Libraries and Tools Transformers, AllenNLP

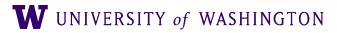
LING575 Analyzing Neural Language Models Shane Steinert-Threlkeld Apr 27 2022

- Very helpful tools
 - Contransformers
 - AllenNLP
 - Walk-through of a classifier and a tagger
- Second half: tips/tricks for experiment running and paper writing

Outline

Transformers

https://huggingface.co/transformers



Where to get LMs to analyze?

- RNNs: see week 3 slides
 - Josefewicz et al "Exploring the limits..."
 - Gulordava et al "Colorless green ideas..."
 - ELMo via AllenNLP (about which more later)
- Effectively a unique API for each model
- All (essentially) Transformer-based models: HuggingFace!

Overview of the Library

- Access to many variants of many very large LMs (BERT, RoBERTa, XLNET, ALBERT, T5, language-specific models, ...) with fairly consistent API
 - Build tokenizer + model from string for name or config
 - Then use just like any PyTorch nn.Module
- Emphasis on ease-of-use
 - E.g. low barrier-to-entry to *using* the models, including for analysis
 - Inew `pipeline` abstraction too, but I think this is too easy for most analysis / probing purposes, but can work if all you need are model judgments on data]
- Interoperable with PyTorch or TensorFlow 2.0

Example: Tokenization

>>> from transformers import AutoTokenizer

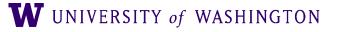
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

```
>>> print(encoded_input)
```

>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to

{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 112!

See http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html (h/t Naomi Shapiro)



Example: Tokenization

>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

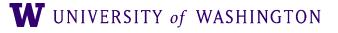
```
>>> print(encoded_input)
```

>>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'

See <u>http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html</u> (h/t Naomi Shapiro)

>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to

{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 112!



Example: Tokenizing a Batch

```
>>> batch_sentences = [
      "But what about second breakfast?",
. . .
     "Don't think he knows about second breakfast, Pip.",
. . .
     "What about elevensies?",
. . .
...]
>>> encoded_input = tokenizer(batch_sentences, padding=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
           [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
           [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
               [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]
```


Example: Tokenizing a Batch

```
>>> batch_sentences = [
      "But what about second breakfast?",
. . .
      "Don't think he knows about second breakfast, Pip.",
. . .
      "What about elevensies?",
. . .
                                          Add `return_tensors="pt"` to get these outputs as PyTorch Tensors
...]
>>> encoded_input = tokenizer(batch_sentences, padding=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
           [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
           [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
               [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]
```


Example: Forward Pass

- >>> from transformers import BertTokenizer, BertModel >>> import torch
- >>> model = BertModel.from_pretrained("bert-base-uncased")
- >>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

```
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
```

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

Outputs from the forward pass

- recommend against that)
 - BERT, by default, gives two things:
 - last hidden state: sequence of hidden states at the last layer of the model. Shape: (batch_size, max_length, embedding_dimension)
 - pooler output: embedding of '[CLS]' token, passed through one tanh layer (more on this later) Shape: (batch_size, embedding_dimension)

• Outputs are usually Python objects with various attributes corresponding to different model outputs (NB: can be tuples of Tensors if specified, but I

Getting more out of a model

from transformers import BertModel model = BertModel.from pretrained("bert-base-uncased")

outputs = model(inputs, output hidden states=True, output attentions=True)

Getting more out of a model

from transformers import BertModel model = BertModel.from pretrained("bert-base-uncased")

outputs = model(inputs, output hidden states=True, output attentions=True)

- Now, the output object has additional attributes:
 - hidden_states: A tuple of tensors, one for each layer. Length: # layers
 - **attentions:** tuple of tensors, one for each layer. Length: # layers
- [Can also be done with BertConfig object]

Shape of each: (batch size, max length, embedding dimension) Shape of each: (batch size, num heads, max length, max length)

What the library does well

- Very easy tokenization
- Forward pass of models
 - Exposing as many internals as possible
 - All layers, attention heads, etc
- As unified an interface as possible

 - Read the docs carefully!
 - e.g. <u>https://huggingface.co/docs/transformers/model_doc/</u> bert#transformers.BertModel
 - The docs for `forward` just below explain the inputs/outputs

• But: different models have different properties, controlled by Configs or by arguments

More Info

- Model search: <u>https://huggingface.co/models</u>
- Dataset search: <u>https://huggingface.co/datasets</u>
- Relatively new portions of the library (<u>Trainer</u>) may be useful for probing, but we'll look at another route for that now.

AllenNLP https://allenai.org/allennlp/software/allennlp-library

- Built on top of PyTorch
- Flexible data API
- Abstractions for common use cases in NLP
 - e.g. take a sequence of representations and give me a single one
- Modular:
 - Because of that, can swap in and out different options, for good experiments
- Declarative model-building / training via config files
- See https://github.com/allenai/writing-code-for-nlp-research-emnlp2018
- Guide: <u>https://guide.allennlp.org/</u> < -- very helpful for explaining some of the abstractions

Overview of AllenNLP

• Focus on modeling / experimenting, not writing boilerplate, e.g.:

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop:

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters
 - Not *that* complicated, but:

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters
- Not *that* complicated, but:
 - Early stopping

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters
- Not *that* complicated, but:
 - Early stopping
 - Check-pointing (saving best model(s))

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters
- Not *that* complicated, but:
 - Early stopping
 - Check-pointing (saving best model(s))
 - Generating and padding the batches

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters
- Not *that* complicated, but:
 - Early stopping
 - Check-pointing (saving best model(s))
 - Generating and padding the batches
 - Logging results

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters
- Not *that* complicated, but:
 - Early stopping
 - Check-pointing (saving best model(s))
 - Generating and padding the batches
 - Logging results

.

- Focus on modeling / experimenting, not writing boilerplate, e.g.:
- Training loop: for each epoch: for each batch: get model outputs on batch compute loss compute gradients update parameters
- Not *that* complicated, but:
 - Early stopping
 - Check-pointing (saving best model(s))
 - Generating and padding the batches
 - Logging results
 - allennlp train myexperiment.jsonnet

Example Abstractions

- TextFieldEmbedder
- Seq2SeqEncoder
- Seq2VecEncoder
- Attention

. . .

• Allows for easy swapping of different choices at every level in your model.

