossing as by w broke down, unarmed soldi who were with the French pressed forward into boat	that it plainly and indubi cutting off the enemy's re line of actionthe one Ku demandednamely, simply t at a continually increasin reaching its goal. It fled to block its path. This wa made for crossing as by wh broke down, unarmed soldie who were with the French t pressed forward into boats	that it plainly and indubit cutting off the enemy's ret line of actionthe one Kut demandednamely, simply to at a continually increasing reaching its goal. It fled to block its path. This was made for crossing as by wha oroke down, unarmed soldier who were with the French tr pressed forward into boats	that it plainly and indubita cutting off the enemy's retr line of actionthe one Kutu demandednamely, simply to at a continually increasing reaching its goal. It fled 1 to block its path. This was made for crossing as by what oroke down, unarmed soldiers who were with the French tra pressed forward into boats a	that it plainly and indubitab cutting off the enemy's retre line of actionthe one Kutuz demandednamely, simply to f at a continually increasing s reaching its goal. It fled li to block its path. This was s made for crossing as by what oroke down, unarmed soldiers, who were with the French tran pressed forward into boats an	that it plainly and indubitabl cutting off the enemy's retrea line of actionthe one Kutuzo demandednamely, simply to fo at a continually increasing sp reaching its goal. It fled lik to block its path. This was sh made for crossing as by what t broke down, unarmed soldiers, who were with the French trans pressed forward into boats and	that it plainly and indubitably cutting off the enemy's retreat line of actionthe one Kutuzov demandednamely, simply to fol at a continually increasing spe reaching its goal. It fled like to block its path. This was sho made for crossing as by what to broke down, unarmed soldiers, p who were with the French transp pressed forward into boats and	The sole importance of the cross that it plainly and indubitably cutting off the enemy's retreat line of actionthe one Kutuzov demandednamely, simply to foll at a continually increasing spee reaching its goal. It fled like to block its path. This was show made for crossing as by what too broke down, unarmed soldiers, pe who were with the French transpo pressed forward into boats and i surrender.

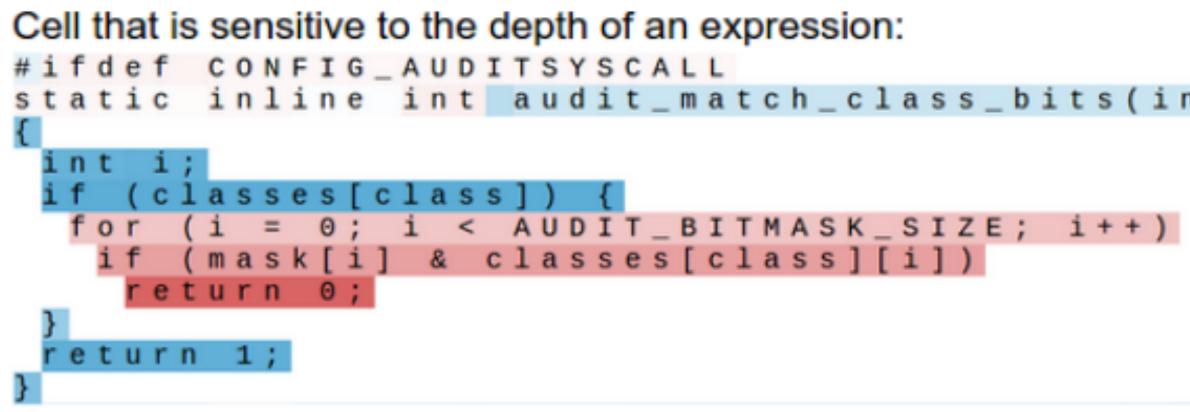
ing of the Berezina lies in the fact proved the fallacy of all the plans for and the soundness of the only possible and the general mass of the army ow the enemy up. The French crowd fled d and all its energy was directed to a wounded animal and it was impossible n not so much by the arrangements it place at the bridges. When the bridges ople from Moscow and women with children rt, all--carried on by vis inertiae-nto the ice-covered water and did not,

Interpretable cell 2: inside quotes

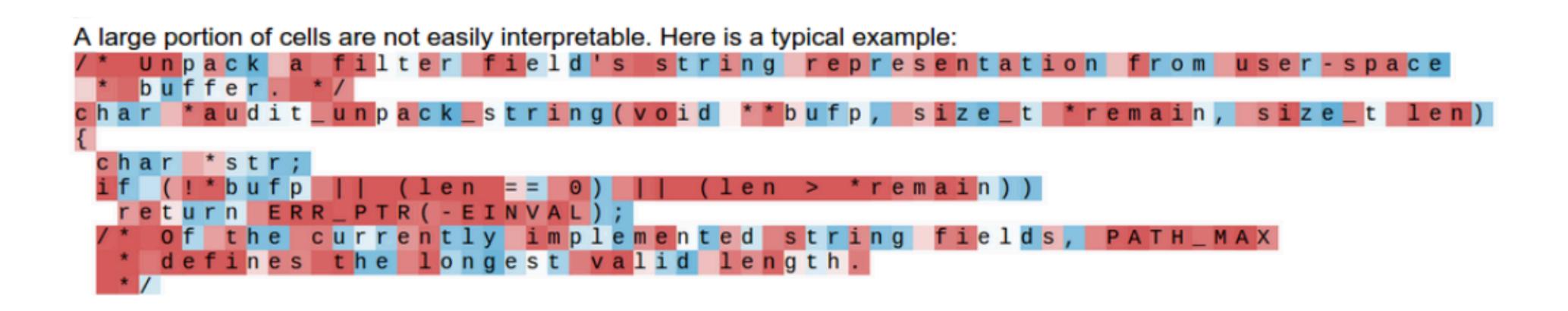
Cell that turns on inside quotes:

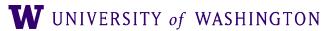
"	ΥO	u	1	m e	a	n	t	0		i	m	p (1	У		tΙ	n a	t		I		h	a	۷	е	1	n o) t	: h	i	n	g		t	0	•	e a	ιt		0	u	t		o f	۰.					0 1	า	t	h	е					
C (-									_		-	-																			-								_											~				
d :					-																															-																							
s																									u	de	е	а	ι n	d		t	h	е	r (e t	fо	r	e		i	m	a	g j	i n	e	d		Κ	u 1	tι	I Z	0	۷		t (0	b) e
aı	n i	m	a	t e	d) у		t	h	е		S	a I	m	е	C	e	S	i	r	е																																					
_																																																											
Κı					_																																	. t	: h		h	1	s	5	5 U	b	t	1	е	1	о е	e n	е	t	r	a 1	t i	i n	ו g
s I	n i	1	е	÷.,	"	I	m	е	а	n	t		m	e	r	e .	Lу	1	t	0		S	а	У	1	wł	n a	ı t		I		S	a	i	d	. '																							

Interpretable cell 3: inside 'if' statements


static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,

Interpretable cell 4: depth


static inline int audit_match_class_bits(int class, u32 *mask)



Normal case: uninterpretable cell

Learning to Generate Reviews and Discovering Sentiment

Alec Radford¹ Rafal Jozefowicz¹ Ilya Sutskever¹

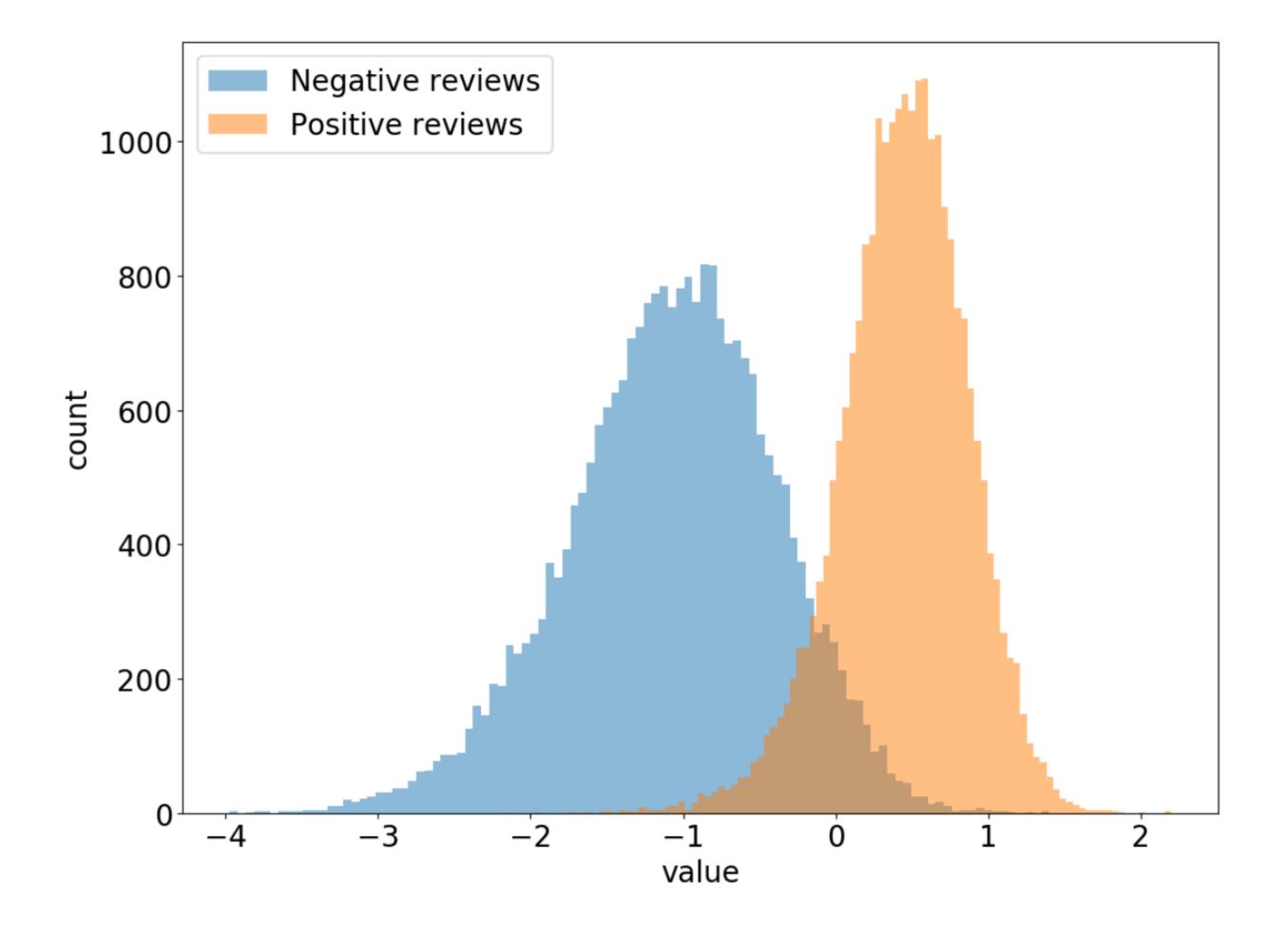
Abstract

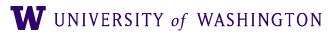
We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment.

it is now commonplace to reuse these representations on a broad suite of related tasks - one of the most successful examples of transfer learning to date (Oquab et al., 2014).

There is also a long history of unsupervised representation learning (Olshausen & Field, 1997). Much of the early research into modern deep learning was developed and validated via this approach (Hinton & Salakhutdinov, 2006) (Huang et al., 2007) (Vincent et al., 2008) (Coates et al., 2010) (Le, 2013). Unsupervised learning is promising due to its ability to scale beyond only the subsets and domains of data that can be cleaned and labeled given resource, privacy, or other constraints. This advantage is also its difficulty. While supervised approaches have clear objectives that can be directly optimized, unsupervised approaches rely on proxy tasks such as reconstruction, density estimation, or generation, which do not directly encourage useful representations for specific tasks. As a result, much work has gone into designing objectives, priors, and architectures meant to encourage the learning of useful representations.

Approach


- Character-level language model (LSTM variant)
 - One layer; 4096 dim hidden state
 - Training: ~1 month on 4 GPUs
- Data: Amazon product reviews
- Fine-tune: sentiment analysis
 - NB: this data partially overlaps with training data [but a different task]



A sentiment neuron

Samples of the sentiment neuron

I found this to be a charming adaptation, very lively and full of fun. With the exception of a couple of major errors, the cast is wonderful. I have to echo some of the earlier comments -- Chynna Phillips is horribly miscast as a teenager. At 27, she's just too old (and, yes, it DOES show), and lacks the singing "chops" for Broadway-style music. Vanessa Williams is a decent-enough singer and, for a non-dancer, she's adequate. However, she is NOT Latina, and her character definitely is. She's also very STRIDENT throughout, which gets tiresome. The girls of Sweet Apple's Conrad Birdie fan club really sparkle -- with special kudos to Brigitta Dau and Chiara Zanni. I also enjoyed Tyne Daly's performance, though I'm not generally a fan of her work. Finally, the dancing Shriners are a riot, especially the dorky three in the bar. The movie is suitable for the whole family, and I highly recommend it.

Judy Holliday struck gold in 1950 withe George Cukor's film version of "Born Yesterday," and from that point forward, her career consisted of trying to find material good enough to allow her to strike gold again. It never happened. In "It Should Happen to You" (I can't think of a blander title, by the way), Holliday does yet one more variation on the dumb blonde who's maybe not so dumb after all, but everything about this movie feels warmed over and half hearted. Even Jack Lemmon, in what I believe was his first film role, can't muster up enough energy to enliven this recycled comedy. The audience knows how the movie will end virtually from the beginning, so mostly it just sits around waiting for the film to catch up. Maybe if you're enamored of Holliday you'll enjoy this; otherwise I wouldn't bother. Grade: C

Sentiment unit does all the work!

Table 2. IMDB sentiment classification

Method

FULLUNLABELEDBOW (NB-SVM TRIGRAM (ME **SENTIMENT UNIT (OURS** SA-LSTM (DAI & LE, 2) BYTE MLSTM (OURS) TOPICRNN (DIENG ET A VIRTUAL ADV (MIYATO

	Error
(Maas et al., 2011)	11.11%
ESNIL ET AL., 2014)	8.13%
(S)	7.70%
2015)	7.24%
	7.12%
AL., 2016)	6.24%
ET AL., 2016)	5.91%

The Emergence of Number and Syntax Units in LSTM Language Models

Yair Lakretz

Cognitive Neuroimaging Unit NeuroSpin center 91191, Gif-sur-Yvette, France yair.lakretz@gmail.com

Theo Desbordes

Facebook AI Research Paris, France tdesbordes@fb.com

Stanislas Dehaene

Cognitive Neuroimaging Unit NeuroSpin center 91191, Gif-sur-Yvette, France stanislas.dehaene@gmail.com German Kruszewski

Facebook AI Research Paris, France germank@gmail.com

Dieuwke Hupkes

ILLC, University of Amsterdam Amsterdam, Netherlands d.hupkes@uva.nl

Marco Baroni

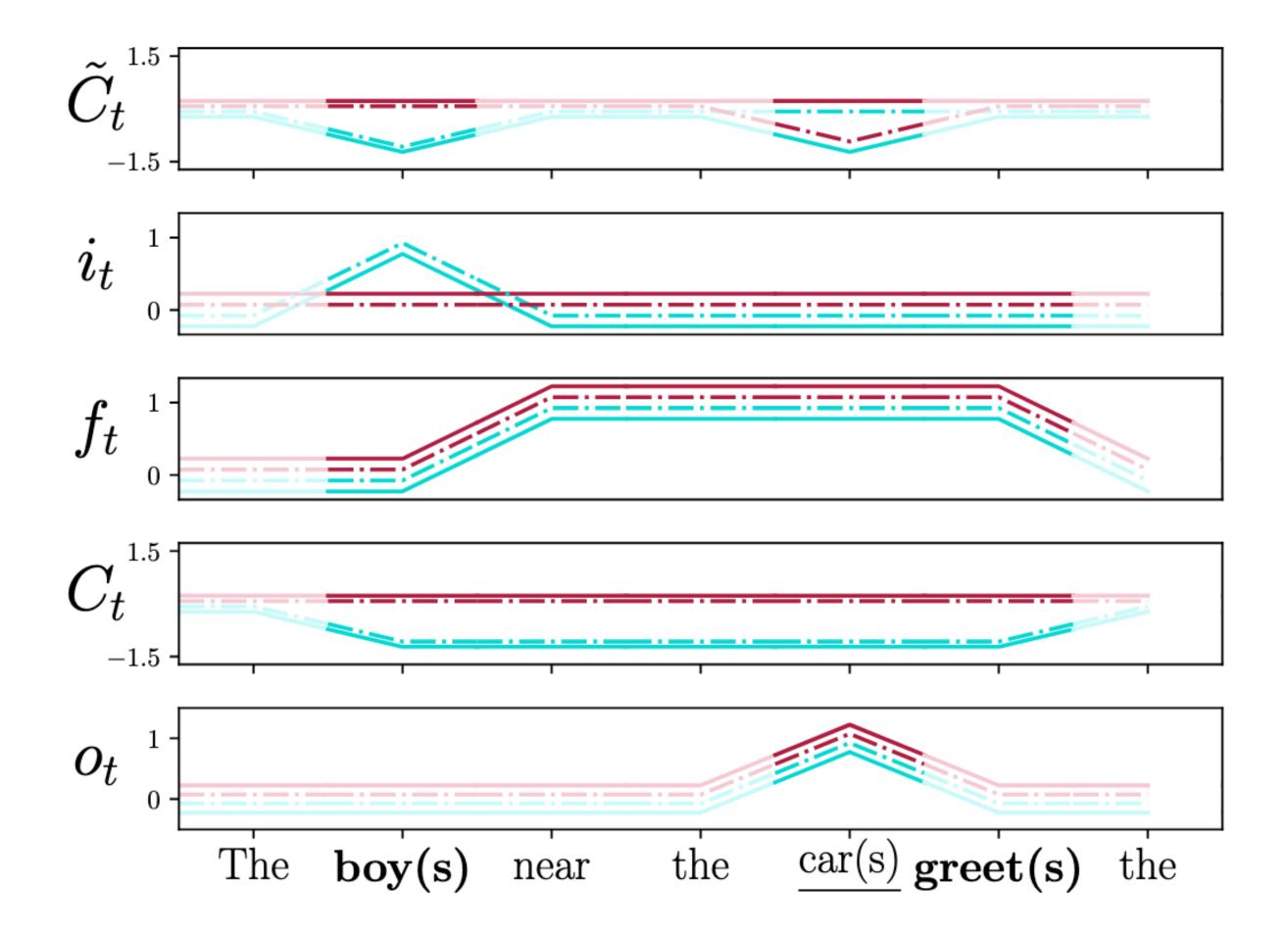
Facebook AI Research Paris, France mbaroni@fb.com

