Analyzing and Evaluating Pragmatic Knowledge in Open-Domain Dialogue Models

Santi Pornavalai, Menghan Yu, Shengqi Zhu (Group 8)

LING 575: Analyzing Neural Network Models (SPR 22)

Overview

- Three parts of the topic & ingredients of our presentation
- An "overview"; no must-reads/core papers
 - please see our slides for a full list of readings/references

Analyzing and Evaluating Pragmatic Knowledge in Open-Domain Dialogue Models

Introduction (Shengqi)

We will try to give an preliminary answer to these questions:

- Why do we care about analyzing and evaluating models?
- Why is pragmatics important for analysis?
- Why the open-domain dialog task? (more from Santi!)
- What are the other common practices? (besides dialog)

Why analyzing/evaluating?

- Why do we not focus on performance? Won't that suffice?
 - which are measured by Acc/F1 and BLEU/ROUGE/...?

Why analyzing/evaluating?

Why do we not focus on performance? Won't that suffice? NO!!
which are measured by Acc/F1 and BLEU/ROUGE/...?

- Not a good claim for many reasons
 - explanability, robustness, privacy and ethics...
- But there's even another important issue: "Performance" is not intrinsic *which model is better* depends on *how we judge them*
- We'll see some most significant issues for overall scoring

Some tasks aren't meant to be caged

- Comparing the system output with references doesn't help much
 - is made even worse with *word-overlapping metrics* (BLEU/ROUGE/...)
 - Classic examples: chatbots, (abstractive) summarization, ...
 - More importantly: *slightly higher overlap doesn't mean anything*

Context of Conversation

Speaker A: Hey John, what do you want to do tonight? Speaker B: Why don't we go see a movie?

Ground-Truth Response

Nah, I hate that stuff, let's do something active.

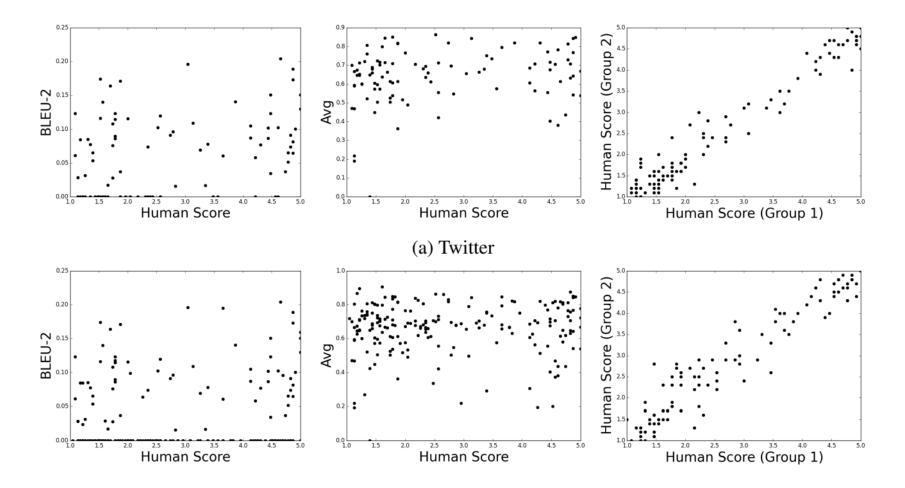
Model Response

Oh sure! Heard the film about Turing is out!

Table 1: Example showing the intrinsic diversity of valid responses in a dialogue. The (reasonable) model response would receive a BLEU score of 0.

Does it really work?

• Frustratingly low correlation with human judgements and with other metrics



Ref: <u>How NOT To Evaluate Your Dialogue System</u>, EMNLP 2016

Other issues

- The nature of some tasks needs fine-grained scores on *certain aspects*
- How to convince someone to adopt a new metric?
- Towards the actual use and understanding of language (beyond surface forms)

Ref: <u>Why We Need New Evaluation Metrics for NLG</u>, EMNLP 2017; <u>A Survey of Evaluation Metrics Used for NLG Systems</u>, ACM Computing Surveys

Why analyzing pragmatics?

- Pragmatics are subtle and extremely undetectable with overall scores
- Many aspect-level judgments essentially involve pragmatic concerns
 - coherence, relevance, ...
- Less studied area in the NN era
 - Paper numbers from ACL 2020 (+Workshops):
 - Syntax/Syntactic: 24
 - Semantic(s): 41
 - Pragmatic(s) + a list of possible key words: 2 🥲

Why open-domain dialog?