AllenNLP Bert Example

- webpage as well]
- Using AllenNLP to probe BERT for two tasks:
 - Classification [Stanford Sentiment Treebank]
 - Tagging [<u>Semantic Tagging</u>]

• See <u>https://github.com/shanest/allennlp-bert-example</u> [linked on course

Classifying

Overall Structure (Classification)

model_string = "bert-base-uncased"

```
tokenizer = PretrainedTransformerTokenizer(model_string)
token_indexer = PretrainedTransformerIndexer(model_string)
 reader = SSTDatasetReader(tokenizer, {"tokens": token_indexer})
train_path = "sst/trees/train.txt"
dev_path = "sst/trees/dev.txt"
train_dataset = reader.read(train_path)
val_dataset = reader.read(dev_path)
print(list(train_dataset)[0])
vocab = Vocabulary.from_instances(chain(train_dataset, val_dataset))
bert_token_embedder = PretrainedTransformerEmbedder(model_string)
bert_textfield_embedder = BasicTextFieldEmbedder({"tokens": bert_token_embedder})
cls_pooler = ClsPooler(bert_token_embedder.get_output_dim())
model = BertClassifier(
    vocab, bert_textfield_embedder, cls_pooler, freeze_encoder=False
```

```
data_loader = MultiProcessDataLoader(reader, train_path, batch_size=32)
data_loader.index_with(vocab)
```

```
trainer = GradientDescentTrainer(
   model=model,
   optimizer=optim.Adam(model.parameters()),
   serialization_dir="/tmp/test",
   data_loader=data_loader,
   train_dataset=train_dataset,
   validation_dataset=val_dataset,
   patience=5,
   num_epochs=30,
```

trainer.train()

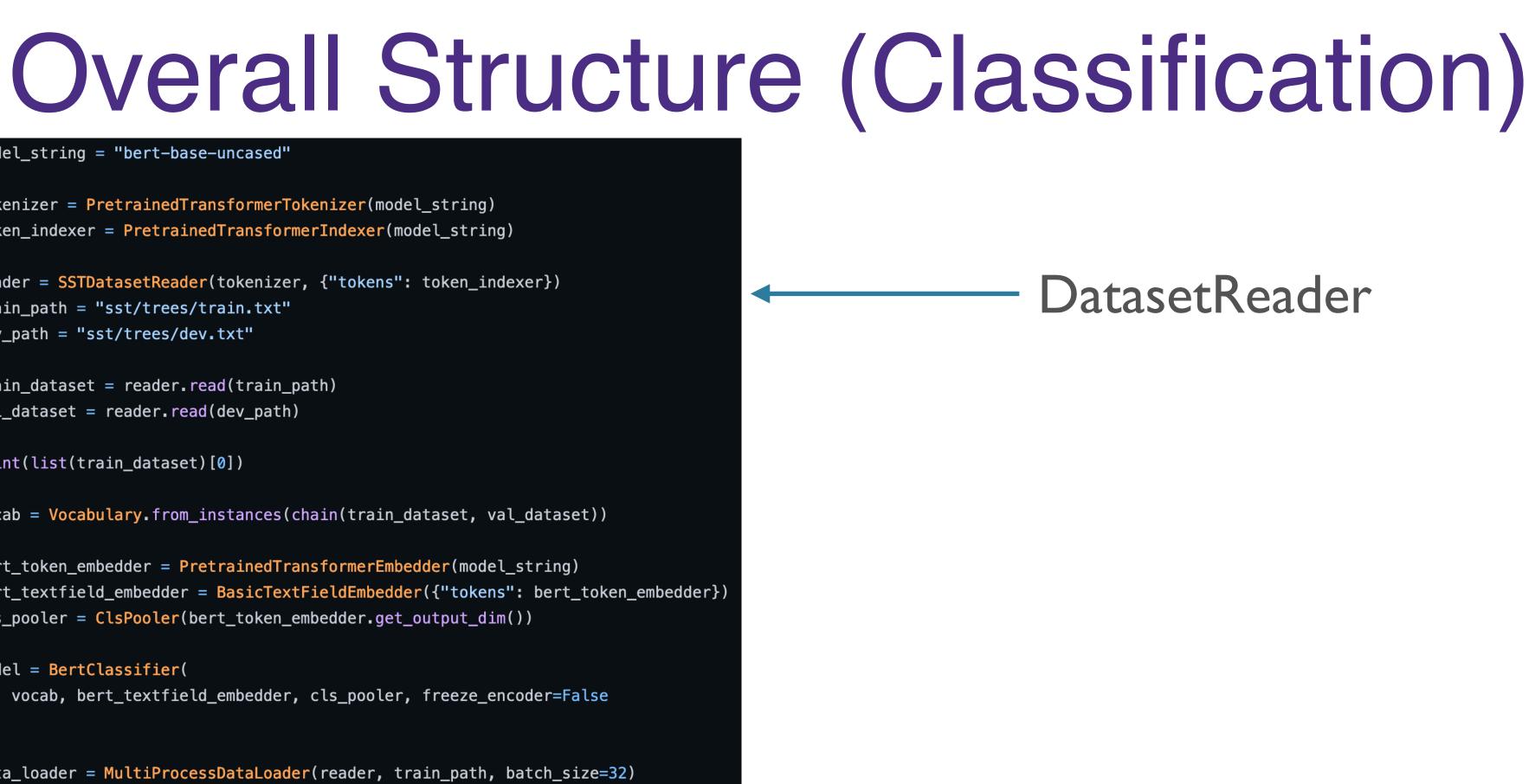
W UNIVERSITY of WASHINGTON


```
tokenizer = PretrainedTransformerTokenizer(model_string)
token_indexer = PretrainedTransformerIndexer(model_string)
 reader = SSTDatasetReader(tokenizer, {"tokens": token_indexer})
train_path = "sst/trees/train.txt"
dev_path = "sst/trees/dev.txt"
train_dataset = reader.read(train_path)
val_dataset = reader.read(dev_path)
print(list(train_dataset)[0])
vocab = Vocabulary.from_instances(chain(train_dataset, val_dataset))
bert_token_embedder = PretrainedTransformerEmbedder(model_string)
bert_textfield_embedder = BasicTextFieldEmbedder({"tokens": bert_token_embedder})
cls_pooler = ClsPooler(bert_token_embedder.get_output_dim())
model = BertClassifier(
    vocab, bert_textfield_embedder, cls_pooler, freeze_encoder=False
```

```
data_loader = MultiProcessDataLoader(reader, train_path, batch_size=32)
data_loader.index_with(vocab)
```

```
trainer = GradientDescentTrainer(
   model=model,
   optimizer=optim.Adam(model.parameters()),
   serialization_dir="/tmp/test",
   data_loader=data_loader,
   train_dataset=train_dataset,
   validation_dataset=val_dataset,
   patience=5,
   num_epochs=30,
```

trainer.train()