W UNIVERSITY of WASHINGTON

Approach

- Evaluating the Gulordava et al 2018 LSTM LM (last week's slides + later)
- Number agreement tasks: as in Linzen et al 2016 (to be discussed shortly!)
 - Plus synthetic:

Simple Adv 2Adv CoAdv

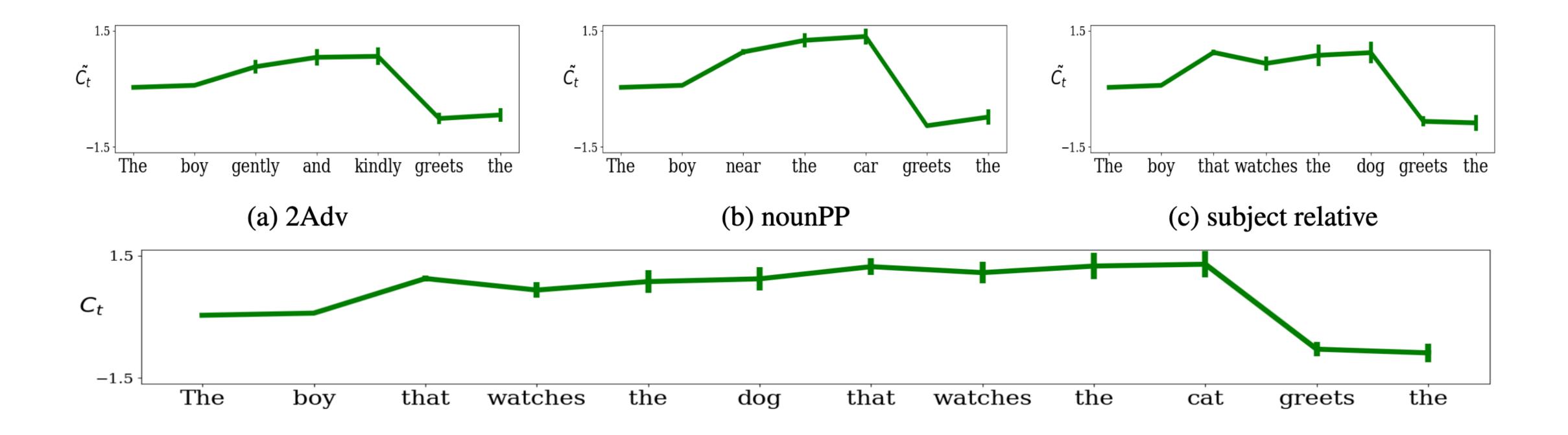

- Find important cells by *ablation*: set activation to 0, see if performance suffers. (Also by regression; more in a minute)
- the **boy greets** the guy the **boy** probably **greets** the guy the **boy** most probably **greets** the guy the **boy** openly and deliberately **greets** the guy the boy near Pat greets the guy NamePP the boy near the car greets the guy NounPP **NounPPAdv** the **boy** near the car kindly **greets** the guy

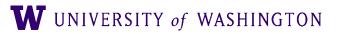
Cell dynamics for storing number info

W UNIVERSITY of WASHINGTON

Finding a syntax unit

- Predict, via linear regression, from the cell:
 - Depth of the word in syntactic parse of the sentence
 - (Works pretty well: $R^2 = 0.85$. More on this idea later.)
- Identify cells that are assigned very high weight in the regression




Cell dynamics for a syntax unit

W UNIVERSITY of WASHINGTON

black box", with very interpretable neural/cell dynamics. But:

• Very promising and exciting when it does work: a good look "inside the

- Very promising and exciting when it does work: a good look "inside the black box", with very interpretable neural/cell dynamics. But:
- "A needle in a haystack": how to find the "good" neurons?
 - Some principled methods (ablation, regression); not all of them scale well
 - But also:
 - Is there a neuron that tracks property P?
 - Not: what are you tracking?

- Very promising and exciting when it does work: a good look "inside the black box", with very interpretable neural/cell dynamics. But:
- "A needle in a haystack": how to find the "good" neurons?
 - Some principled methods (ablation, regression); not all of them scale well
 - But also:
 - Is there a neuron that tracks property P?
 - Not: what are you tracking?
- Deleting interpretable neurons may not effect performance in the original or downstream task (Morcos et al 2018)

Outline

- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

Psycholinguistic methods

Animating Idea

- NLMs are a bit of a "black box". How can we figure out what they're doing?
- Well: humans are also (approximately) black boxes!
- So: let's treat NLMs the way we treat people when we try to figure out the nature of their linguistic knowledge.
 - In other words: treat NLMs as if they were participants in the kinds of experiments that (psycho-)linguists perform.
 - [NB: lots more to do here!]

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen^{1,2} **Emmanuel Dupoux**¹ **Yoav Goldberg** $LSCP^1 \& IJN^2$, CNRS, Computer Science Department EHESS and ENS, PSL Research University Bar Ilan University {tal.linzen, yoav.goldberg@gmail.com emmanuel.dupoux}@ens.fr

Abstract

The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture's grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings,

(Hochreiter and Schmidhuber, 1997) or gated recurrent units (GRU) (Cho et al., 2014), has led to significant gains in language modeling (Mikolov et al., 2010; Sundermeyer et al., 2012), parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016), machine translation (Bahdanau et al., 2015) and other tasks.

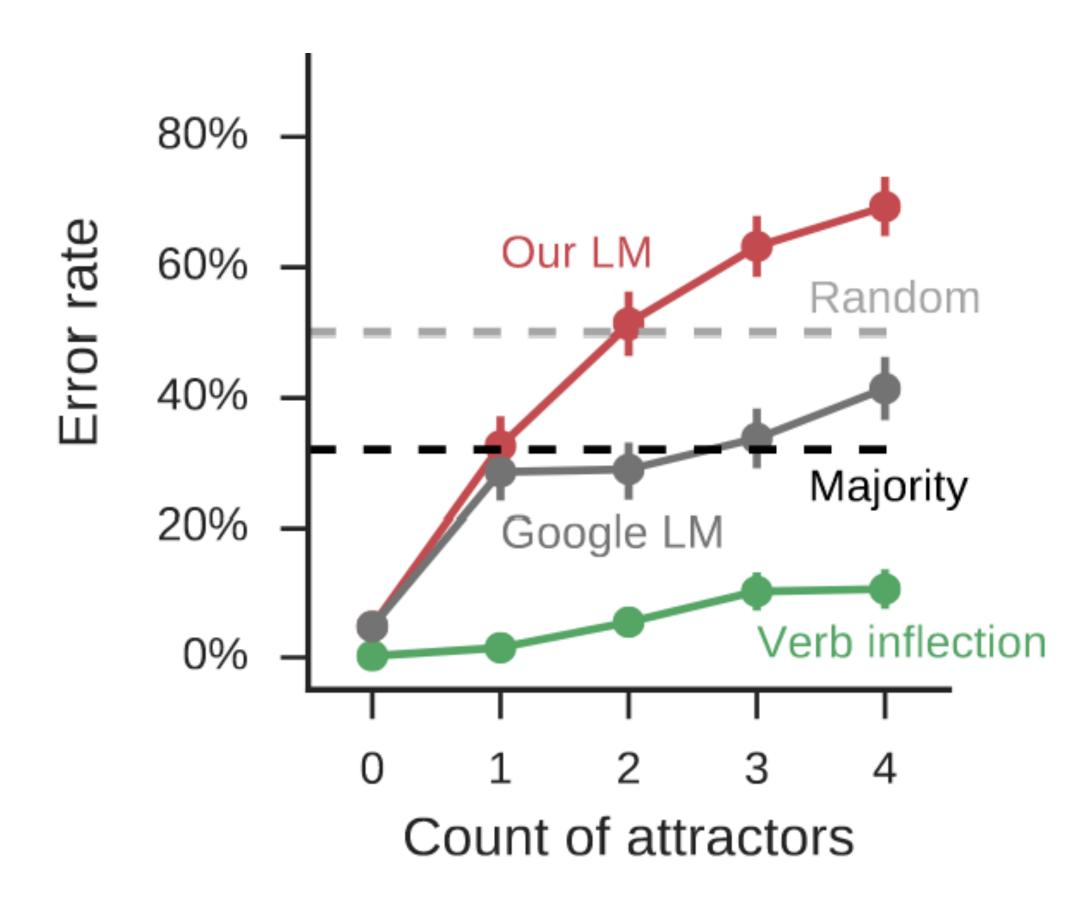
The effectiveness of RNNs¹ is attributed to their ability to capture statistical contingencies that may span an arbitrary number of words. The word France, for example, is more likely to occur somewhere in a sentence that begins with *Paris* than in a sentence that begins with Penguins. The fact that an arbitrary number of words can intervene between the mutually predictive words implies that they cannot be captured

Subject-verb agreement

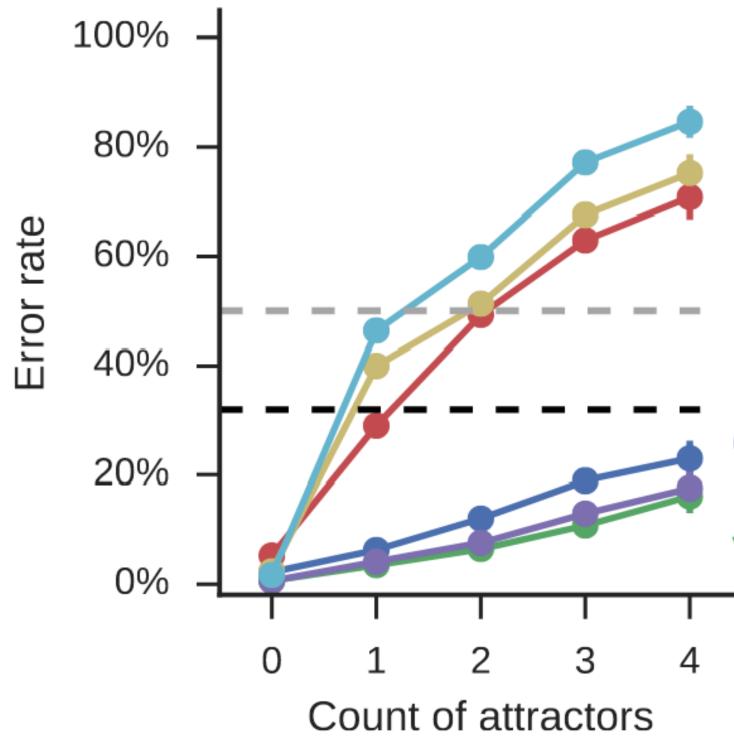
- Adjacent:
 - The key is on the table [SS]
 - * The key are on the table [SP]
 - * The keys is on the table [PS]
 - The keys are on the table [PP]
- Arbitrarily many *attractors* (nouns w/ different number) in between:
 - struggling.

But even the city with several tall buildings and many thriving industries is

- Does LM predict the right form of the verb?
 - "The keys on the cabinet ..."
 - $P_{LM}(\text{are}) > P_{LM}(\text{is})?$
- Single layer LSTM w/ 50 hidden units
- NB: a lot more in the paper than we'll talk about here.
- Later: other methods for getting LM grammaticality judgments.


Method

Accuracy vs. Attractors



W UNIVERSITY of WASHINGTON

Effect of Task

Baseline (common nouns) Baseline (all nouns) Language modeling

Random guess

Majority class Grammaticality Number prediction Verb inflection

W UNIVERSITY of WASHINGTON

Take Home

- LSTMs can in general learn hierarchical dependencies
- But language modeling *may* not provide enough signal on its own
 - i.e. explicit supervision on the task is required

Colorless green recurrent networks dream hierarchically

Kristina Gulordava*

Department of Linguistics University of Geneva

kristina.gulordava@unige.ch

Tal Linzen Department of Cognitive Science Johns Hopkins University

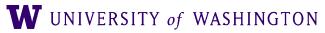
tal.linzen@jhu.edu

Abstract

Recurrent neural networks (RNNs) have achieved impressive results in a variety of linguistic processing tasks, suggesting that they can induce non-trivial properties of language. We investigate here to what extent RNNs learn to track abstract hierarchical syntactic structure. We test whether RNNs trained with a generic language modeling objective in four languages (Italian, English, Hebrew, Russian) can predict long-distance number agreement in various constructions. We include in our

Piotr Bojanowski Facebook AI Research Paris

bojanowski@fb.com


Edouard Grave Facebook AI Research New York

egrave@fb.com

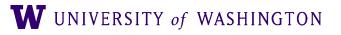
Marco Baroni Facebook AI Research Paris

mbaroni@fb.com

achieved impressive results in large-scale tasks such as language modeling for speech recognition and machine translation, and are by now standard tools for sequential natural language tasks (e.g., Mikolov et al., 2010; Graves, 2012; Wu et al., 2016). This suggests that RNNs may learn to track grammatical structure even when trained on noisier natural data. The conjecture is supported by the success of RNNs as feature extractors for syntactic parsing (e.g., Cross and Huang, 2016; Kiperwasser and Goldberg, 2016; Zhang et al., 2017).

Innovations

- Same basic protocol, but:
 - More constructions / contexts to test agreement on
 - Multiple languages
 - Comparison to human judgments (in Italian)
 - Nonsense (nonce) constructions: think "colorless green ideas sleep furiously"
 - It presents the case for marriage equality and states ...
 - It stays the shuttle for honesty insurance and finds ...
- [Note: no "wug" / pseudo-words ("It blergs the shuttle ..."); why not?]



Four languages; two constructions

		NVV	V NP
Italian	Original	$93.3_{\pm 4.1}$	83.3
	Nonce	$92.5_{\pm 2.1}$	78.5
English	Original	$89.6_{\pm 3.6}$	67.5
	Nonce	$68.7_{\pm 0.9}$	82.5
Hebrew	Original	$86.7_{\pm 9.3}$	83.3
	Nonce	$65.7_{\pm 4.1}$	83.1
Russian	Original	-	95.2
	Nonce	-	86.7

conj V

- 2 ± 10.4
- $5_{\pm 1.7}$
- $5_{\pm 5.2}$
- $5_{\pm 4.8}$
- $3_{\pm 5.9}$
- $1_{\pm 2.8}$
- $2_{\pm 1.9}$
- $7_{\pm 1.6}$

Four languages; two constructions

		NVV	V NP
Italian	Original	$93.3_{\pm 4.1}$	83.3
	Nonce	$92.5_{\pm 2.1}$	78.5
English	Original	$89.6_{\pm 3.6}$	67.5
	Nonce	$68.7_{\pm 0.9}$	82.5
Hebrew	Original	$86.7_{\pm 9.3}$	83.3
	Nonce	$65.7_{\pm 4.1}$	83.1
Russian	Original	-	95.2
	Nonce	-	86.7

conj V

- 2 ± 10.4
- $5_{\pm 1.7}$
- $5_{\pm 5.2}$
- $5_{\pm 4.8}$
- $3_{\pm 5.9}$
- $1_{\pm 2.8}$
- $2_{\pm 1.9}$
- $7_{\pm 1.6}$

Maybe English's poor morphology and high POS ambiguity: "If you have any questions or need/needs, ..."

