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Documentation and Transparency

- How can we make NLP datasets and models more transparent and accessible?
- Data Statements for NLP: Documentation schema for language data

- What are the dangers that motivate the need for transparency and accessibility?
- On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🦜
- Emily M. Bender, Timnit Gebru, Angie McMillan-Major, and Margaret Mitchell

- Risks and mitigation strategies 



Questions for you

What risks you think are most relevant today? 

Are there risks that you think haven’t gone as we envisioned them at the time? 

Are there new risks we need to consider as the field has evolved in the last half decade?

Other thoughts?



On the Dangers of Stochastic Parrots: 
Can Language Models Be Too Big? 🦜



Stochastic Parrots considerations

Are ever larger language models (LMs)  inevitable or necessary?

What costs are associated with this research direction and what should we consider before 

pursuing it?

Do the field of NLP or the public that it serves in fact need larger LMs?

If so, how can we pursue this research direction while mitigating its associated risks?

If not, what do we need instead?



Overview

- History of Language Models (LMs)

- Risks
- Environmental and financial costs

- Unmanageable training data

- Research trajectories

- Abusive language and synthetic data

- Risk Mitigation Strategies



Brief History of LMs

- LM: A system trained to do string prediction
- What word comes ___? What word [MASK] here?

- Proposed by Shannon in 1949, based on Markov’s research from the early 1900’s, but 
implemented for ASR, MT, etc. in early 80’s

- N-grams and various neural architectures until Transformers
- Big takeaways

- Pattern of achieving better scores through more data and bigger models until 
scores don’t improve, then move to new architecture

- Multilingual models up to ~100 languages
- Model-size reduction strategies



How big is 
big?
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to Denise Mak for 
graph design 



Epoch (2025) – 
with major 
processing by 
Our World in 
Data

Growth Rate Acceleration

https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems?time=2009-08-07..latest&country=1.3x%2Fyear+between+1950%E2%80%932010~Theseus~Perceptron+Mark+I~2.6x%2Fyear+between+2010%E2%80%932025~AlexNet~GPT-1~GPT-4~Transformer+%282017%29~LTE+speaker+verification+system~Switch~T5-11B#reuse-this-work
https://ourworldindata.org/grapher/exponential-growth-of-datapoints-used-to-train-notable-ai-systems?time=2009-08-07..latest&country=1.3x%2Fyear+between+1950%E2%80%932010~Theseus~Perceptron+Mark+I~2.6x%2Fyear+between+2010%E2%80%932025~AlexNet~GPT-1~GPT-4~Transformer+%282017%29~LTE+speaker+verification+system~Switch~T5-11B#reuse-this-work


What are the risks?

Environmental Costs
Financial Inaccessibility



Environmental and Financial Costs

- Average human across the globe responsible for 5t of CO2 emissions per year*

- Strubell et al. (2019) 
- Transformer model training procedure 284t of CO2 emissions

- 0.1 BLUE score increase en-de results in increase of $150,000 in compute cost

- Encourage reporting training time and sensitivity to hyperparameters

- Suggest more equitable access to compute clouds through government investment

- Which researchers and which languages get to ‘play’ in this space and who is cut out?

*Source: Our World In Data

https://ourworldindata.org/grapher/co-emissions-per-capita?tab=chart&country=USA+OWID_WRL+CAN+AUS


Energy Costs Beyond Training Power Hungry Processing:
⚡Watts⚡Driving the Cost 
of AI Deployment? (Luccioni 
et al, 2024)

Figure 1: The tasks examined 
in [their] study and the 
average quantity of carbon 
emissions they produced (in 
g of 𝐶𝑂2𝑒𝑞) for 1,000 
queries. N.B. The y axis is in 
logarithmic scale. 



Mitigation Efforts

- Renewable energy sources
- But still incur a cost on the environment

- Still take away from other potential uses of green energy

- Prioritize computationally efficient hardware
- SustainNLP workshop

- Green AI and promoting efficiency as evaluation metric (Schwartz et al 2020)

- Document energy and carbon metrics
- Energy Usage Reports (Lottick et al 2019)

- Experiment-impact-tracker (Henderson et al 2020)

- ACL Rolling Review Checklist recommends reporting Total Computation Budget (GPU hours)

https://aclrollingreview.org/responsibleNLPresearch/


Costs and Risks to Whom?

