Analysis Methods

LING575 Analyzing Neural Language Models
Shane Steinert-Threlkeld
April 13 2022

Recap

- Last time: a tour through current space of neural language models
- Architectures: recurrent vs. Transformer-based
- Pre-training task:
 - Pure LM
 - Masked LM
 - Variants (other ways of adding noise to input)
- Training data, protocol, ...

Today

- Wrap up the LMs by looking at a snapshot of the landscape
- We will look at several prominent analysis methods
- By surveying some prominent exemplars of each kind of analysis
 - NOT exhaustive
 - Papers in the Reading List on the website are tagged for methods used, if you use "Group By > Keyword", so follow up there [NB: not up to date]
 - Use Google Scholar or Semantic Scholar to find papers that cite ones you like
- Try to keep in mind:
 - What's the logic behind each method
 - What can and can't we learn from it (and how can we tell that)

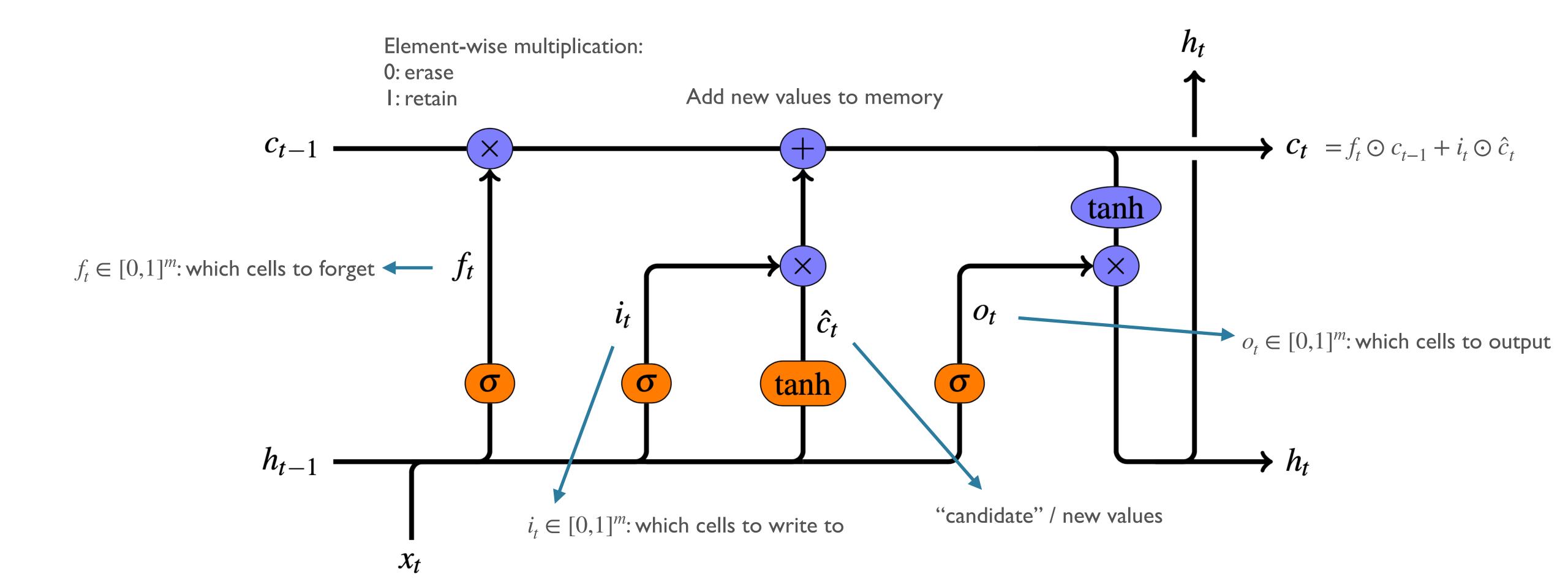
Outline

- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

Visualization / neuron-level analysis

Main Idea

- Individual neurons in a network have activations that depend on the input
- Check to see whether any of them have activations which depend on / correlate with (linguistically) interesting features of the input
- [Think of the alleged "Jennifer Anniston cells", aka grandmother cells]


Visualizing and Understanding Recurrent Networks

Andrej Karpathy* Justin Johnson* Li Fei-Fei Department of Computer Science, Stanford University {karpathy, jcjohns, feifeili}@cs.stanford.edu

ABSTRACT

Recurrent Neural Networks (RNNs), and specifically a variant with Long Short-Term Memory (LSTM), are enjoying renewed interest as a result of successful applications in a wide range of machine learning problems that involve sequential data. However, while LSTMs provide exceptional results in practice, the source of their performance and their limitations remain rather poorly understood. Using character-level language models as an interpretable testbed, we aim to bridge this gap by providing an analysis of their representations, predictions and error types. In particular, our experiments reveal the existence of interpretable cells that keep track of long-range dependencies such as line lengths, quotes and brackets. Moreover, our comparative analysis with finite horizon n-gram models traces the source of the LSTM improvements to long-range structural dependencies. Finally, we provide analysis of the remaining errors and suggests areas for further study.

Recall: LSTMs

Protocol

- Train character-level LSTM LMs on various text
- Visually inspect whether any $memory\ cells$ (elements of c_t) have activations which depend on interesting features

Interpretable cell 1: line position

Cell sensitive to position in line:

```
The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action--the one Kutuzov and the general mass of the army demanded--namely, simply to follow the enemy up. The French crowd fled at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all--carried on by vis inertiae--pressed forward into boats and into the ice-covered water and did not, surrender.
```

Interpretable cell 2: inside quotes

```
Cell that turns on inside quotes:

"You mean to imply that I have nothing to eat out of.... On the contrary, I can supply you with everything even if you want to give dinner parties," warmly replied Chichagov, who tried by every word he spoke to prove his own rectitude and therefore imagined Kutuzov to be animated by the same desire.
```

Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."

Interpretable cell 3: inside 'if' statements

Interpretable cell 4: depth

Normal case: uninterpretable cell

```
A large portion of cells are not easily interpretable. Here is a typical example:

/* Unpack a filter field's string representation from user-space

* buffer. */
char *audit_unpack_string(void **bufp, size_t *remain, size_t len)

{
    char *str;
    if (!*bufp || (len == 0) || (len > *remain))
        return ERR_PTR(-EINVAL);

/* Of the currently implemented string fields, PATH_MAX
    * defines the longest valid length.

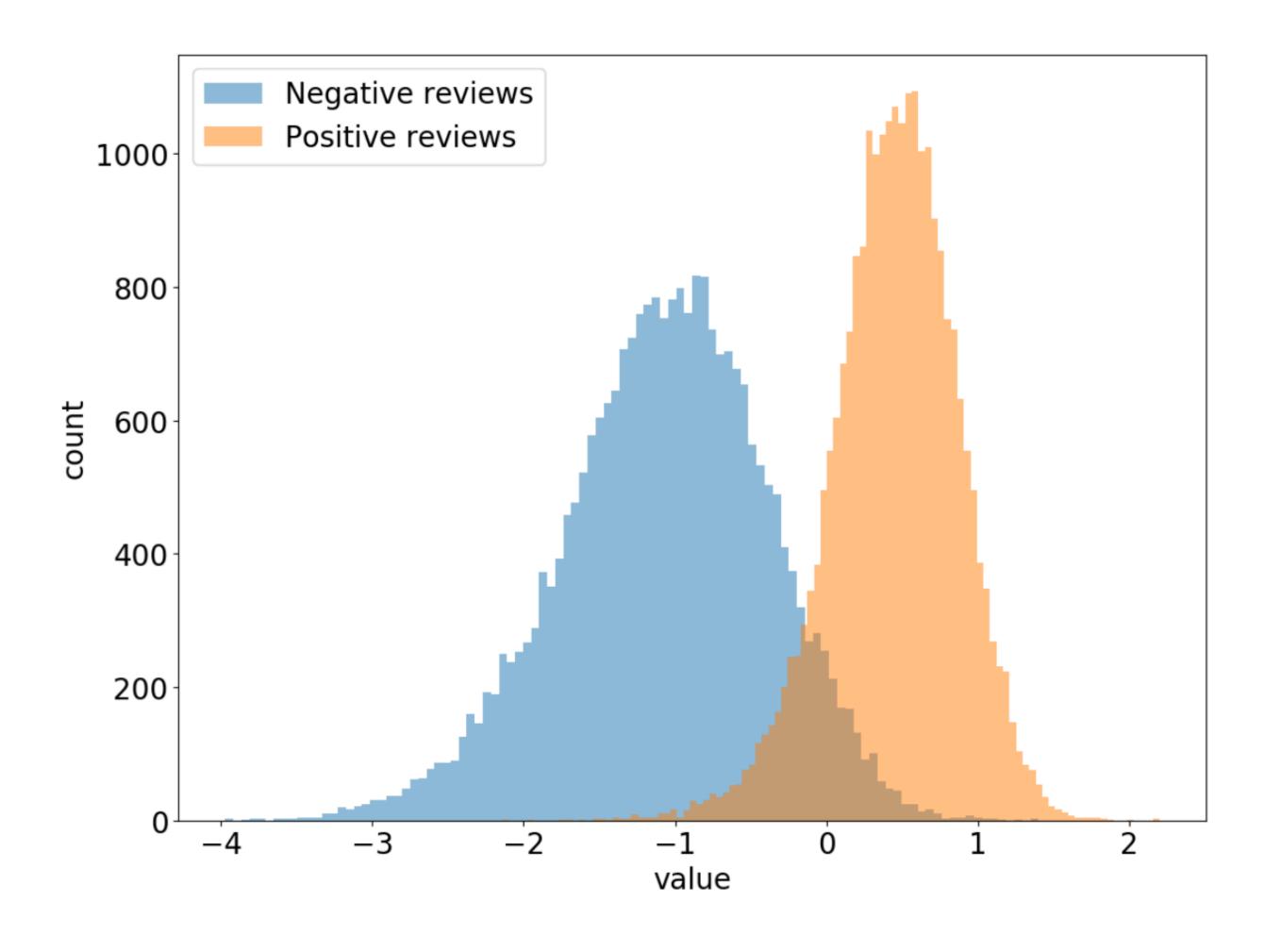
*/
```

Learning to Generate Reviews and Discovering Sentiment

Alec Radford ¹ Rafal Jozefowicz ¹ Ilya Sutskever ¹

Abstract

We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment.


it is now commonplace to reuse these representations on a broad suite of related tasks - one of the most successful examples of transfer learning to date (Oquab et al., 2014).

There is also a long history of unsupervised representation learning (Olshausen & Field, 1997). Much of the early research into modern deep learning was developed and validated via this approach (Hinton & Salakhutdinov, 2006) (Huang et al., 2007) (Vincent et al., 2008) (Coates et al., 2010) (Le, 2013). Unsupervised learning is promising due to its ability to scale beyond only the subsets and domains of data that can be cleaned and labeled given resource, privacy, or other constraints. This advantage is also its difficulty. While supervised approaches have clear objectives that can be directly optimized, unsupervised approaches rely on proxy tasks such as reconstruction, density estimation, or generation, which do not directly encourage useful representations for specific tasks. As a result, much work has gone into designing objectives, priors, and architectures meant to encourage the learning of useful representations.

Approach

- Character-level language model (LSTM variant)
 - One layer; 4096 dim hidden state
 - Training: ~1 month on 4 GPUs
- Data: Amazon product reviews
- Fine-tune: sentiment analysis
 - NB: this data partially overlaps with training data [but a different task]

A sentiment neuron

Samples of the sentiment neuron

I found this to be a charming adaptation, very lively and full of fun. With the exception of a couple of major errors, the cast is wonderful. I have to echo some of the earlier comments -- Chynna Phillips is horribly miscast as a teenager. At 27, she's just too old (and, yes, it DOES show), and lacks the singing "chops" for Broadway-style music. Vanessa Williams is a decent-enough singer and, for a non-dancer, she's adequate. However, she is NOT Latina, and her character definitely is. She's also very STRIDENT throughout, which gets tiresome. The girls of Sweet Apple's Conrad Birdie fan club really sparkle -- with special kudos to Brigitta Dau and Chiara Zanni. I also enjoyed Tyne Daly's performance, though I'm not generally a fan of her work. Finally, the dancing Shriners are a riot, especially the dorky three in the bar. The movie is suitable for the whole family, and I highly recommend it.

Judy Holliday struck gold in 1950 withe George Cukor's film version of "Born Yesterday," and from that point forward, her career consisted of trying to find material good enough to allow her to strike gold again. It never happened. In "It Should Happen to You" (I can't think of a blander title, by the way), Holliday does yet one more variation on the dumb blonde who's maybe not so dumb after all, but everything about this movie feels warmed over and half hearted. Even Jack Lemmon, in what I believe was his first film role, can't muster up enough energy to enliven this recycled comedy. The audience knows how the movie will end virtually from the beginning, so mostly it just sits around waiting for the film to catch up. Maybe if you're enamored of Holliday you'll enjoy this; otherwise I wouldn't bother. Grade: C

Sentiment unit does all the work!

Table 2. IMDB sentiment classification

Метнор	Error
FULLUNLABELEDBOW (MAAS ET AL., 2011)	11.11%
NB-SVM TRIGRAM (MESNIL ET AL., 2014)	8.13%
SENTIMENT UNIT (OURS)	7.70%
SA-LSTM (DAI & LE, 2015)	7.24%
BYTE MLSTM (OURS)	7.12%
TOPICRNN (DIENG ET AL., 2016)	6.24%
VIRTUAL ADV (MIYATO ET AL., 2016)	5.91%

The Emergence of Number and Syntax Units in LSTM Language Models

Yair Lakretz

Cognitive Neuroimaging Unit NeuroSpin center 91191, Gif-sur-Yvette, France yair.lakretz@gmail.com

German Kruszewski

Facebook AI Research
Paris, France
germank@gmail.com

Theo Desbordes

Facebook AI Research
Paris, France
tdesbordes@fb.com

Dieuwke Hupkes

ILLC, University of Amsterdam
Amsterdam, Netherlands
d.hupkes@uva.nl

Stanislas Dehaene

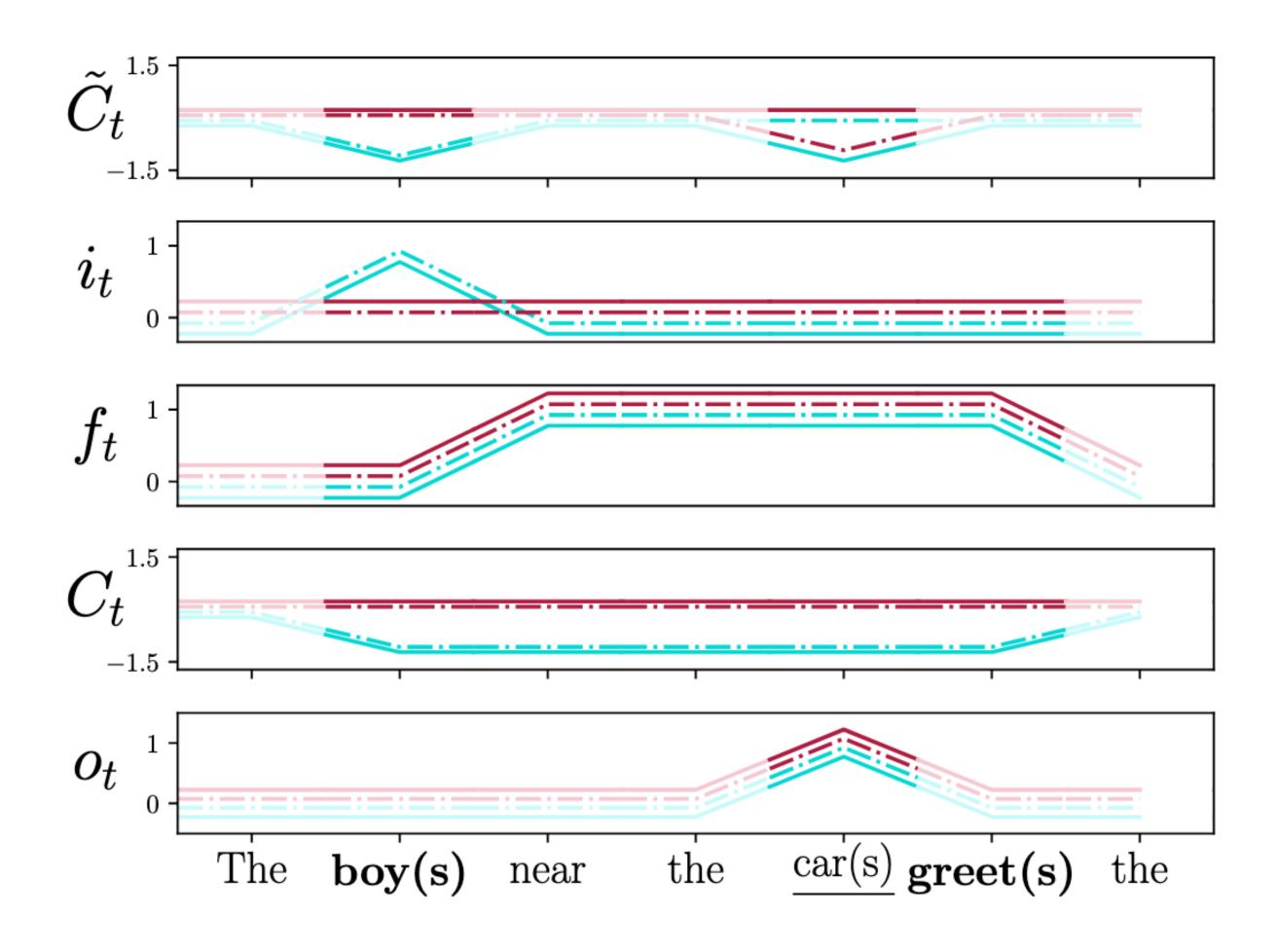
Cognitive Neuroimaging Unit
NeuroSpin center
91191, Gif-sur-Yvette, France
stanislas.dehaene@gmail.com

Marco Baroni

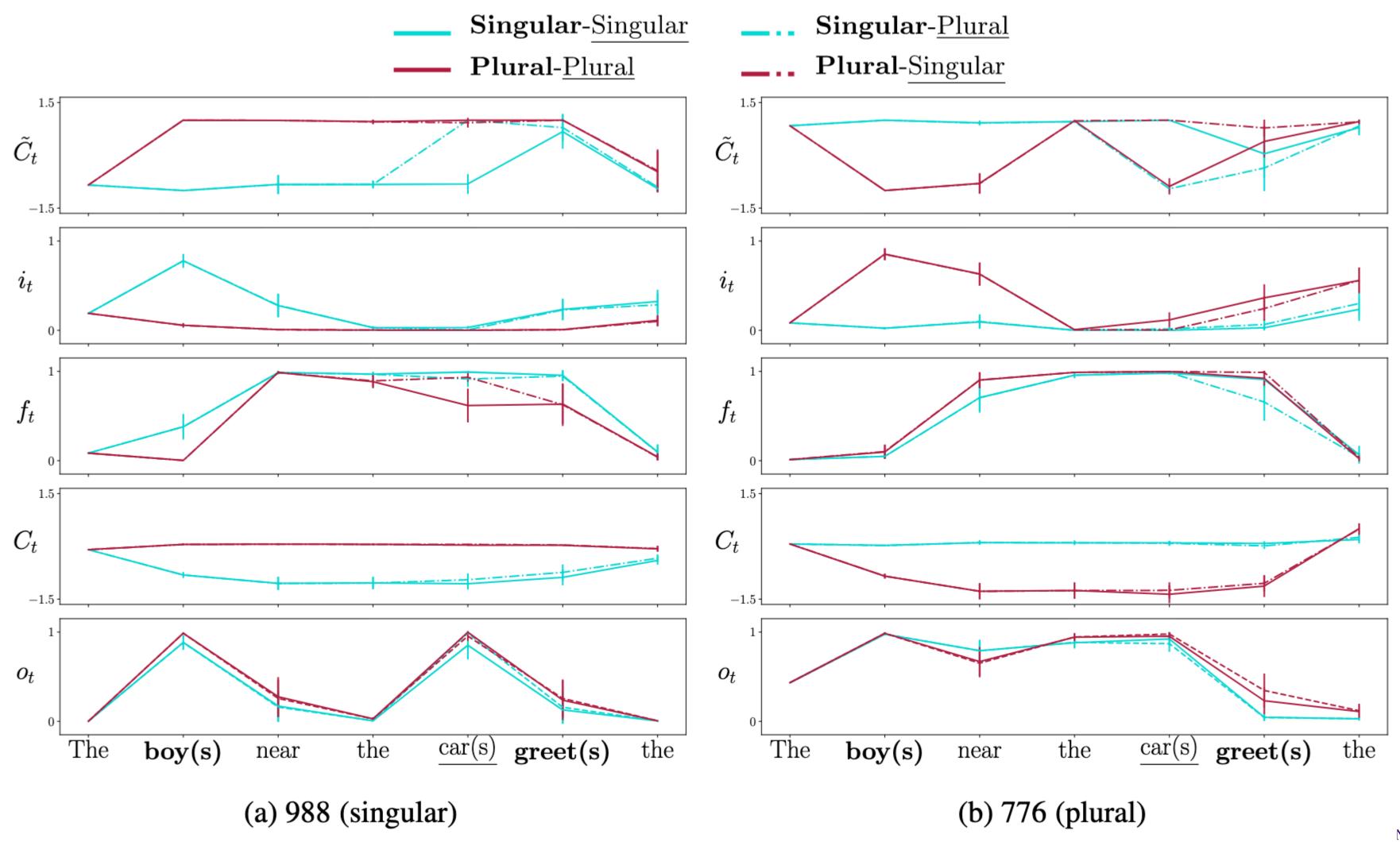
Facebook AI Research
Paris, France
mbaroni@fb.com