Comparison with Italians

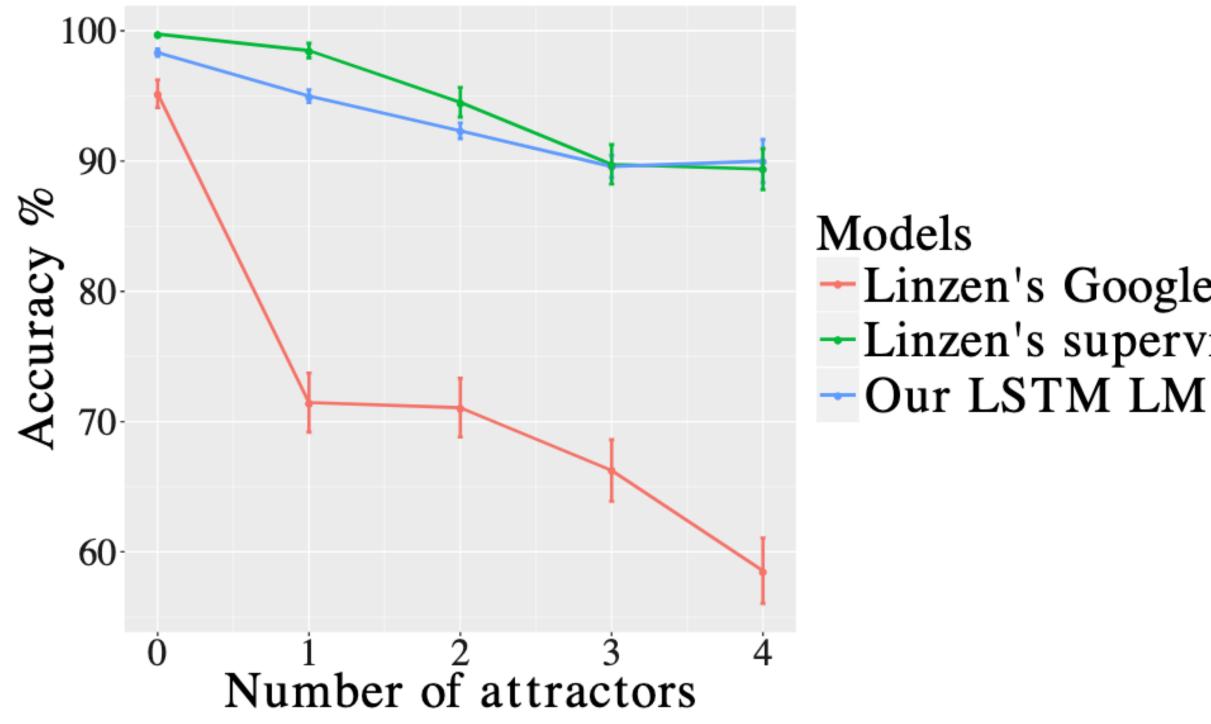
Construction

#orig

DET [AdjP] NOUN NOUN [RelC / PartP] clitic VERB NOUN [RelC / PartP] VERB ADJ [conjoined ADJS] ADJ NOUN [AdjP] relpron VERB NOUN [PP] ADVERB ADJ NOUN [PP] VERB (participial) VERB [NP] CONJ VERB

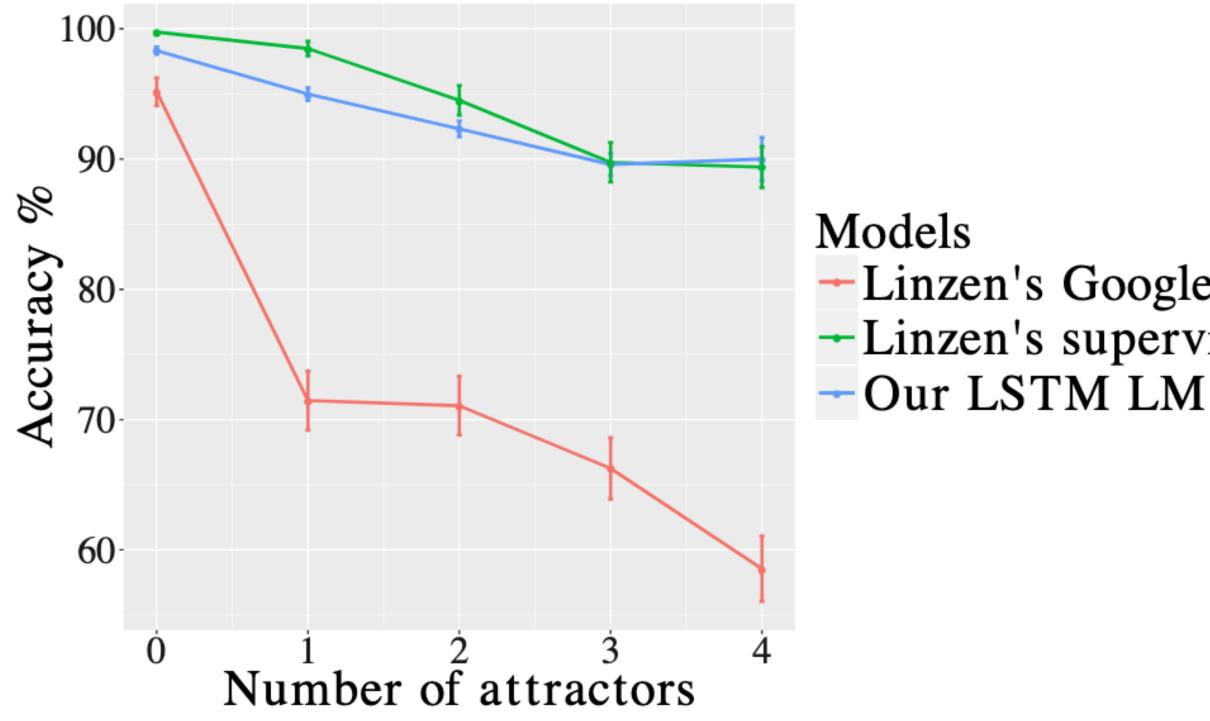
(Micro) average

Table 3: Subject and LSTM accuracy on the Italian test set, by construction and averaged.


ginal	Original		No	nce
	Subjects	LSTM	Subjects	LSTM
14	98.7	$98.6_{\pm 3.2}$	98.1	$91.7_{\pm 0.4}$
6	93.1	$100_{\pm 0.0}$	95.4	$97.8_{\pm 0.8}$
27	97.0	$93.3_{\pm 4.1}$	92.3	$92.5_{\pm 2.1}$
13	98.5	$100_{\pm 0.0}$	98.0	$98.1_{\pm 1.1}$
10	95.9	$98.0_{\pm 4.5}$	89.5	$84.0_{\pm 3.3}$
13	91.5	$98.5_{\pm 3.4}$	79.4	$\textbf{76.9}_{\pm 1.4}$
18	87.1	$77.8_{\pm 3.9}$	73.4	$71.1_{\pm 3.3}$
18	94.0	$83.3_{\pm 10.4}$	86.8	$78.5_{\pm 1.7}$
	94.5	$92.1_{\pm 1.6}$	88.4	$85.5_{\pm 0.7}$

On the Linzen et al 2016 Data

Linzen's Google LM Linzen's supervised



On the Linzen et al 2016 Data

-Linzen's Google LM -Linzen's supervised

Be careful with what you can conclude from one experiment!

W UNIVERSITY of WASHINGTON

Take Home

- Language modeling may after all provide enough of a signal to learn hierarchical syntactic dependencies
 - But may be very sensitive to hyper-parameters, including training data
 - [NB: the Gulordava et al model is a lot smaller than the Google LM]
 - "suggests that the input itself contains enough information to trigger some form of syntactic learning in a system, such as an RNN, that does not contain an explicit prior bias in favour of syntactic structures"
- Good model and data to play with (<u>https://github.com/facebookresearch/</u> <u>colorlessgreenRNNs</u>)
- A follow-up, with more constructions than just subject/verb agreement, and artificially generated data: https://www.aclweb.org/anthology/D18-1151/

Neural Language Models as Psycholinguistic Subjects: Representations of Syntactic State

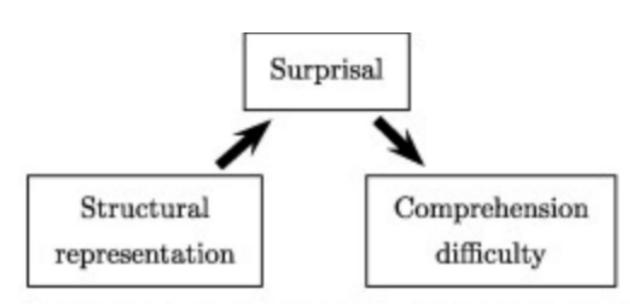
¹Department of Language Science, UC Irvine, rfutrell@uci.edu ²Department of Linguistics, Harvard University, wilcoxeg@g.harvard.edu ³Primate Research Institute, Kyoto University, tmorita@alum.mit.edu ⁴Department of Linguistics and Philosophy, MIT ⁵Department of Brain and Cognitive Sciences, MIT, {pqian, rplevy}@mit.edu ⁶IBM Research, MIT-IBM Watson AI Lab, miguel.ballesteros@ibm.com

Abstract

We investigate the extent to which the behavior of neural network language models reflects incremental representations of syntactic state. To do so, we employ experimental methodologies which were originally developed in the field of psycholinguistics to study syntactic representation in the human mind. We examine neural network model behavior on sets of artificial sentences containing a variety of syntactically complex structures. These sen-

Richard Futrell¹, Ethan Wilcox², Takashi Morita^{3,4}, Peng Qian⁵, Miguel Ballesteros⁶, and Roger Levy⁵

language models using experimental techniques that were originally developed in the field of psycholinguistics to study language processing in the human mind. The basic idea is to examine language models' behavior on targeted sentences chosen to probe particular aspects of the learned representations. This approach was introduced by Linzen et al. (2016), followed more recently by others (Bernardy and Lappin, 2017; Enguehard et al., 2017; Gulordava et al., 2018), who used 1' 4' 4 1 /m 1 1 x #'11

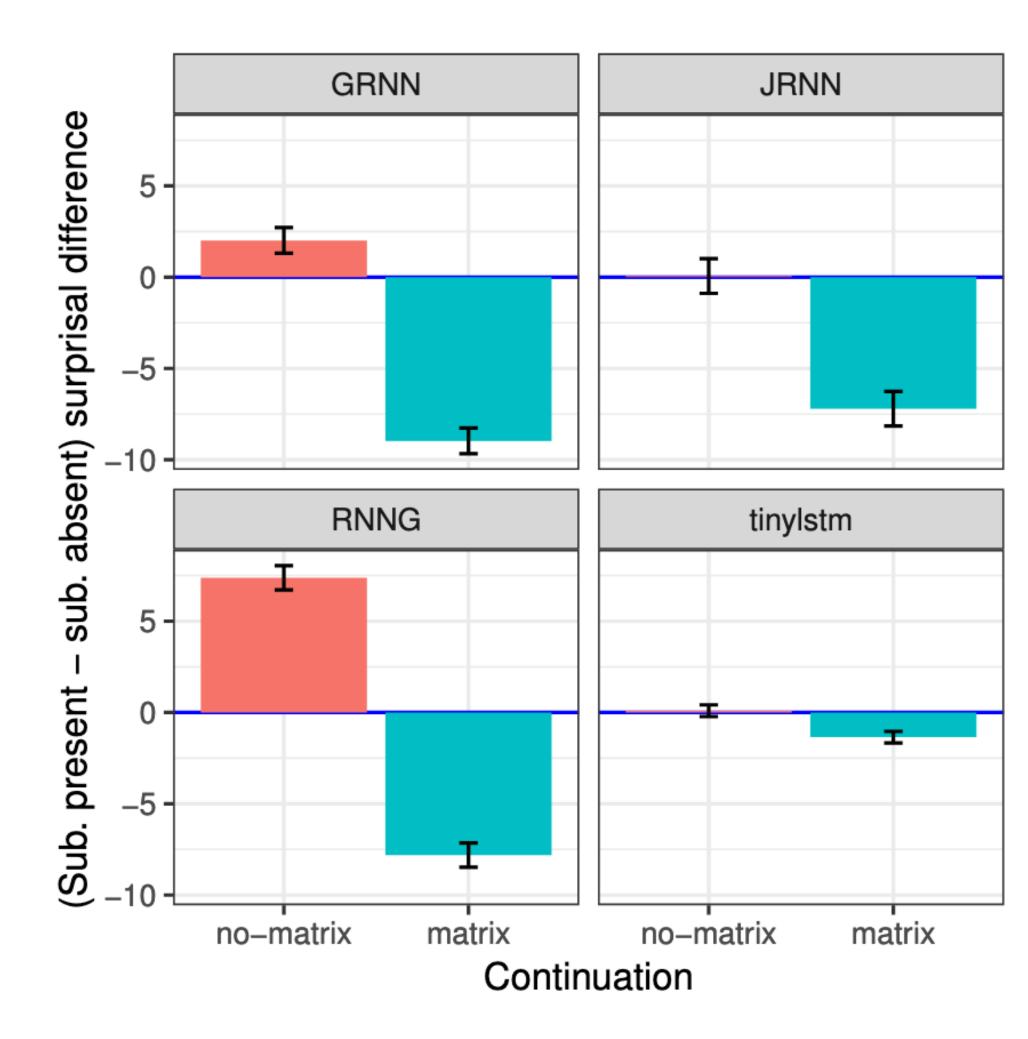


Surprisal in Sentence Comprehension

- Surprisal = -log prob
- A good predictor of human reading times (<u>Hale 2001; Levy 2008</u>)
 - Usually derived from probabilistic grammars

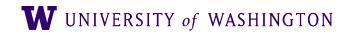
- its training loss
 - Do these values show evidence of incremental structure-building?

• Surprisal is just the contribution of each next-word prediction of an LM to



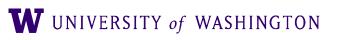
- (2) a. As the doctor studied the textbook, the nurse walked into the office. [SUBordinator, MATRIX]
 - b. *As the doctor studied the textbook. [SUB, NO-MATRIX]
 - c. ?The doctor studied the textbook, the nurse walked into the office.
 - [NO-SUBordinator, MATRIX] The doctor studied the textbook. d.
 - [NO-SUB, NO-MATRIX]

Matrix Licensing



Matrix Licensing

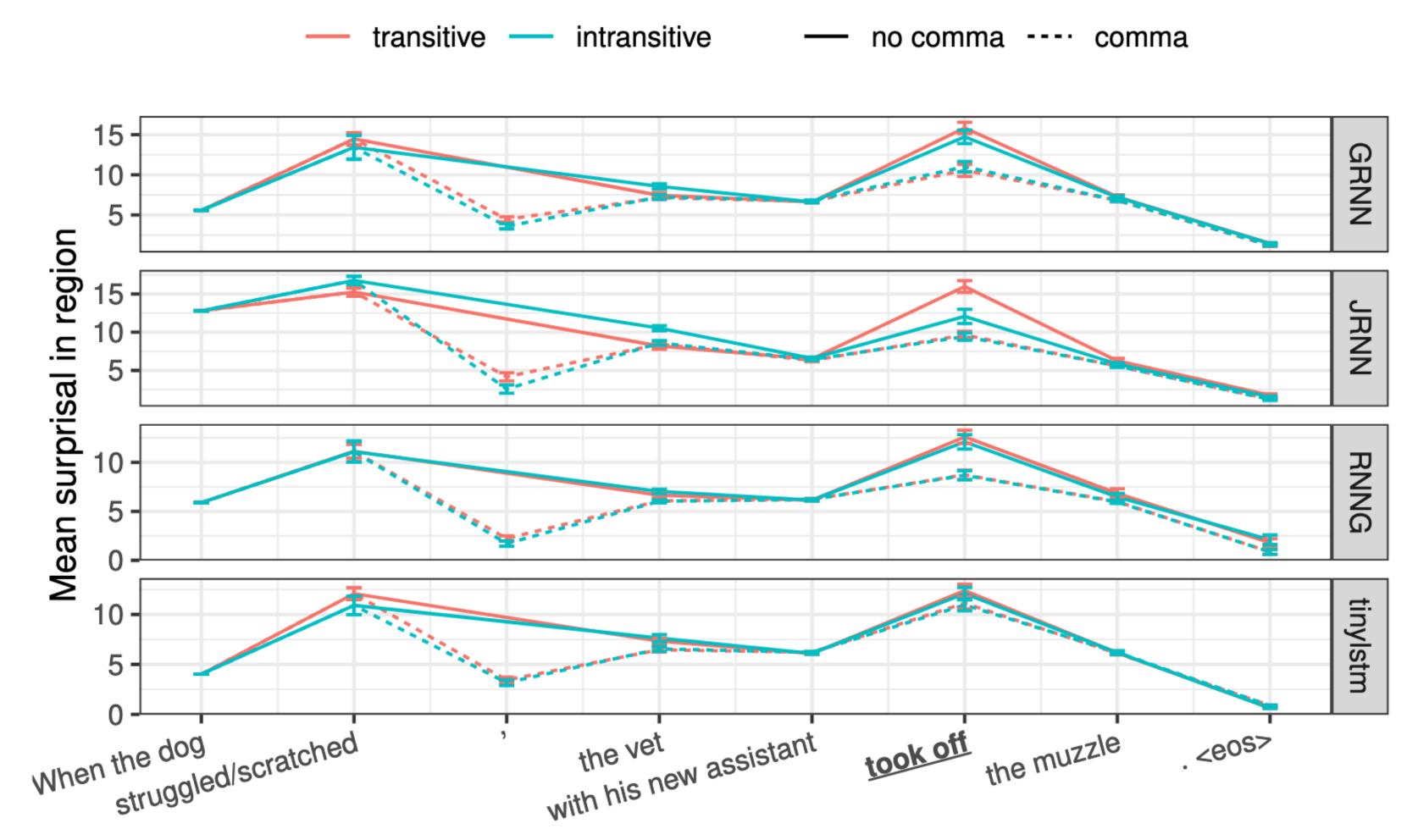
Negative values: with subordinator ("As") absent, the matrix clause is surprising

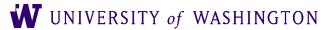

• When the dog scratched the vet with his new assistant took off the muzzle.

- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.

- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched, the vet with his new assistant took off the muzzle.

- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched, the vet with his new assistant took off the muzzle.
- When the dog struggled the vet with his new assistant took off the muzzle. [intransitive verb]

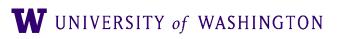



- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched, the vet with his new assistant took off the muzzle.
- When the dog struggled the vet with his new assistant took off the muzzle. [intransitive verb]
- When the dog struggled, the vet with his new assistant took off the muzzle. [intransitive verb]

- Treating NLMs as psycholinguistic subjects reveals subtle and non-trivial syntactic behavior
 - Some hierarchical structure being built, even from linear input
 - Some incremental interpretation
- NB: methods surveyed here really depend on "pure" LMs: • LSTMs, or left-to-right Transformers (e.g. GPT(2))

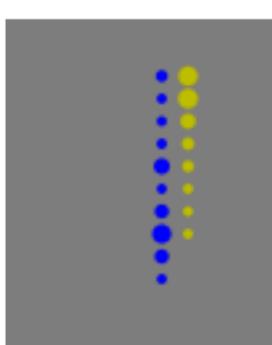
Interim Summary

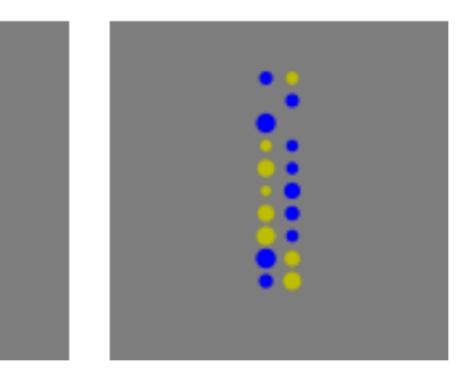
Whither semantics?