- Large LMs, particularly those in English and other high-resource languages, benefit 

those who have the most in society

- Marginalized communities around the world impacted most by climate change
- Maldives threatened by rising sea levels (Anthoff et al 2010)

- 800,000 residents of Sudan affected by flooding (7/2020-10/2020)*

- But these communities are rarely able to see benefits of language technology because 

LLMs aren’t built for their languages, Dhivehi and Sudanese Arabic

Source: https://www.aljazeera.com/news/2020/9/25/over-800000-affected-in-sudan-flooding-un

https://www.aljazeera.com/news/2020/9/25/over-800000-affected-in-sudan-flooding-un


Interrogating Infrastructure 

Materiality (Borning, Friedman, and Gruen, 2018; Borning, Friedman, and Logler, 2020)

UW Patas Cluster - Tower Data Center

- Was ENERGY STAR certified 2013-2023

- 520-ton cooling tower, which utilizes ambient outside air, a fan and a pump to reject 

waste heat from the data center

- Automation to reduce motorized usage of cooling systems

https://www.energystar.gov/buildings/certified-data-centers


What are the risks?

Unmanageable Training Data



A Large Dataset is Not Necessarily Diverse

- Who has access to the Internet and is contributing?
- Younger people and those from developed countries

- Who is being subjected to moderation?
- Twitter - accounts receiving  death threats more likely to be suspended than those issuing threats

- What parts of the Internet are being scraped?
- Reddit - US users 67% men and 64% are ages 18-29 (Pew)
- Wikipedia - only 8.8-15% are women or girls
- Not sites with fewer incoming and outgoing links, like blogs

- Who is being filtered out?
- Filtering lists primarily target words referencing sex, likely also filtering LGBTQ online spaces



Static Data/Changing Social Views

LMs run the risk of ‘value lock’, reifying older, less-inclusive understandings

- BLM movement lead to increased number of articles on shootings of Black people and 

past events were also documented and updated (Twyman et al 2017)

- But media also doesn’t cover all events and tend to focus on more dramatic content

LMs encode hegemonic views; retraining/fine-tuning would require thoughtful curation



Bias

- Research in probing LMs for bias has provided a wealth of examples of bias
- See Blodgett et al 2020 for a critical overview

- Documentation of the problem is an important first step, but not a solution

- Automated processing steps may themselves be unreliable

- Probing requires knowing what social categories the LM may be biased against
- Need for local input before deployment



Curation, Documentation, Accountability

- How big is too big?

- Budget for documentation and only collect as much data as can be documented
- Documentation: understand sources of bias & potential mitigating strategies

- No documentation: potential for harm without recourse

- Documentation debt: datasets both undocumented and too big to document post-hoc

- Efforts towards post-hoc documentation:
- Bandy and Vincent (2021) - retrospective datasheet for BookCorpus

- Dodge et al (2021) - examining the contents of C4 



What are the risks?

Research Trajectories



Research Time is a Resource

- Focus on LMs and achieving new SOTA on leaderboards, particularly NLU

- But LMs have been shown to excel due to spurious dataset artifacts (Niven & Kao 2019, 
Bras et al 2020)

○ Raji et al (2021)  construct validity issues of benchmarks for “general purpose”

- LMs trained only on linguistic form don’t have access to meaning (Bender & Koller 2020)

- Are we actually learning about machine language understanding?



Towards More Thorough Research Practices

- On the Gap between Adoption and Understanding in NLP (Bianchi and Hovy, 2021)

○ Current research practices disincentivize publishing negative (or just not state 

of the art) research results

- On “Scientific Debt” in NLP: A Case for More Rigour in Language Model Pre-Training 

Research (Nityasya et al., 2023)

○ Current research practices manipulate too many variables in each experiment 

to isolate and understand the variables



What are the risks?

Abusive Language and Synthetic Data



Stochastic 🦜
- Human-human interaction is co-constructed and leads to a shared model of the world 

(Reddy 1979, Clark 1996)

- An LM is  system for haphazardly stitching together linguistic forms from its vast 

training data, without any reference to meaning: a stochastic parrot.