Approach

- Evaluating the Gulordava et al 2018 LSTM LM (last week's slides + later)
- Number agreement tasks: as in Linzen et al 2016 (to be discussed shortly!)
 - Plus synthetic:

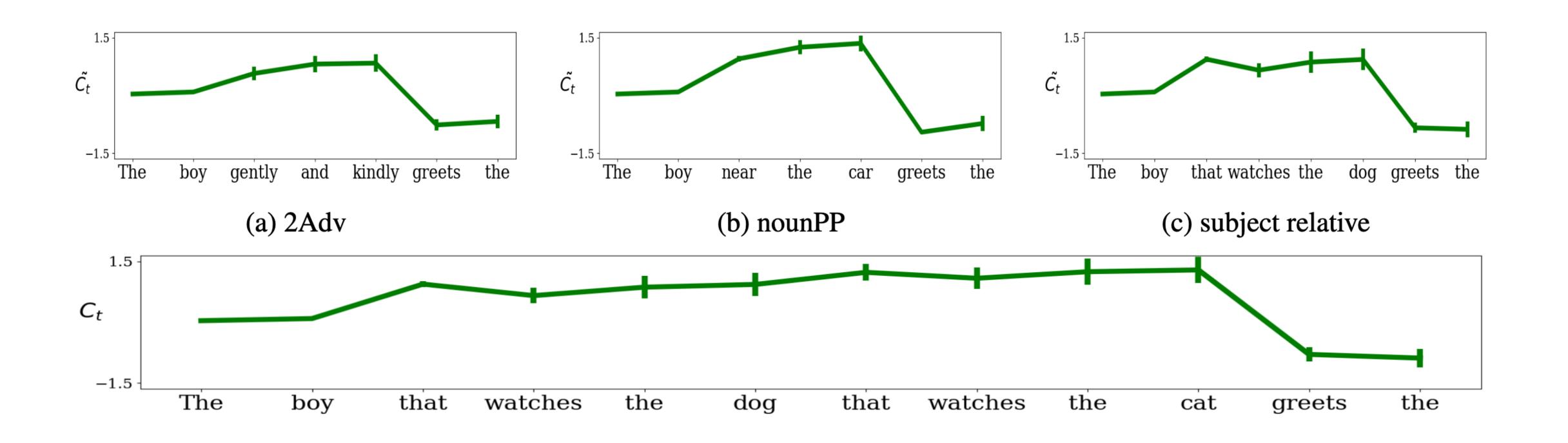

Simple	the boy greets the guy
Adv	the boy probably greets the guy
2Adv	the boy most probably greets the guy
CoAdv	the boy openly and deliberately greets the guy
NamePP	the boy near Pat greets the guy
NounPP	the boy near the car greets the guy
NounPPAdv	the boy near the car kindly greets the guy

• Find important cells by *ablation*: set activation to 0, see if performance suffers. (Also by regression; more in a minute)


Ablating Individual Units

NA task	C	Ablated		Full
INA LASK		776	988	ruii
Simple	S	_	-	100
Adv	S	_	_	100
2Adv	S	_	-	99.9
CoAdv	S	_	82	98.7
namePP	SS	_	-	99.3
nounPP	SS	_	-	99.2
nounPP	SP	_	54.2	87.2
nounPPAdv	SS	_	-	99.5
nounPPAdv	SP	_	54.0	91.2
Simple	P	-	-	100
Adv	P	_	-	99.6
2Adv	P	_	-	99.3
CoAdv	P	79.2	-	99.3
namePP	PS	39.9	-	68.9
nounPP	PS	48.0	-	92.0
nounPP	PP	78.3	_	99.0
nounPPAdv	PS	63.7	_	99.2
nounPPAdv	PP	_	_	99.8
Linzen	-	75.3	-	93.9

Ideal cell dynamics for storing number info


Learned cell dynamics for number info

Finding a syntax unit

- Predict, via linear regression, from the cell:
 - Depth of the word in syntactic parse of the sentence
 - (Works pretty well: R^2 = 0.85. More on this idea later.)
- Identify cells that are assigned very high weight in the regression

Cell dynamics for a syntax unit

 Very promising and exciting when it does work: a good look "inside the black box", with very interpretable neural/cell dynamics. But:

- Very promising and exciting when it does work: a good look "inside the black box", with very interpretable neural/cell dynamics. But:
- "A needle in a haystack": how to find the "good" neurons?
 - Some principled methods (ablation, regression); not all of them scale well
 - But also:
 - Is there a neuron that tracks property P?
 - Not: what are you tracking?

- Very promising and exciting when it does work: a good look "inside the black box", with very interpretable neural/cell dynamics. But:
- "A needle in a haystack": how to find the "good" neurons?
 - Some principled methods (ablation, regression); not all of them scale well
 - But also:
 - Is there a neuron that tracks property P?
 - Not: what are you tracking?
- Deleting interpretable neurons may not effect performance in the original or downstream task (Morcos et al 2018)

Outline

- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

Psycholinguistic methods

Animating Idea

- NLMs are a bit of a "black box". How can we figure out what they're doing?
- Well: humans are also (approximately) black boxes!
- So: let's treat NLMs the way we treat people when we try to figure out the nature of their linguistic knowledge.
 - In other words: treat NLMs as if they were participants in the kinds of experiments that (psycho-)linguists perform.
 - [NB: lots more to do here!]

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen^{1,2} Emmanuel Dupoux¹
LSCP¹ & IJN², CNRS,
EHESS and ENS, PSL Research University
{tal.linzen,
emmanuel.dupoux}@ens.fr

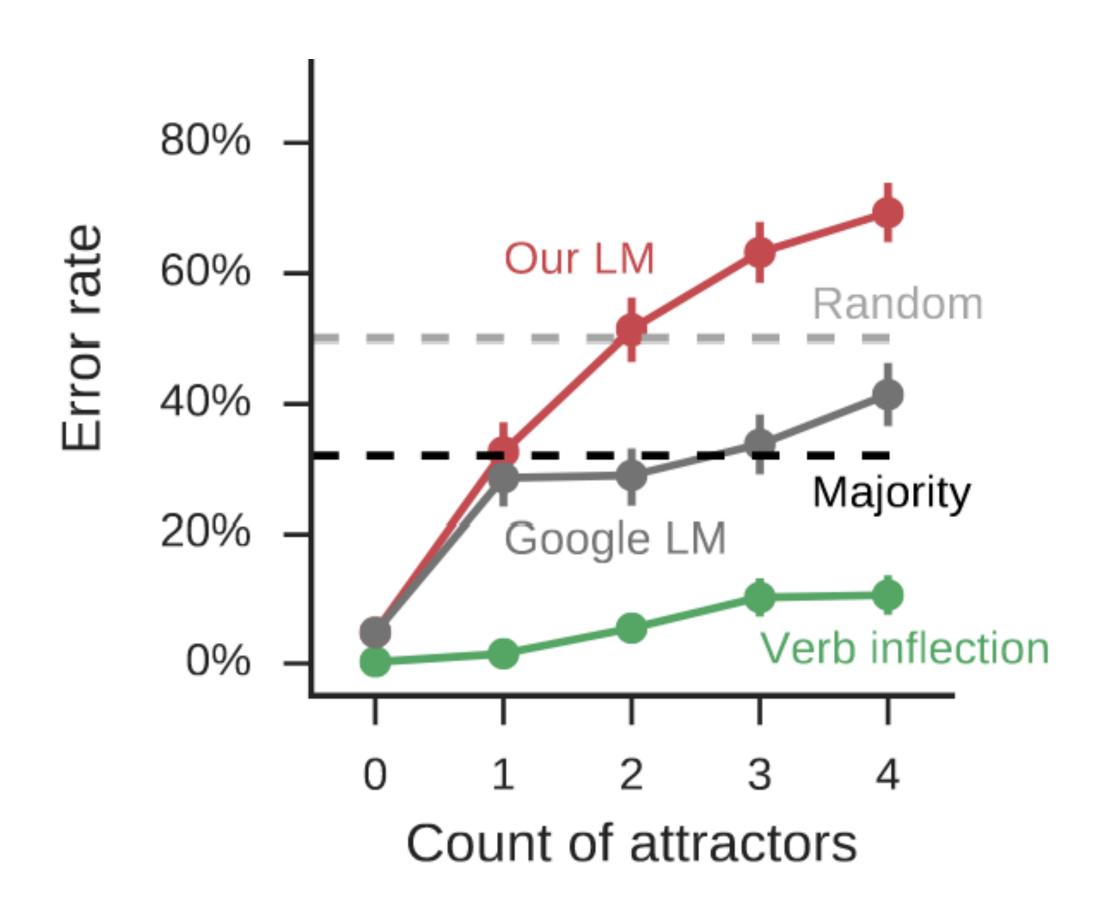
Yoav Goldberg Computer Science Department Bar Ilan University yoav.goldberg@gmail.com

Abstract

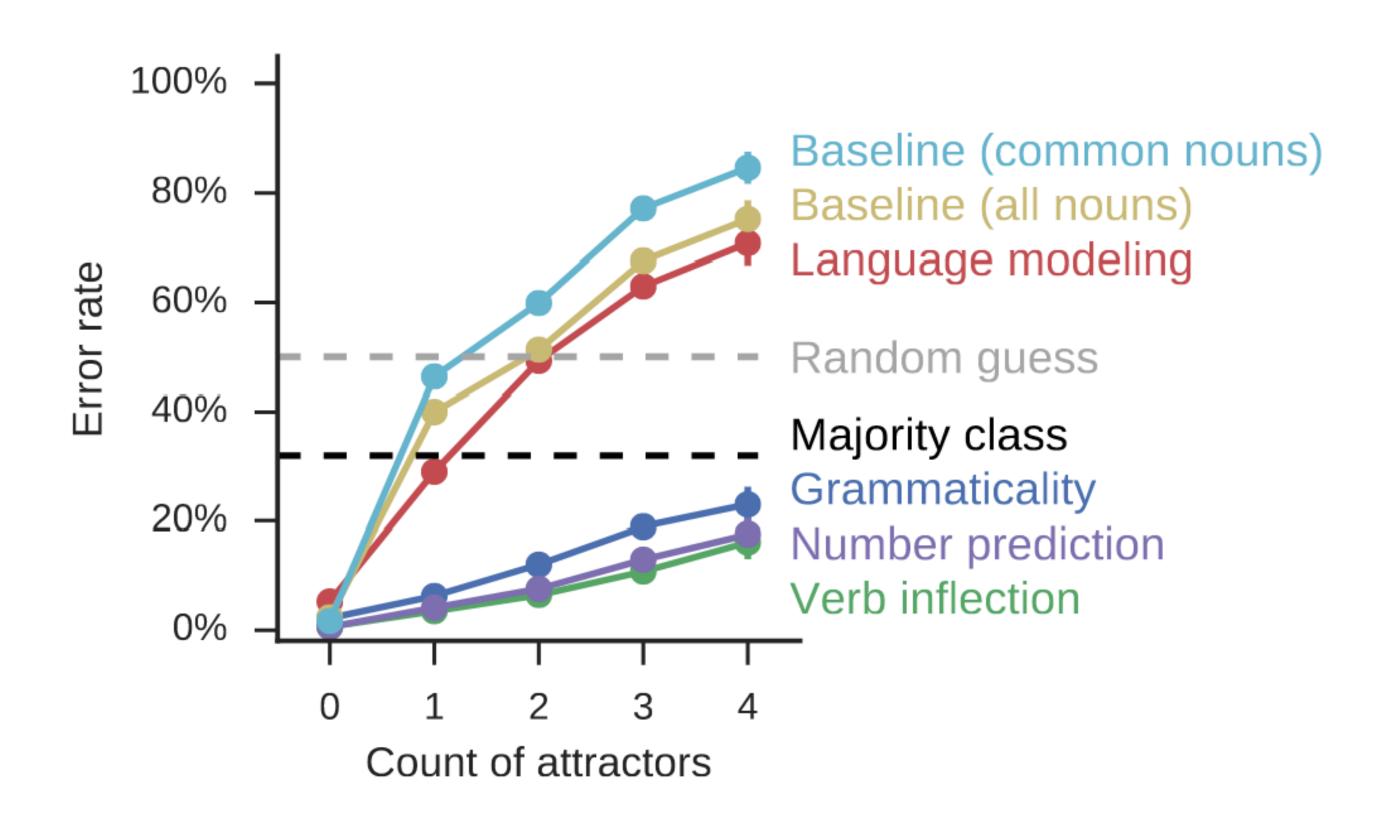
The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture's grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings,

(Hochreiter and Schmidhuber, 1997) or gated recurrent units (GRU) (Cho et al., 2014), has led to significant gains in language modeling (Mikolov et al., 2010; Sundermeyer et al., 2012), parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016), machine translation (Bahdanau et al., 2015) and other tasks.

The effectiveness of RNNs¹ is attributed to their ability to capture statistical contingencies that may span an arbitrary number of words. The word *France*, for example, is more likely to occur somewhere in a sentence that begins with *Paris* than in a sentence that begins with *Penguins*. The fact that an arbitrary number of words can intervene between the mutually predictive words implies that they cannot be captured


Subject-verb agreement

- Adjacent:
 - The key is on the table [SS]
 - * The key are on the table [SP]
 - * The keys is on the table [PS]
 - The keys are on the table [PP]
- Arbitrarily many attractors (nouns w/ different number) in between:
 - But even the city with several tall buildings and many thriving industries is struggling.


Method

- Does LM predict the right form of the verb?
 - "The keys on the cabinet ..."
 - $P_{LM}(are) > P_{LM}(is)$?
- Single layer LSTM w/ 50 hidden units
- NB: a lot more in the paper than we'll talk about here.
- Later: other methods for getting LM grammaticality judgments.

Accuracy vs. Attractors

Effect of Task

Take Home

- LSTMs can in general learn hierarchical dependencies
- But language modeling may not provide enough signal on its own
 - i.e. explicit supervision on the task is required

Colorless green recurrent networks dream hierarchically

Kristina Gulordava*

Department of Linguistics University of Geneva

kristina.gulordava@unige.ch

Piotr Bojanowski

Facebook AI Research Paris

bojanowski@fb.com

Edouard Grave

Facebook AI Research New York

egrave@fb.com

Tal Linzen

Department of Cognitive Science Johns Hopkins University

tal.linzen@jhu.edu

Marco Baroni

Facebook AI Research Paris

mbaroni@fb.com

Abstract

Recurrent neural networks (RNNs) have achieved impressive results in a variety of linguistic processing tasks, suggesting that they can induce non-trivial properties of language. We investigate here to what extent RNNs learn to track abstract hierarchical syntactic structure. We test whether RNNs trained with a generic language modeling objective in four languages (Italian, English, Hebrew, Russian) can predict long-distance number agreement in various constructions. We include in our

achieved impressive results in large-scale tasks such as language modeling for speech recognition and machine translation, and are by now standard tools for sequential natural language tasks (e.g., Mikolov et al., 2010; Graves, 2012; Wu et al., 2016). This suggests that RNNs may learn to track grammatical structure even when trained on noisier natural data. The conjecture is supported by the success of RNNs as feature extractors for syntactic parsing (e.g., Cross and Huang, 2016; Kiperwasser and Goldberg, 2016; Zhang et al., 2017).

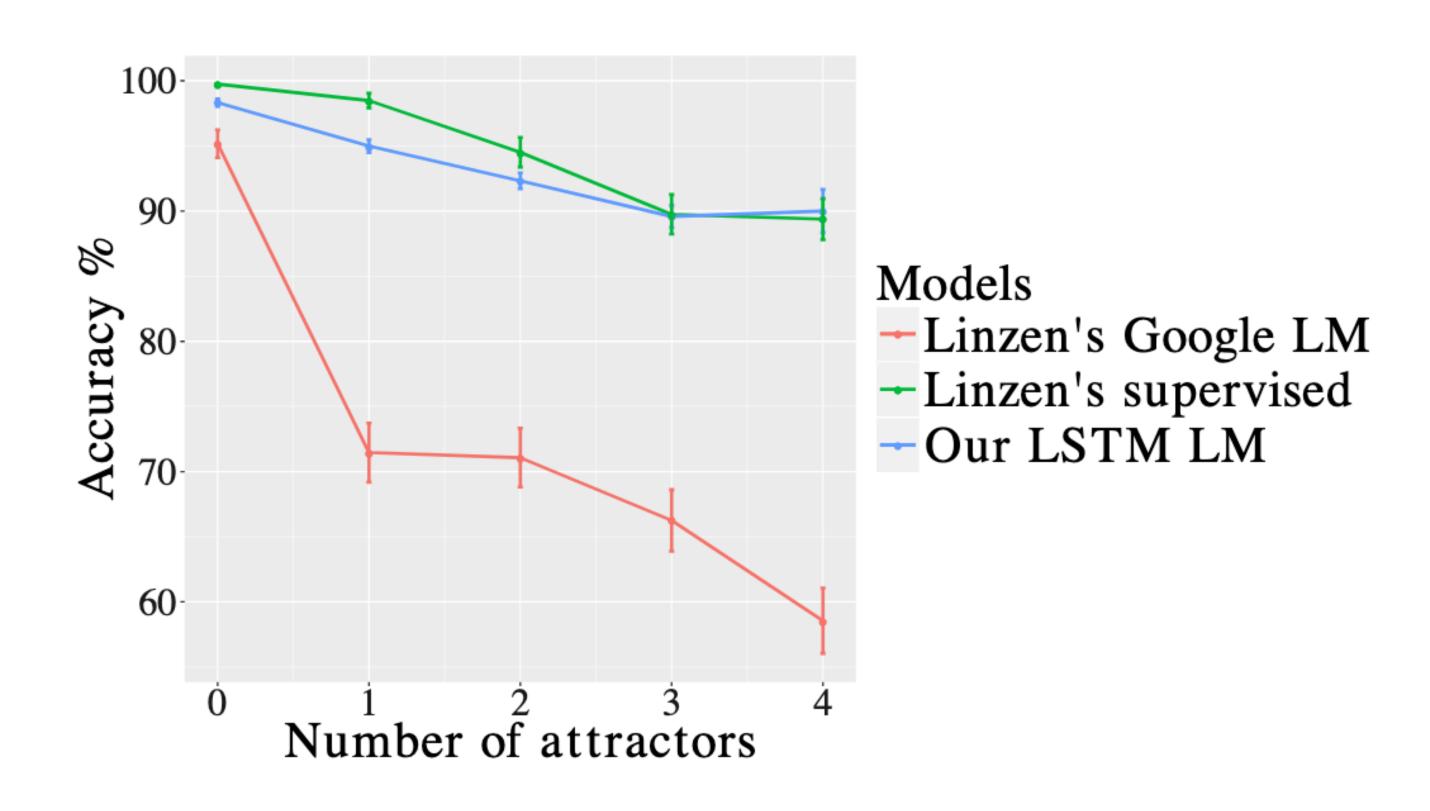
Innovations

- Same basic protocol, but:
 - More constructions / contexts to test agreement on
 - Multiple languages
 - Comparison to human judgments (in Italian)
 - Nonsense (nonce) constructions: think "colorless green ideas sleep furiously"
 - It presents the case for marriage equality and states ...
 - It stays the shuttle for honesty insurance and finds ...
- [Note: no "wug" / pseudo-words ("It blergs the shuttle ..."); why not?]