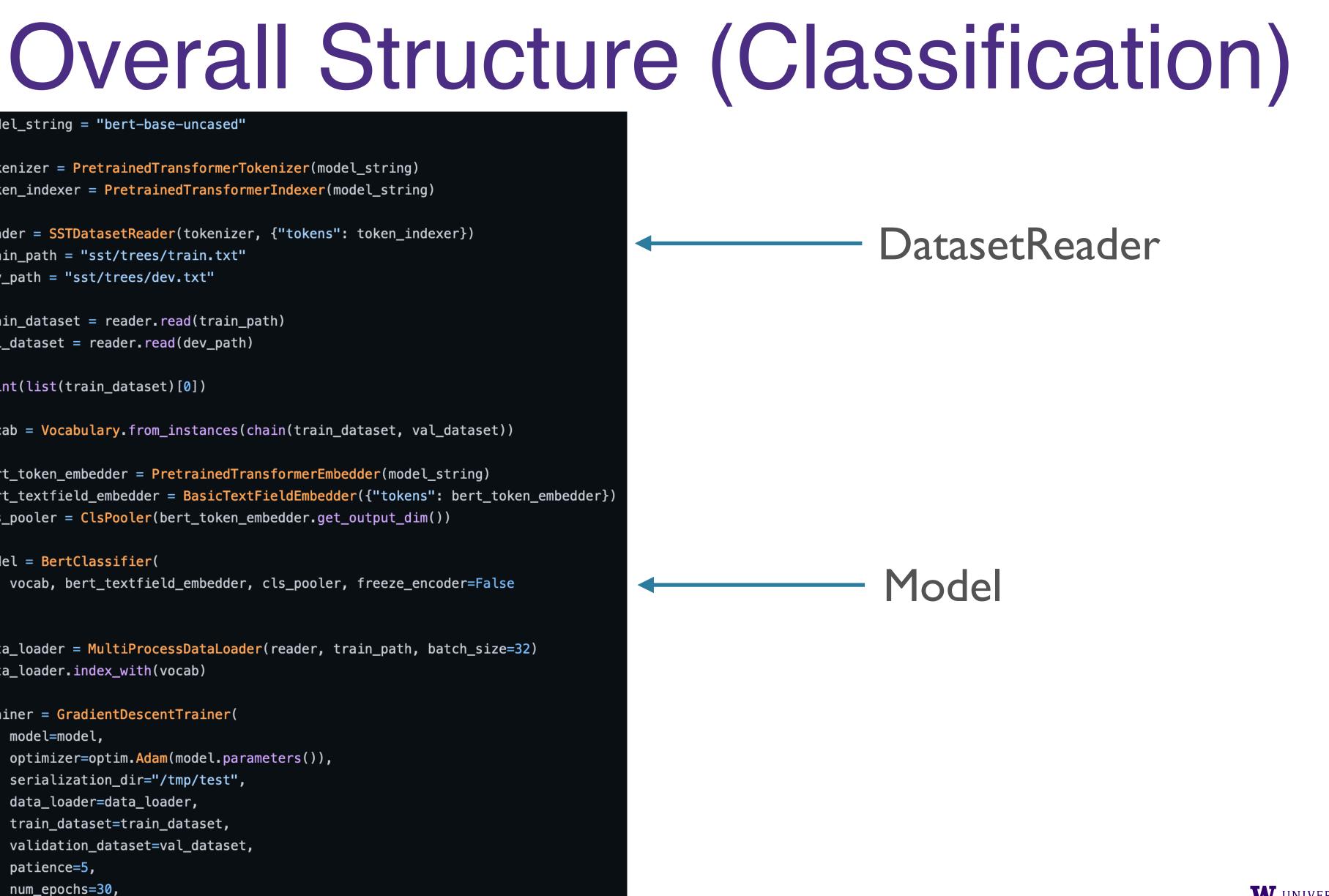



```
tokenizer = PretrainedTransformerTokenizer(model_string)
token_indexer = PretrainedTransformerIndexer(model_string)
 reader = SSTDatasetReader(tokenizer, {"tokens": token_indexer})
train_path = "sst/trees/train.txt"
dev_path = "sst/trees/dev.txt"
train_dataset = reader.read(train_path)
val_dataset = reader.read(dev_path)
print(list(train_dataset)[0])
vocab = Vocabulary.from_instances(chain(train_dataset, val_dataset))
bert_token_embedder = PretrainedTransformerEmbedder(model_string)
bert_textfield_embedder = BasicTextFieldEmbedder({"tokens": bert_token_embedder})
cls_pooler = ClsPooler(bert_token_embedder.get_output_dim())
model = BertClassifier(
    vocab, bert_textfield_embedder, cls_pooler, freeze_encoder=False
```

```
data_loader = MultiProcessDataLoader(reader, train_path, batch_size=32)
data_loader.index_with(vocab)
```

```
trainer = GradientDescentTrainer(
   model=model,
   optimizer=optim.Adam(model.parameters()),
   serialization_dir="/tmp/test",
   data_loader=data_loader,
   train_dataset=train_dataset,
   validation_dataset=val_dataset,
   patience=5,
   num_epochs=30,
```

trainer.train()