- One (mentioned) reason: ample space for "correct" answers
- The opposite case: overall accuracy is what really matters
 - or serves as a fairly good proxy
 - Question Answering (Reading Comprehension) is more like this fashion

The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the **10th and 11th centuries** gave their name to **Normandy**, a region in France. They were descended from Norse ("Norman" comes from

When were the Normans in Normandy? Ground Truth Answers: 10th and 11th centuries in the 10th and 11th centuries 10th and 11th centuries 10th and 11th centuries Prediction: 10th and 11th centuries

Why open-domain dialog?

• Another (trivial yet important) reason:

Dialogues are the place where many pragmatic theories originate!

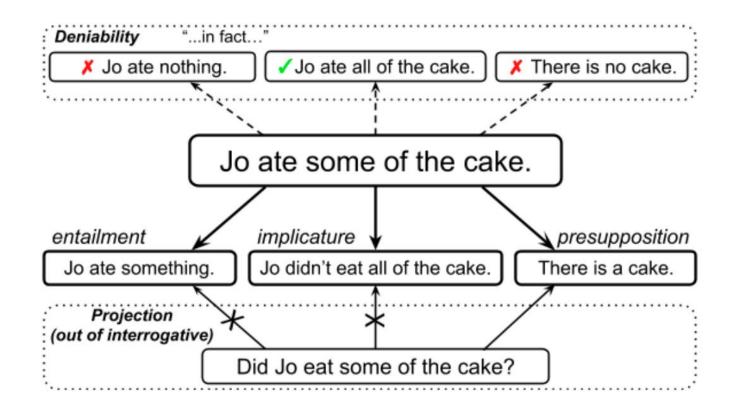
- Goal of mutual understanding, The "turn-taking" nature, ...
- (no attempts to cover the whole history of pragmatics here XD)

• Santi will give more insights on the properties of the dialog task!

But it doesn't have to be dialogs :)

- Many auxiliary tasks and probing methods can apply
 - that doesn't rely on dialog (or even not NLU)
 - e.g. Diagnostic Classifiers
- We'll quickly look at some of the methods

NLI for implicatures and presuppositions



- IMPPRESive dataset
- (similar work: NOPE dataset)

Ref: <u>Are Natural Language Inference Models IMPPRESsive</u>, ACL 2020 NOPE: A Corpus of Naturally-Occurring Presuppositions in English, CoNLL 2021

NLI for implicatures and presuppositions

Trigger	Affirmative Example	Negative Example	Presupposition
Change of state	A microsecond later, images from his exterior sensors <u>snapped</u> into focus.	A microsecond later, images from his exterior sensors didn't snap into focus.	Previously, images from his ex- terior sensors hadn't been in fo- cus.
Clefts	But it is the horse racing that is just for children.	But it isn't the horse racing that is just for children.	There's something that is just for children
Comparatives	That is a bigger problem, than the chairman's claim.	That isn't a bigger problem, than the chairman's claim.	The chairman's claim is a prob- lem.
Aspectual verbs	At the age of 55, I <u>began</u> preparing myself to die.	At the age of 55, I didn't begin preparing myself to die.	Before age 55, I was not yet preparing to die.
Embedded questions	I fail to see how you can rationalize rewarding illegality.	I don't fail to see how you can ra- tionalize rewarding illegality.	You can rationalize rewarding illegality.
Clause-embed. verbs	In 20 years we'll <u>realize</u> that's a mistake.	In 20 years we won't realize that's a mistake.	[Pushing people towards phar- maceuticals] is a mistake.
Implicatives	The survivors <u>managed</u> to scramble out through the tiny gap in the rocks.	The survivors didn't manage to scramble out through the tiny gap in the rocks.	The survivors made an attempt to scramble out through the tiny gap in the rocks.
Numeric deter- miners	Both protagonists in the room defy \overline{a} political force and receive aid from a higher authority.	Both protagonists in the room do not defy a political force and re- ceive aid from a higher authority.	There are two protagonists in the room.
"Re-" prefixed verbs	Taoism reconnects aging to the great cycles of nature.	Taoism doesn't reconnect aging to the great cycles of nature.	Aging was once connected to the great cycles of nature.
Temporal adverbs	He took them to the NL Champi- onship Series last year before be- ing swept by the Atlanta Braves.	He didn't take them to the NL Championship Series last year be- fore being swept by the Atlanta Braves.	Johnson was swept by the At- lanta Braves.