Four languages; two constructions

		NVV	V NP conj V
Italian	Original	$93.3_{\pm 4.1}$	$83.3_{\pm 10.4}$
	Nonce	$92.5_{\pm 2.1}$	$78.5_{\pm 1.7}$
English	Original	$89.6_{\pm 3.6}$	$67.5_{\pm 5.2}$
	Nonce	$68.7_{\pm 0.9}$	$82.5_{\pm 4.8}$
Hebrew	Original	$86.7_{\pm 9.3}$	$83.3_{\pm 5.9}$
	Nonce	$65.7_{\pm 4.1}$	$83.1_{\pm 2.8}$
Russian	Original	-	$95.2_{\pm 1.9}$
	Nonce	-	$86.7_{\pm 1.6}$

Four languages; two constructions


		NVV	V NP conj V	
Italian	Original	$93.3_{\pm 4.1}$	$83.3_{\pm 10.4}$	
	Nonce	$92.5_{\pm 2.1}$	$78.5_{\pm 1.7}$	Maybe English's poo
English	Original	$89.6_{\pm 3.6}$	$67.5_{\pm 5.2}$	and high POS ambig
	Nonce	$68.7_{\pm 0.9}$	$82.5_{\pm 4.8}$	"If you have any qu
Hebrew	Original	$86.7_{\pm 9.3}$	$83.3_{\pm 5.9}$	need/needs,"
	Nonce	$65.7_{\pm 4.1}$	$83.1_{\pm 2.8}$	
Russian	Original	-	$95.2_{\pm 1.9}$	
	Nonce	-	$86.7_{\pm 1.6}$	

Comparison with Italians

Construction	#original	Original		Nonce	
		Subjects	LSTM	Subjects	LSTM
DET [AdjP] NOUN	14	98.7	$98.6_{\pm 3.2}$	98.1	$91.7_{\pm 0.4}$
NOUN [RelC / PartP] clitic VERB	6	93.1	$100_{\pm0.0}$	95.4	$97.8_{\pm 0.8}$
NOUN [RelC / PartP] VERB	27	97.0	$93.3_{\pm 4.1}$	92.3	$92.5_{\pm 2.1}$
ADJ [conjoined ADJs] ADJ	13	98.5	$100_{\pm0.0}$	98.0	$98.1_{\pm 1.1}$
NOUN [AdjP] relpron VERB	10	95.9	$98.0_{\pm 4.5}$	89.5	$84.0_{\pm 3.3}$
NOUN [PP] ADVERB ADJ	13	91.5	$98.5_{\pm 3.4}$	79.4	$76.9_{\pm1.4}$
NOUN [PP] VERB (participial)	18	87.1	$77.8_{\pm 3.9}$	73.4	$71.1_{\pm 3.3}$
VERB [NP] CONJ VERB	18	94.0	$83.3_{\pm10.4}$	86.8	$78.5_{\pm1.7}$
(Micro) average		94.5	$92.1_{\pm 1.6}$	88.4	$85.5_{\pm 0.7}$

Table 3: Subject and LSTM accuracy on the Italian test set, by construction and averaged.

On the Linzen et al 2016 Data

On the Linzen et al 2016 Data

Take Home

- Language modeling may after all provide enough of a signal to learn hierarchical syntactic dependencies
 - But may be very sensitive to hyper-parameters, including training data
 - [NB: the Gulordava et al model is a lot smaller than the Google LM]
 - "suggests that the input itself contains enough information to trigger some form of syntactic learning in a system, such as an RNN, that does not contain an explicit prior bias in favour of syntactic structures"
- Good model and data to play with (https://github.com/facebookresearch/colorlessgreenRNNs)
- A follow-up, with more constructions than just subject/verb agreement, and artificially generated data: https://www.aclweb.org/anthology/D18-1151/

Neural Language Models as Psycholinguistic Subjects: Representations of Syntactic State

Richard Futrell¹, Ethan Wilcox², Takashi Morita^{3,4}, Peng Qian⁵, Miguel Ballesteros⁶, and Roger Levy⁵

¹Department of Language Science, UC Irvine, rfutrell@uci.edu

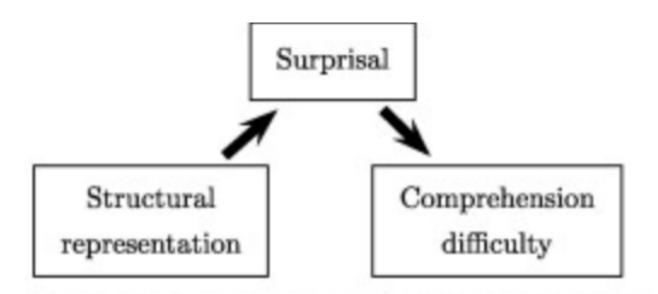
²Department of Linguistics, Harvard University, wilcoxeg@g.harvard.edu

³Primate Research Institute, Kyoto University, tmorita@alum.mit.edu

⁴Department of Linguistics and Philosophy, MIT

⁵Department of Brain and Cognitive Sciences, MIT, {pqian, rplevy}@mit.edu

⁶IBM Research, MIT-IBM Watson AI Lab, miguel.ballesteros@ibm.com

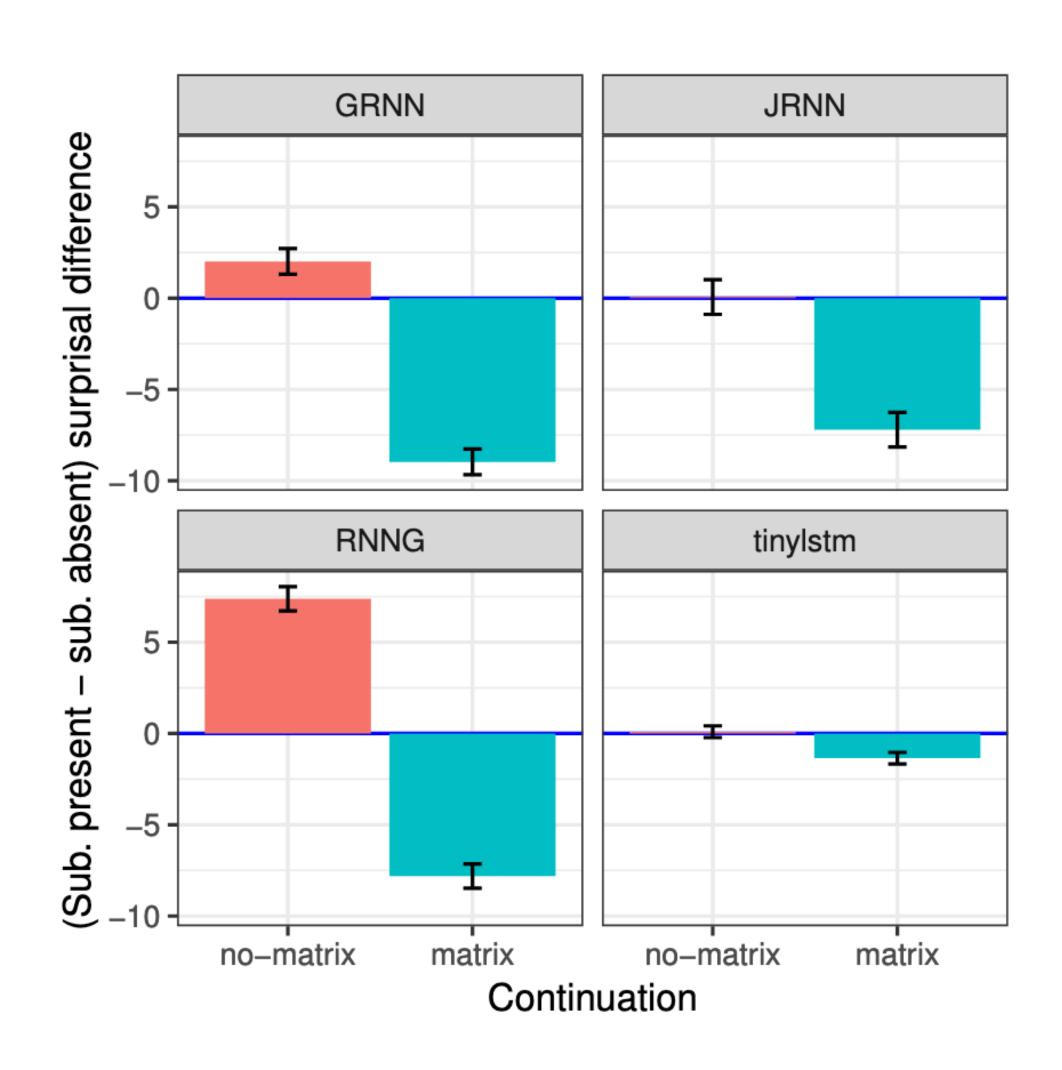

Abstract

We investigate the extent to which the behavior of neural network language models reflects incremental representations of syntactic state. To do so, we employ experimental methodologies which were originally developed in the field of psycholinguistics to study syntactic representation in the human mind. We examine neural network model behavior on sets of artificial sentences containing a variety of syntactically complex structures. These sen-

language models using experimental techniques that were originally developed in the field of psycholinguistics to study language processing in the human mind. The basic idea is to examine language models' behavior on targeted sentences chosen to probe particular aspects of the learned representations. This approach was introduced by Linzen et al. (2016), followed more recently by others (Bernardy and Lappin, 2017; Enguehard et al., 2017; Gulordava et al., 2018), who used

Surprisal in Sentence Comprehension

- Surprisal = -log prob
- A good predictor of human reading times (<u>Hale 2001</u>; <u>Levy 2008</u>)
 - Usually derived from probabilistic grammars



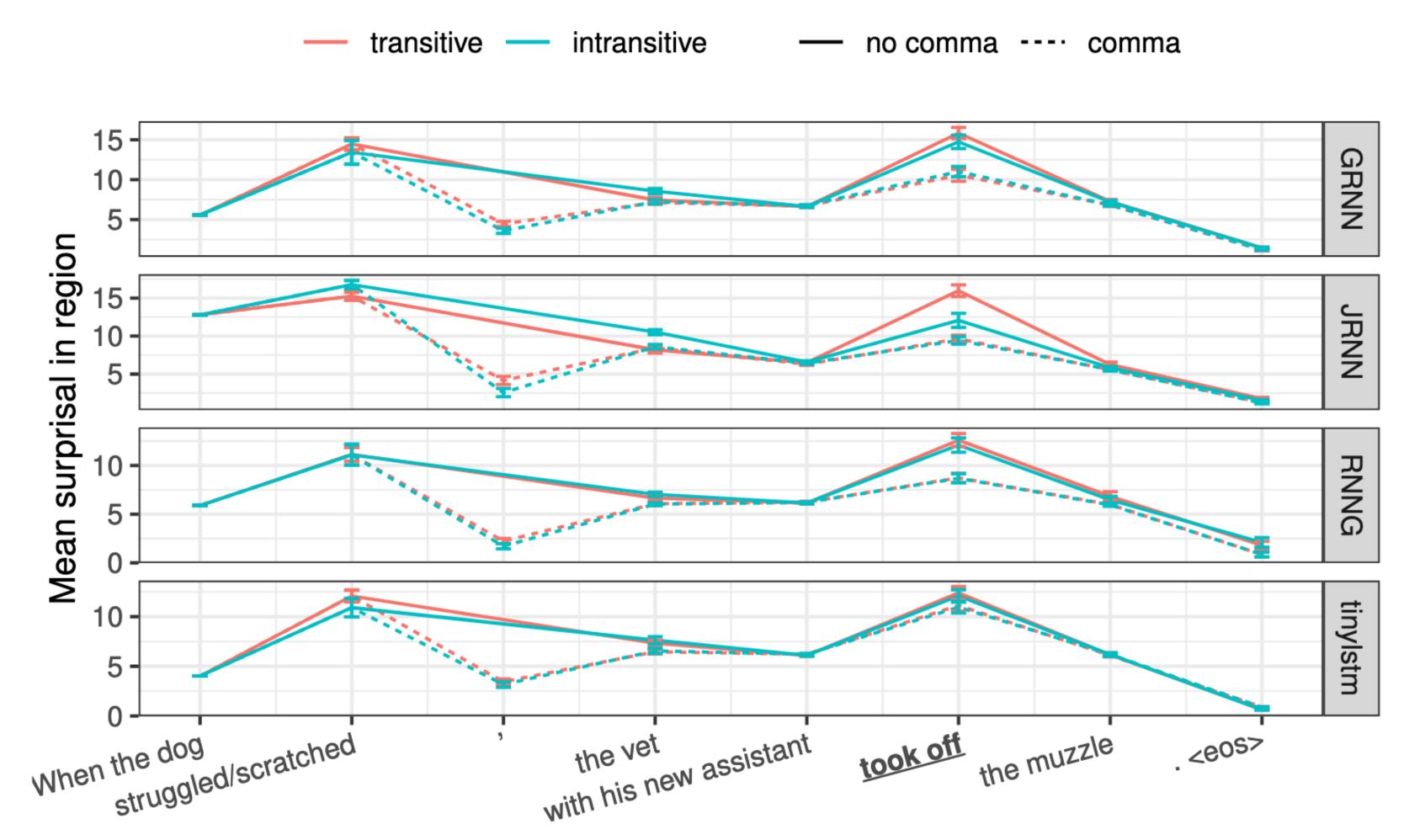
- Surprisal is just the contribution of each next-word prediction of an LM to its training loss
 - Do these values show evidence of incremental structure-building?

Matrix Licensing

- (2) a. As the doctor studied the textbook, the nurse walked into the office. [SUBordinator, MATRIX]
 - b. *As the doctor studied the textbook. [SUB, NO-MATRIX]
 - c. ?The doctor studied the textbook, the nurse walked into the office. [NO-SUBordinator, MATRIX]
 - d. The doctor studied the textbook. [NO-SUB, NO-MATRIX]

Matrix Licensing

Negative values: with subordinator ("As") absent, the matrix clause is surprising

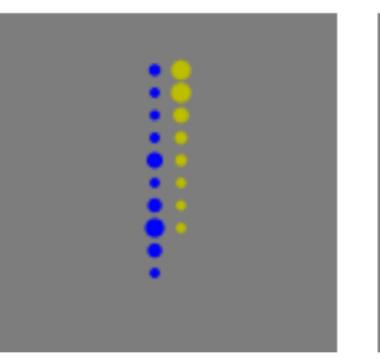

When the dog scratched the vet with his new assistant took off the muzzle.

- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.

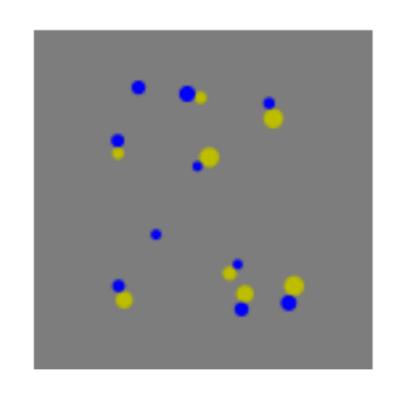
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched, the vet with his new assistant took off the muzzle.

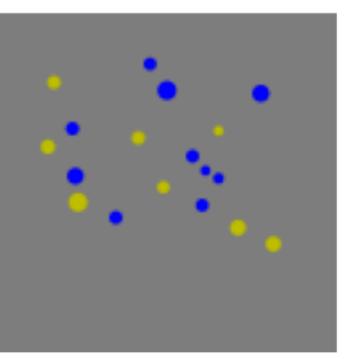
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched, the vet with his new assistant took off the muzzle.
- When the dog struggled the vet with his new assistant took off the muzzle.
 [intransitive verb]

- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched the vet with his new assistant took off the muzzle.
- When the dog scratched, the vet with his new assistant took off the muzzle.
- When the dog struggled the vet with his new assistant took off the muzzle.
 [intransitive verb]
- When the dog struggled, the vet with his new assistant took off the muzzle.
 [intransitive verb]

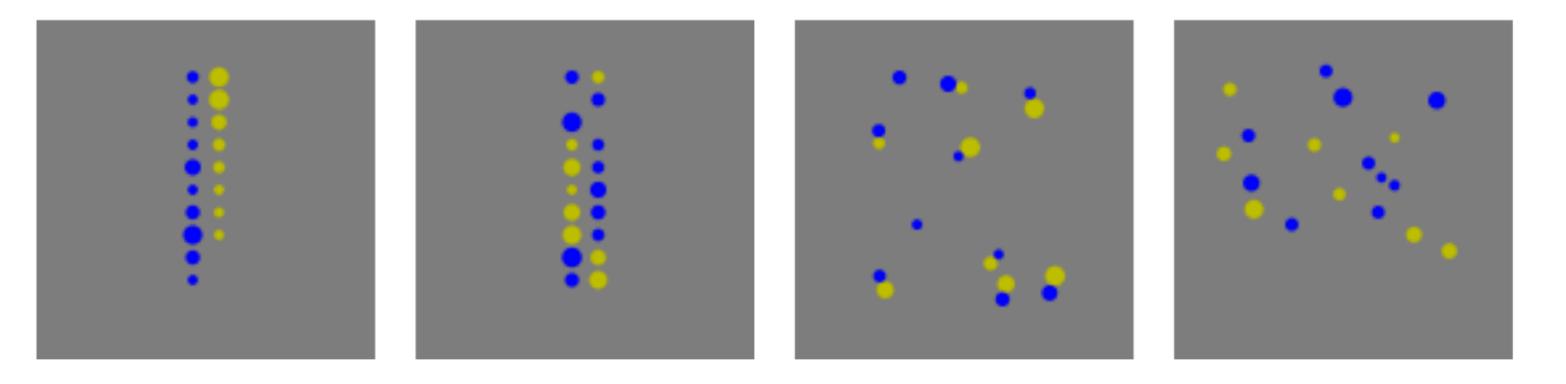

Interim Summary

- Treating NLMs as psycholinguistic subjects reveals subtle and non-trivial syntactic behavior
 - Some hierarchical structure being built, even from linear input
 - Some incremental interpretation
- NB: methods surveyed here really depend on "pure" LMs:
 - LSTMs, or left-to-right Transformers (e.g. GPT(2))


- "Most of the dots are yellow."
 - dots ∩ yellow | > | dots \ yellow |
 - $\exists f : \text{dots} \setminus \text{yellow} \rightarrow \text{dots} \cap \text{yellow} \text{ that is 1-1, not onto}$
 -


- "Most of the dots are yellow."
 - dots ∩ yellow | > | dots \ yellow |
 - $\exists f : \text{dots} \setminus \text{yellow} \rightarrow \text{dots} \cap \text{yellow} \text{ that is 1-1, not onto}$

•



- "Most of the dots are yellow."
 - dots ∩ yellow | > | dots \ yellow |
 - $\exists f : \text{dots} \setminus \text{yellow} \rightarrow \text{dots} \cap \text{yellow} \text{ that is 1-1, not onto}$

•

• <u>Pietroski et al 2009</u>: no difference between (b)-(d) conditions, so people do *not* represent "most" via 1-1 mapping. (Many follow-ups since.)

