Analyzing Neural Language Models Introduction

Shane Steinert-Threlkeld Mar 29, 2021

Today's Plan

- Motivation / background
 - NLP's "ImageNet moment"
 - NLP's "Clever Hans moment"
- 15 minute break
- Course information / logistics

Motivation

link

ImageNet: A Large-Scale Hierarchical Image Database

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li Fei-Fei Dept. of Computer Science, Princeton University, USA

Abstract

marking data for such algorithms. The explosion of image data on the Internet has the po-ImageNet uses the hierarchical structure of WordNet [9]. tential to foster more sophisticated and robust models and Each meaningful concept in WordNet, possibly described algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can by multiple words or word phrases, is called a "synonym set" or "synset". There are around 80,000 noun synsets be harnessed and organized remains a critical problem. We

What is ImageNet?

{jiadeng, wdong, rsocher, jial, li, feifeili}@cs.princeton.edu

content-based image search and image understanding algorithms, as well as for providing critical training and bench-

- Large dataset, v1 in 2009
- Object classification (among others):
 - Input: image
 - Label: synsets from WordNet
- ~14M images currently
- http://www.image-net.org

What is ImageNet?

Geological formation, formation

(geology) the geological features of the earth

Numbers in brackets: (the number of ynsets in the subtree).	Treemap Visualization
ImageNet 2011 Fall Release (32326)	🖌 🔪 ImageNet 2011 Fall R
plant, flora, plant life (4486)	Natural
 geological formation, formation (1) 	
- aquifer (0)	metrice Bran British Annual Pre-
i⊷ beach (1)	
i⊷ cave (3)	
cliff, drop, drop-off (2)	
- delta (0)	
- diapir (0)	
- folium (0)	
- foreshore (0)	
ice mass (10)	
 lakefront (0) 	
- massif (0)	
- monocline (0)	
mouth (0)	
natural depression, depression (
natural elevation, elevation (41)	
- oceanfront (0)	
range, mountain range, range of	Natural
- relict (0)	
ridge, ridgeline (2)	
ridge (0)	Statement Statement
h→ shore (7)	
slope, incline, side (17)	
spring, fountain, outflow, outpo	
- talus, scree (0)	
vein, mineral vein (1)	
volcanic crater, crater (2)	
wall (0)	L

What is ImageNet?

Why is ImageNet Important?

ATURED

IT'S NOT ABOUT THE ALGORITHM

The data that transformed Al research—and possibly the world

By Dave Gershgorn • July 26, 2017

QUARTZ

EMA

Why is ImageNet Important?

ATURED

IT'S NOT ABOUT THE ALGORITHM

The data that transformed Al research—and possibly the world

By Dave Gershgorn • July 26, 2017

1. Deep learning

2. Transfer learning

QUARTZ

EMA

ILSVRC

- ImageNet Large Scale Visual Recognition Challenge
- Annual competition on standard benchmark
 - 2010-2017
- ~1.2M training images, 1000 categories
- http://www.image-net.org/challenges/LSVRC/

ILSVRC results

<u>source</u>

ImageNet competition results 0.5 0 What happened in 2012? -0.4 0 00 Error rate 0 0 8 Ο 0.2 0 0 0.1 0.0^{____} 2011 2012

ILSVRC results

<u>source</u>

ILSVRC 2012: runner-up

Fisher based features + Multi class linear classifiers

<u>source</u>

ILSVRC 2012: winner

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca

Ilya Sutskever **Geoffrey E. Hinton** University of Toronto University of Toronto ilya@cs.utoronto.ca hinton@cs.utoronto.ca NeurIPS 2012 paper

NeurIPS 2012 paper

ilya@cs.utoronto.ca

hinton@cs.utoronto.ca

Deep Learning Tidal Wave

<u>VGGI6</u>

Deep Learning Tidal Wave

VGGI6

- convolution
- max pooling
- channel concatenation
- channel-wise normalization
- fully-connected layer
- softmax

input

Inception

Deep Learning Tidal Wave

<u>VGGI6</u>

- convolution
- max pooling
- channel concatenation
- channel-wise normalization
- fully-connected layer
- softmax

input

auxiliary loss

Inception

<u>ResNet</u> (34 layers above; up to 152 in paper)