Ref: <u>Are Natural Language Inference Models IMPPRESsive</u>, ACL 2020 NOPE: A Corpus of Naturally-Occurring Presuppositions in English, CoNLL 2021

Prompting Language Models

- Example: prompting *reporting bias* of color in LMs
- Reporting bias: people chose not to say obvious things (Gricean maxim)
- What colors are bananas?
- In real life: yellow bananas >> green/red/blue bananas >>> other colors
- In LMs: "green banana" = 332% "yellow bananas"!

Ref: The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color, EMNLP 2021

Prompting Language Models

• Prompting: "Most bananas are _____."

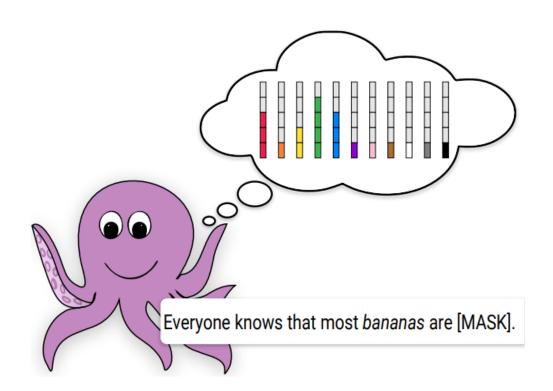


Figure 1: An example prompt from CoDa.

Ref: The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color, EMNLP 2021

Prompting Language Models

• Compare with human annotations of colors

Object	1/25	Color Name	Frequency Rating
Object Apples	R	ed	
Instructions	0	range	
Instructions For each of the listed colors, use the sliders below to indicate how frequently the object is that color. Use a relative scale. 5/5 is 5 times more likely than 1/5. Select as few colors as possible. They should cover a large majority of occurrences (e.g. 80%). Rare or extraordinary instances correspond to 0 on this scale.	below to Y	ellow	
	cely than 1/5. G	reen	
	re or B	lue	
		urple	
More Info	Р	ink	
Show Task Demo Show Detailed Ins	tructions B	lack	
	W	/hite	
	G	ray	
	В	rown	
	Sala	ct All Clear Ratings	Skip Object Submit

Ref: The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color, EMNLP 2021

Auxiliary Training Losses for Pragmatics

- Introduce Auxiliary training objectives and losses for NLU models
- e.g. relevance requirement

We optimize the ranking log likelihood

$$L_{\text{rel}} = \sum_{\substack{(\mathbf{x}, \mathbf{y}_g) \in D, \\ \mathbf{y}_r \sim D_{\mathbf{y}}}} \log \sigma(s_{\text{rel}}(\mathbf{x}, \mathbf{y}_g) - s_{\text{rel}}(\mathbf{x}, \mathbf{y}_r)),$$
(10)

where y_g is the gold ending and y_r is a randomly sampled ending.

 $a = \max \text{pool}(\text{conv}_a(e(\mathbf{x}))),$ $b = \max \text{pool}(\text{conv}_b(e(\mathbf{y}))).$

The scoring function is then defined as

$$s_{\text{rel}} = \mathbf{w}_l^T \cdot (a \circ b),$$

Ref: Learning to Write with Cooperative Discriminators, ACL 2018

Thanks!

Our Experiment Designs

- (still under construction)
- Overall question: which parts of the input are most *relevant/important* ?
- Adversarial sets:
- (1) equally plausible (or similar) answers without certain components
- (2) same dialog acts, without certain components
- (3) with certain components, but non-relevant
- Off-the-shelf models/fine-tune on the pragmatic task
- Different metrics (Semantic Similarity vs. Interpretability)

Dialogue Systems

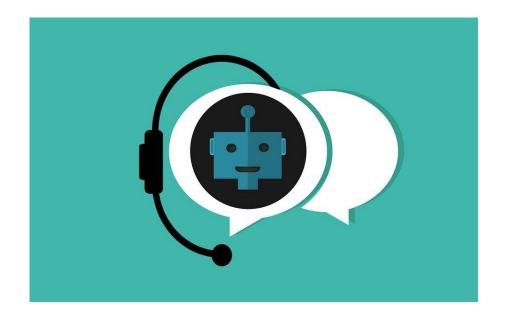
Types of Dialogue Systems

• Task/Goal-Oriented

- Assist users in completing a task
- Typically with pre-defined goals
- Virtual assistants, find restaurants