Lewis O'Sullivan

Brain and Cognitive Sciences Universiteit van Amsterdam

lewis.osullivan@student.uva.nl

Shane Steinert-Threlkeld

Institute for Logic, Language and Computation Universiteit van Amsterdam

S.N.M.Steinert-Threlkeld@uva.nl

Abstract

How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these psycho semantic tasks. We trained two

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- [most](A)(B) = 1 iff $|A \cap B| > |A \setminus B|$
- [most](A)(B) = 1 iff there is $f: A \setminus B \to A \cap B$ that is one-to-one, but not onto

Lewis O'Sullivan

Brain and Cognitive Sciences Universiteit van Amsterdam

lewis.osullivan@student.uva.nl

Shane Steinert-Threlkeld

Institute for Logic, Language and Computation Universiteit van Amsterdam

S.N.M.Steinert-Threlkeld@uva.nl

Abstract

How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these psycho semantic tasks. We trained two

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- $\lceil most \rceil (A)(B) = 1 \text{ iff } |A \cap B| > |A \setminus B|$
- [most](A)(B) = 1 iff there is $f: A \setminus B \to A \cap B$ that is one-to-one, but not onto

• We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)

Lewis O'Sullivan

Brain and Cognitive Sciences Universiteit van Amsterdam

lewis.osullivan@student.uva.nl

Shane Steinert-Threlkeld

Institute for Logic, Language and Computation Universiteit van Amsterdam

S.N.M.Steinert-Threlkeld@uva.nl

Abstract

How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these psycho semantic tasks. We trained two

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- [most](A)(B) = 1 iff $|A \cap B| > |A \setminus B|$
- [most](A)(B) = 1 iff there is $f : A \setminus B \to A \cap B$ that is one-to-one, but not onto

- We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)
- Pre-trained (e.g. multi-modal!) models could be evaluated on this paradigm

Lewis O'Sullivan

Brain and Cognitive Sciences Universiteit van Amsterdam

lewis.osullivan@student.uva.nl

Shane Steinert-Threlkeld

Institute for Logic, Language and Computation Universiteit van Amsterdam

S.N.M.Steinert-Threlkeld@uva.nl

Abstract

How are the meanings of linguistic expressions related to their use in concrete cognitive tasks? Visual identification tasks show human speakers can exhibit considerable variation in their understanding, representation and verification of certain quantifiers. This paper initiates an investigation into neural models of these psycho semantic tasks. We trained two

truth-conditionally equivalent ways. For instance (where, in the running example, A is the set of dots, and B the set of yellow things):

- $[most](A)(B) = 1 \text{ iff } |A \cap B| > |A \setminus B|$
- [most](A)(B) = 1 iff there is $f : A \setminus B \to A \cap B$ that is one-to-one, but not onto

- We used the Pietroski et al experiment as the optimization objective for a fancy model (recurrent model of visual attention)
- Pre-trained (e.g. multi-modal!) models could be evaluated on this paradigm
- See also <u>Kuhlne and Copestake 2019</u>

Some other candidate phenomena

- The distinction between implicature and presupposition:
 - Some students passed. implicates Not all students passed.
 - Shane knows that the paper was published. *Presupposes* The paper was published.
 - (Compare: Shane doesn't know that the paper was published.)
 - See: https://aclanthology.org/2021.conll-1.28/
- Semantic sources of ungrammaticality:
 - Negative polarity items (lots of work on these right now)
 - Exceptives
 - There are Q NP VP....
- Many, many more! If you find/know an experimental semantics paper, think how you could replace the people with models.

Some other recent papers

- Ettinger, "What BERT is not": https://www.aclweb.org/anthology/2020.tacl-1.3/
- "Infusing Finetuning with Semantic Dependencies" https://arxiv.org/pdf/2012.05395.pdf
- Jumelet , ..., S-T: "Language Models Use Monotonicity to Assess NPI Licensing" http://dx.doi.org/10.18653/v1/2021.findings-acl.439

Outline

- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

Diagnostic classifiers

Main Idea

- What's in a representation (a vector)? How can we tell?
- For example: does an LSTM's memory encode grammatical number?
 - If we're lucky: a single cell might, as we saw earlier. (Sparse representation)
 - In general: *if we can easily predict the number from the memory*, it's "already in there".
- Given a representation, train a simple model (usually a linear classifier) to predict a property of interest (usually linguistic) from that representation.

Note on Terminology

Journal of Artificial Intelligence Research 61 (2018) 907-926

Submitted 10/17; published 04/18

Visualisation and 'Diagnostic Classifiers' Reveal how Recurrent and Recursive Neural Networks Process Hierarchical Structure

Dieuwke Hupkes
Sara Veldhoen
Willem Zuidema
ILLC, University of Amsterdam
P.O.Box 94242
1090 CE Amsterdam, Netherlands

D.HUPKES@UVA.NL SARA.VELDHOEN@GMAIL.COM ZUIDEMA@UVA.NL

- Roughly synonyms: diagnostic classifiers, probing classifiers, auxiliary prediction tasks, ...
- [Basically: very simple transfer learning]

Linguistic Knowledge and Transferability of Contextual Representations

Nelson F. Liu^{♠♡*} Matt Gardner[♣] Yonatan Belinkov[♦] Matthew E. Peters[♣] Noah A. Smith^{♠♣}

◆Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA

©Department of Linguistics, University of Washington, Seattle, WA, USA

*Allen Institute for Artificial Intelligence, Seattle, WA, USA

♦ Harvard John A. Paulson School of Engineering and Applied Sciences and MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

{nfliu, nasmith}@cs.washington.edu

{mattg, matthewp}@allenai.org, belinkov@seas.harvard.edu

Abstract

Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language. To shed light on the linguistic knowledge they capture, we study the representations produced by several recent pretrained contextualizers (variants of ELMo, the OpenAI transformer language model, and BERT) with a suite of sixteen diverse probing tasks. We find that linear models trained on top of frozen contextual representations

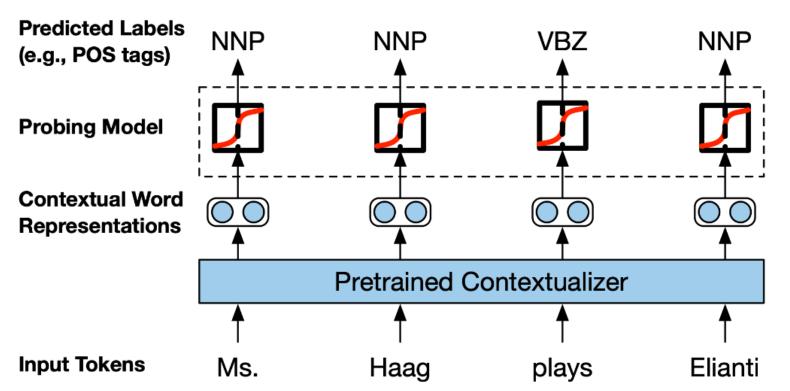


Figure 1: An illustration of the probing model setup used to study the linguistic knowledge within contextual word representations.

Tagging Results

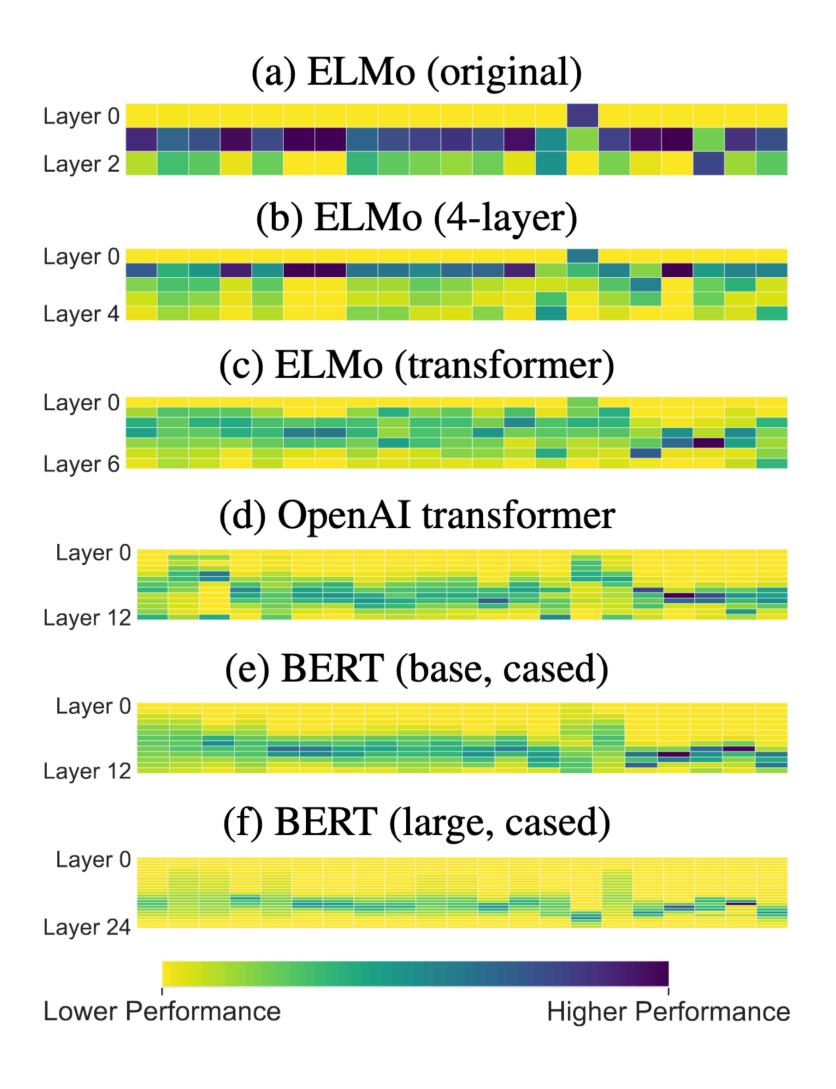
Pretrained Representation	POS					Supersense ID					
1 Totaliou Ttoprosontuiton	Avg.	CCG	PTB	EWT	Chunk	NER	ST	GED	PS-Role	PS-Fxn	EF
ELMo (original) best layer	81.58	93.31	97.26	95.61	90.04	82.85	93.82	29.37	75.44	84.87	73.20
ELMo (4-layer) best layer	81.58	93.81	97.31	95.60	89.78	82.06	94.18	29.24	74.78	85.96	73.03
ELMo (transformer) best layer	80.97	92.68	97.09	95.13	93.06	81.21	93.78	30.80	72.81	82.24	70.88
OpenAI transformer best layer	75.01	82.69	93.82	91.28	86.06	58.14	87.81	33.10	66.23	76.97	74.03
BERT (base, cased) best layer	84.09	93.67	96.95	95.21	92.64	82.71	93.72	43.30	79.61	87.94	75.11
BERT (large, cased) best layer	85.07	94.28	96.73	95.80	93.64	84.44	93.83	46.46	79.17	90.13	76.25
GloVe (840B.300d)	59.94	71.58	90.49	83.93	62.28	53.22	80.92	14.94	40.79	51.54	49.70
Previous state of the art (without pretraining)	83.44	94.7	97.96	95.82	95.77	91.38	95.15	39.83	66.89	78.29	77.10

Tagging Results

Pretrained Representation		POS					Supersense ID				
	Avg.	CCG	PTB	EWT	Chunk	NER	ST	GED	PS-Role	PS-Fxn	EF
ELMo (original) best layer	81.58	93.31	97.26	95.61	90.04	82.85	93.82	29.37	75.44	84.87	73.20
ELMo (4-layer) best layer	81.58	93.81	97.31	95.60	89.78	82.06	94.18	29.24	74.78	85.96	73.03
ELMo (transformer) best layer	80.97	92.68	97.09	95.13	93.06	81.21	93.78	30.80	72.81	82.24	70.88
OpenAI transformer best layer	75.01	82.69	93.82	91.28	86.06	58.14	87.81	33.10	66.23	76.97	74.03
BERT (base, cased) best layer	84.09	93.67	96.95	95.21	92.64	82.71	93.72	43.30	79.61	87.94	75.11
BERT (large, cased) best layer	85.07	94.28	96.73	95.80	93.64	84.44	93.83	46.46	79.17	90.13	76.25
GloVe (840B.300d)	59.94	71.58	90.49	83.93	62.28	53.22	80.92	14.94	40.79	51.54	49.70
Previous state of the art (without pretraining)	83.44	94.7	97.96	95.82	95.77	91.38	95.15	39.83	66.89	78.29	77.10

Context matters!

Coreference


D.5 Pairwise Relations (ELMo and OpenAI Transformer)

Pretrained Representation	Syntactic Dep. Arc Prediction		Syntacti Arc Cla	c Dep.	Semantic Dep. Arc Prediction	Semantic Dep. Arc Classification	Coreference Arc Prediction
	PTB	EWT	PTB	EWT	Are Frediction	Are Classification	Are rediction
ELMo (original), Layer 0	78.27	77.73	82.05	78.52	70.65	77.48	72.89
ELMo (original), Layer 1	89.04	86.46	96.13	93.01	87.71	93.31	71.33
ELMo (original), Layer 2	88.33	85.34	94.72	91.32	86.44	90.22	68.46
ELMo (original), Scalar Mix	89.30	86.56	95.81	91.69	87.79	93.13	73.24
ELMo (4-layer), Layer 0	78.09	77.57	82.13	77.99	69.96	77.22	73.57
ELMo (4-layer), Layer 1	88.79	86.31	96.20	93.20	87.15	93.27	72.93
ELMo (4-layer), Layer 2	87.33	84.75	95.38	91.87	85.29	90.57	71.78
ELMo (4-layer), Layer 3	86.74	84.17	95.06	91.55	84.44	90.04	70.11
ELMo (4-layer), Layer 4	87.61	85.09	94.14	90.68	85.81	89.45	68.36
ELMo (4-layer), Scalar Mix	88.98	85.94	95.82	91.77	87.39	93.25	73.88
ELMo (transformer), Layer 0	78.10	78.04	81.09	77.67	70.11	77.11	72.50
ELMo (transformer), Layer 1	88.24	85.48	93.62	89.18	85.16	90.66	72.47
ELMo (transformer), Layer 2	88.87	84.72	94.14	89.40	85.97	91.29	73.03
ELMo (transformer), Layer 3	89.01	84.62	94.07	89.17	86.83	90.35	72.62
ELMo (transformer), Layer 4	88.55	85.62	94.14	89.00	86.00	89.04	71.80
ELMo (transformer), Layer 5	88.09	83.23	92.70	88.84	85.79	89.66	71.62
ELMo (transformer), Layer 6	87.22	83.28	92.55	87.13	84.71	87.21	66.35
ELMo (transformer), Scalar Mix	90.74	86.39	96.40	91.06	89.18	94.35	75.52
OpenAI transformer, Layer 0	80.80	79.10	83.35	80.32	76.39	80.50	72.58
OpenAI transformer, Layer 1	81.91	79.99	88.22	84.51	77.70	83.88	75.23
OpenAI transformer, Layer 2	82.56	80.22	89.34	85.99	78.47	85.85	75.77
OpenAI transformer, Layer 3	82.87	81.21	90.89	87.67	78.91	87.76	75.81
OpenAI transformer, Layer 4	83.69	82.07	92.21	89.24	80.51	89.59	75.99
OpenAI transformer, Layer 5	84.53	82.77	93.12	90.34	81.95	90.25	76.05
OpenAI transformer, Layer 6	85.47	83.89	93.71	90.63	83.88	90.99	74.43
OpenAI transformer, Layer 7	86.32	84.15	93.95	90.82	85.15	91.18	74.05
OpenAI transformer, Layer 8	86.84	84.06	94.16	91.02	85.23	90.86	74.20
OpenAI transformer, Layer 9	87.00	84.47	93.95	90.77	85.95	90.85	74.57
OpenAI transformer, Layer 10	86.76	84.28	93.40	90.26	85.17	89.94	73.86
OpenAI transformer, Layer 11	85.84	83.42	92.82	89.07	83.39	88.46	72.03
OpenAI transformer, Layer 12	85.06	83.02	92.37	89.08	81.88	87.47	70.44
OpenAI transformer, Scalar Mix	87.18	85.30	94.51	91.55	86.13	91.55	76.47
GloVe (840B.300d)	74.14	73.94	77.54	72.74	68.94	71.84	72.96

Table 9: Pairwise relation task performance of a linear probing model trained on top of the ELMo and OpenAI contextualizers, compared against a GloVe-based probing baseline.

No significant improvement over global embedding baseline [BERT does a bit better, so bidirectionality seems to matter]

Layer-wise Prediction

(each column is a different task)

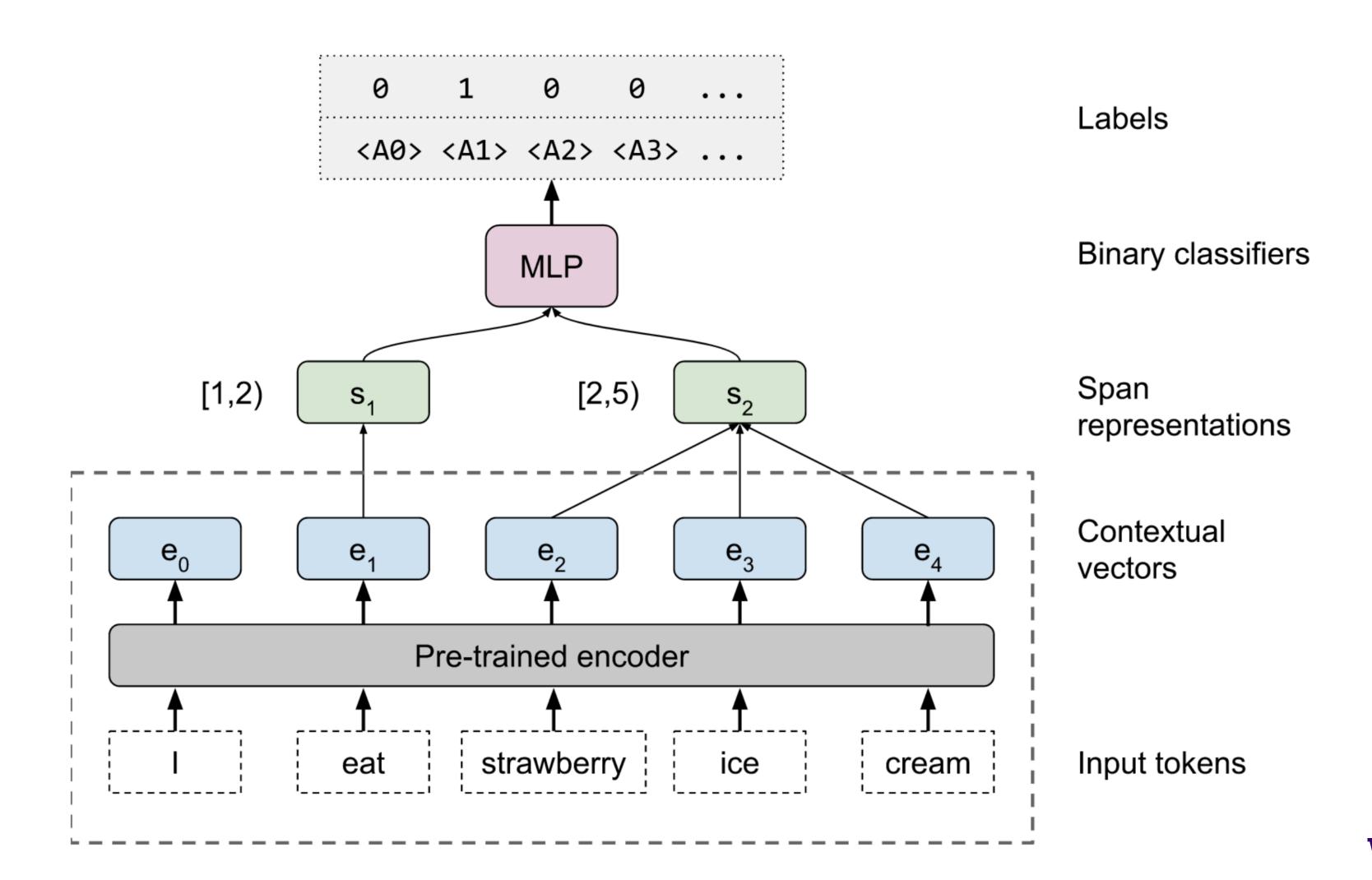
Effect of Pretraining Task

Pretraining Task	Targ	ance		
	0	1	2	Mix
CCG	56.70	64.45	63.71	66.06
Chunk	54.27	62.69	63.25	63.96
POS	56.21	63.86	64.15	65.13
Parent	54.57	62.46	61.67	64.31
GParent	55.50	62.94	62.91	64.96
GGParent	54.83	61.10	59.84	63.81
Syn. Arc Prediction	53.63	59.94	58.62	62.43
Syn. Arc Classification	56.15	64.41	63.60	66.07
Sem. Arc Prediction	53.19	54.69	53.04	59.84
Sem. Arc Classification	56.28	62.41	61.47	64.67
Conj	50.24	49.93	48.42	56.92
BiLM	66.53	65.91	65.82	66.49
GloVe (840B.300d)		60	.55	
Untrained ELMo (original)	52.14	39.26	39.39	54.42
ELMo (original) (BiLM on 1B Benchmark)	64.40	79.05	77.72	78.90

- See also:
 - Zhang and Bowman 2018
 - Peters et al 2018b
 - Blevins et al 2018

What do you learn from context? Probing for sentence structure in contextualized word representations

Ian Tenney,* ¹ Patrick Xia, ² Berlin Chen, ³ Alex Wang, ⁴ Adam Poliak, ² R. Thomas McCoy, ² Najoung Kim, ² Benjamin Van Durme, ² Samuel R. Bowman, ⁴ Dipanjan Das, ¹ and Ellie Pavlick ^{1,5}


ABSTRACT

Contextualized representation models such as ELMo (Peters et al.) 2018a) and BERT (Devlin et al.) 2018) have recently achieved state-of-the-art results on a diverse array of downstream NLP tasks. Building on recent token-level probing work, we introduce a novel *edge probing* task design and construct a broad suite of sub-sentence tasks derived from the traditional structured NLP pipeline. We probe word-level contextual representations from four recent models and investigate how they encode sentence structure across a range of syntactic, semantic, local, and long-range phenomena. We find that existing models trained on language modeling and translation produce strong representations for syntactic phenomena, but only offer comparably small improvements on semantic tasks over a non-contextual baseline.