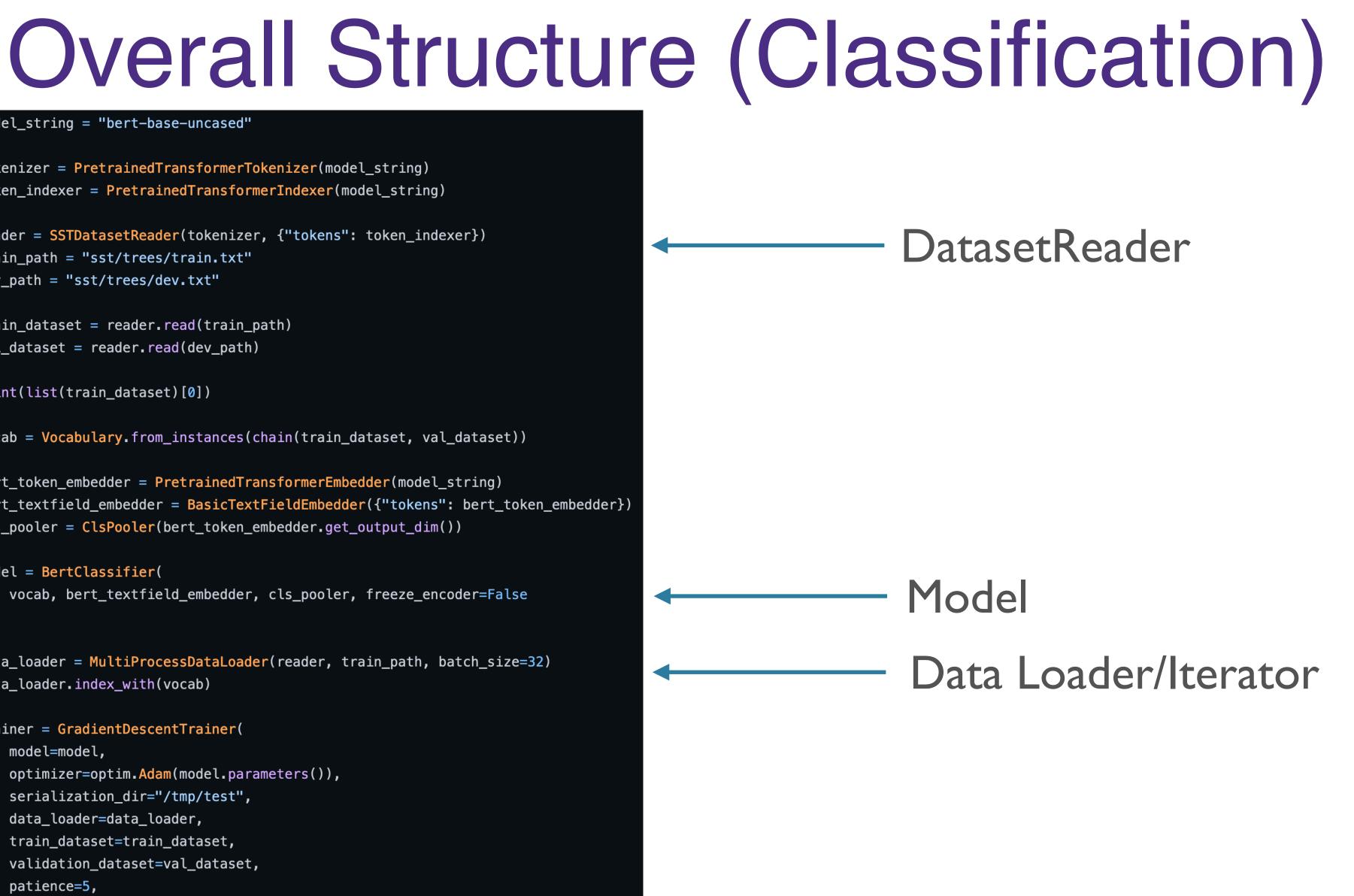
W UNIVERSITY of WASHINGTON

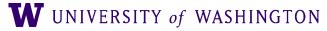

```
tokenizer = PretrainedTransformerTokenizer(model_string)
token_indexer = PretrainedTransformerIndexer(model_string)
 reader = SSTDatasetReader(tokenizer, {"tokens": token_indexer})
train_path = "sst/trees/train.txt"
dev_path = "sst/trees/dev.txt"
train_dataset = reader.read(train_path)
val_dataset = reader.read(dev_path)
print(list(train_dataset)[0])
vocab = Vocabulary.from_instances(chain(train_dataset, val_dataset))
bert_token_embedder = PretrainedTransformerEmbedder(model_string)
bert_textfield_embedder = BasicTextFieldEmbedder({"tokens": bert_token_embedder})
cls_pooler = ClsPooler(bert_token_embedder.get_output_dim())
model = BertClassifier(
    vocab, bert_textfield_embedder, cls_pooler, freeze_encoder=False
```

```
data_loader = MultiProcessDataLoader(reader, train_path, batch_size=32)
data_loader.index_with(vocab)
```

```
trainer = GradientDescentTrainer(
   model=model,
   optimizer=optim.Adam(model.parameters()),
   serialization_dir="/tmp/test",
   data_loader=data_loader,
   train_dataset=train_dataset,
   validation_dataset=val_dataset,
   patience=5,
   num_epochs=30,
```

trainer.train()



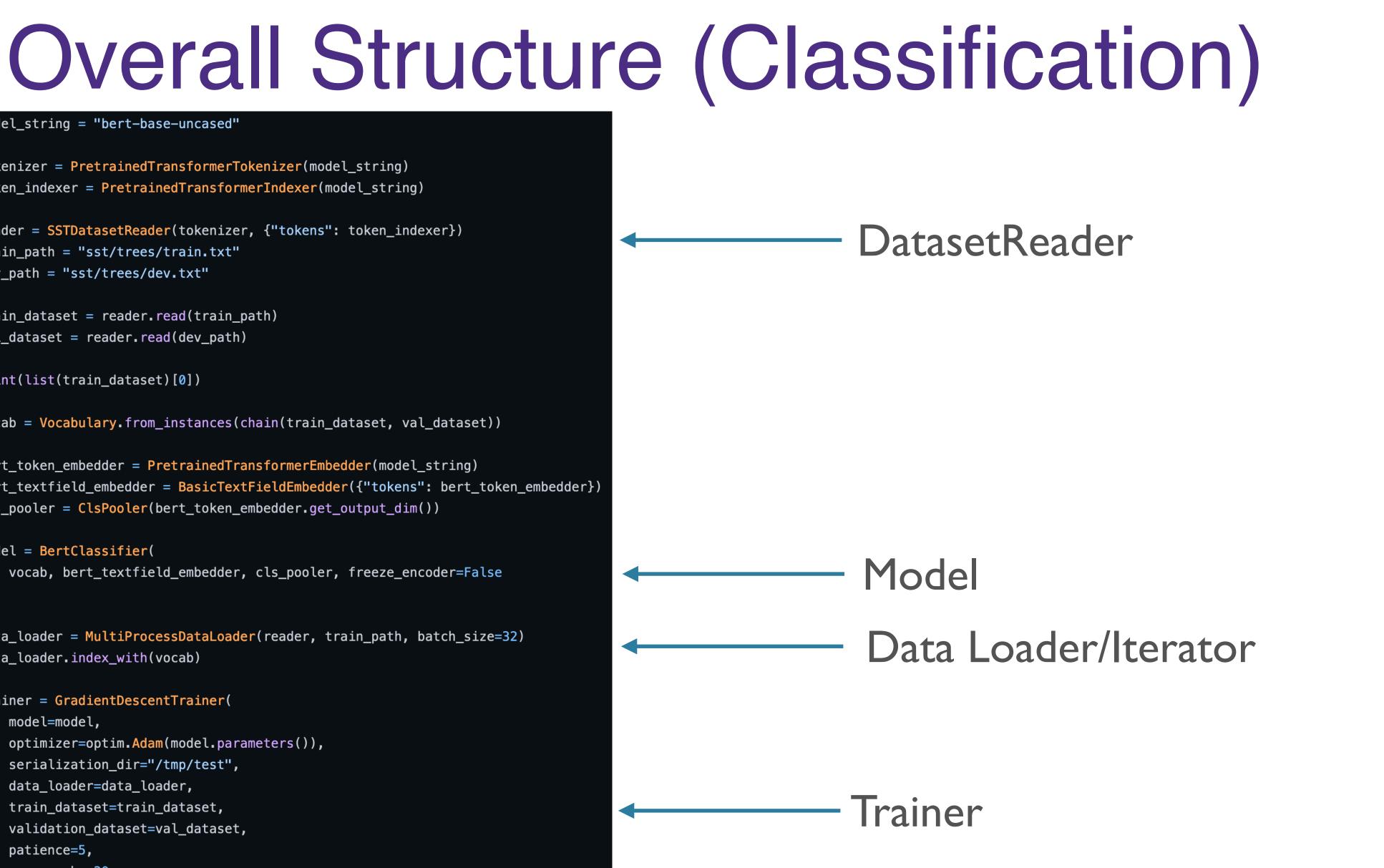



```
tokenizer = PretrainedTransformerTokenizer(model_string)
token_indexer = PretrainedTransformerIndexer(model_string)
 reader = SSTDatasetReader(tokenizer, {"tokens": token_indexer})
train_path = "sst/trees/train.txt"
dev_path = "sst/trees/dev.txt"
train_dataset = reader.read(train_path)
val_dataset = reader.read(dev_path)
print(list(train_dataset)[0])
vocab = Vocabulary.from_instances(chain(train_dataset, val_dataset))
bert_token_embedder = PretrainedTransformerEmbedder(model_string)
bert_textfield_embedder = BasicTextFieldEmbedder({"tokens": bert_token_embedder})
cls_pooler = ClsPooler(bert_token_embedder.get_output_dim())
model = BertClassifier(
    vocab, bert_textfield_embedder, cls_pooler, freeze_encoder=False
```

```
data_loader = MultiProcessDataLoader(reader, train_path, batch_size=32)
data_loader.index_with(vocab)
```

```
trainer = GradientDescentTrainer(
   model=model,
   optimizer=optim.Adam(model.parameters()),
   serialization_dir="/tmp/test",
   data_loader=data_loader,
   train_dataset=train_dataset,
   validation_dataset=val_dataset,
   patience=5,
   num_epochs=30,
```