W UNIVERSITY of WASHINGTON

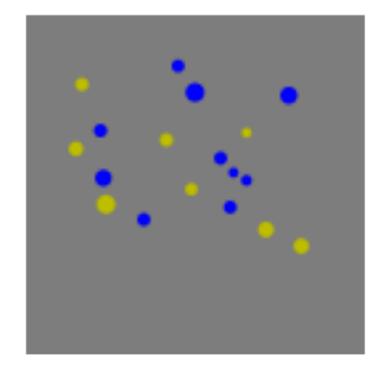
- "Most of the dots are yellow."
 - $|dots \cap yellow| > |dots \setminus yellow|$
 - $\exists f: dots \setminus yellow \rightarrow dots \cap yellow that is 1-1, not onto$
 -

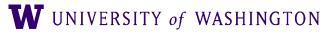
Whither semantics?



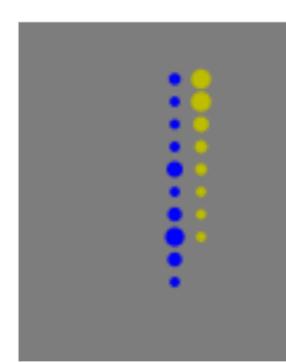

• "Most of the dots are yellow."

. . . .

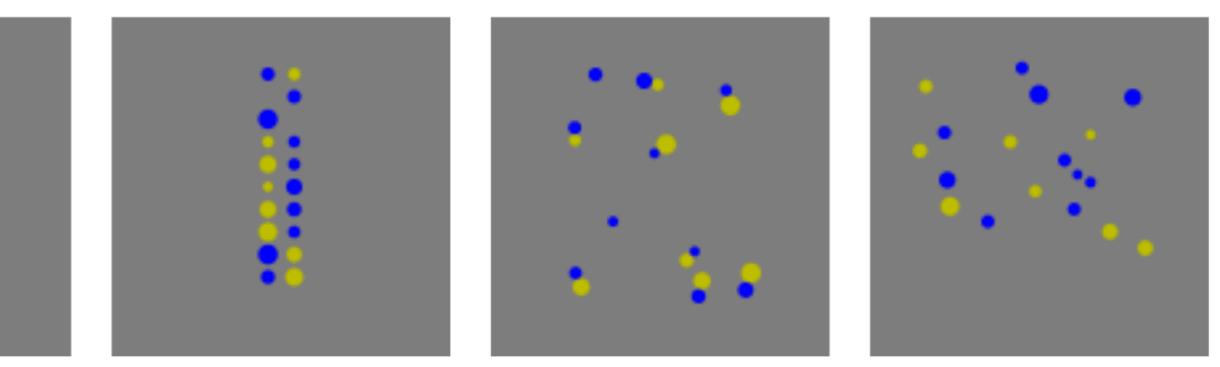

- dots ∩ yellow | > | dots \ yellow |
- $\exists f: dots \setminus yellow \rightarrow dots \cap yellow that is 1-1, not onto$



Whither semantics?



• "Most of the dots are yellow."


. . . .

- $|dots \cap yellow| > |dots \setminus yellow|$
- $\exists f: dots \setminus yellow \rightarrow dots \cap yellow that is 1-1, not onto$

represent "most" via 1-1 mapping. (Many follow-ups since.)

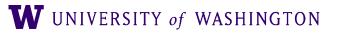
Whither semantics?

<u>Pietroski et al 2009</u>: no difference between (b)-(d) conditions, so people do *not*

Lewis O'Sullivan Brain and Cognitive Science Universiteit van Amsterdar

lewis.osullivan@student.uva.nl

Abstract


How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these neucho comantic tasks We trained two

Shane Steinert-Threlkeld

es	Institute for Logic, Language and Computation
m	Universiteit van Amsterdam
a.nl	S.N.M.Steinert-Threlkeld@uva.nl

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- $\llbracket \text{most} \rrbracket(A)(B) = 1 \text{ iff } |A \cap B| > |A \setminus B|$
- $\llbracket most \rrbracket(A)(B) = 1$ iff there is $f : A \setminus B \to$ $A \cap B$ that is one-to-one, but not onto

Lewis O'Sullivan Brain and Cognitive Sciences Institute for Logic, Language and Computation Universiteit van Amsterdam Universiteit van Amsterdam

lewis.osullivan@student.uva.nl S.N.M.Steinert-Threlkeld@uva.nl

Abstract

How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these neucho comantic tacks. We trained two

• We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)

Shane Steinert-Threlkeld

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- $\llbracket \text{most} \rrbracket(A)(B) = 1 \text{ iff } |A \cap B| > |A \setminus B|$
- $\llbracket most \rrbracket(A)(B) = 1$ iff there is $f : A \setminus B \to$ $A \cap B$ that is one-to-one, but not onto

Lewis O'Sullivan Institute for Logic, Language and Computation Universiteit van Amsterdam Universiteit van Amsterdam

Brain and Cognitive Sciences lewis.osullivan@student.uva.nl S.N.M.Steinert-Threlkeld@uva.nl

Abstract

How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these neucho comantic tasks We trained two

- Pre-trained (multi-modal!) models could be evaluated on this paradigm

Shane Steinert-Threlkeld

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- $\llbracket \text{most} \rrbracket(A)(B) = 1 \text{ iff } |A \cap B| > |A \setminus B|$
- $\llbracket most \rrbracket(A)(B) = 1$ iff there is $f : A \setminus B \to$ $A \cap B$ that is one-to-one, but not onto

• We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)

Lewis O'Sullivan Institute for Logic, Language and Computation Universiteit van Amsterdam Universiteit van Amsterdam

Brain and Cognitive Sciences lewis.osullivan@student.uva.nl S.N.M.Steinert-Threlkeld@uva.nl

Abstract

How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these neucho comantic tasks We trained two

- Pre-trained (multi-modal!) models could be evaluated on this paradigm
- See also <u>Kuhlne and Copestake 2019</u>

Shane Steinert-Threlkeld

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- $\llbracket \text{most} \rrbracket(A)(B) = 1 \text{ iff } |A \cap B| > |A \setminus B|$
- $\llbracket most \rrbracket(A)(B) = 1$ iff there is $f : A \setminus B \to$ $A \cap B$ that is one-to-one, but not onto

• We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)

Some other candidate phenomena

- The distinction between implicature and presupposition:
 - Some students passed. *implicates* Not all students passed.
 - Shane knows that the paper was published. *Presupposes* The paper was published. • (Compare: Shane doesn't know that the paper was published.)
- Semantic sources of ungrammaticality:
 - Negative polarity items (lots of work on these right now)
 - Exceptives
 - There are Q NP VP...
- you could replace the people with models.

• Many, many more! If you find/know an experimental semantics paper, think how

Outline

- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

Diagnostic classifiers

- What's in a representation (a vector)? How can we tell?
- For example: does an LSTM's memory encode grammatical number?
 - If we're lucky: a single cell might, as we saw earlier. (Sparse representation)
 - In general: if we can easily predict the number from the memory, it's "already in there".
- Given a representation, train a simple model (usually a linear classifier) to predict a property of interest (usually linguistic) from that representation.

Main Idea

Journal of Artificial Intelligence Research 61 (2018) 907-926

Visualisation and 'Diagnostic Classifiers' Reveal how Recurrent and Recursive Neural Networks **Process Hierarchical Structure**

Dieuwke Hupkes Sara Veldhoen Willem Zuidema ILLC, University of Amsterdam P.O.Box 94242 1090 CE Amsterdam, Netherlands

- prediction tasks, ...
- [Basically: very simple transfer learning]

Note on Terminology

Submitted 10/17; published 04/18

D.HUPKES@UVA.NL SARA.VELDHOEN@GMAIL.COM ZUIDEMA@UVA.NL

• Roughly synonyms: diagnostic classifiers, probing classifiers, auxiliary

W UNIVERSITY of WASHINGTON

Linguistic Knowledge and Transferability of Contextual Representations

Abstract

Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language. To shed light on the linguistic knowledge they capture, we study the representations produced by several recent pretrained contextualizers (variants of ELMo, the OpenAI transformer language model, and BERT) with a suite of sixteen diverse probing tasks. We find that linear models trained on ton of frozen contextual renre-

Nelson F. Liu^{\bigstar} **Matt Gardner**^{\bigstar} **Yonatan Belinkov**^{\diamond} Matthew E. Peters^{*} Noah A. Smith^{**} Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA ^(v)Department of Linguistics, University of Washington, Seattle, WA, USA Allen Institute for Artificial Intelligence, Seattle, WA, USA ^{\lambda}Harvard John A. Paulson School of Engineering and Applied Sciences and MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA {nfliu, nasmith}@cs.washington.edu {mattg,matthewp}@allenai.org, belinkov@seas.harvard.edu

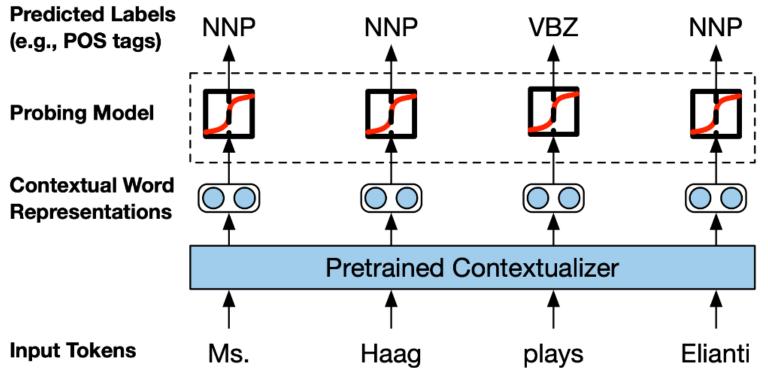


Figure 1: An illustration of the probing model setup used to study the linguistic knowledge within contextual word representations.

Tagging Results

Pretrained Representation		POS				Supersense ID					
round roprosontation	Avg.	CCG	PTB	EWT	Chunk	NER	ST	GED	PS-Role	PS-Fxn	EF
ELMo (original) best layer	81.58	93.31	97.26	95.61	90.04	82.85	93.82	29.37	75.44	84.87	73.20
ELMo (4-layer) best layer	81.58	93.81	97.31	95.60	89.78	82.06	94.18	29.24	74.78	85.96	73.03
ELMo (transformer) best layer	80.97	92.68	97.09	95.13	93.06	81.21	93.78	30.80	72.81	82.24	70.88
OpenAI transformer best layer	75.01	82.69	93.82	91.28	86.06	58.14	87.81	33.10	66.23	76.97	74.03
BERT (base, cased) best layer	84.09	93.67	96.95	95.21	92.64	82.71	93.72	43.30	79.61	87.94	75.11
BERT (large, cased) best layer	85.07	94.28	96.73	95.80	93.64	84.44	93.83	46.46	79.17	90.13	76.25
GloVe (840B.300d)	59.94	71.58	90.49	83.93	62.28	53.22	80.92	14.94	40.79	51.54	49.70
Previous state of the art (without pretraining)	83.44	94.7	97.96	95.82	95.77	91.38	95.15	39.83	66.89	78.29	77.10

Tagging Results

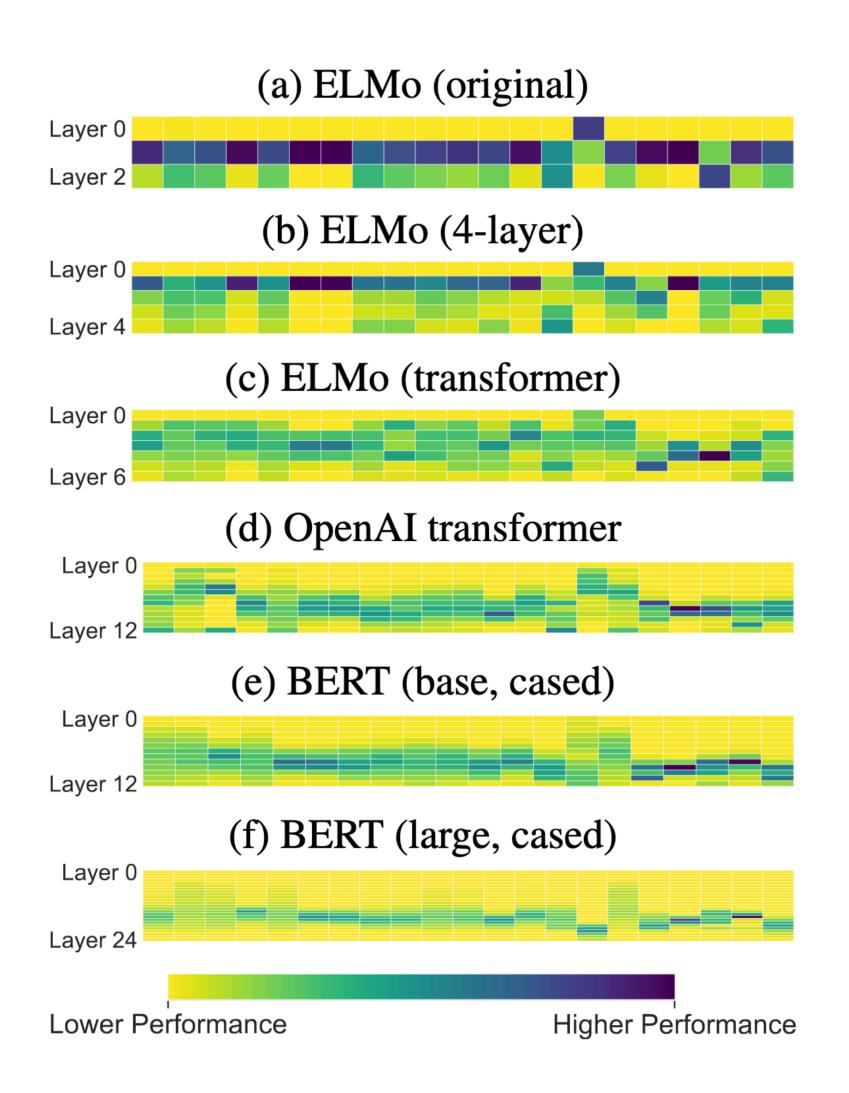
Pretrained Representation			PC	OS					Superse	ense ID	
	Avg.	CCG	PTB	EWT	Chunk	NER	ST	GED	PS-Role	PS-Fxn	EF
ELMo (original) best layer	81.58	93.31	97.26	95.61	90.04	82.85	93.82	29.37	75.44	84.87	73.20
ELMo (4-layer) best layer	81.58	93.81	97.31	95.60	89.78	82.06	94.18	29.24	74.78	85.96	73.03
ELMo (transformer) best layer	80.97	92.68	97.09	95.13	93.06	81.21	93.78	30.80	72.81	82.24	70.88
OpenAI transformer best layer	75.01	82.69	93.82	91.28	86.06	58.14	87.81	33.10	66.23	76.97	74.03
BERT (base, cased) best layer	84.09	93.67	96.95	95.21	92.64	82.71	93.72	43.30	79.61	87.94	75.11
BERT (large, cased) best layer	85.07	94.28	96.73	95.80	93.64	84.44	93.83	46.46	79.17	90.13	76.25
GloVe (840B.300d)	59.94	71.58	90.49	83.93	62.28	53.22	80.92	14.94	40.79	51.54	49.70
Previous state of the art (without pretraining)	83.44	94.7	97.96	95.82	95.77	91.38	95.15	39.83	66.89	78.29	77.10
Context matters!											