¹Google AI Language, ²Johns Hopkins University, ³Swarthmore College,

⁴New York University, ⁵Brown University

Edge Probing Set-up

Results

	CoVe				ELM	0		GPT	
	Lex.	Full	Abs. Δ	Lex.	Full	Abs. Δ	Lex.	cat	mix
Part-of-Speech	85.7	94.0	8.4	90.4	96.7	6.3	88.2	94.9	95.0
Constituents	56.1	81.6	25.4	69.1	84.6	15.4	65.1	81.3	84.6
Dependencies	75.0	83.6	8.6	80.4	93.9	13.6	77.7	92.1	94.1
Entities	88.4	90.3	1.9	92.0	95.6	3.5	88.6	92.9	92.5
SRL (all)	59.7	80.4	20.7	74.1	90.1	16.0	67.7	86.0	89.7
Core roles	56.2	81.0	24.7	73.6	<i>92.6</i>	19.0	65.1	88.0	92.0
Non-core roles	67.7	78.8	11.1	<i>75.4</i>	<i>84.1</i>	8.8	73.9	81.3	<i>84.1</i>
OntoNotes coref.	72.9	79.2	6.3	75.3	84.0	8.7	71.8	83.6	86.3
SPR1	73.7	77.1	3.4	80.1	84.8	4.7	79.2	83.5	83.1
SPR2	76.6	80.2	3.6	82.1	83.1	1.0	82.2	83.8	83.5
Winograd coref.	52.1	54.3	2.2	54.3	53.5	-0.8	51.7	52.6	53.8
Rel. (SemEval)	51.0	60.6	9.6	55.7	77.8	22.1	58.2	81.3	81.0
Macro Average	69.1	78.1	9.0	75.4	84.4	9.1	73.0	83.2	84.4

	BERT-base				BERT-large				
	F1 Score		Abs. Δ	Abs. Δ F1 Sco			Abs	s. Δ	
	Lex.	cat	mix	ELMo	Lex.	cat	mix	(base)	ELMo
Part-of-Speech	88.4	97.0	96.7	0.0	88.1	96.5	96.9	0.2	0.2
Constituents	68.4	83.7	86.7	2.1	69.0	80.1	87.0	0.4	2.5
Dependencies	80.1	93.0	95.1	1.1	80.2	91.5	95.4	0.3	1.4
Entities	90.9	96.1	96.2	0.6	91.8	96.2	96.5	0.3	0.9
SRL (all)	75.4	89.4	91.3	1.2	76.5	88.2	92.3	1.0	2.2
Core roles	74.9	91.4	93.6	1.0	76.3	89.9	<i>94.6</i>	1.0	2.0
Non-core roles	76.4	84.7	85.9	1.8	76.9	84.1	<i>86.9</i>	1.0	2.8
OntoNotes coref.	74.9	88.7	90.2	6.3	75.7	89.6	91.4	1.2	7.4
SPR1	79.2	84.7	86.1	1.3	79.6	85.1	85.8	-0.3	1.0
SPR2	81.7	83.0	83.8	0.7	81.6	83.2	84.1	0.3	1.0
Winograd coref.	54.3	53.6	54.9	1.4	53.0	53.8	61.4	6.5	7.8
Rel. (SemEval)	57.4	78.3	82.0	4.2	56.2	77.6	82.4	0.5	4.6
Macro Average	75.1	84.8	86.3	1.9	75.2	84.2	87.3	1.0	2.9

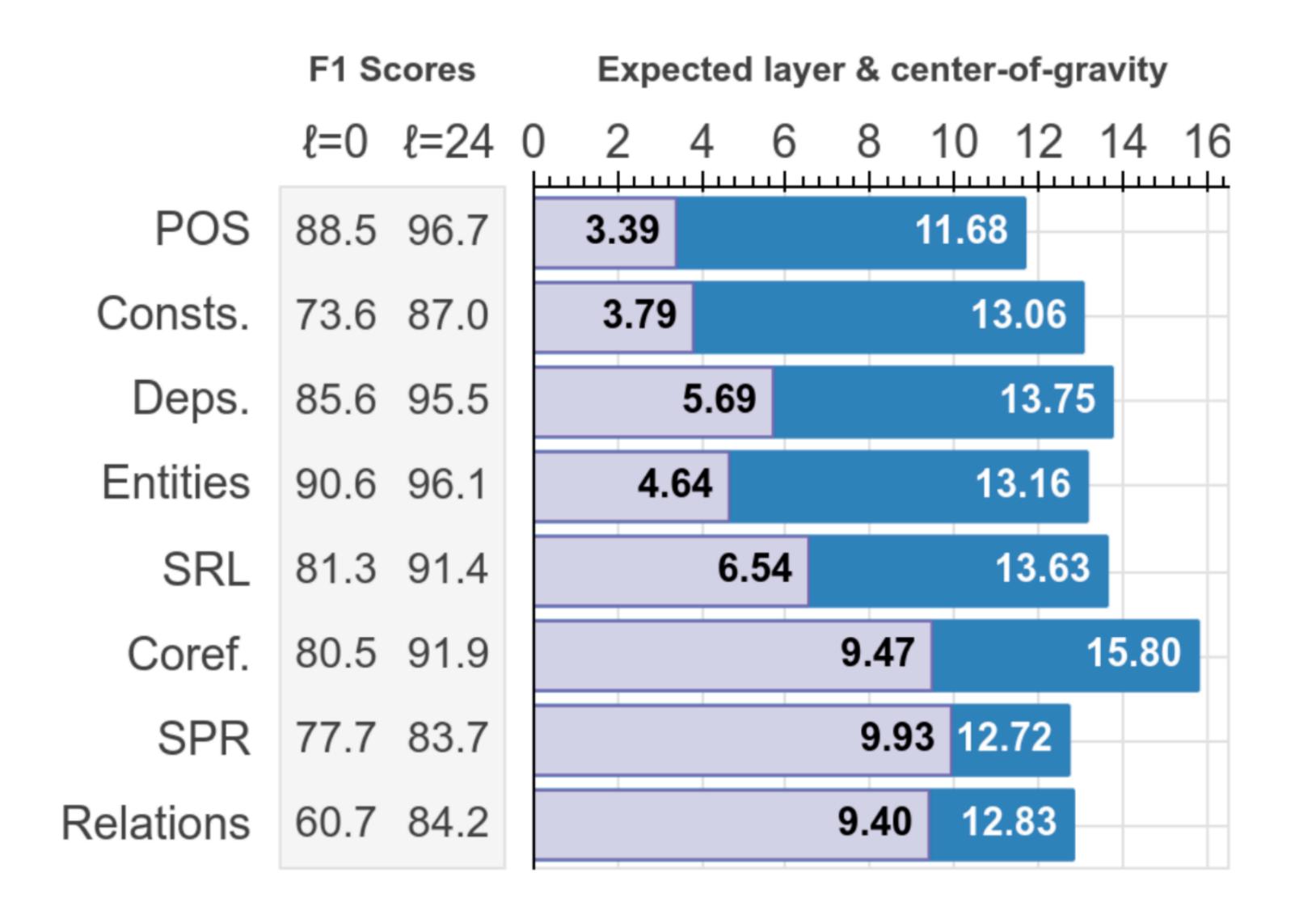
Conclusion

 "in general, contextualized embeddings improve over their noncontextualized counterparts largely on syntactic tasks (e.g. constituent labeling) in comparison to semantic tasks (e.g. coreference), suggesting that these embeddings encode syntax more so than higher-level semantics"

BERT Rediscovers the Classical NLP Pipeline

Ian Tenney¹ Dipanjan Das¹ Ellie Pavlick^{1,2}

¹Google Research ²Brown University


{iftenney, dipanjand, epavlick}@google.com

Abstract

Pre-trained text encoders have rapidly advanced the state of the art on many NLP tasks. We focus on one such model, BERT, and aim to quantify where linguistic information is captured within the network. We find that the model represents the steps of the traditional NLP pipeline in an interpretable and localizable way, and that the regions responsible for each step appear in the expected sequence: POS tagging, parsing, NER, semantic roles, then coreference. Qualitative analysis reveals that the model can and often does adjust this pipeline dynamically, revising lower-level decisions on the basis of disambiguating information from higher-level representations.

of the network directly, to assess whether there exist localizable regions associated with distinct types of linguistic decisions. Such work has produced evidence that deep language models can encode a range of syntactic and semantic information (e.g. Shi et al., 2016; Belinkov, 2018; Tenney et al., 2019), and that more complex structures are represented hierarchically in the higher layers of the model (Peters et al., 2018b; Blevins et al., 2018).

We build on this latter line of work, focusing on the BERT model (Devlin et al., 2019), and use a suite of probing tasks (Tenney et al., 2019) derived from the traditional NLP pipeline to quantify where specific types of linguistic information are

Is it in the probe or the representation?

Designing and Interpreting Probes with Control Tasks

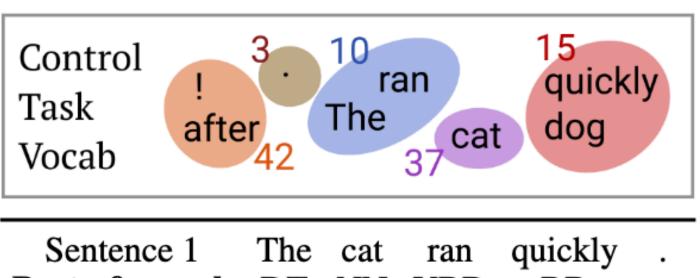
John Hewitt Stanford University

johnhew@stanford.edu pliang@cs.stanford.edu

Percy Liang

Stanford University

Is it in the probe or the representation?


Designing and Interpreting Probes with Control Tasks

John Hewitt

Stanford University
johnhew@stanford.edu

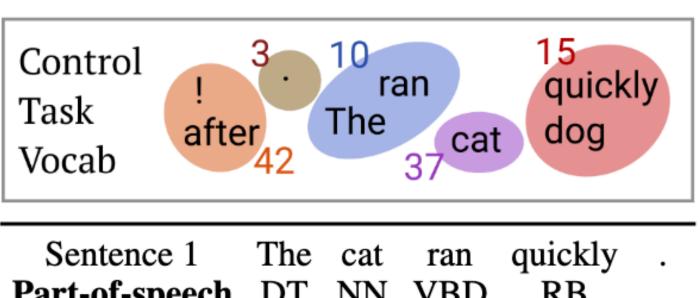
Percy Liang

Stanford University pliang@cs.stanford.edu

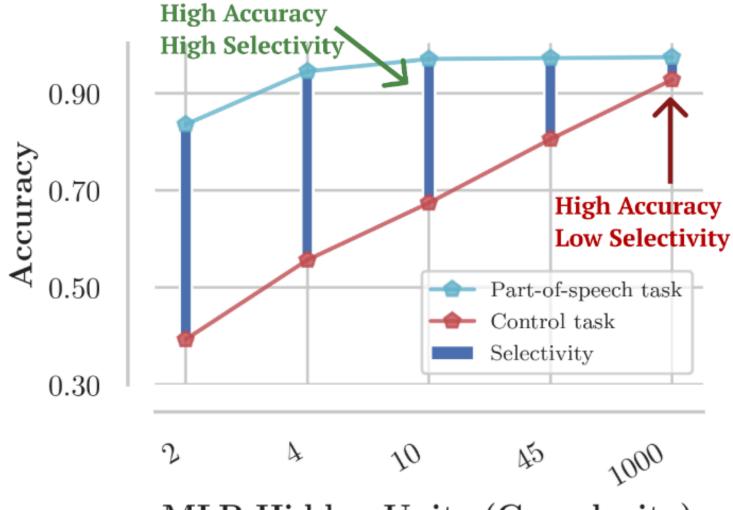
1110	Cai	ran	quickly	•
DT	NN	VBD	RB	
10	37	10	15	3
The	dog	ran	after	!
DT	NN	VBD	IN	
10	15	10	42	42
	DT 10 The DT	DT NN 10 37 The dog DT NN	DT NN VBD 10 37 10	10 37 10 15 The dog ran after DT NN VBD IN IN

Is it in the probe or the representation?

Designing and Interpreting Probes with Control Tasks


John Hewitt

Stanford University johnhew@stanford.edu


Percy Liang

Stanford University

pliang@cs.stanford.edu

Schichee 1	THE	Cat	ran	quickly	•
Part-of-speech	DT	NN	VBD	RB	
Control task	10	37	10	15	3
Sentence 2	The	dog	ran	after	!
Part-of-speech	DT	NN	VBD	IN	
Control task	10	15	10	42	42
	*				

MLP Hidden Units (Complexity)

Summary

- Use simple classifiers to see what can be extracted from a model's representations.
- Some clear trends:
 - Contextualized representations have more info than global ones (GloVe e.g.)
 - Especially for syntax
 - Layer-wise: early recurrent layers are more transferrable, less clear on Transformers
 - Language modeling a very good task for building transferrable representations
- Note: this is a rather easy method to use, so do consider it! I'll demo the method in 2 weeks.

Summary, cont.

- Promises:
 - Lets us learn what's encoded in a model's opaque representation
- Shortcomings:
 - Comparison/control (cf H+L)
 - Correlation vs causation:
 encoding != used by the model
 - More on this later today

Probing Classifiers: Promises, Shortcomings, and Advances

Yonatan Belinkov*
Technion - Israel Institute of Technology
belinkov@technion.ac.il

Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple—a classifier is trained to predict some linguistic property from a model's representations—and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This squib critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances.

Outline

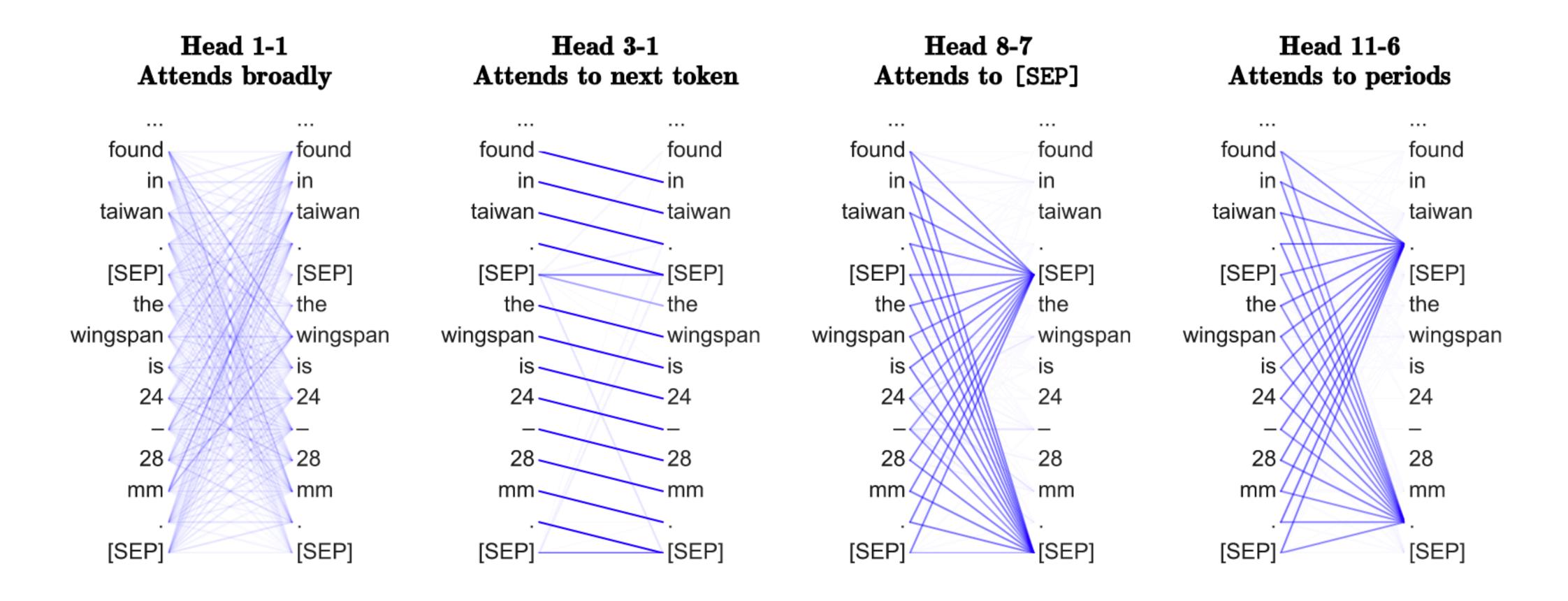
- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data, causal interventions, filtered corpus training)

Attention-based x

What does BERT look at? An Analysis of BERT's Attention

Kevin Clark[†] Urvashi Khandelwal[†] Omer Levy[‡] Christopher D. Manning[†]

[†]Computer Science Department, Stanford University [‡]Facebook AI Research


{kevclark,urvashik,manning}@cs.stanford.edu omerlevy@fb.com

Abstract

Large pre-trained neural networks such as BERT have had great recent success in NLP, motivating a growing body of research investigating what aspects of language they are able to learn from unlabeled data. Most recent analysis has focused on model outputs (e.g., lan-

Attention (Bahdanau et al., 2015) has been a highly successful neural network component. It is naturally interpretable because an attention weight has a clear meaning: how much a particular word will be weighted when computing the next representation for the current word. Our analysis fo-

Qualitative Patterns

Attention Head as Classifier

- No new training required
- Do any of these work for pairwise classification tasks "off-the-shelf"?

Attention Head as Classifier

$$\alpha_{j} = q \cdot k_{j}$$

$$e_{j} = e^{\alpha_{j}}/\sum_{j} e^{\alpha_{j}}$$

$$c = \sum_{j} e_{j} v_{j}$$

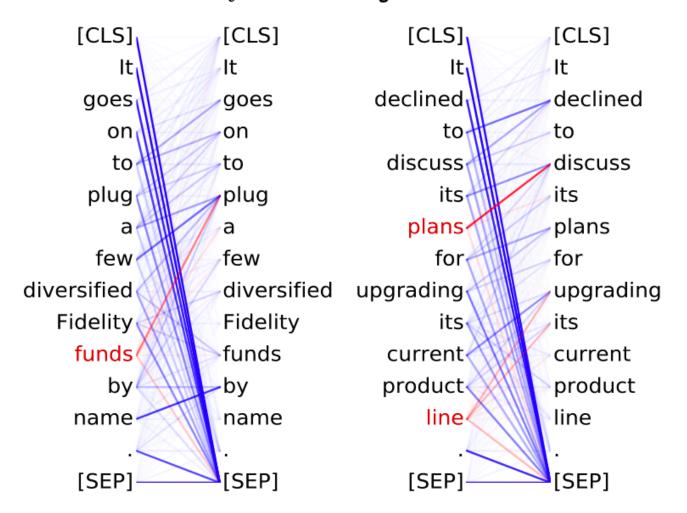
$$\text{class}(q) = \arg\max_{j} \alpha_{j}$$

- No new training required
- Do any of these work for pairwise classification tasks "off-the-shelf"?