trainer.train()



Basic Components: Dataset Reader

- Datasets are collections of *Instances*, which are collections of *Fields*
 - For text classification, e.g.: one TextField, one LabelField
 - Many more: <u>https://guide.allennlp.org/reading-data</u>
- DatasetReaders.... read data sets. Two primary methods:
 - _read(file): reads data from disk, yields Instances. By calling:
 - text_to_instance (variable signature)
 - Processing of the "raw" data from disk into final form
 - Produces one Instance at a time

DatasetReader: Stanford Sentiment Treebank

• One line from train.txt:

Steven) (2 Segal)))))))))))))) (2 .)))

• Core of __read:

parsed_line = Tree.fromstring(line) instance = self.text_to_instance(parsed_line.leaves(), parsed_line.label()) if instance is not None: yield instance

• Core of text_to_instance:

if self._tokenizer: else:

fields["label"] = LabelField(sentiment) return Instance(fields)

• • •

```
new_tokens = self._tokenizer.tokenize(' '.join(tokens))
   new_tokens = [Token(token) for token in tokens]
text_field = TextField(new_tokens, token_indexers=self._token_indexers)
fields: Dict[str, Field] = {"tokens": text_field}
```

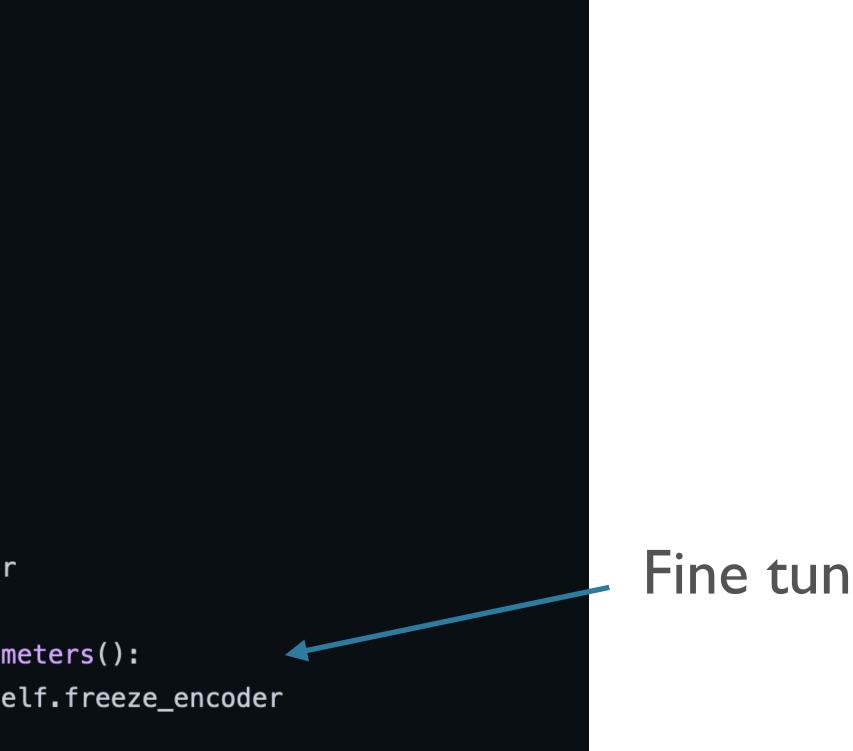


```
@Model.register("bert_classifier")
class BertClassifier(Model):
   def __init__(
        self,
        vocab: Vocabulary,
        embedder: TextFieldEmbedder,
        pooler: Seq2VecEncoder,
        freeze_encoder: bool = True,
    ) -> None:
        super().__init__(vocab)
        self.vocab = vocab
        self.embedder = embedder
        self.pooler = pooler
        self.freeze_encoder = freeze_encoder
        for parameter in self.embedder.parameters():
            parameter.requires_grad = not self.freeze_encoder
        in_features = self.pooler.get_output_dim()
        out_features = vocab.get_vocab_size(namespace="labels")
        self._classification_layer = torch.nn.Linear(in_features, out_features)
        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()
```