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson CVAP, KTH (Royal Institute of Technology) Stockholm, Sweden {razavian, azizpour, sullivan, stefanc}@csc.kth.se

"We use features extracted from the OverFeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they grad-ually move further away from the original task and data the OverFeat network was trained to solve [cf. ImageNet]. Astonishingly, we report consistent superior results compared to the highly tuned state-of-theart systems in all the visual classification tasks on various datasets"

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Standard Learning

Task I inputs

Standard Learning

Task 3 inputs

Task 3 inputs

Task 4 inputs

Standard Learning

- New task = new model
- Expensive!
 - Training time
 - Storage space
 - Data availability
 - Can be impossible in low-data regimes

"pre-training" task inputs

Task I inputs

Task I inputs

Task 2 inputs

Task 3 inputs

Task 3 inputs

Transfer Learning

Task 3 outputs

Pre-trained model, either:

- General feature extractor
- Fine-tuned on tasks

Example: Scene Parsing

(a) Image

(b) Ground Truth

Example: Scene Parsing

CVPR '17 paper

W UNIVERSITY of WASHINGTON

Example: Scene Parsing

CVPR '17 paper

W UNIVERSITY of WASHINGTON

Transfer Learning in NLP

representations

- representations
- Possibilities:

- representations
- Possibilities:
 - Constituency or dependency parsing

- representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing

- representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation

- representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA

- representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA

- representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA

. . .

Scalability issue: all require expensive annotation

• Goal: find a linguistic task that will build general-purpose / transferable

W UNIVERSITY of WASHINGTON

- Recent innovation: use *language modeling* (a.k.a. next word prediction)
 - [*: we will talk about variations later in the seminar]

- Recent innovation: use *language modeling* (a.k.a. next word prediction)
 - [*: we will talk about variations later in the seminar]
- Linguistic knowledge:
 - The students were happy because _____ ...
 - The student was happy because _____ ...

- Recent innovation: use *language modeling* (a.k.a. next word prediction) • [*: we will talk about variations later in the seminar]
- Linguistic knowledge:
 - The students were happy because _____ ...
 - The student was happy because _____ ...
- World knowledge:
 - The POTUS gave a speech after missiles were fired by _____
 - The Seattle Sounders are so-named because Seattle lies on the Puget ______

Language Modeling is "Unsupervised"

- An example of "unsupervised" or "semi-supervised" learning
 - NB: I think that "un-annotated" is a better term. Formally, the learning is supervised. But the labels come directly from the "raw" data, not an annotator.
- E.g.: "Today is the first day of 575."
 - (<s>, Today)

. . .

- (<s>Today, is)
- (<s> Today is, the)
- (<s> Today is the, first)

Data for LM is cheap

Data for LM is cheap

- News sites (e.g. <u>Google 1B</u>)
- Wikipedia (e.g. <u>WikiText103</u>)
- Reddit

. . . .

- General web crawling:
 - https://commoncrawl.org/

Text is abundant

The Revolution will not be [Annotated]

Yann LeCun

Universal Language Model Fine-tuning for Text Classification (ACL '18)

ULMFiT

Model

CoVe (McCann et al., 2017)

birtual (Miyato et al., 2016)

ULMFiT (ours)

ULMFiT

	Test	Model	Test
	8.2	CoVe (McCann et al., 2017)	4.2
)	5.9	U TBCNN (Mou et al., 2015)	4.0
	5.9	Z LSTM-CNN (Zhou et al., 2016)	3.9
	4.6	ULMFiT (ours)	3.6

ULMFiT

NAACL 2018 Best Paper Award

- NAACL 2018 Best Paper Award
- Embeddings from Language Models (ELMo)
 - [aka the OG NLP Muppet]

• Comparison to GloVe:

	Source	
GloVe	play	playi
	Chico Ruiz made a spectacular play on Alusik's grounder	Kieffer his a
bilm	Olivia De Havilland signed to do a Broadway play for Garson	the succe

Nearest Neighbors

ing, game, games, played, players, plays, player, Play, football, multiplayer

r, the only junior in the group, was commended for ability to hit in the clutch, as well as his all-round excellent **play.**

y were actors who had been handed fat roles in a essful **play**, and had talent enough to fill the roles competently, with nice understatement.