Dependency Parsing

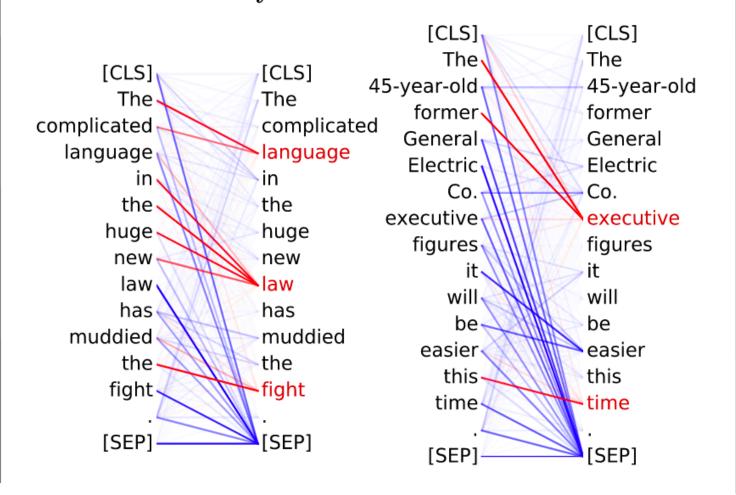
Relation	Head	Accuracy	Baseline
All	7-6	34.5	26.3 (1)
prep	7-4	66.7	61.8 (-1)
pobj	9-6	76.3	34.6 (-2)
det	8-11	94.3	51.7 (1)
nn	4-10	70.4	70.2 (1)
nsubj	8-2	58.5	45.5 (1)
amod	4-10	75.6	68.3 (1)
dobj	8-10	86.8	40.0 (-2)
advmod	7-6	48.8	40.2 (1)
aux	4-10	81.1	71.5 (1)
poss	7-6	80.5	47.7 (1)
auxpass	4-10	82.5	40.5 (1)
ccomp	8-1	48.8	12.4 (-2)
mark	8-2	50.7	14.5 (2)
prt	6-7	99.1	91.4 (-1)

Coreference

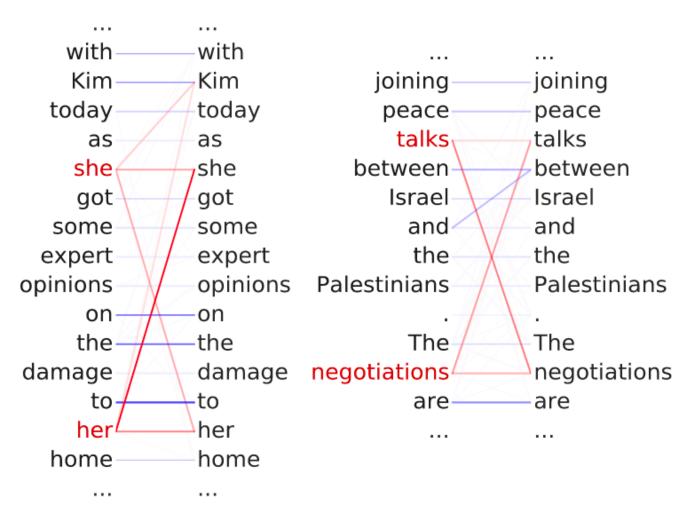

Model	All	Pronoun	Proper	Nominal
Nearest	27	29	29	19
Head-word	52	47	67	40
match				
Rule-based	69	70	77	60
Neural coref	83*	_	_	_
Head 5-4	65	64	73	58

^{*}Only roughly comparable because on non-truncated documents and with different mention detection.

Examples


Head 8-10

- **Direct objects** attend to their verbs
- 86.8% accuracy at the dobj relation


Head 8-11

- **Noun modifiers** (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

Head 5-4

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a coreferent mention to the head of an antecedent

Revealing the Dark Secrets of BERT

Olga Kovaleva, Alexey Romanov, Anna Rogers, Anna Rumshisky

Department of Computer Science University of Massachusetts Lowell Lowell, MA 01854

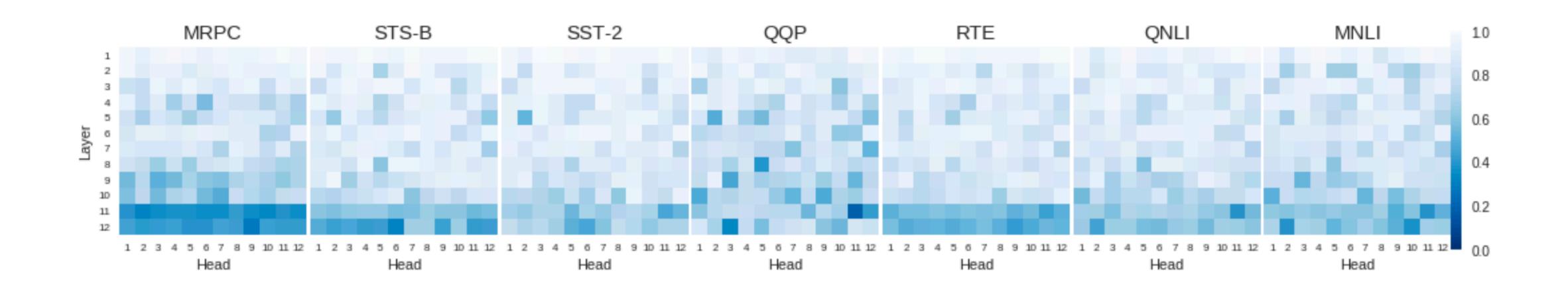
{okovalev,arum,aromanov}@cs.uml.edu

Abstract

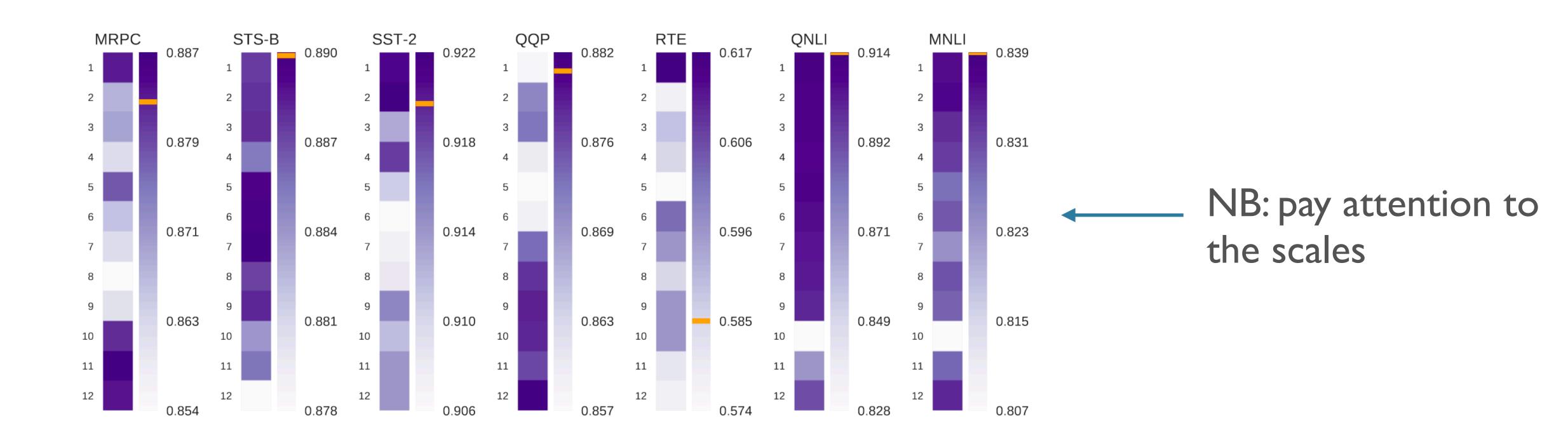
BERT-based architectures currently give state-of-the-art performance on many NLP tasks, but little is known about the exact mechanisms that contribute to its success. In the current work, we focus on the interpretation of self-attention, which is one of the fundamental underlying components of BERT. Using a subset of GLUE tasks and a set of handcrafted features-of-interest, we propose the methodology and carry out a qualitative and quantita-

inference. State-of-the-art performance is usually obtained by fine-tuning the pre-trained model on the specific task. In particular, BERT-based models are currently dominating the leaderboards for SQuAD¹ (Rajpurkar et al., 2016) and GLUE benchmarks² (Wang et al., 2018).

However, the exact mechanisms that contribute to the BERT's outstanding performance still remain unclear. We address this problem through selecting a set of linguistic features of interest and


Overall

- Same observation as previous: many heads only pay attention to [SEP] and [CLS] tokens
- Changes in attention before and after fine-tuning
- Pruning some heads can actually improve performance (see also <u>Voita et al</u> on the original Transformer)


Effect of Fine-tuning

Dataset	Pre-trained	Fine-tuned, in normal distr.	Metric	Size	
MRPC	0/31.6	81.2/68.3	87.9/82.3	F1/Acc	5.8K
STS-B	33.1	2.9	82.7	Acc	8.6K
SST-2	49.1	80.5	92	Acc	70K
QQP	0/60.9	0/63.2	65.2/78.6	F1/Acc	400K
RTE	52.7	52.7	64.6	Acc	2.7K
QNLI	52.8	49.5	84.4	Acc	130K
MNLI-m	31.7	61.0	78.6	Acc	440K

Effect of fine-tuning on attention

Pruning all attention in a layer

Summary

- Sometimes, attention heads seem to encode some linguistically interesting properties
 - But there appears to be lots of redundancy
 - And there's much more terrain to explore here
- As before: we can ask if property P can be found in attention, but not what role (independently of a hypothesis) a head is playing
- For the curious: ongoing debate about the connection between attention and model predictions (not as applied to LMs yet): <u>Attention is not</u> <u>explanation</u>; <u>Attention is not not explanation</u>

Outline

- Visualization / neuron-level analysis
- Psycholinguistic / surprisal-based methods
- Diagnostic classifiers
- Attention-based
- Examples of other methods (e.g. adversarial data)

Other methods

A Structural Probe for Finding Syntax in Word Representations

John Hewitt

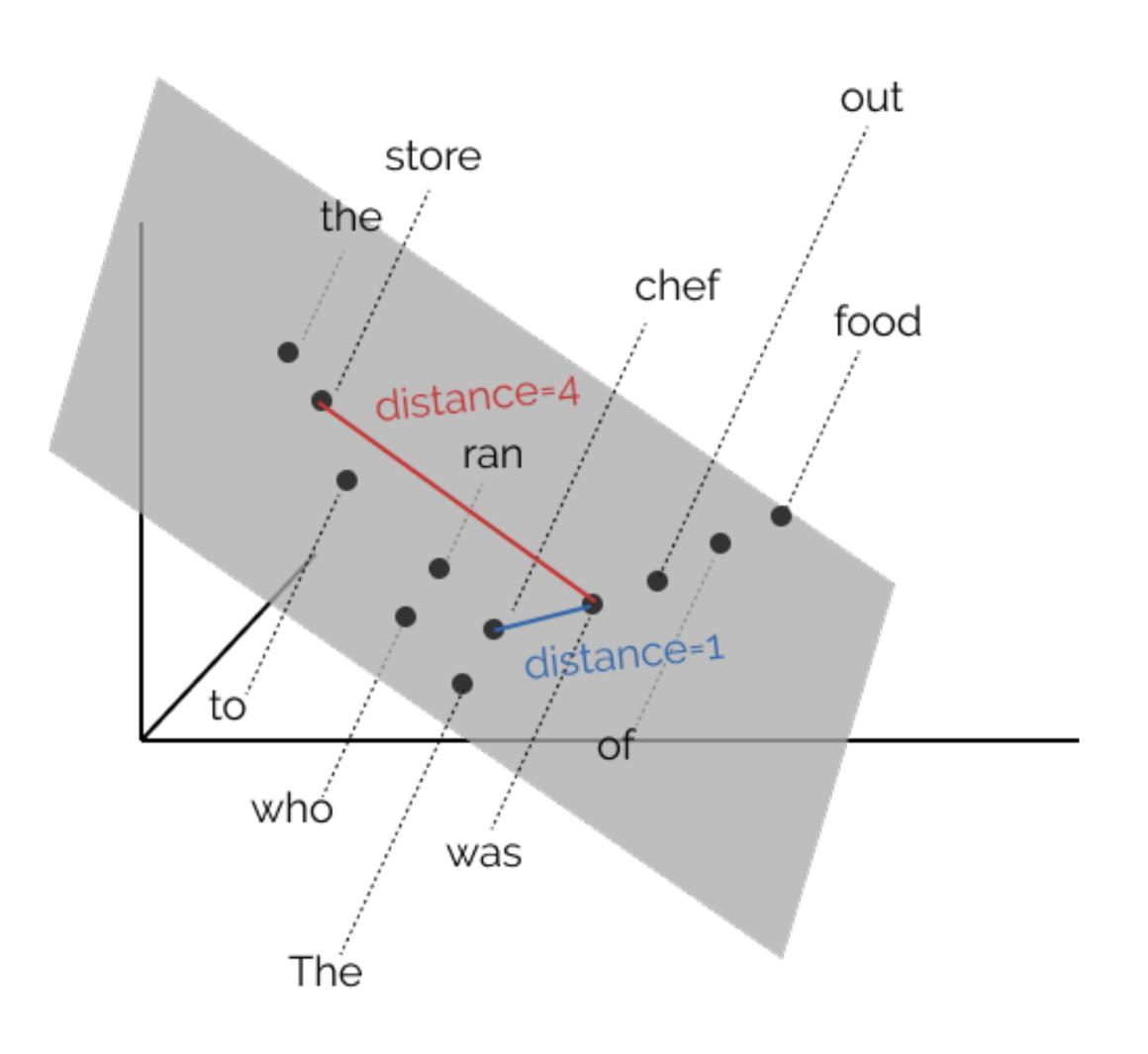
Stanford University johnhew@stanford.edu

Christopher D. Manning

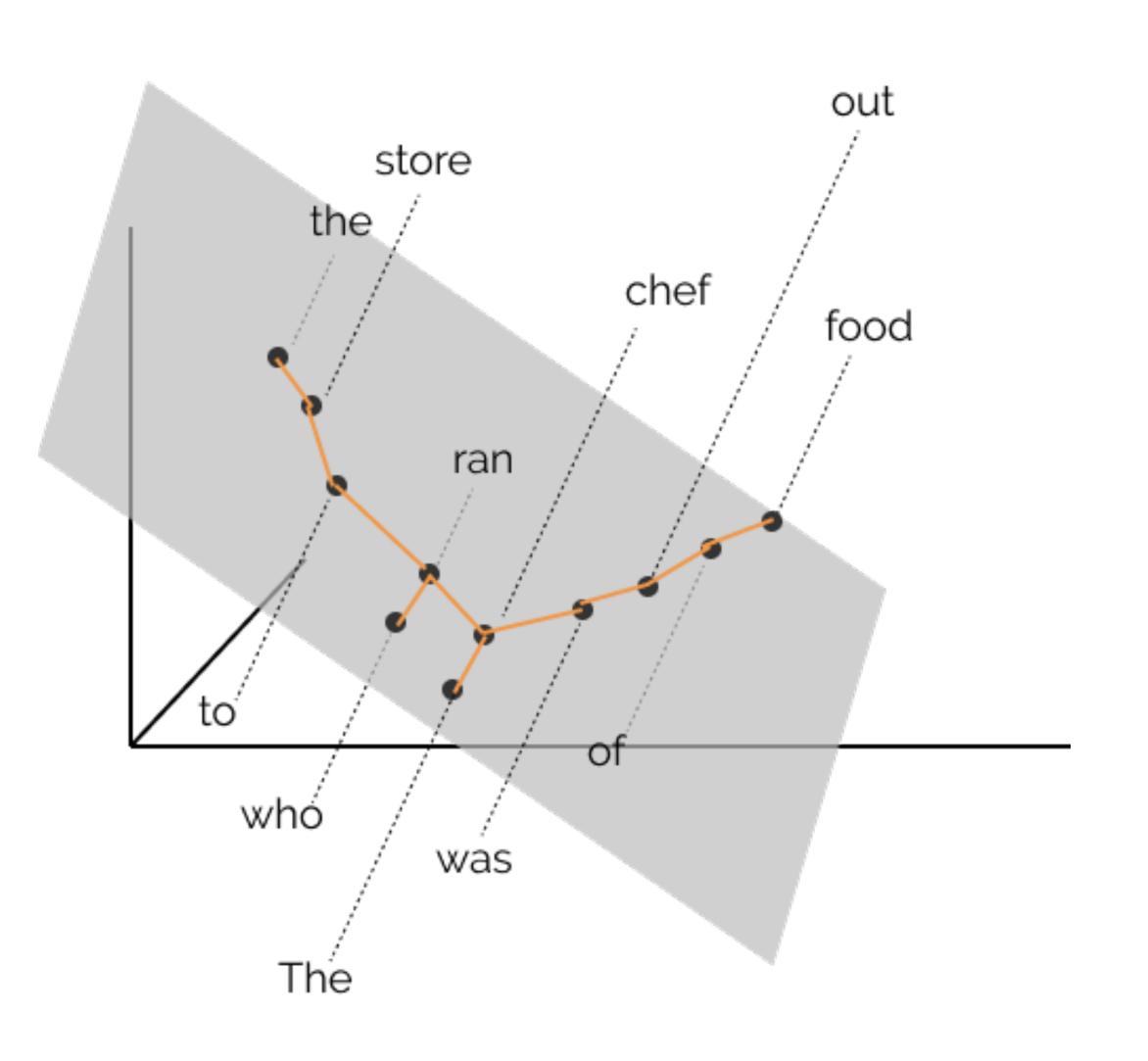
Stanford University manning@stanford.edu

Abstract

Recent work has improved our ability to detect linguistic knowledge in word representations. However, current methods for detecting syntactic knowledge do not test whether syntax trees are represented in their entirety. In this work, we propose a *structural probe*, which evaluates whether syntax trees are embedded in a linear transformation of a neural network's word representation space. The probe identifies a linear transformation under which squared L2 distance encodes the distance between words in the parse tree, and one in which squared L2 norm encodes depth in the parse tree. Using our probe, we show

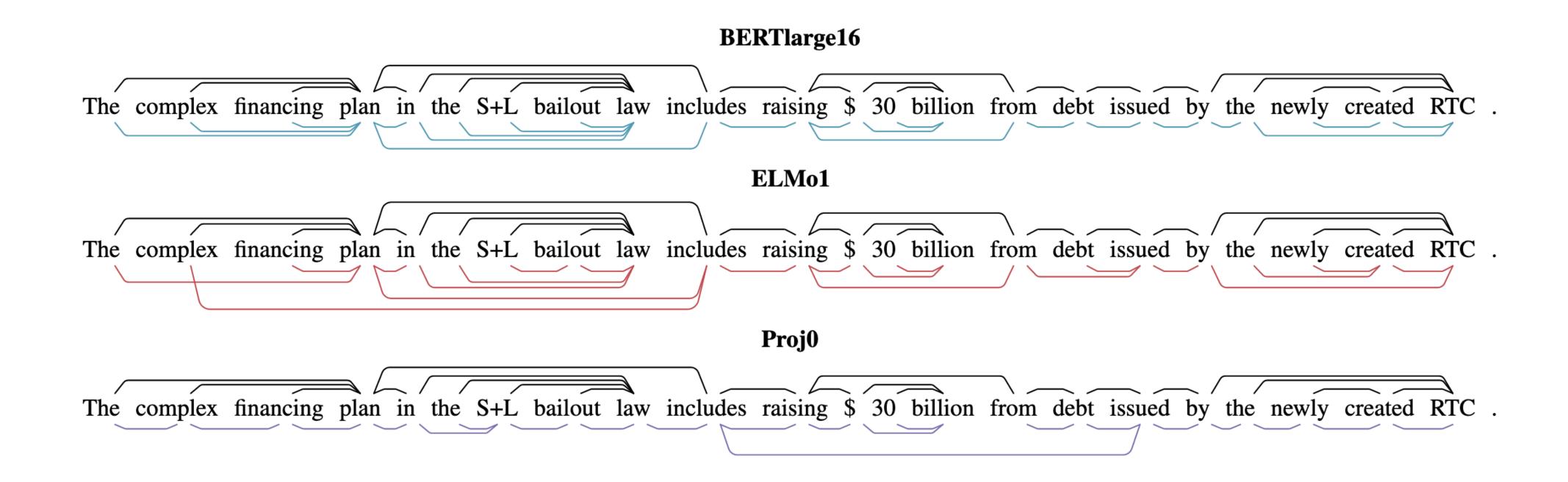

In this work, we propose a *structural probe*, a simple model which tests whether syntax trees are consistently embedded in a linear transformation of a neural network's word representation space. Tree structure is embedded if the transformed space has the property that squared L2 distance between two words' vectors corresponds to the number of edges between the words in the parse tree. To reconstruct edge directions, we hypothesize a linear transformation under which the squared L2 norm corresponds to the depth of the word in the parse tree. Our probe uses supervision to find the transformations under which these properties are best approximated for each model. If such transfor-

Hewitt and Manning 2019 blog post


"The chef who ran to the store was out of food."