Model


```
@Model.register("bert_classifier")
class BertClassifier(Model):
   def __init__(
        self,
        vocab: Vocabulary,
        embedder: TextFieldEmbedder,
        pooler: Seq2VecEncoder,
        freeze_encoder: bool = True,
     -> None:
        super().__init__(vocab)
        self.vocab = vocab
        self.embedder = embedder
        self.pooler = pooler
        self.freeze_encoder = freeze_encoder
        for parameter in self.embedder.parameters():
            parameter.requires_grad = not self.freeze_encoder
        in_features = self.pooler.get_output_dim()
        out_features = vocab.get_vocab_size(namespace="labels")
        self._classification_layer = torch.nn.Linear(in_features, out_features)
        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()
```

Model



Fine tune or not

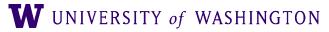
W UNIVERSITY of WASHINGTON


```
def forward( # type: ignore
   self, tokens: Dict[str, torch.Tensor], label: torch.IntTensor = None
 -> Dict[str, torch.Tensor]:
   # (batch_size, max_len, embedding_dim)
   embeddings = self.embedder(tokens)
   # get the pooled representation of the tokens in each sentence
   # e.g. [CLS] rep, mean pool, ...
   # (batch_size, embedding_dim)
   sentence_representation = self.pooler(embeddings)
   # apply classification layer
   # (batch_size, num_labels)
    logits = self._classification_layer(sentence_representation)
   probs = torch.nn.functional.softmax(logits, dim=-1)
   output_dict = {"logits": logits, "probs": probs}
   if label is not None:
        loss = self._loss(logits, label.long().view(-1))
        output_dict["loss"] = loss
        self._accuracy(logits, label)
```

return output_dict

Model

NB: frozen embeddings can be pre-computed for efficiency



Where was BERT?

- In the TextFieldEmbedder!
- In run_classifying.py: initialized a PretrainedTransformerEmbedder
 - AllenNLP has wrappers around HuggingFace
 - But note: to extract more from a model, you'll probably need to write your own class, using the existing ones as inspiration

Config file (classifying_experiment.jsonnet)

```
local bert_model = "bert-base-uncased";
   "dataset_reader": {
        "type": "sst_reader",
        "tokenizer": {
            "type": "pretrained_transformer",
            "model_name": bert_model,
       },
        "token_indexers": {
            "tokens": {
                "type": "pretrained_transformer",
                "model_name": bert_model,
    },
    "train_data_path": "sst/trees/train.txt",
   "validation_data_path": "sst/trees/dev.txt",
```

@DatasetReader.register("sst_reader")

Arguments to SSTReader!

Config file (classifying_experiment.jsonnet)

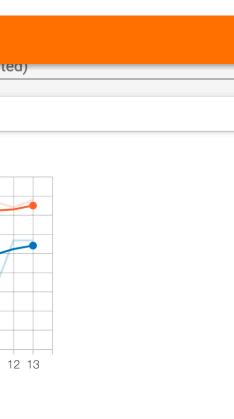
```
"model": {
    "type": "bert_classifier",
    "embedder": {
        "type": "basic",
        "token_embedders": {
            "tokens": {
                "type": "pretrained_transformer",
                "model_name": bert_model
    },
    "pooler": {
        # NB: for probing, cls_pooler and boe_pooler are good choices
        # bert_pooler actually does more than what is wanted in that scenario
        "type": "cls_pooler",
        "embedding_dim": 768,
    },
    "freeze_encoder": true,
},
"data_loader": {
    "batch_size": 32
},
"trainer": {
    "optimizer": {
        "type": "adam",
        "lr": 0.001
    },
    "validation_metric": "+accuracy",
    "checkpointer": {
        "keep_most_recent_by_count": 1
    },
    "num_epochs": 30,
    "grad_norm": 10.0,
    "patience": 5,
    "cuda_device": -1
```

allennlp train classifying experiment.jsonnet \ --serialization-dir test \ --include-package classifying

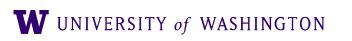
TensorBoard

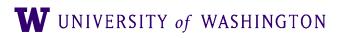
tensorboard --logdir /serialization_dir/log

ALARS	
caling	
ult 👻	
<u>0.6</u> ©	0.46 0.44 0.42
ALL	0.4 1 2 3 4 5 6 7 8 9 10 11
	cpu_memory_MB
	cpu_memory_MB
NS	1.44e+3
	1.4e+3 1.36e+3 1.32e+3 1 3 5 7 9 1 C
	epoch_metrics
	gradient_mean
	gradient_norm
	gradient_std
	as caling ult • 0.6 ©



Use SSH port forwarding to view server-side results locally





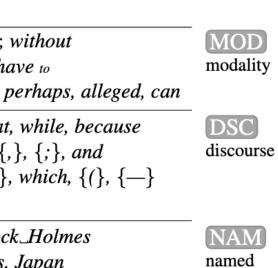
- The repository also has an example of training a <u>semantic tagger</u>
 - Like POS tagging, but with a richer set of "semantic" tags