• Used in place of other embeddings on multiple tasks:

SQuAD = <u>Stanford Question Answering Dataset</u> SNLI = <u>Stanford Natural Language Inference Corpus</u> SST-5 = Stanford Sentiment Treebank

*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

figure: Matthew Peters

W UNIVERSITY of WASHINGTON

BERT

Bidirectional Encoder Representations from Transformers

Devlin et al 2019

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Initial Results

Major Application

Google

The Keyword Latest Stories

Product Updates

Company News

SEARCH

before

Pandu Nayak Google Fellow and Vice President, Search

If there's one thing I've learned over the 15 years working on Google Search, it's that people's curiosity is endless. We see billions of searches every day, and 15 percent of those queries are ones we haven't seen before -- so we've built ways to return results for queries we can't anticipate.

Published Oct 25, 2019

Understanding searches better than ever

https://www.blog.google/products/search/search-language-understanding-bert/

Major Application

BEFORE

Parking on a Hill. Uphill: When headed uphill at a curb, turn the front wheels away from the curb and let your vehicle roll backwards slowly until the rear part of the front wheel rests against the curb using it as a block. Downhill: When you stop your car headed downhill, turn your front wheels

parking on a hill with no curb

For either uphill or downhill parking, if there is no curb, turn the wheels toward the side of the road so the car will roll away from the center of the road if the brakes fail. When you park on a sloping driveway, turn the wheels so that the car will not roll into the streat if the broken fail

Pre-trained Neural Models Everywhere

GLUE SuperGLUE

	F	Rank	Name	Model	URL	Score	CoLAS	SST-2	MRPC	STS-B	QQP	MNLI-m MNI	.l-mm	QNLI	RTE	WNLI	AX
		1	ERNIE Team - Baidu	ERNIE		90.2	72.2	97.5	93.0/90.7	92.9/92.5	75.2/90.8	91.2	90.6	98.0	90.9	94.5	49.4
-	ŀ	2	王玮	ALICE v2 large ensemble (Alibaba DAMO NLF) [7]	90.1	73.2	97.1	93.9/91.9	93.0/92.5	74.8/91.0	90.8	90.6	99.2	87.4	94.5	48.7
		3	Microsoft D365 AI & MSR AI & GATECI	HMT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2
		4	T5 Team - Google	T5		89.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0	91.7	96.7	92.5	93.2	53.1
		5	XLNet Team	XLNet (ensemble)		89.5	70.2	97.1	92.9/90.5	93.0/92.6	74.7/90.4	90.9	90.9	99.0	88.5	92.5	48.4
		6	ALBERT-Team Google Language	ALBERT (Ensemble)		89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3	91.0	99.2	89.2	91.8	50.2
		7	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1	90.7	98.8	88.7	89.0	50.1
		8	Facebook Al	RoBERTa		88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	98.9	88.2	89.0	48.7
		9	Junjie Yang	HIRE-RoBERTa		88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2	90.7	90.4	95.5	87.9	89.0	49.3
-	Þ	10	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
		11	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	-
-	-	8 9 10 11	Facebook Al Junjie Yang Microsoft D365 AI & MSR AI GLUE Human Baselines	RoBERTa HIRE-RoBERTa MT-DNN-ensemble GLUE Human Baselines		88.5 88.3 87.6 87.1	67.8 68.6 68.4 66.4	96.7 97.1 96.5 97.8	92.3/89.8 93.0/90.7 92.7/90.3 86.3/80.8	92.2/91.9 92.4/92.0 91.1/90.7 92.7/92.6	74.3/90.2 74.3/90.2 73.7/89.9 59.5/80.4	90.8 90.7 87.9 92.0	90.2 90.4 87.4 92.8	98.9 95.5 96.0 91.2	88.2 87.9 86.3 93.6	89.0 89.0 89.0 95.9	4

<u>General Language Understanding Evaluation (GLUE)</u> / <u>SuperGLUE</u>

Paper </>
Code 🚍 Tasks 🌪 Leaderboard 🚦 FAQ 🙀 Diagnostics ᆀ Submit

- Aren't word embeddings like word2vec and GloVe examples of transfer learning?
 - Yes: get linguistic representations from raw text to use in downstream tasks • No: not to be used as *general-purpose* representations

- One distinction:
 - *Global* representations:
 - word2vec, GloVe: one vector for each word type (e.g. 'play')
 - *Contextual* representations (from LMs):
 - Representation of word in context, not independently