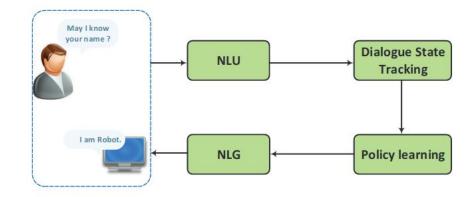
• Chatbots

- Mimic unstructured conversations
- Open-ended
- Often combined with Task-Oriented



Architectures

- Pipeline
 - Most common for Task-oriented
- Retrieval
 - Treat dialogue as an IR problem
- Rule-based
- End-to-end Generation



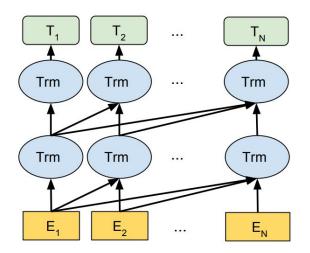
Chatbots

- Rule-Based & Retrieval methods were the norm
- LLMs enable end-to-end generative systems
- Pre-training/ Fine-tuning paradigm

Models 1,431 JialogPT	1↓ Sort: Most Downlo
<pre>microsoft/DialoGPT-small</pre>	<pre>microsoft/DialoGPT-medium</pre>
I Conversational - Updated May 23, 2021 + ↓ 655k + ♥ 7	$\textcircled{\sc p}$ Conversational + Updated May 23, 2021 + \downarrow 107k + \heartsuit 17
microsoft/DialoGPT-large	🔻 r3dhummingbird/DialoGPT-medium-joshua
ID Conversational + Updated May 23, 2021 + ↓ 49k + ♡ 22	I Conversational + Updated Jul 19, 2021 + ↓ 28.3k + ♡ 7
microsoft/DialogRPT-human-vs-rand	ThatSkyFox/DialoGPT-small-joshua
$\mathbb{F}_{2}^{2^{n}}$ Text Classification + Updated May 23, 2021 + \downarrow 14.4k + \heartsuit 1	li Conversational + Updated Oct 24, 2021 + ↓ 4.93k
microsoft/DialogRPT-updown	microsoft/DialogRPT-human-vs-machine
$\mathbb{R}^{\frac{10}{2}}_{\mathbb{R}}$ Text Classification + Updated May 23, 2021 + \downarrow 4.65k + \heartsuit 2	a ^{to} / ₂ Text Classification + Updated May 23, 2021 + ↓ 4.64k
Grossmend/rudialogpt3 medium based on gpt2	microsoft/DialogRPT-human-vs-mac Filosofas/DialoGPT-medium-PALPATINE
© Conversational + Updated Aug 2, 2021 + ↓ 4.59k + ♡ 7	$\textcircled{\sc p}$ Conversational + Updated Feb 8 + \downarrow 4.34k + \heartsuit 1
luca-martial/DialoGPT-Elon	banden/DialoGPT-medium-RickBot
$$ Conversational \ast Updated Jun 10, 2021 \ast \downarrow 2.33k \ast \heartsuit 1	
HansAnonymous/DialoGPT-medium-rick	ttntran/DialoGPT-small-human
\blacksquare Conversational + Updated Aug 28, 2021 + \downarrow 1.79k + \heartsuit 1	ll Conversational + Updated Feb 12 + 少1.72k
felinecity/DioloGPT-small-KaeyaBot	worsterman/DialoGPT-small-mulder
🖾 Conversational + Updated Jan 12 + 4 1.3k	$\textcircled{\sc p}$ Conversational - Updated Jun 20, 2021 - \downarrow 1.1k
🚦 microsoft/DialogRPT-depth	<pre>microsoft/DialogRPT-width</pre>
$\mathbb{R}^{\frac{10}{2}}_{\mathbb{R}}$ Text Classification $*$ Updated May 23, 2021 $*$ 4 900 $*$ \heartsuit 1	$\mathfrak{g}_{W}^{\mathrm{sp}}$ Text Classification \ast Updated May 23, 2021 $\ast\psi860\ast\heartsuit1$
Chalponkey/DialoGPT-small-Barry	josh8/DialoGPT-medium-josh
© Conversational • Updated Sep 11, 2021 •	□ Conversational • Updated Jan 27 • ↓ 807