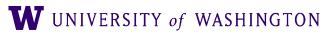
Coreference

D.5 Pairwise Relations (ELMo and OpenAI Transformer)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
PTBEWTPTBEWTELMo (original), Layer 078.2777.7382.0578.5270.6577.4872.8ELMo (original), Layer 189.0486.4696.1393.0187.7193.3171.3ELMo (original), Layer 288.3385.3494.7291.3286.4490.2268.4ELMo (original), Layer 078.0977.5782.1377.9969.9677.2273.5ELMo (4-layer), Layer 078.0977.5782.1377.9969.9677.2273.5ELMo (4-layer), Layer 188.7986.3196.2093.2087.1593.2772.9ELMo (4-layer), Layer 287.3384.7595.3891.8785.2990.5771.7ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Layer 487.6185.0994.1490.6885.8189.4568.3ELMo (t-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 188.2485.6289.1885.1690.6672.4ELMo (transformer), Layer 188.2483.6289.1885.1690.6672.4ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.09	
ELMo (original), Layer 189.0486.4696.1393.0187.7193.3171.3ELMo (original), Layer 288.3385.3494.7291.3286.4490.2268.4ELMo (original), Scalar Mix89.3086.5695.8191.6987.7993.1373.2ELMo (4-layer), Layer 078.0977.5782.1377.9969.9677.2273.5ELMo (4-layer), Layer 188.7986.3196.2093.2087.1593.2772.9ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Layer 487.6185.0994.1490.6885.8189.4568.3ELMo (transformer), Layer 078.1078.0995.8291.7787.3993.2573.8ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 188.2784.7294.1489.4086.0089.0471.8ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7485.3964.091	
ELMo (original), Layer 2 ELMo (original), Scalar Mix88.33 89.3085.34 85.5694.72 91.3291.32 86.4486.44 90.2290.22 68.44ELMo (original), Scalar Mix89.3086.5695.8191.6987.7993.1373.2ELMo (4-layer), Layer 078.0977.57 82.1382.1377.9969.9677.2273.5ELMo (4-layer), Layer 188.7986.3196.2093.2087.1593.2772.9ELMo (4-layer), Layer 2 ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Scalar Mix ELMo (4-layer), Scalar Mix ELMo (4-layer), Scalar Mix B8.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 078.1078.0481.0977.6770.1177.1172.5ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2492.5587.1384.7187.2166.3ELMo (transformer), Layer	.89
ELMo (original), Scalar Mix89.3086.5695.8191.6987.7993.1373.2ELMo (4-layer), Layer 078.0977.5782.1377.9969.9677.2273.5ELMo (4-layer), Layer 188.7986.3196.2093.2087.1593.2772.9ELMo (4-layer), Layer 287.3384.7595.3891.8785.2990.5771.7ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Layer 487.6185.0994.1490.6885.8189.4568.3ELMo (4-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 188.2485.4294.1489.4085.9791.2973.0ELMo (transformer), Layer 288.8784.7294.1489.4086.0089.0471.8ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Layer 687.2283.28 <td< td=""><td>.33</td></td<>	.33
ELMo (4-layer), Layer 0 78.09 77.57 82.13 77.99 69.96 77.22 73.5 ELMo (4-layer), Layer 1 88.79 86.31 96.20 93.20 87.15 93.27 72.9 ELMo (4-layer), Layer 2 87.33 84.75 95.38 91.87 85.29 90.57 71.7 ELMo (4-layer), Layer 3 86.74 84.17 95.06 91.55 84.44 90.04 70.1 ELMo (4-layer), Layer 4 87.61 85.09 94.14 90.68 85.81 89.45 68.3 ELMo (transformer), Layer 0 78.10 78.04 81.09 77.67 70.11 77.11 72.5 ELMo (transformer), Layer 1 82.4 85.48 93.62 89.18 85.16 90.66 72.4 ELMo (transformer), Layer 3 89.01 84.62 94.07 89.17 86.83 90.35 72.6 ELMo (transformer), Layer 3 89.01 84.62 94.07 89.17 86.83 90.35 72.6 ELMo (transformer), Layer 4<	.46
ELMo (4-layer), Layer 188.7986.3196.2093.2087.1593.2772.9ELMo (4-layer), Layer 287.3384.7595.3891.8785.2990.5771.7ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Layer 487.6185.0994.1490.6885.8189.4568.3ELMo (4-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 078.1078.0481.0977.6770.1177.1172.5ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 288.8784.7294.1489.4085.9791.2973.0ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 382.6782.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 382.6793.12<	.24
ELMo (4-layer), Layer 287.3384.7595.3891.8785.2990.5771.7ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Layer 487.6185.0994.1490.6885.8189.4568.3ELMo (4-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 078.1078.0481.0977.6770.1177.1172.5ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2587.1384.7187.2166.3ELMo (transformer), Layer 787.0283.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 382.6782.7881.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 786.3282.7793.12	.57
ELMo (4-layer), Layer 386.7484.1795.0691.5584.4490.0470.1ELMo (4-layer), Layer 487.6185.0994.1490.6885.8189.4568.3ELMo (4-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 078.1078.0481.0977.6770.1177.1172.5ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 288.8784.7294.1489.4085.9791.2973.0ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer, Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer, Layer 780.8079.1083.3580.3276.3980.5072.5OpenAl transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAl transformer, Layer 382.8781.2190.3481.9590.2576.0OpenAl transformer, Layer 483.6982.0793.	.93
ELMo (4-layer), Layer 487.6185.0994.1490.6885.8189.4568.3ELMo (4-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 078.1078.0481.0977.6770.1177.1172.5ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 288.8784.7294.1489.4085.9791.2973.0ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.53 <td>78</td>	78
ELMo (4-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 078.1078.0481.0977.6770.1177.1172.5ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 288.8784.7294.1489.4085.9791.2973.0ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4	.11
ELMo (4-layer), Scalar Mix88.9885.9495.8291.7787.3993.2573.8ELMo (transformer), Layer 078.1078.0481.0977.6770.1177.1172.5ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 288.8784.7294.1489.4085.9791.2973.0ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.47 <td>.36</td>	.36
ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 288.8784.7294.1489.4085.9791.2973.0ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 786.	88
ELMo (transformer), Layer 188.2485.4893.6289.1885.1690.6672.4ELMo (transformer), Layer 288.8784.7294.1489.4085.9791.2973.0ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 786.	.50
ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.	.47
ELMo (transformer), Layer 389.0184.6294.0789.1786.8390.3572.6ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.	.03
ELMo (transformer), Layer 488.5585.6294.1489.0086.0089.0471.8ELMo (transformer), Layer 588.0983.2392.7088.8485.7989.6671.6ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086	.62
ELMo (transformer), Layer 687.2283.2892.5587.1384.7187.2166.3ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0 <td>.80</td>	.80
ELMo (transformer), Scalar Mix90.7486.3996.4091.0689.1894.3575.5OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.62
OpenAI transformer, Layer 080.8079.1083.3580.3276.3980.5072.5OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.35
OpenAI transformer, Layer 181.9179.9988.2284.5177.7083.8875.2OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.52
OpenAI transformer, Layer 282.5680.2289.3485.9978.4785.8575.7OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	58
OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.23
OpenAI transformer, Layer 382.8781.2190.8987.6778.9187.7675.8OpenAI transformer, Layer 483.6982.0792.2189.2480.5189.5975.9OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.77
OpenAI transformer, Layer 584.5382.7793.1290.3481.9590.2576.0OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.81
OpenAI transformer, Layer 685.4783.8993.7190.6383.8890.9974.4OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.99
OpenAI transformer, Layer 786.3284.1593.9590.8285.1591.1874.0OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	05
OpenAI transformer, Layer 886.8484.0694.1691.0285.2390.8674.2OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	43
OpenAI transformer, Layer 987.0084.4793.9590.7785.9590.8574.5OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.05
OpenAI transformer, Layer 1086.7684.2893.4090.2685.1789.9473.8OpenAI transformer, Layer 1185.8483.4292.8289.0783.3988.4672.0	.20
OpenAI transformer, Layer 11 85.84 83.42 92.82 89.07 83.39 88.46 72.0	.57
	86
Open A L transformer Levier 12 95.06 92.02 02.27 90.09 91.99 97.47 70.4	.03
OpenAI transformer, Layer 12 85.06 83.02 92.37 89.08 81.88 87.47 70.4	.44
OpenAI transformer, Scalar Mix 87.18 85.30 94.51 91.55 86.13 91.55 76.4	47
GloVe (840B.300d) 74.14 73.94 77.54 72.74 68.94 71.84 72.9	.96

Table 9: Pairwise relation task performance of a linear probing model trained on top of the ELMo and OpenAI contextualizers, compared against a GloVe-based probing baseline.


No significant improvement over global embedding baseline [BERT does a bit better, so bidirectionality seems to matter]



Layer-wise Prediction

(each column is a different task)

Effect of Pretraining Task

Pretraining Task	Targ	Layer A et Task	
	0	1	2
CCG	56.70	64.45	63.7
Chunk	54.27	62.69	63.2
POS	56.21	63.86	64.1
Parent	54.57	62.46	61.6
GParent	55.50	62.94	62.9
GGParent	54.83	61.10	59.8
Syn. Arc Prediction	53.63	59.94	58.6
Syn. Arc Classification	56.15	64.41	63.6
Sem. Arc Prediction	53.19	54.69	53.0
Sem. Arc Classification	56.28	62.41	61.4
Conj	50.24	49.93	48.4
BiLM	66.53	65.91	65.8
GloVe (840B.300d)		60	.55
Untrained ELMo (original)	52.14	39.26	39.3
ELMo (original) (BiLM on 1B Benchmark)	64.40	79.05	77.7

- Ige ormance
- Mix
- 71 66.06
- 25 63.96 5 65.13
- 67 64.31
- 91 64.96
- 84 63.81
- 62 62.43
- 60 66.07
- 04 59.84
- 47 64.67
- 42 56.92
- 66.49
- 39 54.42
- 72 78.90

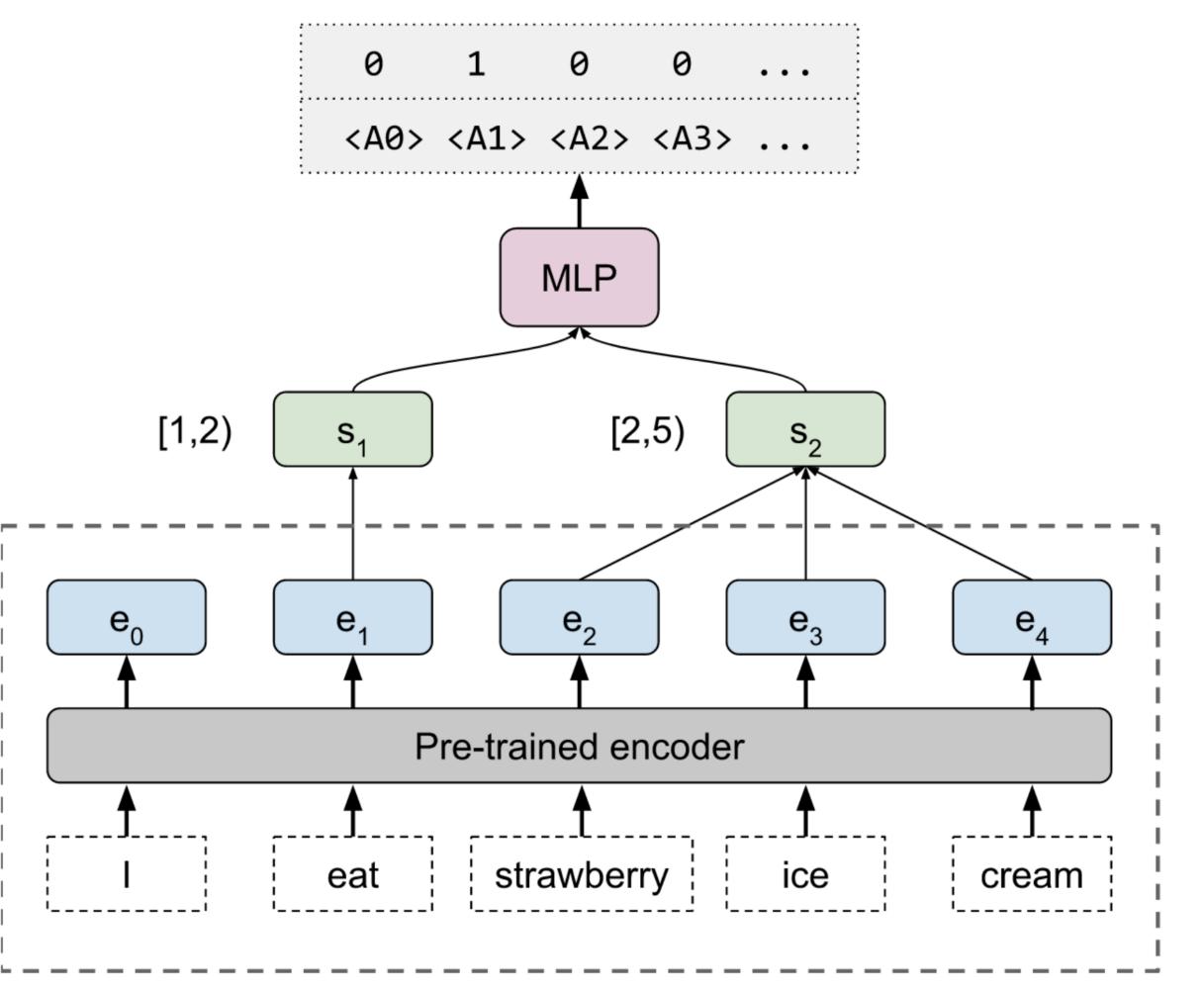
- See also:
 - Zhang and Bowman 2018
 - Peters et al 2018b
 - Blevins et al 2018

WHAT DO YOU LEARN FROM CONTEXT? PROBING FOR SENTENCE STRUCTURE IN CONTEXTUALIZED WORD REPRESENTATIONS

Ian Tenney,^{*1} Patrick Xia,² Berlin Chen,³ Alex Wang,⁴ Adam Poliak,² **Dipanjan Das**,¹ and Ellie Pavlick^{1,5}

¹Google AI Language, ²Johns Hopkins University, ³Swarthmore College, ⁴New York University, ⁵Brown University

ABSTRACT


Contextualized representation models such as ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2018) have recently achieved state-of-the-art results on a diverse array of downstream NLP tasks. Building on recent token-level probing work, we introduce a novel *edge probing* task design and construct a broad suite of sub-sentence tasks derived from the traditional structured NLP pipeline. We probe word-level contextual representations from four recent models and investigate how they encode sentence structure across a range of syntactic, semantic, local, and long-range phenomena. We find that existing models trained on language modeling and translation produce strong representations for syntactic phenomena, but only offer comparably small improvements on semantic tasks over a non-contextual baseline.

R. Thomas McCoy,² Najoung Kim,² Benjamin Van Durme,² Samuel R. Bowman,⁴

Edge Probing Set-up

Labels

Binary classifiers

Span representations

Contextual vectors

Input tokens

	CoVe			ELMo			GPT		
	Lex.	Full	Abs. Δ	Lex.	Full	Abs. Δ		. cat	mix
Part-of-Speech	85.7	94.0	8.4	90.4	96.7	6.3	8 88.	2 94.9	95.0
Constituents	56.1	81.6	25.4	69.1	84.6	15.4	65.	1 81.3	84.6
Dependencies	75.0	83.6	8.6	80.4	93.9	13.6	5 77.'	7 92.1	94.1
Entities	88.4	90.3	1.9	92.0	95.6	3.5	88.	6 92.9	92.5
SRL (all)	59.7	80.4	20.7	74.1	90.1	16.0) 67.'	7 86.0	89.7
Core roles	56.2	81.0	24.7	73.6	<i>92.6</i>	19.0) 65.	1 88.0	92.0
Non-core roles	67.7	78.8	11.1	75.4	84.1	8.8	8 73.	9 81.3	<i>84.1</i>
OntoNotes coref.	72.9	79.2	6.3	75.3	84.0	8.7	/ 71.	8 83.6	86.3
SPR1	73.7	77.1	3.4	80.1	84.8	4.7	/ 79.	2 83.5	83.1
SPR2	76.6	80.2	3.6	82.1	83.1	1.0	82.2	2 83.8	83.5
Winograd coref.	52.1	54.3	2.2	54.3	53.5	-0.8	51.	7 52.6	53.8
Rel. (SemEval)	51.0	60.6	9.6	55.7	77.8	22.1	58.	2 81.3	81.0
Macro Average	69.1	78.1	9.0	75.4	84.4	9.1	73.	0 83.2	84.4
		BEF	RT-base		BERT-large				
	I	F1 Scor	e A	bs. Δ]	F1 Score		Abs.	Δ
	Lex.	cat	mix	ELMo	Lex.	cat	mix	(base)	ELMo
Part-of-Speech	88.4	97.0	96.7	0.0	88.1	96.5	96.9	0.2	0.2
Constituents	68.4	83.7	86.7	2.1	69.0	80.1	87.0	0.4	2.5
Dependencies	80.1	93.0	95.1	1.1	80.2	91.5	95.4	0.3	1.4
Entities	90.9	96.1	96.2	0.6	91.8	96.2	96.5	0.3	0.9
SRL (all)	75.4	89.4	91.3	1.2	76.5	88.2	92.3	1.0	2.2
Core roles	74.9	91.4	93.6	1.0	76.3	<i>89.9</i>	94.6	1.0	2.0
Non-core roles	76.4	84.7	85.9	1.8	76.9	84.1	86.9	1.0	2.8
OntoNotes coref.	74.9	88.7	90.2	6.3	75.7	89.6	91.4	1.2	7.4
SPR1	79.2	84.7	86.1	1.3	79.6	85.1	85.8	-0.3	1.0
SPR2	81.7	83.0	83.8	0.7	81.6	83.2	84.1	0.3	1.0
Winograd coref.	54.3	53.6	54.9	1.4	53.0	53.8	61.4	6.5	7.8
Rel. (SemEval)	57.4	78.3	82.0	4.2	56.2	77.6	82.4	0.5	4.6
	1								

Results

Conclusion

• "in general, contextualized embeddings improve over their nonthat these embeddings encode syntax more so than higher-level semantics"

contextualized counterparts largely on syntactic tasks (e.g. constituent labeling) in comparison to semantic tasks (e.g. coreference), suggesting

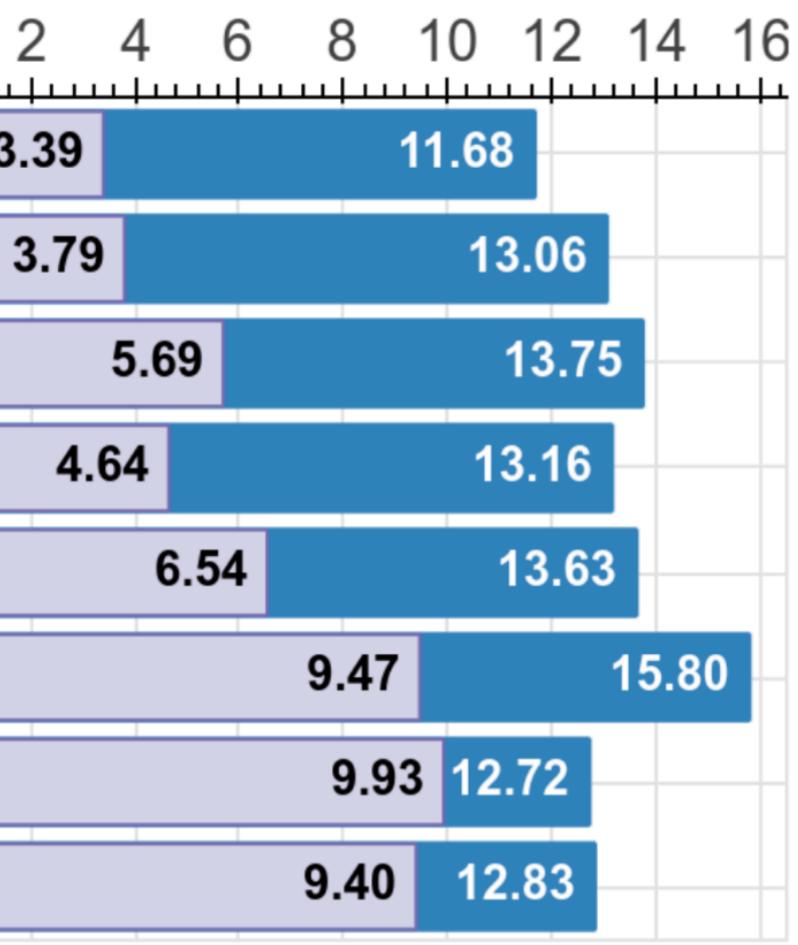
BERT Rediscovers the Classical NLP Pipeline

Dipanjan Das¹ Ellie Pavlick^{1,2} Ian Tenney¹ ¹Google Research ²Brown University {iftenney, dipanjand, epavlick}@google.com

Abstract

Pre-trained text encoders have rapidly advanced the state of the art on many NLP tasks. We focus on one such model, BERT, and aim to quantify where linguistic information is captured within the network. We find that the model represents the steps of the traditional NLP pipeline in an interpretable and localizable way, and that the regions responsible for each step appear in the expected sequence: POS tagging, parsing, NER, semantic roles, then coreference. Qualitative analysis reveals that the model can and often does adjust this pipeline dynamically, revising lowerlevel decisions on the basis of disambiguating information from higher-level representations.

of the network directly, to assess whether there exist localizable regions associated with distinct types of linguistic decisions. Such work has produced evidence that deep language models can encode a range of syntactic and semantic information (e.g. Shi et al., 2016; Belinkov, 2018; Tenney et al., 2019), and that more complex structures are represented hierarchically in the higher layers of the model (Peters et al., 2018b; Blevins et al., 2018).