- One distinction:
 - *Global* representations:
 - word2vec, GloVe: one vector for each word type (e.g. 'play')
 - *Contextual* representations (from LMs):
 - Representation of word in context, not independently
- Another:
 - Shallow (global) vs. Deep (contextual) pre-training

Global Embeddings: Models

Global Embeddings: Models

CBOW

Mikolov et al 2013a (the OG word2vec paper)

Skip-gram

NLP's "Clever Hans Moment" 7 The Gradient

W UNIVERSITY of WASHINGTON

Clever Hans

- Early 1900s, a horse trained by his owner to do:
 - Addition
 - Division
 - Multiplication
 - Tell time

. . .

Read German

• Wow! Hans is really smart!

 $\mathbf W$ university of washington

• Upon closer examination / experimentation...

- Upon closer examination / experimentation...
- Hans' success:

- Upon closer examination / experimentation...
- Hans' success:
 - 89% when questioner knows answer

- Upon closer examination / experimentation...
- Hans' success:
 - 89% when questioner knows answer
 - 6% when questioner doesn't know answer

- Upon closer examination / experimentation...
- Hans' success:
 - 89% when questioner knows answer
 - 6% when questioner doesn't know answer
- Further experiments: as Hans' taps got closer to correct answer, facial tension in questioner increased

- Upon closer examination / experimentation...
- Hans' success:
 - 89% when questioner knows answer
 - 6% when questioner doesn't know answer
- Further experiments: as Hans' taps got closer to correct answer, facial tension in questioner increased
- Hans didn't solve the task but exploited a spuriously correlated cue

Central question

achieved robust natural language understanding in machines?

• Or: are we seeing a "Clever BERT" phenomenon?

• Do BERT et al's major successes at solving NLP tasks show that we have

Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference

R. Thomas McCoy,¹ Ellie Pavlick,² & Tal Linzen¹ ¹Department of Cognitive Science, Johns Hopkins University ²Department of Computer Science, Brown University tom.mccoy@jhu.edu,ellie_pavlick@brown.edu,tal.linzen@jhu.edu

<u>McCoy et al 2019</u>

Heuristic	Premise	Hypothesis	Label
Lexical	The banker near the judge saw the actor.	The banker saw the actor.	E
overlap	The lawyer was advised by the actor.	The actor advised the lawyer.	E
heuristic	The doctors visited the lawyer.	The lawyer visited the doctors.	Ν
	The judge by the actor stopped the banker.	The banker stopped the actor.	Ν
Subsequence	The artist and the student called the judge.	The student called the judge.	E
heuristic	Angry tourists helped the lawyer.	Tourists helped the lawyer.	E
	The judges heard the actors resigned.	The judges heard the actors.	Ν
	The senator near the lawyer danced.	The lawyer danced.	Ν
Constituent	Before the actor slept, the senator ran.	The actor slept.	E
heuristic	The lawyer knew that the judges shouted.	The judges shouted.	E
	If the actor slept, the judge saw the artist.	The actor slept.	Ν
	The lawyers resigned, or the artist slept.	The artist slept.	Ν

(a)

(performance improves if fine-tuned on this challenge set)

Results

(b)

Probing Neural Network Comprehension of Natural Language Arguments

Timothy Niven and Hung-Yu Kao

Intelligent Knowledge Management Lab Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan tim.niven.public@gmail.com, hykao@mail.ncku.edu.tw

Abstract

We are surprised to find that BERT's peak performance of 77% on the Argument Reasoning Comprehension Task reaches just three points below the average untrained human baseline. However, we show that this result is entirely accounted for by exploitation of spurious statistical cues in the dataset. We analyze the nature of these cues and demonstrate that a range of models all exploit them. This analysis informs the construction of an adversarial dataset on which all models achieve random accuracy. Our adversarial dataset provides a ClaimGoogle is not a harmful monopolyReasonPeople can choose not to use GoogleWarrantOther search engines don't redirect to GoogleAlternativeAll other search engines redirect to Google

 $\begin{array}{l} \textbf{Reason (and since) Warrant} \rightarrow \textbf{Claim} \\ \textbf{Reason (but since) Alternative} \rightarrow \neg \textbf{Claim} \end{array}$

Figure 1: An example of a data point from the ARCT test set and how it should be read. The inference from R and A to $\neg C$ is by design.