DialoGPT (Zhang et al, 2020)

- Based on GPT-2 Architecture
- Dialogue as (causal) language modelling
- Pre-trained on a corpus of *Reddit* threads
- Best results obtained when continuing from the standard GPT-2
- Uses a separate model to score and rank informative responses



$$p(T|S) = \prod_{n=m+1}^{N} p(x_n|x_1, \cdots, x_{n-1})$$

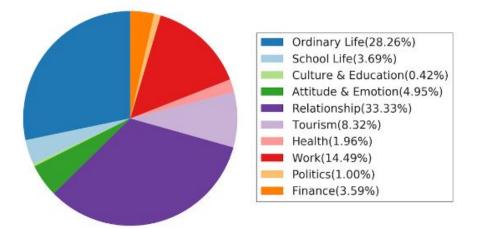
$$p(T_i|T_1,\cdots,T_{i-1})$$

Pre-Training Data

- Reddit reply chains from 2005-2017
- Filtered out replies with:
 - URLs and Markup
 - word repetitions of at least three words
 - non-English
 - Longer than 200 words
 - Offensive language (World filter)
 - "Uninformative" content
- Ca. 150 Million Dialogue instances, 1.8B tokens

DailyDialog (Li et al, 2017)

- Is social media data representative?
- Open-Domain, mix of task-oriented and chit-chat
- Dialogues are crawled from English learning websites
- Relatively short dialogues compared to social media datasets
- Annotated for dialogue acts and emotion



DailyDialog++ (Sai et al, 2020)

- Adversarial Dataset for DailyDialog
- Intended for evaluating retrieval-based methods and BertScore-type metrics
- Added added alternate responses,random negatives and adversarial examples.
- Adversarial examples were created by tasking the annotators to generate irrelevant responses given a number of words from the context.

Reference

- Chen, H., Liu, X., Yin, D., & Tang, J. (2017). A Survey on Dialogue Systems: Recent Advances and New Frontiers. *ArXiv, abs/1711.01731*.
- Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, and Bill Dolan. 2020. <u>DIALOGPT : Large-Scale Generative Pre-training for Conversational Response Generation</u>. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations*, pages 270–278, Online. Association for Computational Linguistics.
- Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. 2017. <u>DailyDialog: A Manually Labelled Multi-turn</u> <u>Dialogue Dataset</u>. In *Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 986–995, Taipei, Taiwan. Asian Federation of Natural Language Processing.
- Ananya B. Sai, Akash Kumar Mohankumar, Siddhartha Arora, and Mitesh M. Khapra. 2020. <u>Improving Dialog Evaluation with a</u> <u>Multi-reference Adversarial Dataset and Large Scale Pretraining</u>. *Transactions of the Association for Computational Linguistics*, 8:810–827.

Analyzing pragmatics in dialogs

Group 8

<u>Measuring the 'I don't know' Problem through the Lens of Gricean Quantity</u>, 2021 NAACL; <u>GRICE: A Grammar-based Dataset for Recovering Implicature and Conversational rEasoning</u>, 2021 ACL

Recap of Gricean Maxims

Maxim	Definition	Violated by	Prompt: What color is grass?
QUANTITY	Be informative.	not answering a question (fully),or giving too much information.	I don't know.
QUALITY	Be truthful.	lying, or saying something without evidence.	Grass is purple.
RELATION	Be relevant.	off-topic responses.	I like pizza.
MANNER	Be clear, brief, and orderly.	disfluent responses	is green grass usually.