- Nonetheless, humans encountering synthetic text make sense of it

- Coherence is in the eye of the beholder



Potential Harms Identified in 2021 

- Denigration, stereotype threat, hate speech: harms to reader, harms to bystanders

- Cheap synthetic text can boost extremist recruiting (McGuffie & Newhouse 2020) 

- LM errors attributed to human author in MT

- LMs can be probed to replicate training data for PII (Carlini et al 2020)

- LMs as hidden components can influence query expansion & results (Noble 2018)



Human Labor Costs of AI 

The Exploited Labor Behind Artificial Intelligence (Williams, Miceli, and Gebru, 2022), 

especially the labor and trauma of human content moderation, annotation, and filtering:
- The Trauma Floor: The secret lives of Facebook moderators in America | The Verge  
- OpenAI Used Kenyan Workers on Less Than $2 Per Hour: Exclusive | TIME 
- The horrors experienced by Meta moderators: ‘I didn’t know what humans are capable of’ | EL 

PAÍS 
- The Low-Paid Humans Behind AI’s Smarts Ask Biden to Free Them From ‘Modern Day Slavery’ | 

WIRED

https://www.noemamag.com/the-exploited-labor-behind-artificial-intelligence/
https://www.theverge.com/2019/2/25/18229714/cognizant-facebook-content-moderator-interviews-trauma-working-conditions-arizona
https://time.com/6247678/openai-chatgpt-kenya-workers/
https://english.elpais.com/economy-and-business/2024-01-29/the-horrors-experienced-by-meta-moderators-i-didnt-know-what-humans-are-capable-of.html
https://english.elpais.com/economy-and-business/2024-01-29/the-horrors-experienced-by-meta-moderators-i-didnt-know-what-humans-are-capable-of.html
https://www.wired.com/story/low-paid-humans-ai-biden-modern-day-slavery/
https://www.wired.com/story/low-paid-humans-ai-biden-modern-day-slavery/


Risk Mitigation Strategies



Allocate valuable research time carefully

- Incorporate energy and compute efficiency in planning and model evaluations

- Select datasets intentionally

‘Feeding AI systems on the world’s beauty, ugliness, and cruelty, but expecting it to 
reflect only the beauty is a fantasy.’ (Birhane and Prabhu 2021, after Benjamin)

- Document process, data, motivations, and note potential users and stakeholders

- Pre-mortem analyses: consider worst cases and unanticipated causes



Data Statements for NLP

Documentation schema for language datasets: https://techpolicylab.uw.edu/data-statements/ 

- Version 1: Bender and Friedman (2018)

○ Original schema

- Version 2: guide (2021) and McMillan-Major, Bender, and Friedman (2024)

○ Dataset documentation refined by scientific community engagement

- Version 3: guide (2024) and McMillan-Major (2023)

○ Dataset documentation and creation with best practices for language community 

dataset development

https://techpolicylab.uw.edu/data-statements/


Risks of Backing Off from LLMs?

- What about benefits of large LMs, like improved auto-captioning?

- Are LLMs in fact the only way to get these benefits?

- What about for lower resource languages & time/processing constrained 

applications?

- Are there other ways the risks could be mitigated to support the use of LMs?

- Watermarking synthetic text?

- Are there policy approaches that could effectively regulate the use of LLMs?



Policy Around the World

GDPR (2018)

- Rights of the data subject to 

their personal data

EU AI Act (2024)

- Tasks classified based on 

risk, with highest risk tasks 

subject to regulation

Global AI Law and Policy Tracker from IAPP: 

https://iapp.org/media/pdf/resource_center/gl

obal_ai_law_policy_tracker.pdf 

https://iapp.org/media/pdf/resource_center/global_ai_law_policy_tracker.pdf
https://iapp.org/media/pdf/resource_center/global_ai_law_policy_tracker.pdf


Questions we ended with in 2021

Are ever larger language models  inevitable or necessary?

What costs are associated with this research direction and what should we consider before 

pursuing it?

Do the field of NLP or the public that it serves in fact need larger LMs?

If so, how can we pursue this research direction while mitigating its associated risks?

If not, what do we need instead?



Questions for you

What risks you think are most relevant today? 

Are there risks that you think didn’t go as we envisioned them at the time? 

Are there new risks we need to consider as the field has evolved in the last half decade?

Other thoughts?



Thank you! 
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