The Argument Reasoning Comprehension Task (ARCT) (Habernal et al., 2018a) defers the prob-

Recent Analysis Explosion

- E.g. BlackboxNLP workshop [2018, 2019]
- New "Interpretability and Analysis" track at *CL conferences

Why care?

- Effects of learning what neural language models understand:
 - Engineering: can help build better language technologies via improved models, data, training protocols, ...
 - Trust, critical applications
 - Theoretical: can help us understand biases in different architectures (e.g. LSTMs vs Transformers), similarities to human learning biases
 - Which linguistic features / properties are *learnable* from raw text alone?
 - Ethical: e.g. do some models reflect problematic social biases more than others?

Stretch Break!

Course Overview / Logistics

Large Scale

- Motivating question: what do neural language models understand about natural language?
 - Focus on *meaning*, where much of the literature has focused on syntax

- A research seminar: in groups, you will carry out and execute a novel analysis project.
 - Think of it as a proto-conference-paper, or the seed of a conference paper.

Course structure

- First half: learning about the tools and techniques required
 - Wk 2: language models [architectures, tasks, data, ...]
 - Wk 3: analysis methods [visualization, probing classifiers, artificial data, ...]
 - Wk 4: resources / datasets [guest lecture by Rachel Rudinger]
 - Wk 5: technical resources / writing tips
- Be active! Reading, participating, planning ahead

Course structure

- Second half: *presentations*
 - Each group will give one "special topic" presentation and lead a discussion, e.g.: • reading a paper or two on a topic related to your final project

 - explaining a method you are using in project, issues, etc.
 - Final week: project presentation festival!
 - "Mini conference", incl. reception

Evaluation

- Proposal: 10%
- Special topic presentation: 30%
- Final paper: 50%
- Participation: 10%

Reading List

- Semi-comprehensive list of recent papers on website
 - Key-words for sorting
 - NB: also a year outdated; impossible to keep up with the entire literature
- Browse, get ideas/inspiration
- Deep dive on a few later

Last Year's Final Paper Titles

- Probing for Numerical Understanding in Transformer-Based Language Models
- Investigating positional information in the Transformer
- Can BERT Make Heads or Tails of Idioms? Investigating Similarity between Idioms and Non-figurative Paraphrases in Contextualized Embedding
- Evaluation of logical equivalence using auto-generated corpus on BERT
- Discernment of Implicature in Natural language Inference:New Data and **Classifier Implementations**

Last Year's Final Paper Titles

- Named Entity Recognition Using BERT and ELMo
- Mighty Morpho-Tagging Models from BERT
- Oscar the GROUCH: Graphical Representations and Observations for Understanding Classification of Hate
- Can You Get it Right Consistently? Probing BERT's Robustness inNatural Language Understanding

Group Formation (HW1)

Three Tasks

- Form groups (more next)
- Set up repository
 - GitHub, GitLab, patas Git server ...
 - Make it private for now!
 - Don't put private or sensitive data in the repo! (incl LDC corpora)
- Add ACL paper template to repository

 - Format for final paper

https://2021.aclweb.org/calls/papers/#paper-submission-and-templates

Groups

- There will be *eight* groups
 - Sized 2-3 people
- Unified grade
- Group decides how to divide work, but reports who did what at the end.
- Aim to diversify talents / interests in the group.
 - Experimental design
 - Data work
 - Implementation
 - Experiment running / analyzing
 - Writing
 - Speaking (presentations)

Communication

- CLMS Student Slack
 - Useful, since a majority of students in this seminar are on it already
 - Self-organize (575 channel?), based on interests, background competences, etc
 - For students not on it yet:
 - Canvas thread for requesting access
 - CLMS students: please add ASAP
- For general / non-group discussions, still use Canvas discussions. • NB: I am not on that Slack (nor are other faculty)

Registering Groups

- List your groups here:
 - https://docs.google.com/spreadsheets/d/ <u>1eTbTJtQodXoMJKinnu35ltjl1Rjg7qs3yAGcqSt0Tol/edit?usp=sharing</u>

- On Canvas, upload "readme.pdf" with:
 - Group #, screenshot of repository

Thanks! Looking forward to a great quarter!