Measuring 'I don't know' Problem

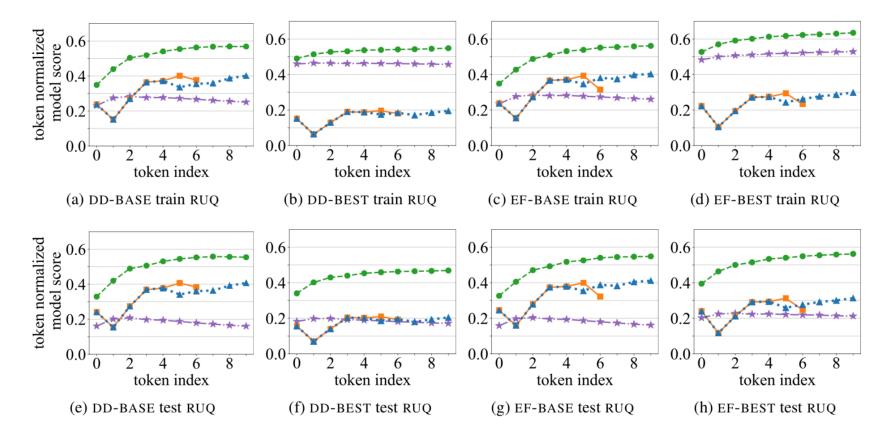
-

- Violation of the Gricean maxim of Quantity
 - Measuring method: Relative Utterance Quantity (RUQ)

Methods – Relative Utterance Quantity

- Model: Transformer chatbos in FAIRSEQ using parameters from the FLORES benchmark for low-resource MT
- Plot the average model score for each token across sentences.
- compare the original reference, beam search output, and two 'I don't know' (IDK) variants: 'I don't know.' and 'I don't know what to do'.
- compute the (length normalized) model score for 'I don't know.' and the reference of each training prompt, and count how many times the reference is preferred. (RUQ score)

Experiment Result



Experiment Result

training data	BASE	BEST
DailyDialog Entropy-Filtered	28.5%	95.3%
ENTROPY-FILTERED	37.9%	89.2%

Table 3: Training data RUQ scores. Entropy filtering improves how often the reference is preferred to 'I don't know.', but by less than the hyperparameter sweeps (which are denoted BEST).

Gricean Maxims – Related work

- Niels Ole Bernsen, Hans Dybkjær, and Laila Dybkjær. 1996. Cooperativity in human-machine and human- human spoken dialogue
- Sanda Harabagiu, Dan Moldovan, and Takashi Yukawa. 1996. Testing gricean constraints on a wordnet-based coherence evaluation system. In *Working Notes of the AAAI-96 Spring Symposium on Computational Approaches to Interpreting and Generating Conversational Implicature*, pages 31– 38.
- Prathyusha Jwalapuram. 2017. Evaluating dialogs based on Grice's maxims. In *Proceedings of the Student Research Workshop Associated with RANLP 2017*, pages 17–24, Varna. INCOMA Ltd.
- Mohammed R. H. Qwaider, Abed Alhakim Freihat, and Fausto Giunchiglia. 2017. TrentoTeam at SemEval-2017 task 3: An application of Grice maxims in ranking community question answers. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 271–274, Vancouver, Canada. Association for Computational Linguistics.

Grice: A Grammar-based Dataset for Recovering Implicature and Conversational rEasoning

- Motivation:

_

bring implicature into pragmatic reasoning in the context of conversations

- Grice dataset: systematically generated using a hierarchical grammar model

Result: Model shows an overall performance boost in conversational reasoning

Motivation

_

_

-

"Language is a form of rational action"

Current open-ended dialogue systems

- imitate human responses by regressing large amount of training data
- fail to account for pragmatics perspective

"Human speakers usually do not speak their thoughts or intentions directly " -> Conversational implicature

Sample Dataset:

Alice:	Did you see the apples?	
Bob:	There is a basket in the dining room.	
(The a	pples are in the dining room.)	
Alice:	How many?	
Bob:	There are at least two.	
(I am	not sure how many apples are there.)	
Alice:	Did you put them there?	
Bob:	I was in the kitchen.	
(I did	n't put the apples in the dining room.)	
Alice:	Are all the oranges there?	
Bob:	Some are there.	
(Not a	ll the oranges are in the kitchen.)	
Alice:	What about the pears?	
Bob:	They are in the living room.	
(The p	ears are not in the kitchen.)	

Figure 1: An example of the conversation in the proposed GRICE dataset. Each round of dialogue includes a question, an answer that may contain implicature, and a recovered statement that converts the implicature to explicature. Different colors highlight coreference flows.

Task Definition (How well a model "understands")

- Implicature recovery

_

Convasational reasoning evaluated by QAs

	-		
Alice:	Where are the oranges?		
Bob:	-		
Alice:	What about the apples?		
Bob:			
	to the bedroom.		
(8	a) A sample dialogue with two rounds.		
(A) Ja	ck went to the bedroom and then put the		
apples	in the kitchen.		
(B) Ja	ick put the apples in the kitchen and		
	went to the bedroom.		
(C) Ja	ck went to the bedroom and then put the		
orange	es in the kitchen.		
(D) Th	ne apples are in the bedroom.		
o) Imp	licature recovery evaluated with multiple		
hoices.			
Q_1 :	Where are the apples?		
A_1 :	Kitchen		
Q_2 :	Q_2 : Who moved the apples?		
A_2 :	I_2 : Jack		
Q_3 :	Does Bob know where the oranges are?		
A_3 :	No		
(c) Co	onversational reasoning evaluated by QAs.		