We build on this latter line of work, focusing on the BERT model (Devlin et al., 2019), and use a suite of probing tasks (Tenney et al., 2019) derived from the traditional NLP pipeline to quantify where specific types of linguistic information are

	F1 So		E	
	<i>l</i> =0	ℓ=24	0	
POS	88.5	96.7		3
Consts.	73.6	87.0		
Deps.	85.6	95.5		
Entities	90.6	96.1		
SRL	81.3	91.4		
Coref.	80.5	91.9		
SPR	77.7	83.7		
Relations	60.7	84.2		

Expected layer & center-of-gravity

 \mathbf{W} university of washington

Is it in the probe or the representation?

John Hewitt Stanford University

Designing and Interpreting Probes with Control Tasks

Percy Liang Stanford University johnhew@stanford.edu pliang@cs.stanford.edu

Is it in the probe or the representation?

John Hewitt

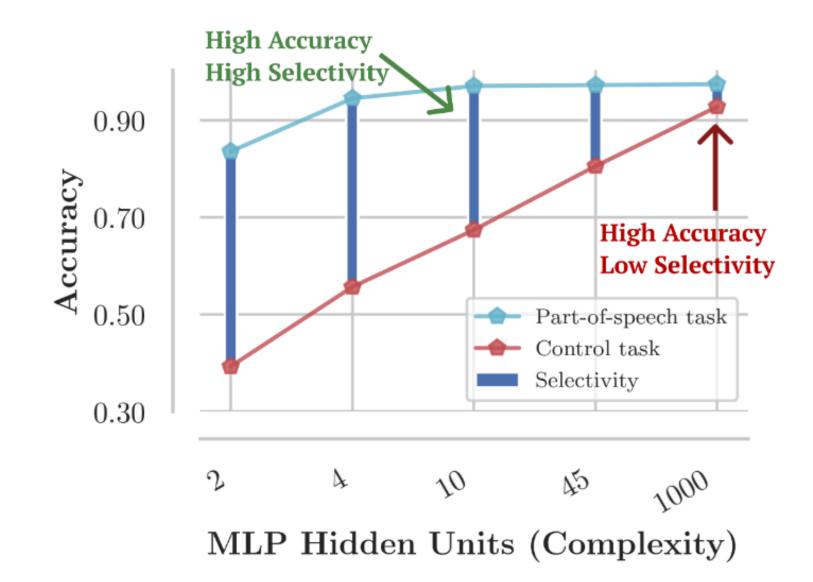
Stanford University

Control Task Vocab	3	10 ra The	an 37 cat	15 quick dog	kly
Sentence 1	The	cat	ran	quickly	
Part-of-speech	DT	NN	VBD	RB	
Control task	10	37	10	15	3
Sentence 2	The	dog	ran	after	!
Part-of-speech	DT	NŇ	VBD	IN	
Control task	10	15	10	42	42

Designing and Interpreting Probes with Control Tasks

Percy Liang Stanford University johnhew@stanford.edu pliang@cs.stanford.edu

Is it in the probe or the representation?


Designing and Interpreting Probes with Control Tasks

John Hewitt

Stanford University johnhew@stanford.edu

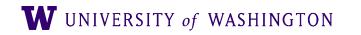
Control Task Vocab	3	10 ra The	an 37 cat	15 quick dog	kly
Sentence 1	The	cat	ran	quickly	
Part-of-speech	DT	NN	VBD	RB	
Control task	10	37	10	15	3
Sentence 2	The	dog	ran	after	!
Part-of-speech	DT	NŇ	VBD	IN	
Control task	10	15	10	42	42

Percy Liang Stanford University pliang@cs.stanford.edu

Summary

- Use simple classifiers to see what can be extracted from a model's representations.
- Some clear trends:
 - Contextualized representations have more info than global ones (GloVe e.g.)
 - Especially for syntax
 - Layer-wise: early recurrent layers are more transferrable, less clear on Transformers
 - Language modeling a very good task for building transferrable representations
- Note: this is a rather easy method to use, so do consider it! I'll demo the method in 2 weeks.

Outline


- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

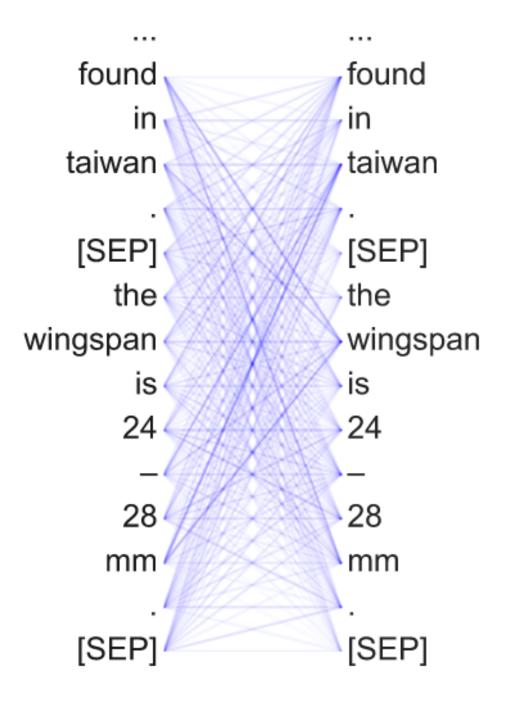
Attention-based

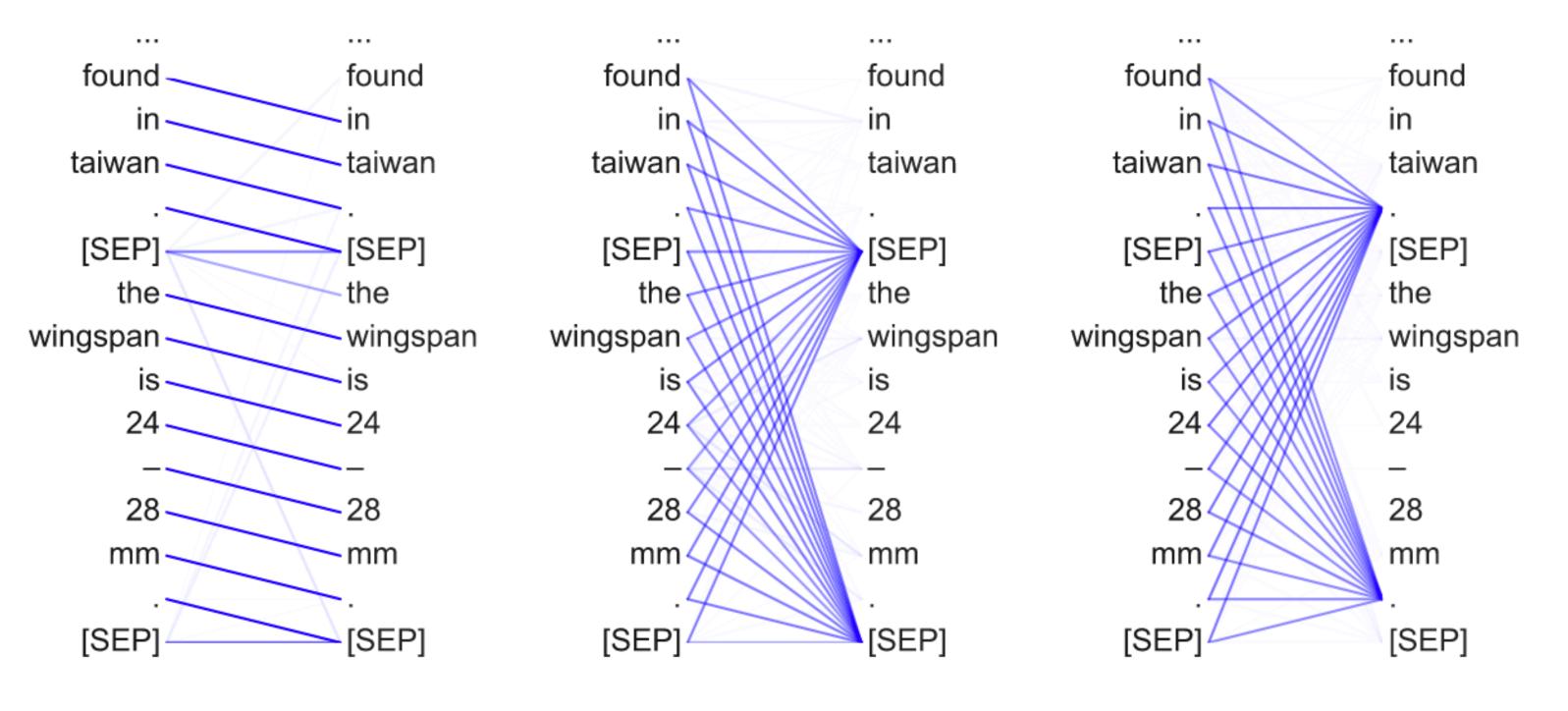
What does BERT look at? **An Analysis of BERT's Attention**

Kevin Clark[†] Urvashi Khandelwal[†] **Omer Levy**[‡] **Christopher D. Manning[†]** [†]Computer Science Department, Stanford University [‡]Facebook AI Research {kevclark,urvashik,manning}@cs.stanford.edu omerlevy@fb.com

Abstract

Large pre-trained neural networks such as BERT have had great recent success in NLP, motivating a growing body of research investigating what aspects of language they are able to learn from unlabeled data. Most recent analysis has focused on model outputs (e.g., lanstudy¹ the *attention maps* of a pre-trained model. Attention (Bahdanau et al., 2015) has been a highly successful neural network component. It is naturally interpretable because an attention weight has a clear meaning: how much a particular word will be weighted when computing the next representation for the current word. Our analysis fo-



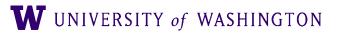


Qualitative Patterns

Head 1-1 Attends broadly

Head 3-1 Attends to next token

Head 8-7 Attends to [SEP]


Head 11-6 Attends to periods

Attention Head as Classifier

- No new training required
- Do any of these work for pairwise classification tasks "off-the-shelf"?

Attention Head as Classifier

No new training required

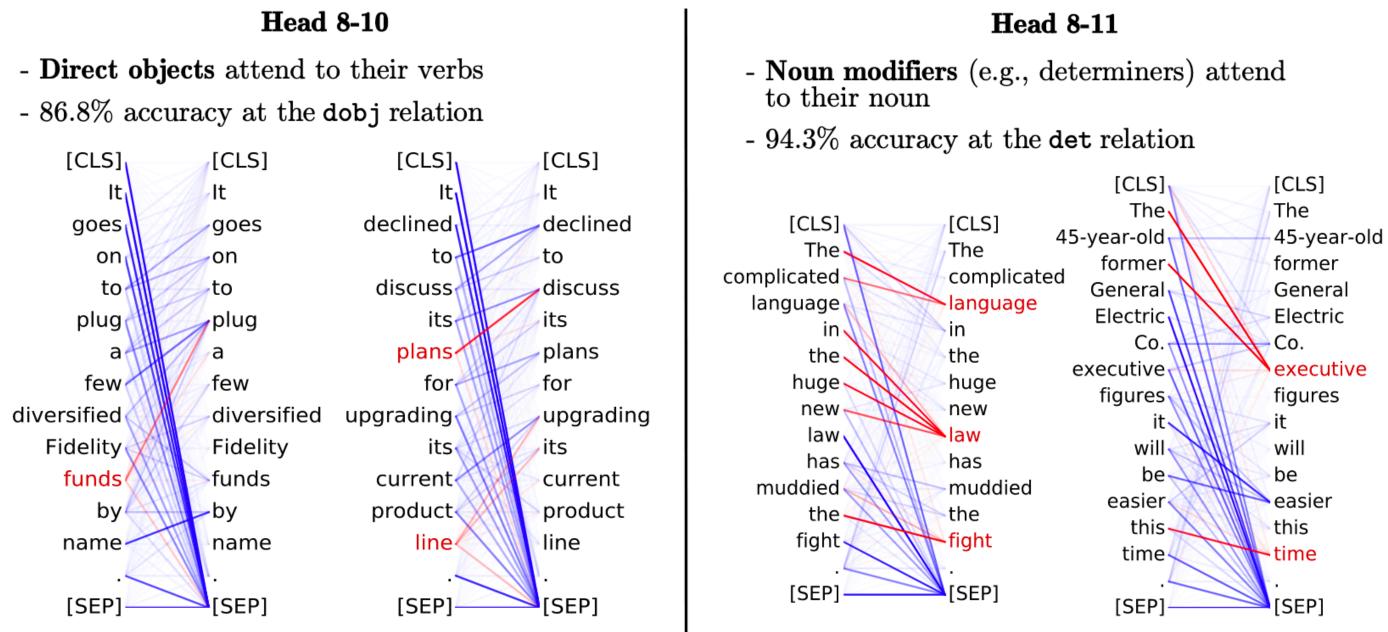
• Do any of these work for pairwise classification tasks "off-the-shelf"?

- $\alpha_i = q \cdot k_i$ $e_j = e^{\alpha_j} / \sum_j e^{\alpha_j}$
- $c = \sum_{i} e_{i} v_{i}$
- $class(q) = \arg\max_{i} \alpha_{j}$

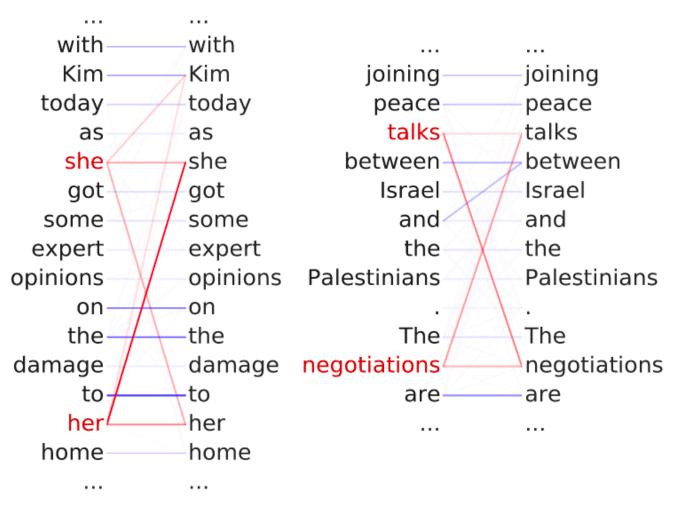
Dependency Parsing

Relation	Head	Accuracy	Baseline
All	7-6	34.5	26.3 (1)
prep	7-4	66.7	61.8 (-1)
pobj	9-6	76.3	34.6 (-2)
det	8-11	94.3	51.7 (1)
nn	4-10	70.4	70.2 (1)
nsubj	8-2	58.5	45.5 (1)
amod	4-10	75.6	68.3 (1)
dobj	8-10	86.8	40.0 (-2)
advmod	7-6	48.8	40.2 (1)
aux	4-10	81.1	71.5 (1)
poss	7-6	80.5	47.7 (1)
auxpass	4-10	82.5	40.5 (1)
ccomp	8-1	48.8	12.4 (-2)
mark	8-2	50.7	14.5 (2)
prt	6-7	99.1	91.4 (-1)

Coreference


Model	All	Pronoun	Proper	Nominal
Nearest	27	29	29	19
Head-word	52	47	67	40
match				
Rule-based	69	70	77	60
Neural coref	83*			_
Head 5-4	65	64	73	58

*Only roughly comparable because on non-truncated documents and with different mention detection.



Examples

Head 5-4

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a coreferent mention to the head of an antecedent

Revealing the Dark Secrets of BERT

Abstract

BERT-based architectures currently give stateof-the-art performance on many NLP tasks, but little is known about the exact mechanisms that contribute to its success. In the current work, we focus on the interpretation of selfattention, which is one of the fundamental underlying components of BERT. Using a subset of GLUE tasks and a set of handcrafted features-of-interest, we propose the methodology and carry out a qualitative and quantita-

Olga Kovaleva, Alexey Romanov, Anna Rogers, Anna Rumshisky

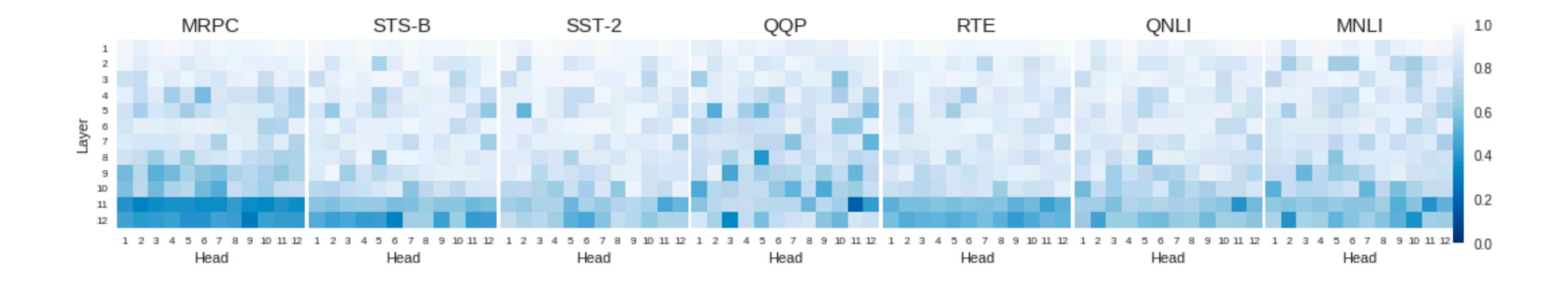
Department of Computer Science University of Massachusetts Lowell Lowell, MA 01854 {okovalev,arum,aromanov}@cs.uml.edu

> State-of-the-art performance is usuinference. ally obtained by fine-tuning the pre-trained model on the specific task. In particular, BERT-based models are currently dominating the leaderboards for SQuAD¹ (Rajpurkar et al., 2016) and GLUE benchmarks² (Wang et al., 2018).