ANA anaphoric	PRO anaphoric & deictic pronouns: <i>he, she, I, him</i> DEF definite: <i>the, lo^{IT}, der^{DE}</i>	NOT negation: not, no, neither, withoutNEC necessity: must, should, have to
	HAS possessive pronoun: my, her	POS possibility: <i>might, could, perhaps, alleged, can</i>
	REF reflexive & reciprocal pron.: <i>herself, each_other</i>	SUB subordinate relations: <i>that, while, because</i>
	EMP emphasizing pronouns: <i>himself</i>	COD coordinate relations: <i>indi</i> , <i>while</i> , <i>because</i> $(0, 0)$
ACT	GRE greeting & parting: hi, bye	
speech	ITJ interjections, exclamations: <i>alas, ah</i>	APP appositional relations: $\{,\}$, which, $\{(\}, \{-\}$
act	HES hesitation: <i>err</i>	BUT contrast: but, yet
	QUE interrogative: who, which, ?	PER person: Axl_Rose, Sherlock_Holmes
		GPE geo-political entity: Paris, Japan
ATT	QUC [*] concrete quantity: <i>two, six_million, twice</i>	GPO [*] geo-political origin: <i>Parisian, French</i>
attribute	QUV [*] vague quantity: <i>millions, many, enough</i>	GEO geographical location: Alps, Nile
	COL colour: red, crimson, light_blue, chestnut_brown	ORG organization: <i>IKEA</i> , <i>EU</i>
	IST intersective: <i>open, vegetarian, quickly</i>	ART artifact: iOS_7
	SST subsective: <i>skillful</i> surgeon, <i>tall</i> kid	HAP happening: Eurovision_2017
	PRI privative: <i>former, fake</i>	UOM unit of measurement: <i>meter</i> , \$, %, <i>degree_Celsius</i>
	DEG [*] degree: 2 meters tall, 20 years old	CTC [*] contact information: <i>112, info@mail.com</i>
	INT intensifier: very, much, too, rather	URL URL: http://pmb.let.rug.nl
	REL relation: <i>in, on, 's, of, after</i>	LIT [*] literal use of names: his name is John
	SCD score: 3-0, grade A	
COM	EQU equative: as tall as John, whales are mammals	NTH [*] other names: table 1a, equation (1)
com-	MOR comparative positive: <i>better, more</i>	EXS untensed simple: to walk, is eaten, destruction
parative	LES comparative negative: <i>less, worse</i>	ENS present simple: we walk, he walks
		EPS past simple: <i>ate</i> , <i>went</i>
	TOP superlative positive: most, mostly	EXG untensed progressive: <i>is running</i>
	BOT superlative negative: worst, least	EXT untensed perfect: <i>has eaten</i>
	ORD ordinal: 1st, 3rd, third	NOU anogont tongot is up do to have to some
UNE	CON concept: dog, person	NOW present tense: <i>is skiing, do ski, has skied, now</i>
unnamed	ROL role: <i>student</i> , <i>brother</i> , <i>prof.</i> , <i>victim</i>	PST past tense: was baked, had gone, did go
entity	\texttt{GRP}^* group: John $\{,\}$ Mary and Sam gathered, a group of people	FUT future tense: <i>will, shall</i>
DXS	DXP [*] place deixis: <i>here, this, above</i>	PRG [*] progressive: has been being treated, aan_het ^{NL}
deixis	DXT *temporal deixis: just, later, tomorrow	PFT [*] perfect: has been going/done
	DXD [*] discourse deixis: <i>latter, former, above</i>	DAT [*] full date: 27.04.2017, 27/04/17
LOG	ALT alternative & repetitions: another, different, again	DOM day of month: 27th December t
logical	XCL exclusive: <i>only, just</i>	
logical		YOC year of century: 2017
	NIL empty semantics: {.}, to, of	DOW day of week: Thursday
	DIS disjunction & exist. quantif.: <i>a, some, any, or</i>	MOY month of year: April
	IMP implication: <i>if, when, unless</i>	DEC decade: 80s, 1990s
	AND conjunction & univ. quantif.: every, and, who, any	CLO clocktime: 8:45_pm, 10_o'clock, noon

entity

- The repository also has an example of training a <u>semantic tagger</u>
 - Like POS tagging, but with a richer set of "semantic" tags
- Issue: the data comes with its own tokenization:
 - BERT: ['the', 'ya', '##zuka', 'are', 'the', 'japanese', 'mafia', '.']

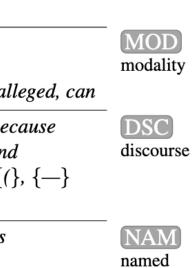
ANIA	DDD anonharia & d	eictic propouns: he she I him	NOT pegation: not no neither without				
anaphoric	DEF definite: <i>the</i> , <i>la</i>	eictic pronouns: he, she, I, him $p^{IT} der^{DE}$	NOT negation: <i>not, no, neither, without</i> NEC necessity: <i>must, should, have</i> to				
unuphone	HAS possessive pro		NEC necessity: <i>must, should, have to</i> n POS possibility: <i>might, could, perhaps, alleged, can</i>				
		ciprocal pron.: <i>herself, each_other</i>					
	EMP emphasizing p		suborumate relations. <i>mai, white, because</i>				
ACT	GRE greeting & par	•	COD coordinate relations: so, $\{,\}, \{;\}, and$ d				
speech		exclamations: <i>alas, ah</i>	APP appositional relations: $\{,\}, which, \{(\}, \{-\})$				
act	HES hesitation: <i>err</i>		BUT contrast: but, yet				
	QUE interrogative:		PER person: Axl_Rose, Sherlock_Holmes				
ATT		tity: two, six_million, twice	— GPE geo-political entity: Paris, Japan n				
attribute		<i>x</i> : millions, many, enough	GPU geo-political origin: Parisian, French				
		imson, light_blue, chestnut_browi	GEO geographical location: Alps, Nile				
		pen, vegetarian, quickly	URG organization. IKEA, EU				
	SST subsective: <i>ski</i>		ART artifact: <i>iOS_7</i>				
	PRI privative: form		HAP happening: <i>Eurovision_2017</i> UOM unit of measurement: <i>meter</i> , <i>\$</i> , <i>%</i> , <i>degree_Celsius</i>				
	DEG [*] degree: 2 meters	tall, 20 years old	CTC [*] contact information: 112, info@mail.com				
		y, much, too, rather	URL URL: http://pmb.let.rug.nl				
	REL relation: in, on		LIT [*] literal use of names: <i>his name is John</i>				
	SCO score: 3-0, grad	ie A					
COM		l as John, whales <i>are</i> mammals	EXS untensed simple: to walk, is eaten, destruction				
com- parative	MOR comparative p		ENS present simple: we walk, he walks				
1	(LES) comparative ne	egative: less, worse	EPS past simple: ate, went				
ום	EF	The	EXG untensed progressive: <i>is running</i>				
		_	EXT untensed perfect: <i>has eaten</i>				
	ON	yakuza	NOW present tense: <i>is skiing, do ski, has skied, now</i>				
		2 50	PST past tense: was baked, had gone, did go				
٩CI	NS	are "	FUT future tense: will, shall				
וחם	EF	the	— PRG *progressive: has been being treated, aan_het ^{NL}				
		LIIE	PFT perfect: has been going/done				
G	P0	Japanese	DAT [*] full date: 27.04.2017, 27/04/17				
	V		in DOM day of month: 27th December to				
¹⁰ C (ON	mafia	YOC year of century: 2017 e				
	-		DOW day of week: Thursday				
N.			MOY month of year: April				
			DEC decade: 80s, 1990s				
\sim			ny CLO clocktime: 8:45_pm, 10_o'clock, noon				



entity

- The repository also has an example of training a <u>semantic tagger</u>
 - Like POS tagging, but with a richer set of "semantic" tags
- Issue: the data comes with its own tokenization:
 - BERT: ['the', 'ya', '##zuka', 'are', 'the', 'japanese', 'mafia', '.']
- Need to get word-level representations out of BERT's subword representations