Grammar Production Rules

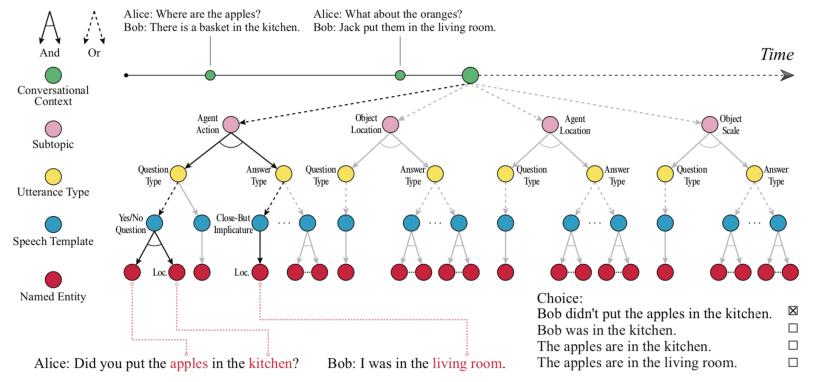


Figure 3: The graphical illustration of the grammar production rules for the GRICE dataset.

Subtopics

Subtopic	Example
agent_location	Alice: Where was Jack?
	Bob: I saw him in the kitchen.
agent_action	Alice: Did you put the apples in the
	kitchen?
	Bob: I was in the bedroom.
object_location	Alice: Where can I find the apples?
	Bob: They are in the kitchen, if not
	the living room.
object_scale	Alice: Are all the apples in the
	kitchen?
	Bob: At least four are there.

five types of implicature

Category	Definition	Example
Relevance	Implicating the answer to an ex-	Alice: Where did you see the apples?
	pressed or implied question by stat-	Bob: There is a basket in the kitchen.
	ing something related to the answer	(The apples are in the kitchen.)
	by implication or explanation.	
Strengthening	Implicating a stronger proposition	Alice: Are some of the apples in the kitchen?
	S^+ when not understatement.	Bob: All of them are there.
		(Not just some, but all of the apples
		are in the kitchen.)
Limiting	Implicating the denial of S^+ .	Alice: Are all the apples in the kitchen?
		Bob: Some are.
		(Not all apples are in the kitchen.)
Ignorance	Implicating that one does not know	Alice: Where did you see Jack?
	whether S^+ is true (or that S^+ may	Bob: He was in the kitchen or the bedroom.
	or may not be true).	(I am not sure where Jack was.)
Close-But	Implicating a negative answer to	Alice: Did you put the apples in the kitchen?
	a question by affirming something	Bob: I was in the living room.
	close to a positive answer in contex-	(I did not put the apples in the
	tually salient respects.	kitchen since I was in somewhere else.)

Examples of generating answers

Conversation:
Alice: Where are the oranges?
Bob: Jack said he saw some in the kitchen.
Alice: Did he put them there?
Bob: He put them there and went to the bedroom.
(Jack put the oranges in the kitchen and then went to the bedroom.)
Examples of generated candidate answers:
Bob put the oranges in the kitchen and then went to the bedroom.
Jack was in the bedroom.
Jack was in the bedroom.
The oranges are in the bedroom.
Jack went to the bedroom and then put the oranges in the kitchen.

Figure 4: The candidate answers for the implicature recovery task are generated following four different strategies. 1. Statements that are similar to the groundtruth condition but with wrong coreferenced entities. 2. Random sampled true condition but with irrelevant facts. 3. Random sampled wrong facts from the conversational context. 4. Manually created statements that are close to the true condition but are in fact wrong.

Main take-aways

_

- Evaluation metric comparing generic answers e.g. "I don't know" vs. "reference answer" (maxims of quantity)
- Generate conversation templates
 - generate plausible answers using implicatures
- generate adversarial examples (4 methods mentioned for implicature recovery tasks)

Thank you!

Group 8