"The chef who ran to the store was out of food."

"The chef who ran to the store was out of food."



Results

	Dista	ance	Dep	oth
Method	UUAS	DSpr.	Root%	NSpr.
LINEAR	48.9	0.58	2.9	0.27
ELM ₀ 0	26.8	0.44	54.3	0.56
DECAY0	51.7	0.61	54.3	0.56
Proj0	59.8	0.73	64.4	0.75
ELMo1	77.0	0.83	86.5	0.87
BERTBASE7	79.8	0.85	88.0	0.87
BERTLARGE15	82.5	0.86	89.4	0.88
BERTLARGE16	81.7	0.87	90.1	0.89

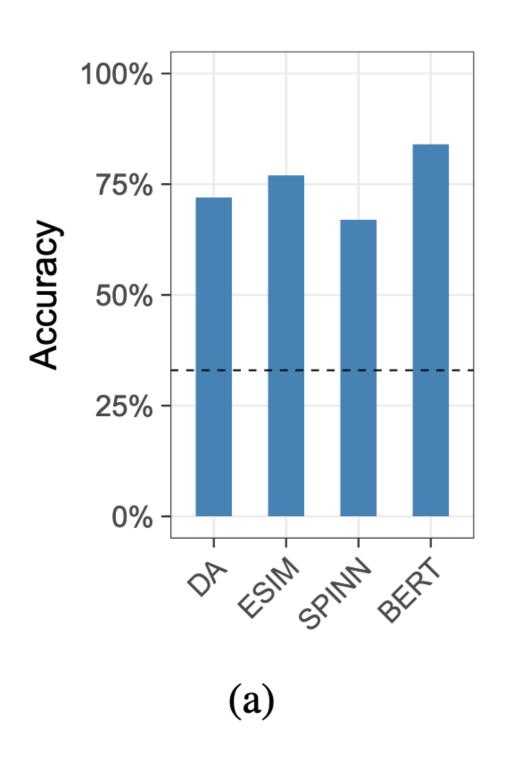
[SOTA: directed UAS >97%]

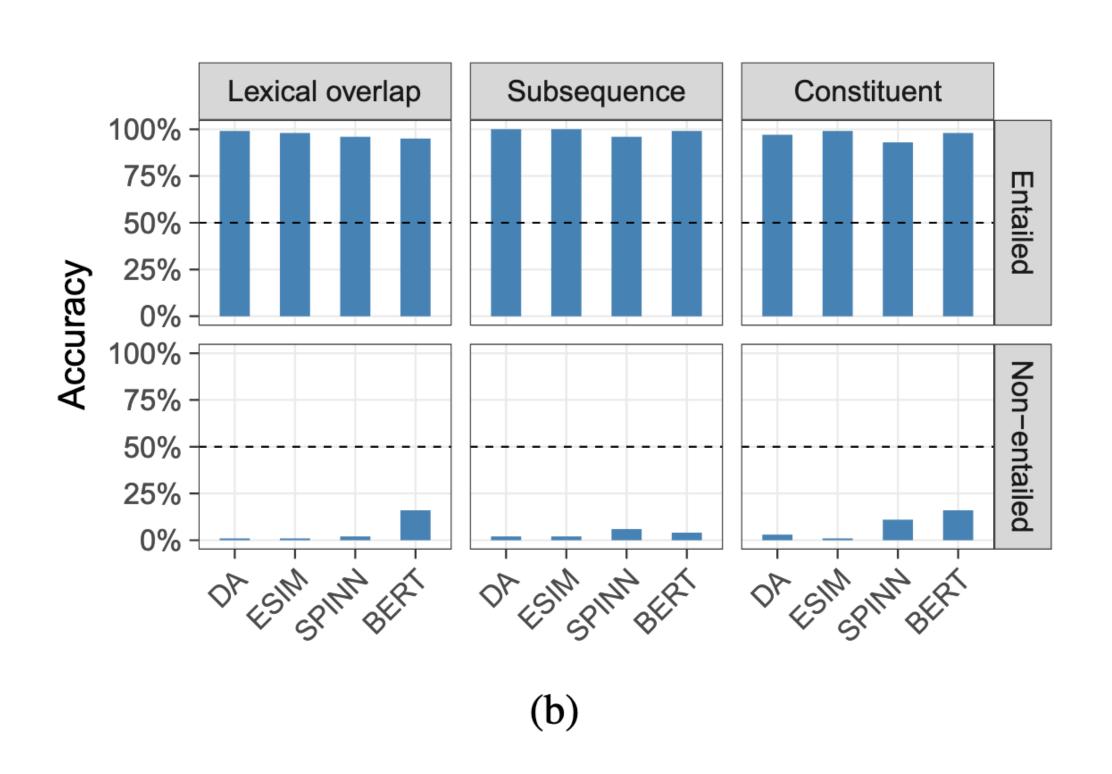
Examples

Black = gold parse.

Model parses: Maximum Spanning Tree from distances in transformed space.

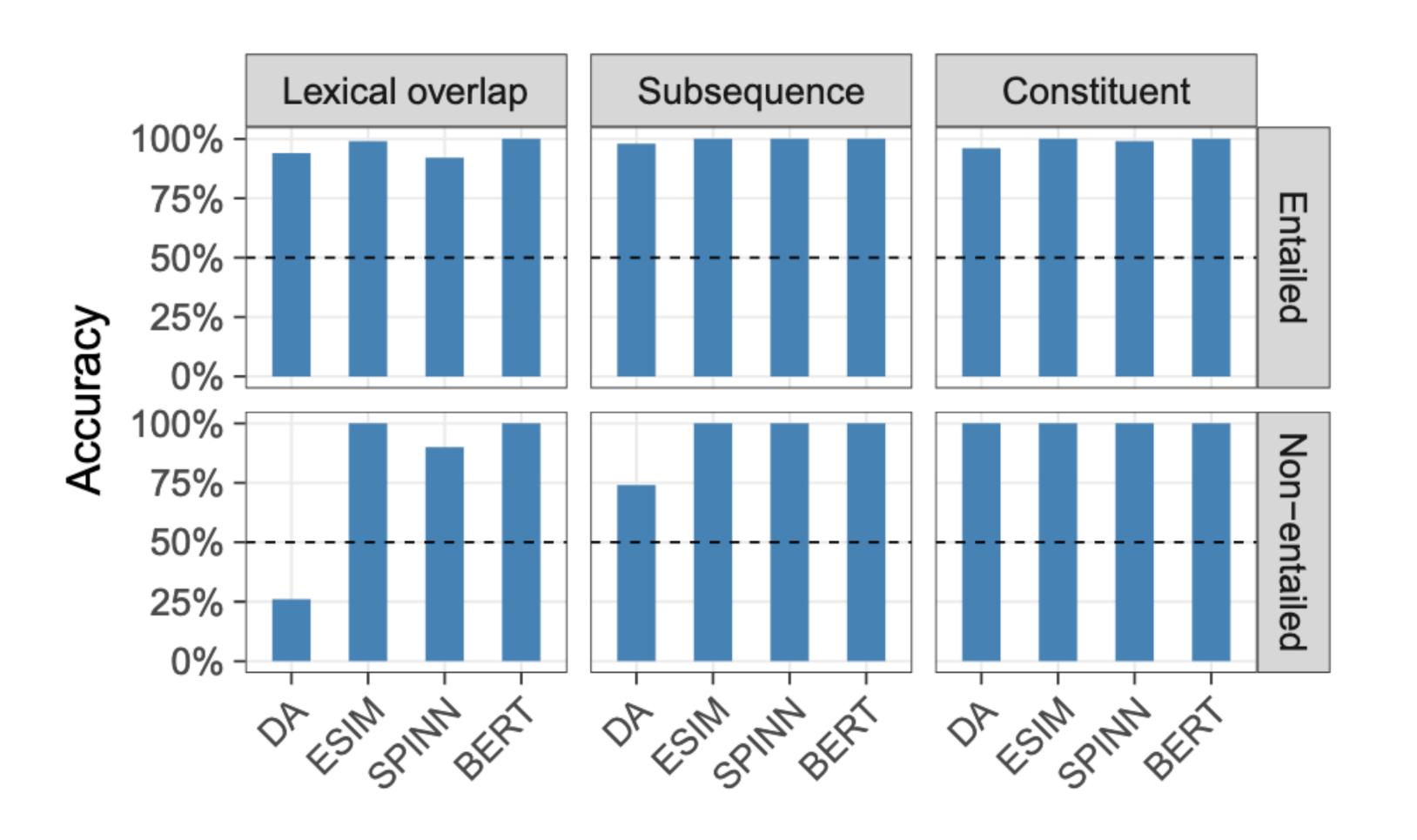
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference


R. Thomas McCoy,¹ Ellie Pavlick,² & Tal Linzen¹


¹Department of Cognitive Science, Johns Hopkins University ²Department of Computer Science, Brown University

tom.mccoy@jhu.edu,ellie_pavlick@brown.edu,tal.linzen@jhu.edu

Heuristic	Premise	Hypothesis	Label
Lexical	The banker near the judge saw the actor.	The banker saw the actor.	E
overlap	The lawyer was advised by the actor.	The actor advised the lawyer.	E
heuristic	The doctors visited the lawyer.	The lawyer visited the doctors.	N
	The judge by the actor stopped the banker.	The banker stopped the actor.	N
Subsequence	The artist and the student called the judge.	The student called the judge.	E
heuristic	Angry tourists helped the lawyer.	Tourists helped the lawyer.	E
	The judges heard the actors resigned.	The judges heard the actors.	N
	The senator near the lawyer danced.	The lawyer danced.	N
Constituent	Before the actor slept, the senator ran.	The actor slept.	E
heuristic	The lawyer knew that the judges shouted.	The judges shouted.	E
	If the actor slept, the judge saw the artist.	The actor slept.	N
	The lawyers resigned, or the artist slept.	The artist slept.	N


Results

(performance improves if fine-tuned on this challenge set)

Fine-tuning augmented with examples

Conclusion

- Solving a dataset != solving a task
 - Models are very powerful, can be very "clever"
 - Adopt heuristics that exploit spurious cues in the data
- Careful design of "adversarial" data can both expose the heuristics being relied on and hopefully improve the representations learned

Probing Neural Network Comprehension of Natural Language Arguments

Timothy Niven and Hung-Yu Kao

Intelligent Knowledge Management Lab
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

tim.niven.public@gmail.com, hykao@mail.ncku.edu.tw

Abstract

We are surprised to find that BERT's peak performance of 77% on the Argument Reasoning Comprehension Task reaches just three points below the average untrained human baseline. However, we show that this result is entirely accounted for by exploitation of spurious statistical cues in the dataset. We analyze the nature of these cues and demonstrate that a range of models all exploit them. This analysis informs the construction of an adversarial dataset on which all models achieve random accuracy. Our adversarial dataset provides a

Claim Google is not a harmful monopoly
Reason People can choose not to use Google

Warrant Other search engines don't redirect to Google Alternative All other search engines redirect to Google

Reason (and since) Warrant \rightarrow Claim Reason (but since) Alternative $\rightarrow \neg$ Claim

Figure 1: An example of a data point from the ARCT test set and how it should be read. The inference from R and A to $\neg C$ is by design.

The Argument Reasoning Comprehension Task (ARCT) (Habernal et al., 2018a) defers the prob-

		Test	
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

		Test	
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Original	Adversarial
Claim	Google is not a harmful monopoly	Google is a harmful monopoly
Reason	People can choose not to use Google	People can choose not to use Google
Warrant	Other search engines do not redirect to Google	All other search engines redirect to Google
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google

		Test	
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Original	Adversarial
Claim	Google is not a harmful monopoly	Google is a harmful monopoly
Reason	People can choose not to use Google	People can choose not to use Google
Warrant	Other search engines do not redirect to Google	All other search engines redirect to Google
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google

eliminates reliance on "not" as a cue; found to be helpful

		Test	
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Test		
	Mean	Median	Max
BERT	0.504 ± 0.01	0.505	0.533
BERT (W)	0.501 ± 0.00	0.501	0.502
BERT (R, W)	0.500 ± 0.00	0.500	0.502
BERT (C, W)	0.501 ± 0.01	0.500	0.518

	Original	Adversarial
Claim	Google is not a harmful monopoly	Google is a harmful monopoly
Reason	People can choose not to use Google	People can choose not to use Google
Warrant	Other search engines do not redirect to Google	All other search engines redirect to Google
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google

eliminates reliance on "not" as a cue; found to be helpful

	Test		
	Mean	Median	Max
BERT	0.671 ± 0.09	0.712	0.770
BERT (W)	0.656 ± 0.05	0.675	0.712
BERT (R, W)	0.600 ± 0.10	0.574	0.750
BERT (C, W)	0.532 ± 0.09	0.503	0.732
BoV	0.564 ± 0.02	0.569	0.595
BoV (W)	0.567 ± 0.02	0.572	0.606
BoV (R, W)	0.554 ± 0.02	0.557	0.579
BoV (C, W)	0.545 ± 0.02	0.544	0.589
BiLSTM	0.552 ± 0.02	0.552	0.592
BiLSTM (W)	0.550 ± 0.02	0.547	0.577
BiLSTM (R, W)	0.547 ± 0.02	0.551	0.577
BiLSTM (C, W)	0.552 ± 0.02	0.550	0.601

	Test		
	Mean	Median	Max
BERT	0.504 ± 0.01	0.505	0.533
BERT (W)	0.501 ± 0.00	0.501	0.502
BERT (R, W)	0.500 ± 0.00	0.500	0.502
BERT (C, W)	0.501 ± 0.01	0.500	0.518

even though trained on adversarial examples

	Original	Adversarial		
Claim	Google is not a harmful monopoly	Google is a harmful monopoly		
Reason	People can choose not to use Google	People can choose not to use Google		
Warrant	Other search engines do not redirect to Google	All other search engines redirect to Google		
Alternative	All other search engines redirect to Google	Other search engines do not redirect to Google		

eliminates reliance on "not" as a cue; found to be helpful

Adversarial Datasets

- Can help identify heuristics and/or statistical cues that models are relying on to make decisions
- Sometimes, but not always, the models just need to see some examples from the adversarial set to learn it
- NB: constructing such a set is a great place for linguistic knowledge to be useful!
 - (e.g. one way for LING elective)

Interventions / Causal Analysis

Problem with Probing

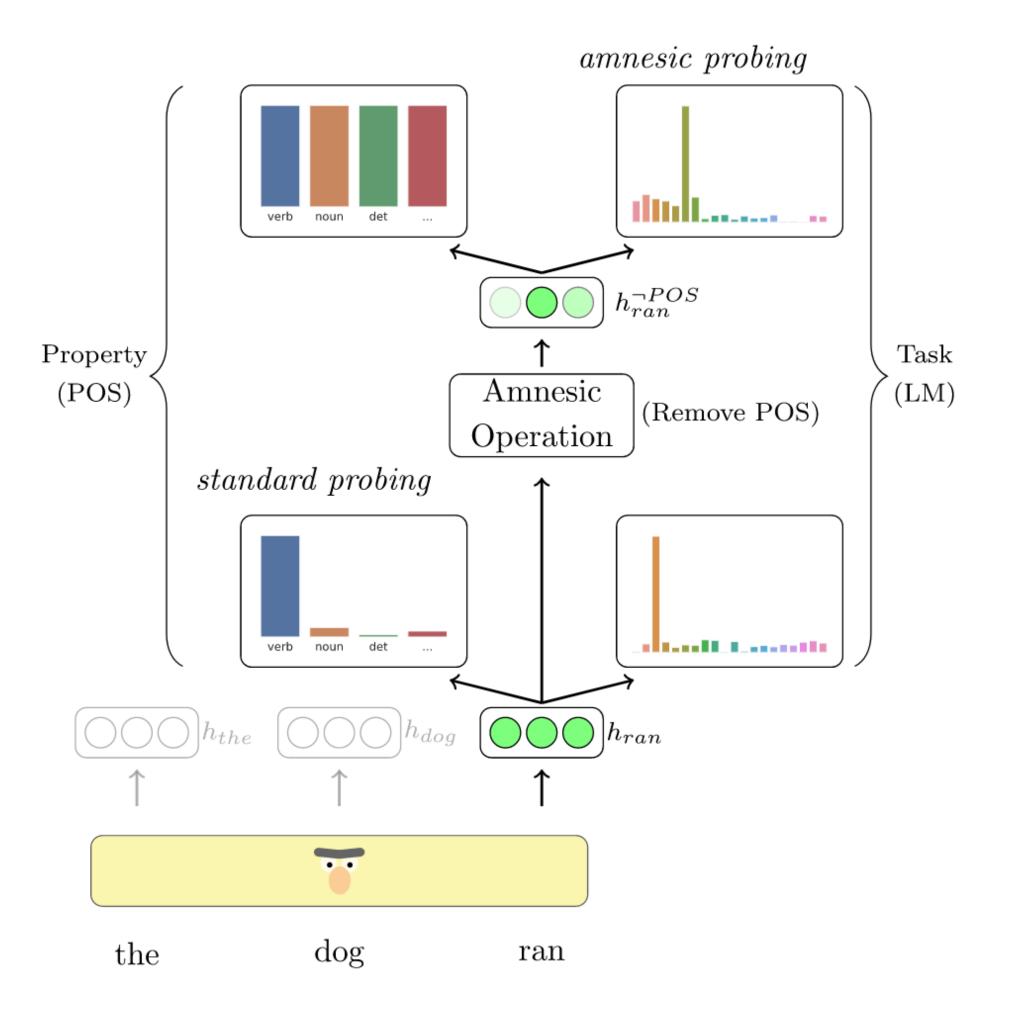
- Recall the issue with diagnostic classifiers / probing:
 - We can learn that property X is encoded in representation R
 - But not: does the model use property X in making its decisions
- Main idea here: causally intervene on the model and/or data to figure out which properties the model is relying on
 - Somewhat analogous to individual neuron ablation
 - E.g. if we "remove all number information" from R, does the model's performance on a given task suffer

Amnesic Probing

Amnesic Probing: Behavioral Explanation with Amnesic Counterfactuals

Yanai Elazar^{1,2} Shauli Ravfogel^{1,2} Alon Jacovi¹ Yoav Goldberg^{1,2}

¹Computer Science Department, Bar Ilan University ²Allen Institute for Artificial Intelligence


{yanaiela, shauli.ravfogel, alonjacovi, yoav.goldberg}@gmail.com

Abstract

A growing body of work makes use of *probing* in order to investigate the working of neural models, often considered black boxes. Recently, an ongoing debate emerged surrounding the limitations of the probing paradigm. In this work, we point out the inability to infer behavioral conclusions from probing results, and offer an alternative method that focuses on how the information is being used, rather than

in understanding how these models work and what is being encoded in them. One prominent methodology that attempts to shed light on those questions is *probing* (Conneau et al., 2018) (also known as *auxilliary prediction* [Adi et al., 2016] and *diagnostic classification* [Hupkes et al., 2018]). Under this methodology, one trains a simple model—a *probe*—to predict some desired information from the latent representations of the pre-trained model. High prediction performance is interpreted as evidence for the information being encoded