					_			
ANA		leictic pronouns: he, she, I, hin	n	NOT negation: not, no, neither, without				
anaphoric	DEF definite: <i>the</i> , <i>l</i>	lo^{IT} , der^{DE}		NEC necessity: must, should, have to	n			
HAS possessive pronoun: my, her				POS possibility: <i>might, could, perhaps, alleged, can</i>				
REF reflexive & reciprocal pron.: <i>herself, each_other</i>			other	SUB subordinate relations: <i>that, while, because</i>				
	EMP emphasizing p	pronouns: himself		COO coordinate relations: so, $\{,\}, \{;\}, and$	d			
ACT	GRE greeting & par	•		APP appositional relations: $\{,\}, which, \{(\}, \{-\}\}$				
speech act		exclamations: alas, ah		BUT contrast: but, yet				
act	HES hesitation: err			PER person: Axl_Rose, Sherlock_Holmes	- ſ			
	QUE interrogative:			GPE geo-political entity: Paris, Japan	r			
ATT	<u> </u>	tity: two, six_million, twice		GPO [*] geo-political origin: <i>Parisian, French</i>	e			
attribute		y: millions, many, enough		GEO geographical location: Alps, Nile				
		rimson, light_blue, chestnut_b	rown	ORG organization: IKEA, EU				
		ppen, vegetarian, quickly		 ART artifact: iOS_7 HAP happening: Eurovision_2017 UOM unit of measurement: meter, \$, %, degree_Celsius CTC*contact information: 112, info@mail.com 				
	SST subsective: <i>sk</i> PRI privative: <i>form</i>	0						
	DEG [*] degree: 2 meters	-						
		ry, much, too, rather						
	REL relation: <i>in</i> , or	-		URL URL: http://pmb.let.rug.nl				
	SCO score: 3-0, grad			LIT [*] literal use of names: <i>his name is John</i>				
COM		Ill as John, whales Are mammals		NTH [*] other names: table 1a, equation (1)	-			
com-		positive: better, more		EXS untensed simple: to walk, is eaten, destruction ENS present simple: we walk, he walks				
parative		negative: less, worse						
		The		EPS past simple: <i>ate</i> , <i>went</i> EXG untensed progressive: <i>is running</i>				
וט	EF	The		EXT untensed perfect: has eaten				
C (0.01	Vakuza			-			
	ON	yakuza		NOW present tense: <i>is skiing, do ski, has skied, now</i>				
		are		PST past tense: was baked, had gone, did go	to a			
ENS are		e	FUT future tense: will, shall					
	FF	the		PRG [*] progressive: has been being treated, aan_het ^{NL}				
				PFT *perfect: has been going/done	_			
G	P0	Japanese		DAT [*] full date: 27.04.2017, 27/04/17				
		•	ıin	DOM day of month: 27th December	te			
lo C	ON	mafia		YOC year of century: 2017	e			
				DOW day of week: Thursday				
Ν.	IL			MOY month of year: April				
			1000	DEC decade: 80s, 1990s				
\sim			iny	CLO clocktime: 8:45_pm, 10_o'clock, noon	-			



entity

Tagging: Modeling

- Used to be complicated, BUT:
- They've added a <u>PretrainedMismatchedTransformerEmbedder</u> (and a corresponding PretrainedMismatchedTransformerIndexer for tokens)
 - Handles all of the mis-alignment between dataset tokens and model tokens for you!
 - How to pool subwords—>words:
 - `sub_token_mode` kwarg: default = avg, but can do first/last, etc

Tagging: Modeling

```
@Model.register("subword_word_tagger")
class SubwordWordTagger(Model):
```

```
# TODO: document!
```

```
def __init__(
    self,
    embedder: TextFieldEmbedder,
    vocab: Vocabulary = None,
    freeze_encoder: bool = True,
):
```

```
super().__init__(vocab)
```

```
self._embedder = embedder
self._freeze_encoder = freeze_encoder
# turn off gradients if don't want to fine tune encoder
for parameter in self._embedder.parameters():
    parameter.requires_grad = not self._freeze_encoder
```

```
self.classifier = TimeDistributed(
    torch.nn.Linear(
       in_features=embedder.get_output_dim(),
       out_features=vocab.get_vocab_size("labels"),
```

self.accuracy = CategoricalAccuracy()

def	fo se						n	†e
) ->								
	#							
	em	b	e	do		ĹŊ	g	S
	#							
	#	-						
	#							
	wo	r	d_	_r	na	as	k	=
	#	(b	a	tc	ch	_	si
	lo	g	i	t	S	=		se
	ou	t	p	u	ts	5	=	4
	if		l	al	De	el	S	j
				se	el	lf	•	a
			(01	ut	tр	u	ts
							ι	oç
)				
	re	t	u	rı	า	0	u	tŗ

ence: Dict[str, torch.Tensor], labels: torch.Tensor = None torch.Tensor]:

```
ize, max_seq_len, embedding_dim)
= self._embedder(sentence)
```

to keep track of which tokens are padding them from contributing to loss ize, max_word_seq_len) get_text_field_mask(sentence)

ize, max_word_seq_len, num_labels) elf.classifier(embeddings)

{"logits": logits}

```
is not None:
ccuracy(logits, labels, word_mask)
s["loss"] = sequence_cross_entropy_with_logits(
gits, labels, word_mask
```

puts

On These Libraries

- If you're using transformer-based LMs, I strongly recommend HuggingFace
- On the other hand, it's possible that learning AllenNLP's abstractions may cost you more time than it saves in the short term
- As always, try and use the best tool for the job at hand
- One more that makes fine-tuning and/or diagnostic classification easy: • jiant

Other tools for experiment management

- Disclaimer: I've never used them!
 - Might be over-kill in the short term
- Guild (entirely local): <u>https://guild.ai/</u>
- CodaLab: <u>https://codalab.org/</u>
- Weights and Biases: <u>https://www.wandb.com/</u>
- Neptune: <u>https://neptune.ai/</u>

Using GPUs on Patas

Setting up local environment

- Three GPU nodes:
 - 2xTesla P40
 - 8xTesla M10
 - 2xQuadro 8000
- painless way:
- https://www.shane.st/teaching/575/spr22/patas-gpu.pdf

• For info on setting up your local environment to use these nodes in a fairly

Condor job file for patas

executable = run exp gpu.sh getenv = Trueerror = exp.error log = exp.lognotification = always transfer executable = false request memory = 8*1024request GPUs = 1 +Research = True

Queue

#!/bin/sh conda activate my-project

allennlp train tagging experiment.jsonnet --serialization-dir test \ --include-package tagging \ --overrides "{'trainer': {'cuda_device': 1}}"

Example executable