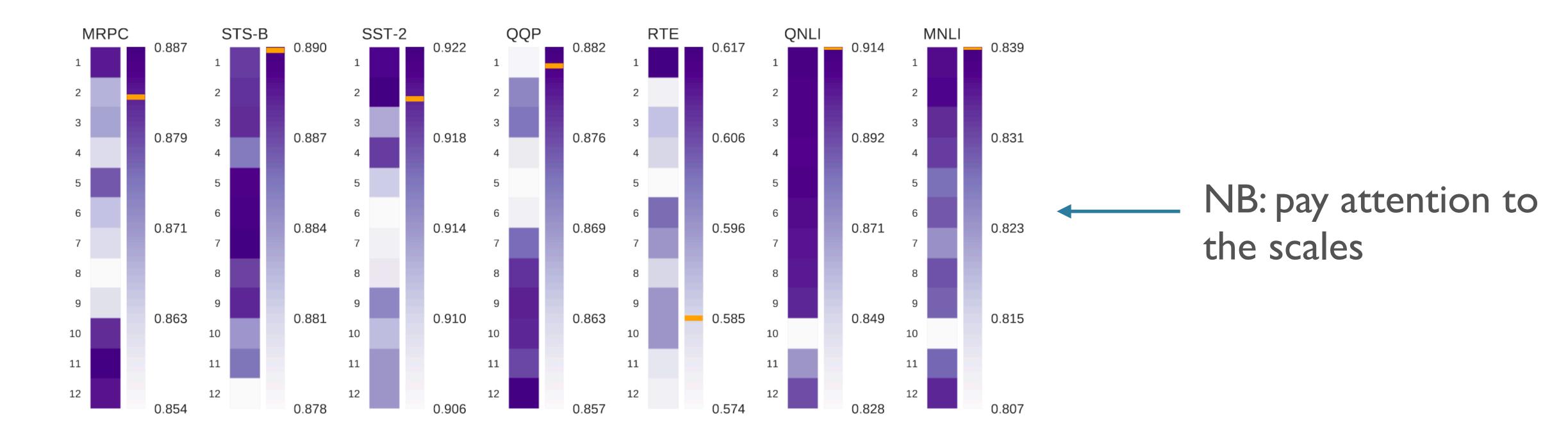
> However, the exact mechanisms that contribute to the BERT's outstanding performance still remain unclear. We address this problem through selecting a set of linguistic features of interest and

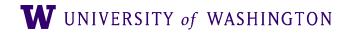
Overall

- Same observation as previous: many heads only pay attention to [SEP] and [CLS] tokens
- Changes in attention before and after fine-tuning
- Pruning some heads can actually improve performance (see also Voita et <u>al</u> on the original Transformer)


Dataset	Pre-trained	Fine-tuned, in normal distr.	itialized with pre-trained	Metric	Size
	0/21.6		•		5 OV
MRPC	0/31.6	81.2/68.3	87.9/82.3	F1/Acc	5.8K
STS-B	33.1	2.9	82.7	Acc	8.6K
SST-2	49.1	80.5	92	Acc	70K
QQP	0/60.9	0/63.2	65.2/78.6	F1/Acc	400K
RTE	52.7	52.7	64.6	Acc	2.7K
QNLI	52.8	49.5	84.4	Acc	130K
MNLI-m	31.7	61.0	78.6	Acc	440K

Effect of Fine-tuning


Effect of fine-tuning on attention

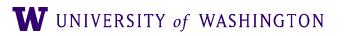


Pruning all attention in a layer

Summary

- Sometimes, attention heads seem to encode some linguistically interesting properties
 - But there appears to be lots of redundancy
 - And there's much more terrain to explore here
- As before: we can ask if property P can be found in attention, but not what role (independently of a hypothesis) a head is playing
- For the curious: ongoing debate about the connection between attention and model predictions (not as applied to LMs yet): <u>Attention is not</u> explanation; Attention is not not explanation

Outline


- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

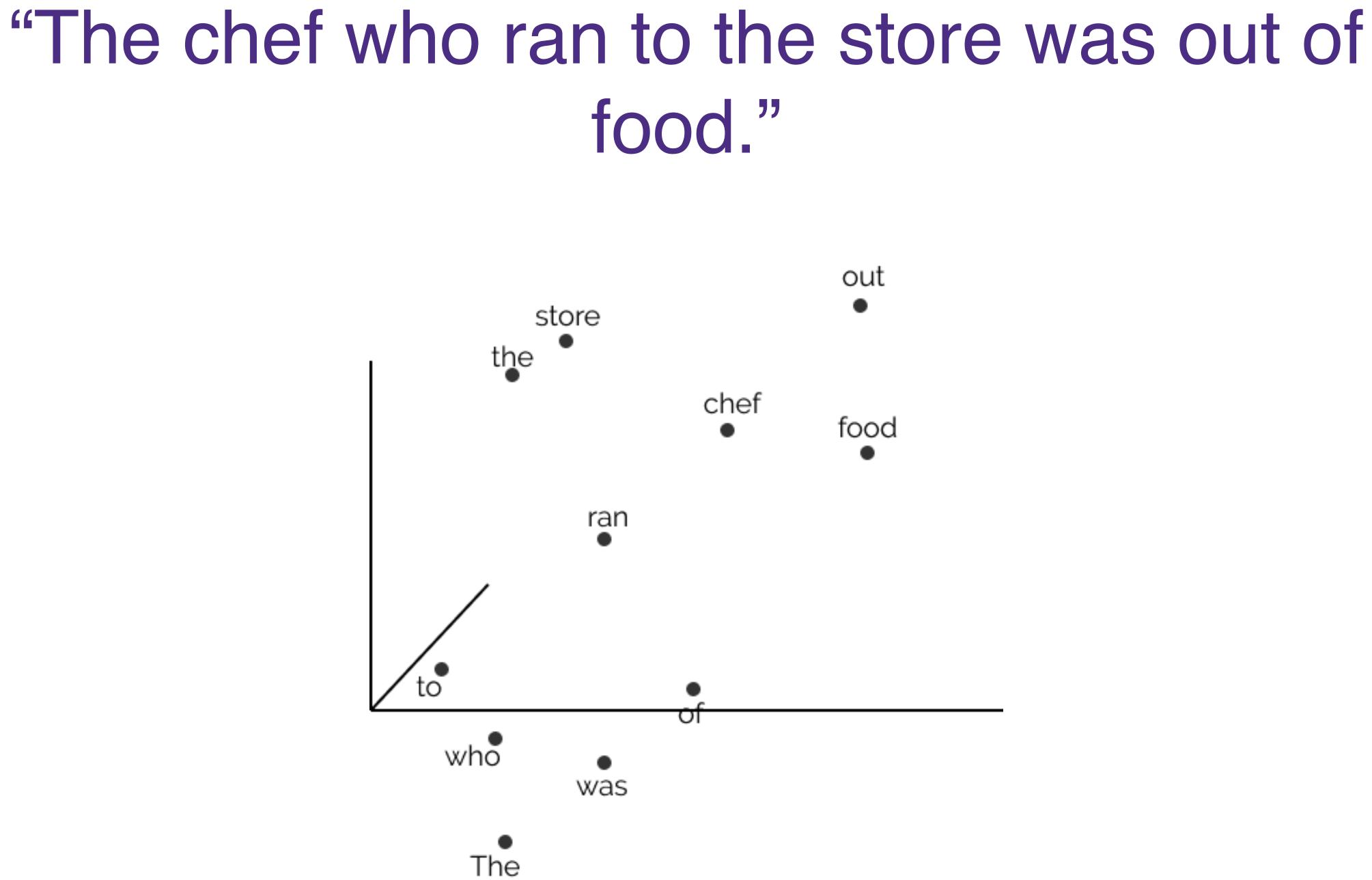
Other methods

A Structural Probe for Finding Syntax in Word Representations

John Hewitt Stanford University johnhew@stanford.edu

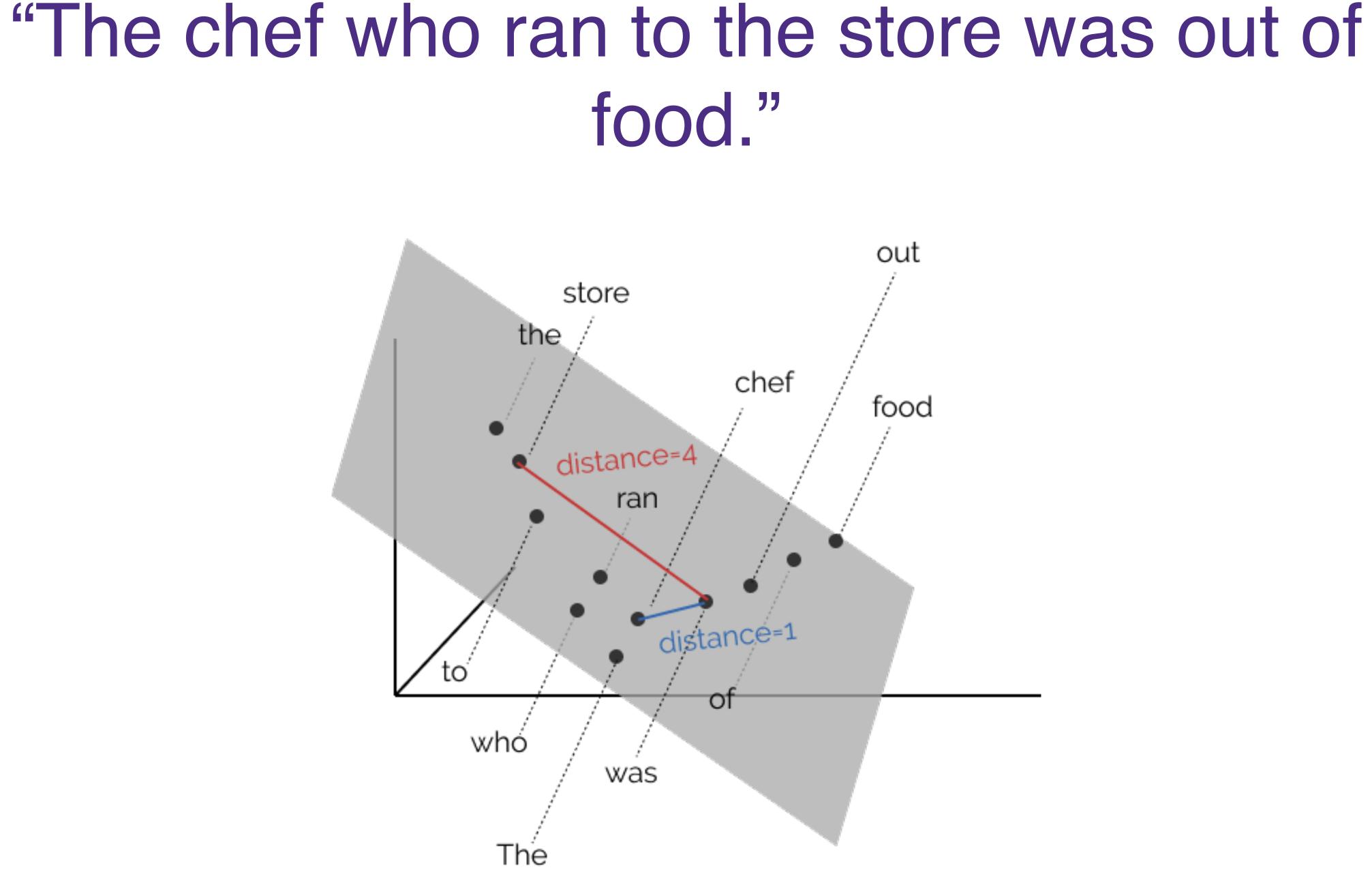
Abstract

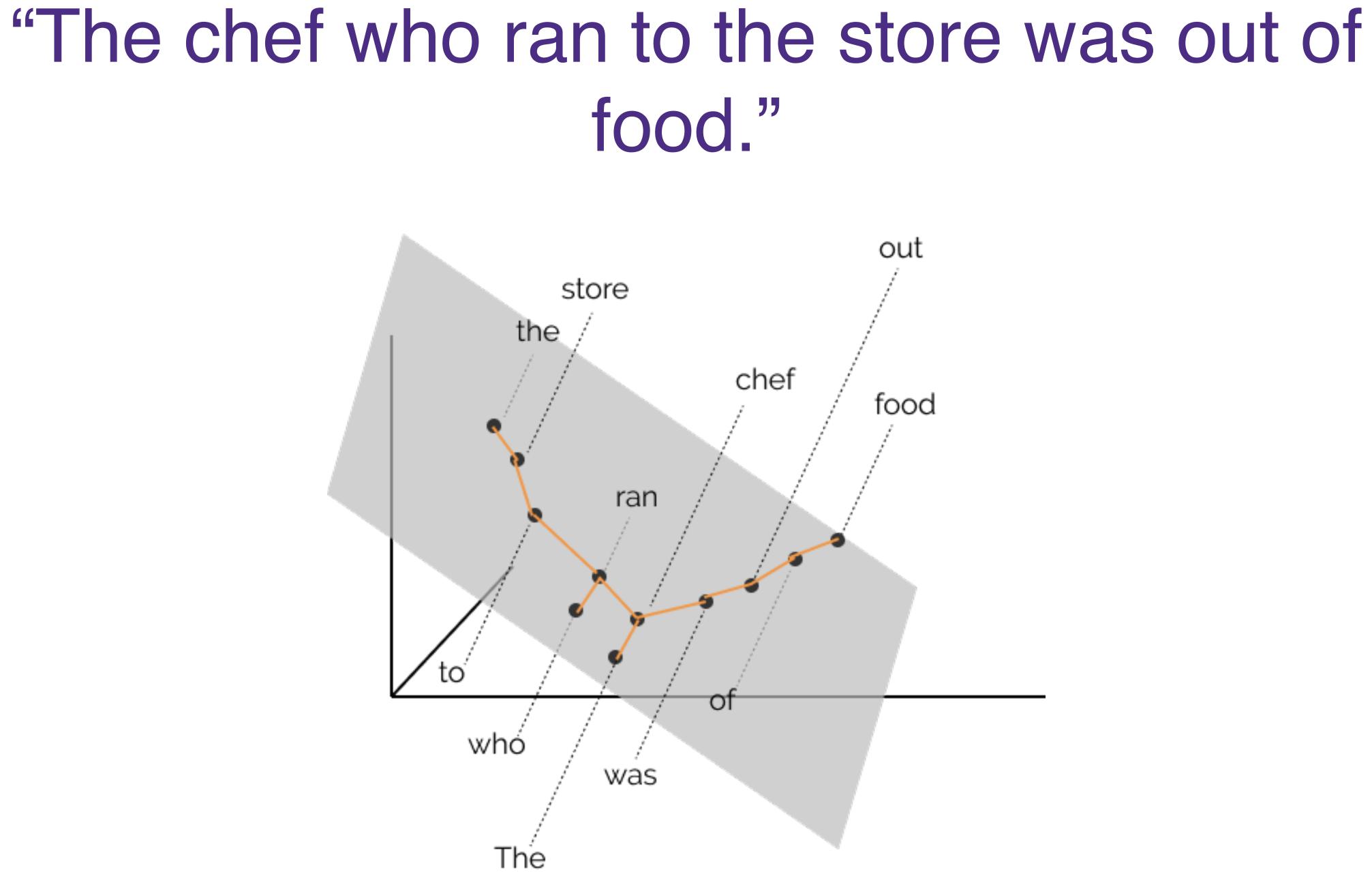
Recent work has improved our ability to detect linguistic knowledge in word representations. However, current methods for detecting syntactic knowledge do not test whether syntax trees are represented in their entirety. In this work, we propose a structural probe, which evaluates whether syntax trees are embedded in a linear transformation of a neural network's word representation space. The probe identifies a linear transformation under which squared L2 distance encodes the distance between words in the parse tree, and one in which squared L2 norm encodes depth in the parse tree. Using our probe, we show

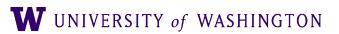

Christopher D. Manning Stanford University manning@stanford.edu

In this work, we propose a structural probe, a simple model which tests whether syntax trees are consistently embedded in a linear transformation of a neural network's word representation space. Tree structure is embedded if the transformed space has the property that squared L2 distance between two words' vectors corresponds to the number of edges between the words in the parse tree. To reconstruct edge directions, we hypothesize a linear transformation under which the squared L2 norm corresponds to the depth of the word in the parse tree. Our probe uses supervision to find the transformations under which these properties are best approximated for each model. If such transfor-