Amnesic Probing Method

Amnesic Probing Results

		dep	f-pos	c-pos	ner	phrase start	phrase end
Properties	N. dir	738	585	264	133	36	22
	N. classes	41	45	12	19	2	2
	Majority	11.44	13.22	31.76	86.09	59.25	58.51
Probing	Vanilla	76.00	89.50	92.34	93.53	85.12	83.09
LM-Acc	Vanilla	94.12	94.12	94.12	94.00	94.00	94.00
	Rand	12.31	56.47	89.65	92.56	93.75	93.86
	Selectivity	73.78	92.68	97.26	96.06	96.96	96.93
	Amnesic	7.05	12.31	61.92	83.14	94.21	94.32
$\operatorname{LM-D}_{KL}$	Rand	8.11	4.61	0.36	0.08	0.01	0.01
	Amnesic	8.53	7.63	3.21	1.24	0.01	0.01

- Model relies differentially on different linguistic properties
- Probing performance does not entail model reliance

Causal Mediation Analysis

Investigating Gender Bias in Language Models Using Causal Mediation Analysis

Jesse Vig* Sebastian Gehrmann* Yonatan Belinkov*2
Sharon Qian Daniel Nevo Yaron Singer Stuart Shieber

1 Salesforce Research Harvard University
jvig@salesforce.com danielnevo@tauex.tau.ac.il
{gehrmann,belinkov,sharonqian,yaron,shieber}@seas.harvard.edu

Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models

Matthew Finlayson*

Harvard University
Cambridge, MA
mattbnfin@gmail.com

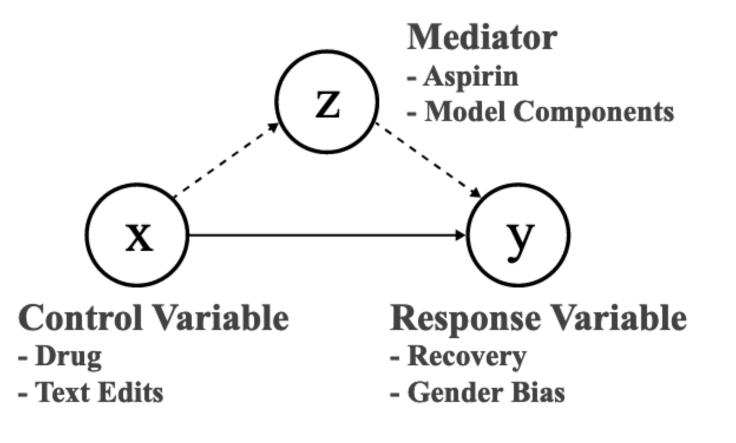
Stuart Shieber

Harvard University
Cambridge, MA
nieber@seas.harvard.edu

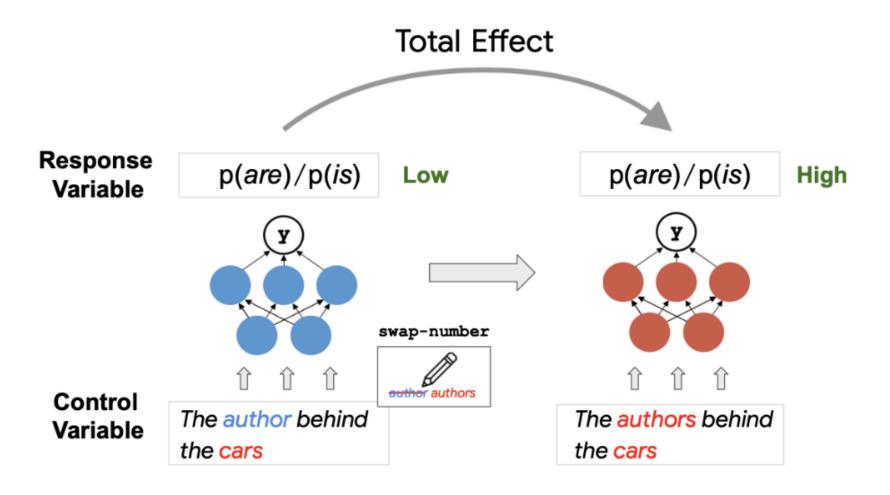
Aaron Mueller*

Johns Hopkins University Baltimore, MD amueller@jhu.edu

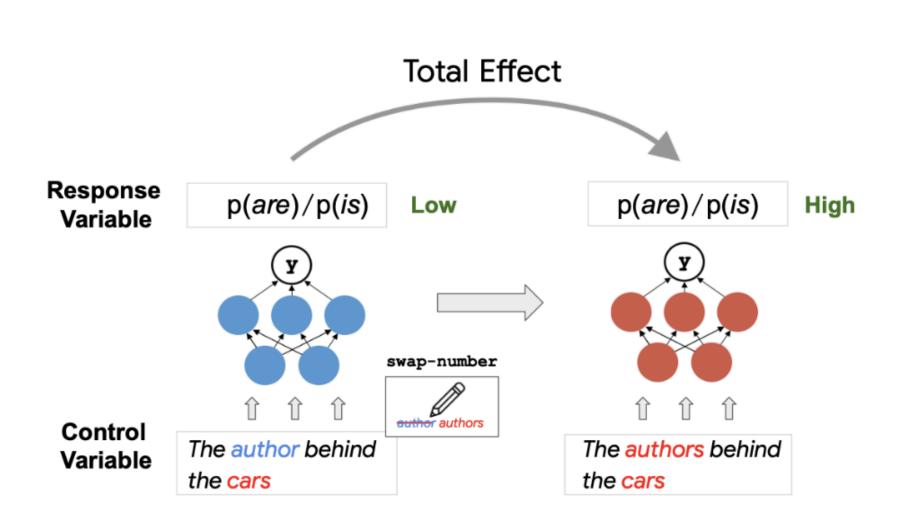
Tal Linzen[†]

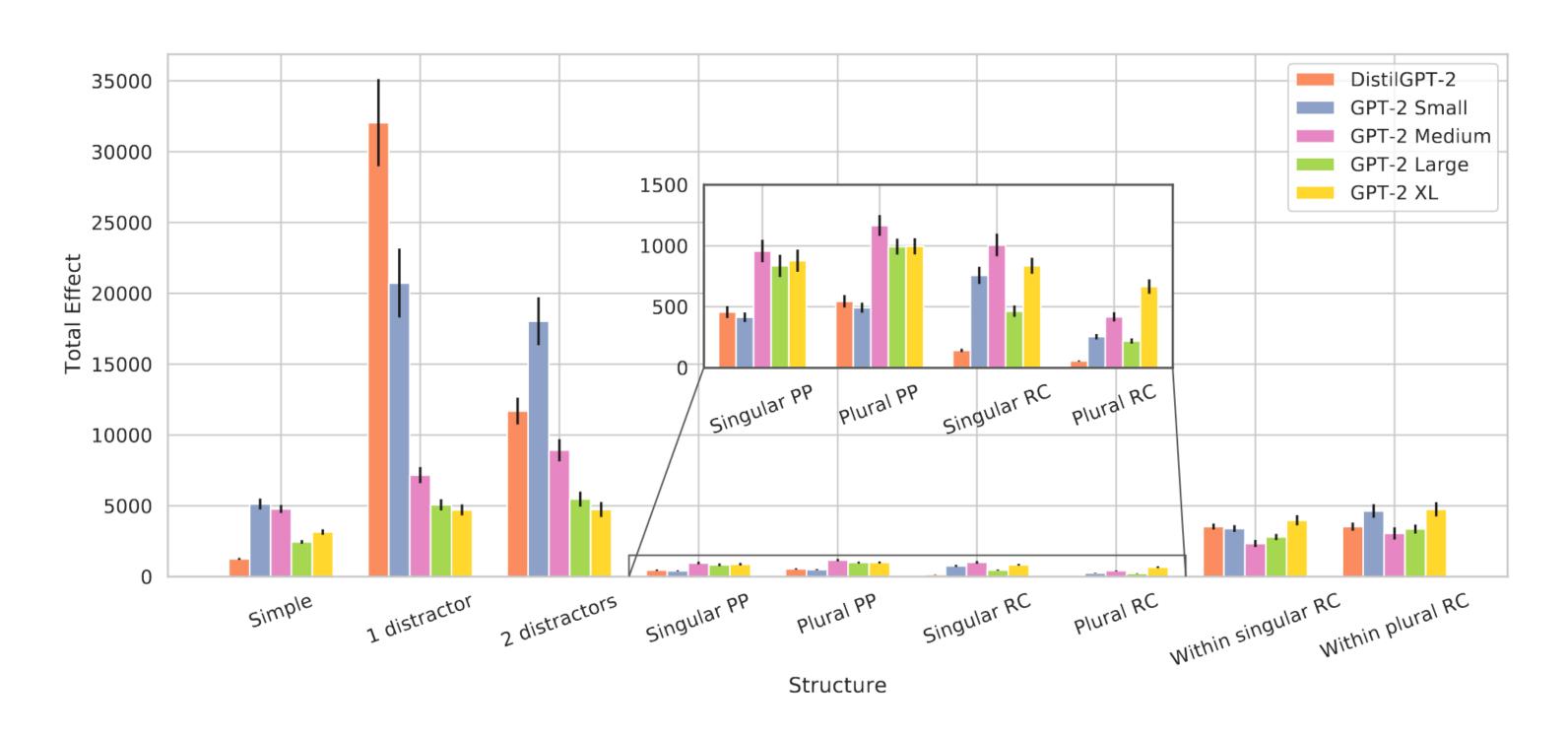

New York University New York, NY linzen@nyu.edu

Sebastian Gehrmann

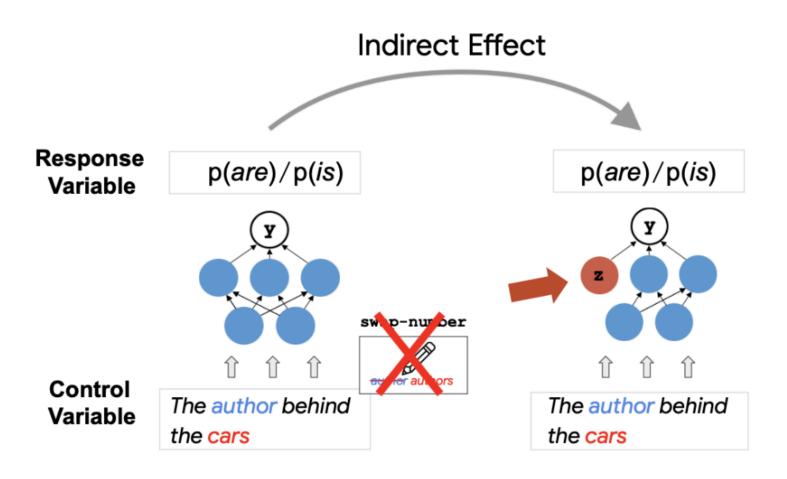

Google Research New York, NY gehrmann@google.com

Yonatan Belinkov[‡]

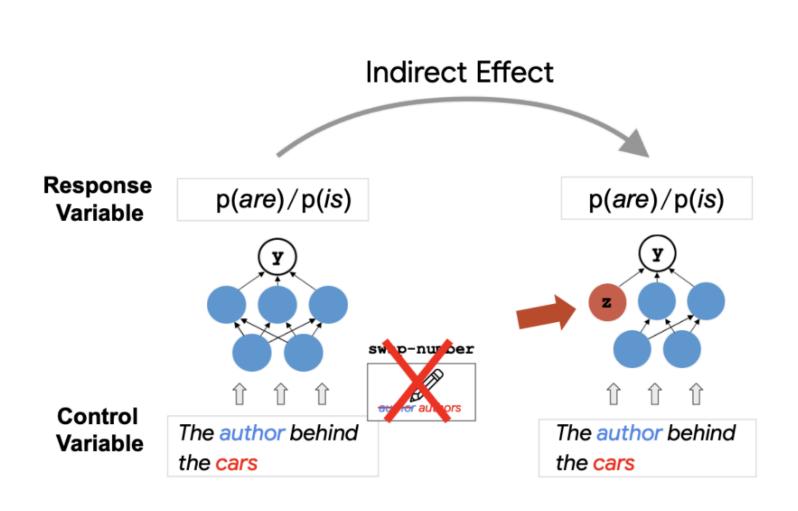

Technion - IIT
Haifa, Israel
belinkov@technion.ac.il

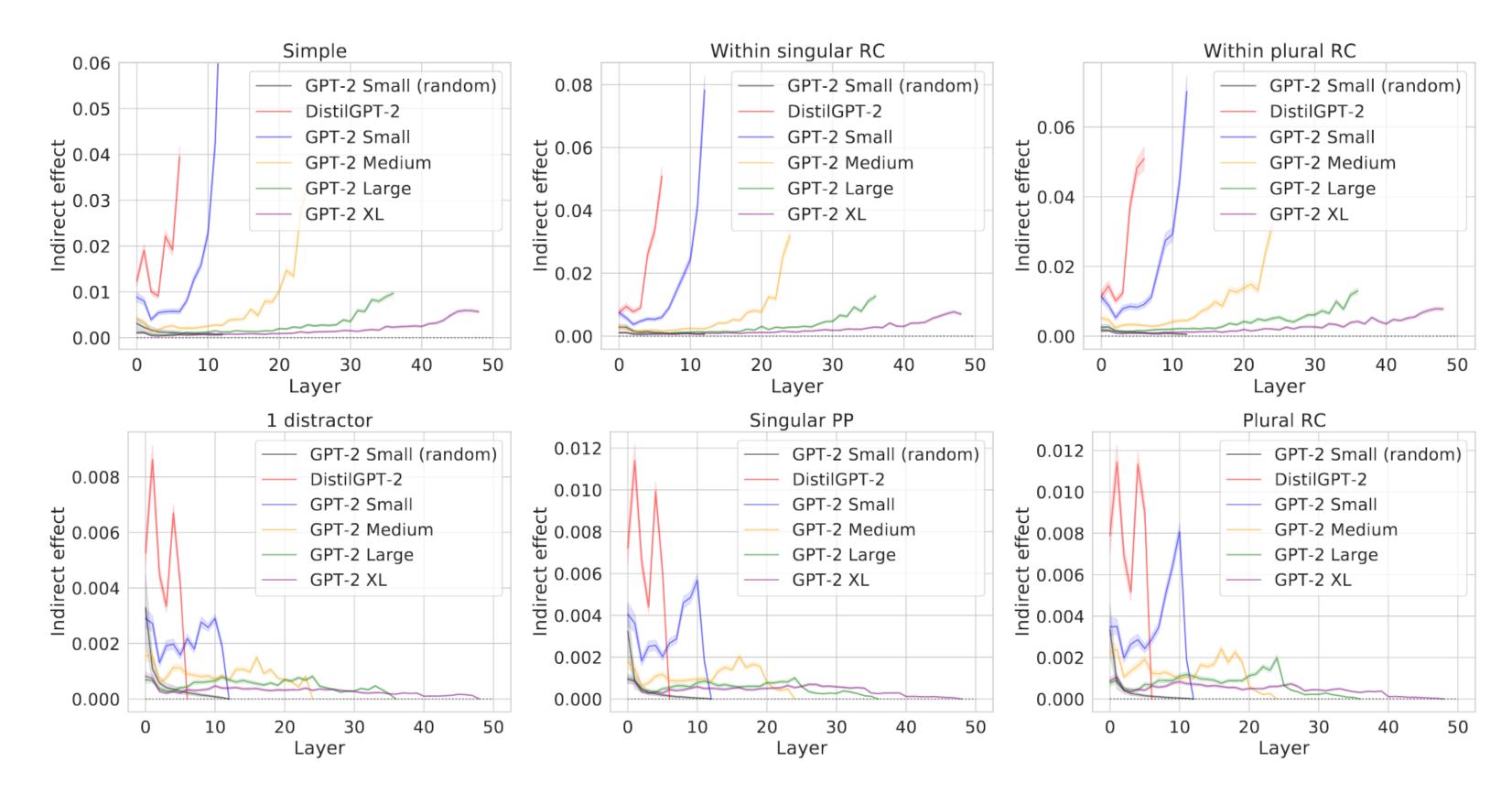


Causal Mediation: Total Effect



Causal Mediation: Total Effect





Causal Mediation: (Neuron) Indirect Effect

Causal Mediation: (Neuron) Indirect Effect

Intervention / Causal Analysis

- Perform interventions, see how it affects model behavior / performance
- Amnesia: "remove" certain information from representations
 - Extractable by a probe != used by the model
- Causal mediation:
 - Intervene on input, measure change, as mediated by the innards of the model
 - Adverbs increase TE, attractors decrease
 - Two patterns of indirect effect / representation of agreement
 - Others: gender bias, negation (multimodal), ...

A few other pointers

- Minimum description length: https://aclanthology.org/2020.emnlp-main.14/
- Filtered corpus training (i.e. remove cues from training data): https://aclanthology.org/2021.findings-acl.439.pdf
- Pareto probing (accuracy vs complexity tradeoff): https://aclanthology.org/2020.emnlp-main.254/

One last meta-point

Investigating BERT's Knowledge of Language: Five Analysis Methods with NPIs

Alex Warstadt,^{†,1,2} Yu Cao,^{†,3} Ioana Grosu,^{†,2} Wei Peng,^{†,3} Hagen Blix,^{†,1} Yining Nie,^{†,1,2} Anna Alsop,^{†,2} Shikha Bordia,^{†,3} Haokun Liu,^{†,3} Alicia Parrish,^{†,2,3} Sheng-Fu Wang,^{†,3} Jason Phang,^{†,1,3} Anhad Mohananey,^{†,1,3} Phu Mon Htut,^{†,3} Paloma Jeretič,^{†,1,2} and Samuel R. Bowman

New York University

[†]Equal contribution with roles given below; order assigned randomly. Correspondence: bowman@nyu.edu

¹Framing and organizing the paper ²Creating diagnostic data ³Constructing and running experiments

Abstract

Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work evaluating pretrained sentence representation models. We use a single linguistic phenomenon, negative polarity item (NPI) licensing in English, as a case study for our experiments. NPIs like any are grammatical only if they appear in a licensing environment like negation (Sue doesn't have any cats vs. *Sue has any cats).

acceptability. Linzen et al. (2016), Warstadt et al. (2018), and Kann et al. (2019) use Boolean acceptability judgments inspired by methodologies in generative linguistics. However, we have not yet seen any substantial direct comparison between these methods, and it is not yet clear whether they tend to yield similar conclusions about what a given model knows.

We aim to better understand the trade-offs in task choice by comparing different methods inspired by previous work to evaluate sentence understanding models in a single empirical domain. We choose as our case study negative polarity

Negative polarity items

- NPIs are expressions like any, ever that are only grammatical in "negative" environments:
 - * Shaan has done any of the reading.
 - Shaan hasn't done any of the reading.
- Question: does BERT "understand" NPIs?
- [NB: see also Marvin and Linzen 2018; Jumelet and Hupkes 2018; a submission of mine to ACL2021...]

Does BERT "understand" NPIs?

- It depends!
- "We find that BERT has significant knowledge of these features, but its success varies widely across different experimental methods. We conclude that a variety of methods is necessary to reveal all relevant aspects of a model's grammatical knowledge in a given domain."
- Keep this in mind when designing and reporting experiments.

Wrapping Up

Some methods surveyed

- Visualization / neuron-level analysis
 - One can often find interpretable single cells! Ablation can help find them.
 - Fairly under-explored in terms of the range of phenomena.
- Psycholinguistic / surprisal-based methods
 - Treat NLM as a psycholinguistic subject. Very productive for syntax.
- Diagnostic classifiers
 - A representation encodes a feature if that feature can be easily predicted from it.
 - Conceptually and computationally simple; scales well.
 - Doesn't reveal whether a model uses encoded information.
- Attention-based
- Examples of other methods (e.g. adversarial data)

Some methods surveyed

- Attention-based
 - Some interesting patterns in BERT's attention heads
 - But lots of uninteresting patterns (attention to [CLS], [SEP])
 - Still fairly under-explored
- Examples of other methods (e.g. adversarial data)
 - Investigations into geometry
 - Lots of room for creativity here: generate data to evaluate a model on, to see if its exploiting heuristics/cues
 - Does this reflect just limited exposure or a more fundamental limitation?

Moving Forward

- For your projects (more in a minute): think about the *question* you want to ask (or *hypothesis* you want to test), and which methods are best for that.
- Useful survey paper on analyzing BERT: https://www.aclweb.org/anthology/2020.tacl-1.54/
- Next week: various useful datasets (e.g. <u>decomp.io</u>)
 - Think about how you could use that data with some of the methods we've discussed today.