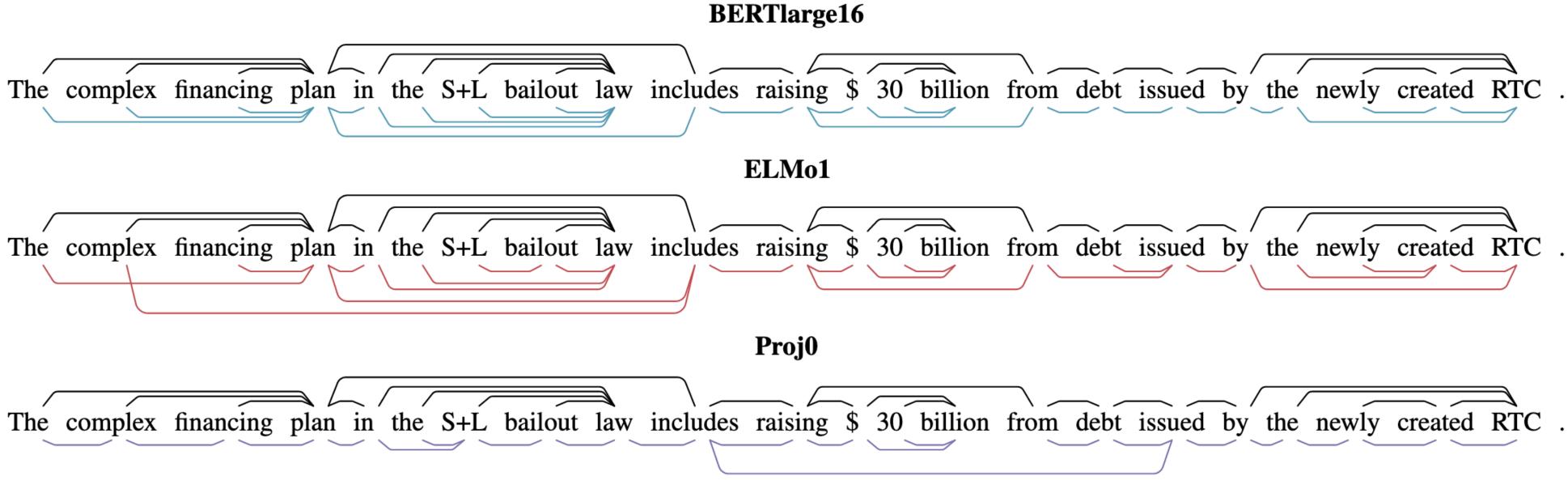
Hewitt and Manning 2019 blog post







Results


	Dista	ance	Depth		
Method	UUAS	DSpr.	Root%	NSpr.	
LINEAR	48.9	0.58	2.9	0.27	
ELM00	26.8	0.44	54.3	0.56	
DECAY0	51.7	0.61	54.3	0.56	
Proj0	59.8	0.73	64.4	0.75	
ELM01	77.0	0.83	86.5	0.87	
BERTBASE7	79.8	0.85	88.0	0.87	
BERTLARGE15	82.5	0.86	89.4	0.88	
BERTLARGE16	81.7	0.87	90.1	0.89	

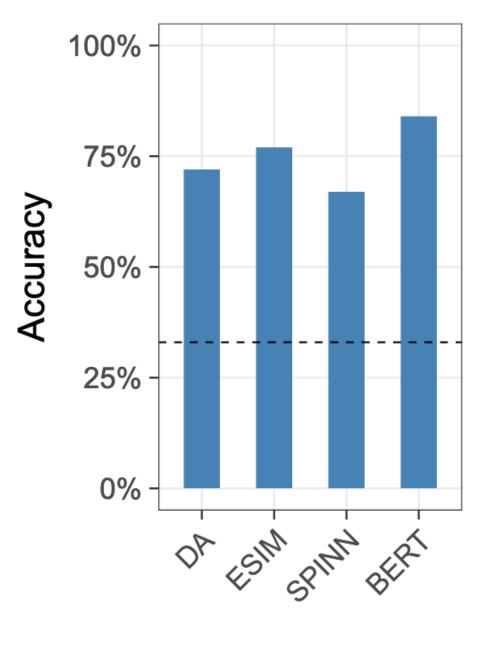
[SOTA: directed UAS >97%]

Examples

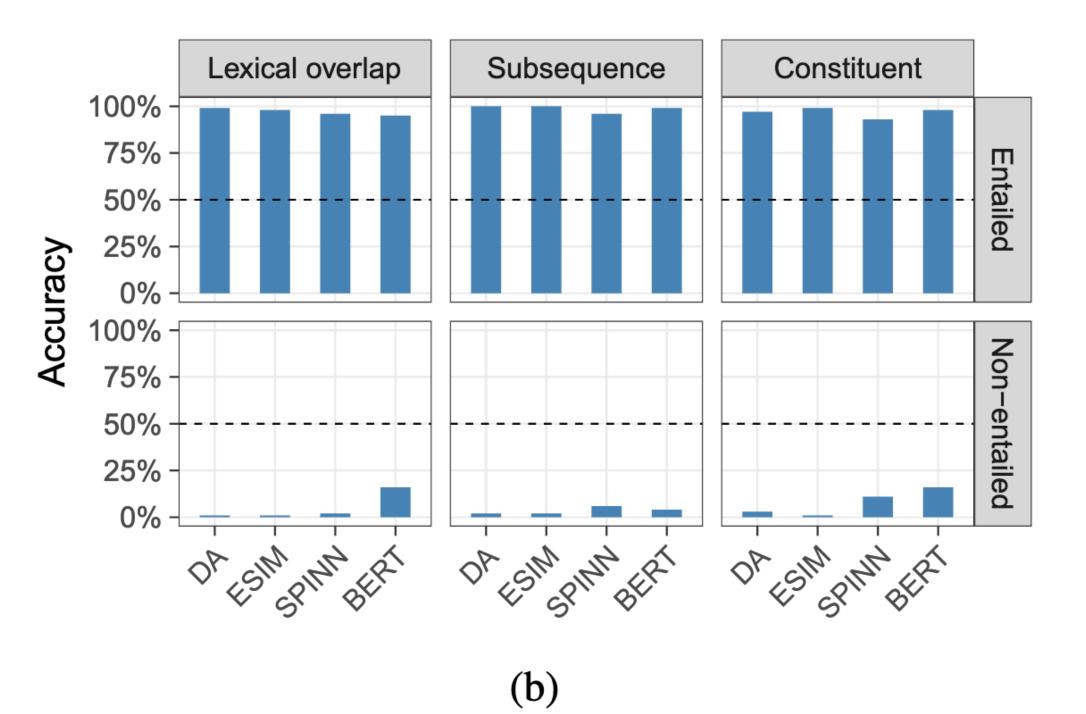
Black = gold parse. Model parses: Maximum Spanning Tree from distances in transformed space.

Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference

R. Thomas McCoy,¹ Ellie Pavlick,² & Tal Linzen¹ ¹Department of Cognitive Science, Johns Hopkins University ²Department of Computer Science, Brown University tom.mccoy@jhu.edu, ellie_pavlick@brown.edu, tal.linzen@jhu.edu

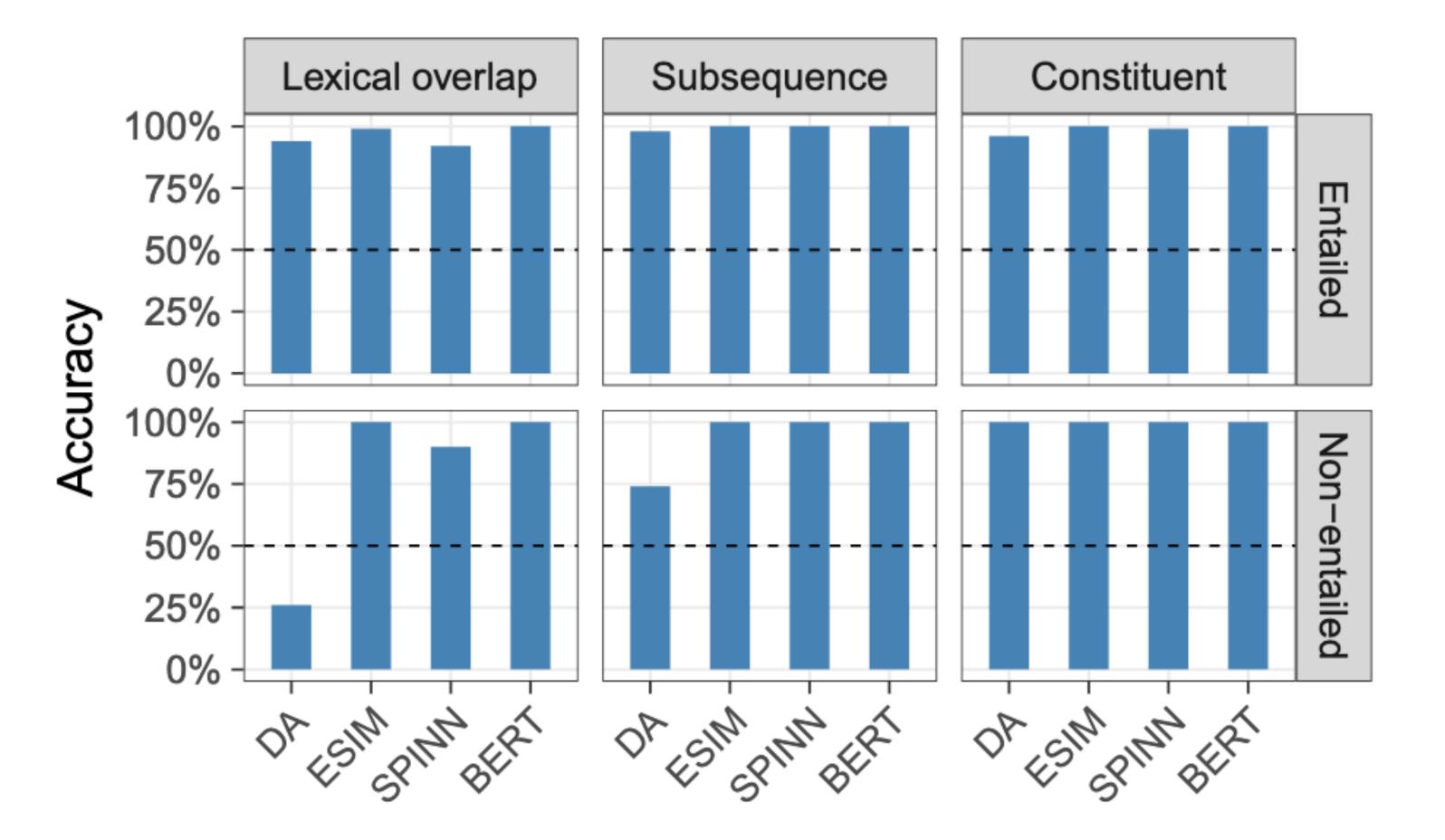


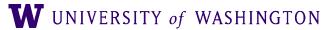
Heuristic	Premise	Hypothesis	Label
Lexical	The banker near the judge saw the actor.	The banker saw the actor.	E
overlap	The lawyer was advised by the actor.	The actor advised the lawyer.	E
heuristic	The doctors visited the lawyer.	The lawyer visited the doctors.	Ν
	The judge by the actor stopped the banker.	The banker stopped the actor.	Ν
Subsequence	The artist and the student called the judge.	The student called the judge.	E
heuristic	Angry tourists helped the lawyer.	Tourists helped the lawyer.	E
	The judges heard the actors resigned.	The judges heard the actors.	Ν
	The senator near the lawyer danced.	The lawyer danced.	Ν
Constituent	Before the actor slept, the senator ran.	The actor slept.	E
heuristic	The lawyer knew that the judges shouted.	The judges shouted.	E
	If the actor slept, the judge saw the artist.	The actor slept.	Ν
	The lawyers resigned, or the artist slept.	The artist slept.	Ν



(a)

(performance improves if fine-tuned on this challenge set)


Results



Fine-tuning augmented with examples

Conclusion

- Solving a dataset != solving a task
 - Models are very powerful, can be very "clever"
 - Adopt heuristics that exploit spurious cues in the data
- Careful design of "adversarial" data can both expose the heuristics being relied on and hopefully improve the representations learned

Probing Neural Network Comprehension of Natural Language Arguments

Timothy Niven and Hung-Yu Kao

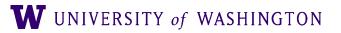
Intelligent Knowledge Management Lab Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan tim.niven.public@gmail.com, hykao@mail.ncku.edu.tw

Abstract

We are surprised to find that BERT's peak performance of 77% on the Argument Reasoning Comprehension Task reaches just three points below the average untrained human baseline. However, we show that this result is entirely accounted for by exploitation of spurious statistical cues in the dataset. We analyze the nature of these cues and demonstrate that a range of models all exploit them. This analysis informs the construction of an adversarial dataset on which all models achieve random accuracy. Our adversarial dataset provides a

Google is not a harmful monopoly Claim Reason People can choose not to use Google Warrant Other search engines don't redirect to Google **Alternative** All other search engines redirect to Google

> **Reason** (and since) **Warrant** \rightarrow **Claim Reason** (but since) Alternative $\rightarrow \neg$ Claim


Figure 1: An example of a data point from the ARCT test set and how it should be read. The inference from R and A to $\neg C$ is by design.

The Argument Reasoning Comprehension Task (ARCT) (Habernal et al., 2018a) defers the prob-1 am of diagoning moments and footions on in

	Test		
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Test		
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Original	Adversarial
Claim	Google is not a harmful monopoly	Google is a harmful monopoly
Reason	People can choose not to use Google	People can choose not to use Google
Warrant	Other search engines do not redirect to Google	All other search engines redirect to Google
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google

	Test		
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Original	Adversarial
Claim	Google is not a harmful monopoly	Google is a harmful monopoly
Reason	People can choose not to use Google	People can choose not to use Google
Warrant Other search engines do not redirect to Google All other search engines redirect to Google		All other search engines redirect to Google
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google

eliminates reliance on "not" as a cue; found to be helpful

	Test		
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Original	Adversarial
Claim	Google is not a harmful monopoly	Google is a harmful monopoly
Reason	People can choose not to use Google	People can choose not to use Google
Warrant	Warrant Other search engines do not redirect to Google All other search engines redirect to Google	
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google

eliminates reliance on "not" as a cue; found to be helpful

	Test		
	Mean	Median	Max
BERT	0.504 ± 0.01	0.505	0.533
BERT (W)	0.501 ± 0.00	0.501	0.502
BERT (R, W)	0.500 ± 0.00	0.500	0.502
BERT (C, W)	0.501 ± 0.01	0.500	0.518

	Test		
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Original	Adversarial
Claim	Google is not a harmful monopoly	Google is a harmful monopoly
ReasonPeople can choose not to use GooglePeople can choose not to use Google		People can choose not to use Google
Warrant	Warrant Other search engines do not redirect to Google All other search engines redirect to Google	
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google

eliminates reliance on "not" as a cue; found to be helpful

	Test		
	Mean	Median	Max
BERT	0.504 ± 0.01	0.505	0.533
BERT (W)	0.501 ± 0.00	0.501	0.502
BERT (R, W)	0.500 ± 0.00	0.500	0.502
BERT (C, W)	0.501 ± 0.01	0.500	0.518

even though trained on adversarial examples

Adversarial Datasets

- Can help identify heuristics and/or statistical cues that models are relying on to make decisions
- Sometimes, but not always, the models just need to see some examples from the adversarial set to learn it
- NB: constructing such a set is a great place for linguistic knowledge to be useful!
 - (e.g. one way for LING elective)

Investigating BERT's Knowledge of Language: Five Analysis Methods with NPIs

Alex Warstadt,^{†,1,2} Yu Cao,^{†,3} Ioana Grosu,^{†,2} Wei Peng,^{†,3} Hagen Blix,^{†,1} Yining Nie,^{†,1,2} Anna Alsop,^{†,2} Shikha Bordia,^{†,3} Haokun Liu,^{†,3} Alicia Parrish,^{†,2,3} Sheng-Fu Wang,^{†,3} Jason Phang,^{†,1,3} Anhad Mohananey,^{†,1,3} Phu Mon Htut,^{†,3} **Paloma Jeretič**,^{†,1,2} and **Samuel R. Bowman** New York University

[†]Equal contribution with roles given below; order assigned randomly. Correspondence: bowman@nyu.edu ¹Framing and organizing the paper ²Creating diagnostic data ³Constructing and running experiments

Abstract

Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work evaluating pretrained sentence representation models. We use a single linguistic phenomenon, negative polarity item (NPI) licensing in English, as a case study for our experiments. NPIs like any are grammatical only if they appear in a *licensing environment* like negation (Sue doesn't have any cats vs. *Sue has any cats).

One last meta-point

acceptability. Linzen et al. (2016), Warstadt et al. (2018), and Kann et al. (2019) use Boolean acceptability judgments inspired by methodologies in generative linguistics. However, we have not yet seen any substantial direct comparison between these methods, and it is not yet clear whether they tend to yield similar conclusions about what a given model knows.

We aim to better understand the trade-offs in task choice by comparing different methods inspired by previous work to evaluate sentence understanding models in a single empirical domain. We choose as our case study negative polarity

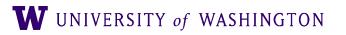
Negative polarity items

- NPIs are expressions like any, ever that are only grammatical in "negative" environments:
 - * Shaan has done *any* of the reading.
 - Shaan hasn't done any of the reading.
- Question: does BERT "understand" NPIs?
- [NB: see also <u>Marvin and Linzen 2018; Jumelet and Hupkes 2018;</u> a submission of mine to ACL2020...]



Does BERT "understand" NPIs?

- It depends!
- "We find that BERT has significant knowledge of these features, but its success varies widely across different experimental methods. We conclude that a variety of methods is necessary to reveal all relevant aspects of a model's grammatical knowledge in a given domain."
- Keep this in mind when designing and reporting experiments.



Wrapping Up

Some methods surveyed

- Visualization / neuron-level analysis
 - One can often find interpretable single cells! Ablation can help find them.
 - Fairly under-explored in terms of the range of phenomena.
- Psycholinguistic / surprisal-based methods
 - Treat NLM as a psycholinguistic subject. Very productive for syntax.
- Diagnostic classifiers
 - Conceptually and computationally simple; scales well.
 - A representation encodes a feature if that feature can be *easily predicted* from it.
- Attention-based
- Examples of other methods (e.g. adversarial data)

Some methods surveyed

- Attention-based
 - Some interesting patterns in BERT's attention heads • But *lots* of uninteresting patterns (attention to [CLS], [SEP])

 - Still fairly under-explored
- Examples of other methods (e.g. adversarial data)
 - Investigations into geometry
 - Lots of room for creativity here: generate data to evaluate a model on, to see if its exploiting heuristics/cues
 - Does this reflect just limited exposure or a more fundamental limitation?

Moving Forward

- For your projects (more in a minute): think about the *question* you want to ask (or hypothesis you want to test), and which methods are best for that.
- Next week: Rachel Rudinger on the Universal Decompositional Semantics Initiative (<u>decomp.io</u>)
 - Think about how you could use that data with some of the methods we've discussed today.

