Pre-training + Fine-tuning Paradigm

LING 574 Deep Learning for NLP Shane Steinert-Threlkeld

Announcements

- HW4: great job!
- HW6: coming out tomorrow, *no late penalty* (i.e. due Saturday instead of Thursday)

Note on Transformer Architecture

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang* Hyung Won Chung Yi Tay William Fedus Thibault Fevry[†] Michael Matena [†] Karishma Malkan[†] Noah Fiedel Noam Shazeer Zhenzhong Lan[†] Yanqi Zhou Wei Li Nan Ding Jake Marcus Adam Roberts Colin Raffel

Google Research

Abstract

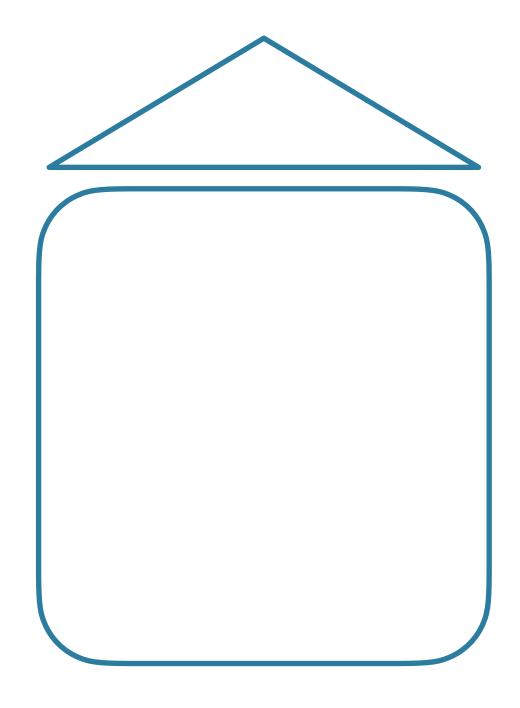
The research community has proposed copious modifications to the Transformer architecture since it was introduced over three years ago, relatively few of which have seen widespread adoption. In this paper, we comprehensively evaluate many of these modifications in a shared experimental setting that covers most of the common uses of the Transformer in natural language processing. Surprisingly, we find that most modifications do not meaningfully improve performance. Furthermore, most of the Transformer

will yield equal-or-better performance on any task that the pipeline is applicable to. For example, residual connections in convolutional networks (He et al., 2016) are designed to ideally improve performance on any task where these models are applicable (image classification, semantic segmentation, etc.). In practice, when proposing a new improvement, it is impossible to test it on every applicable downstream task, so researchers must select a few representative tasks to evaluate it on. However, the proposals that are ultimately adopted by the research community and practitioners tend to be those that reliably improve performance across a wide variety of tasks "in

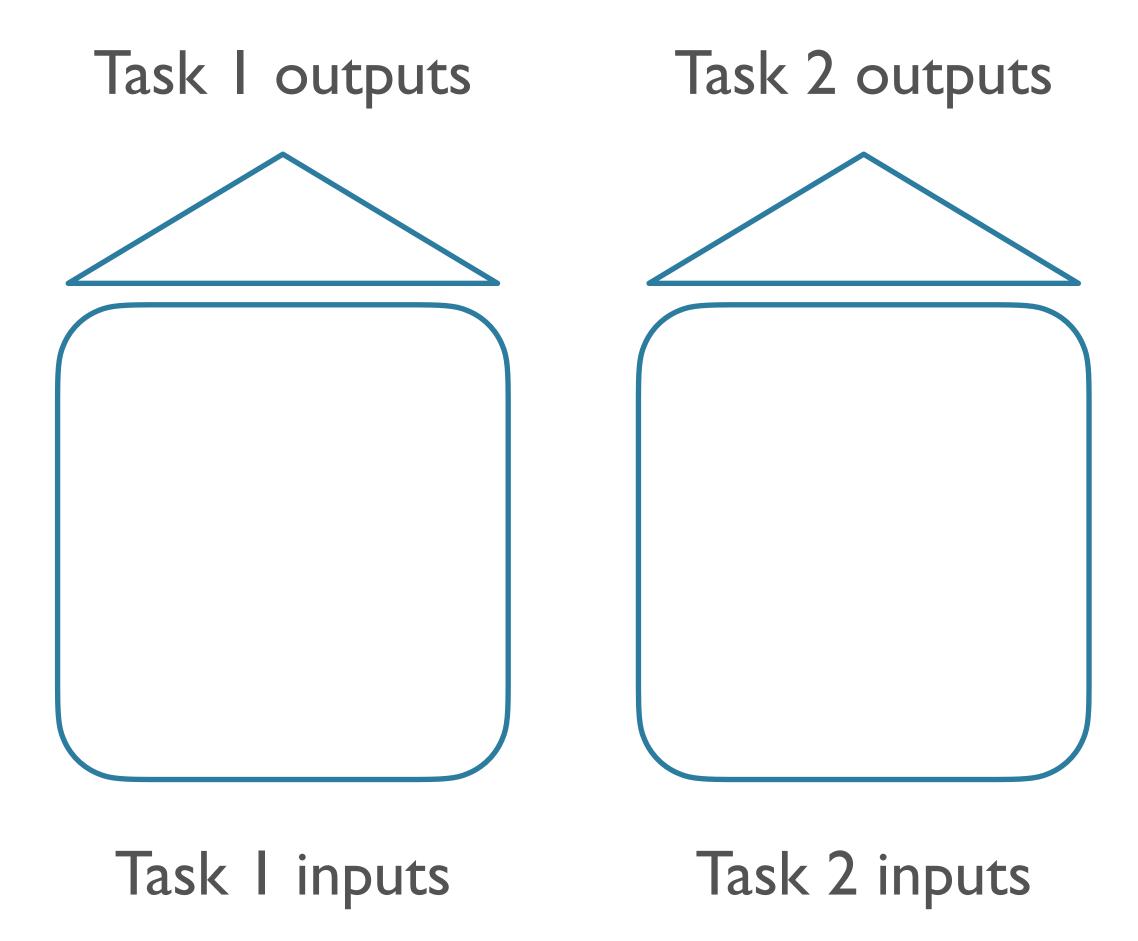
Today's Plan

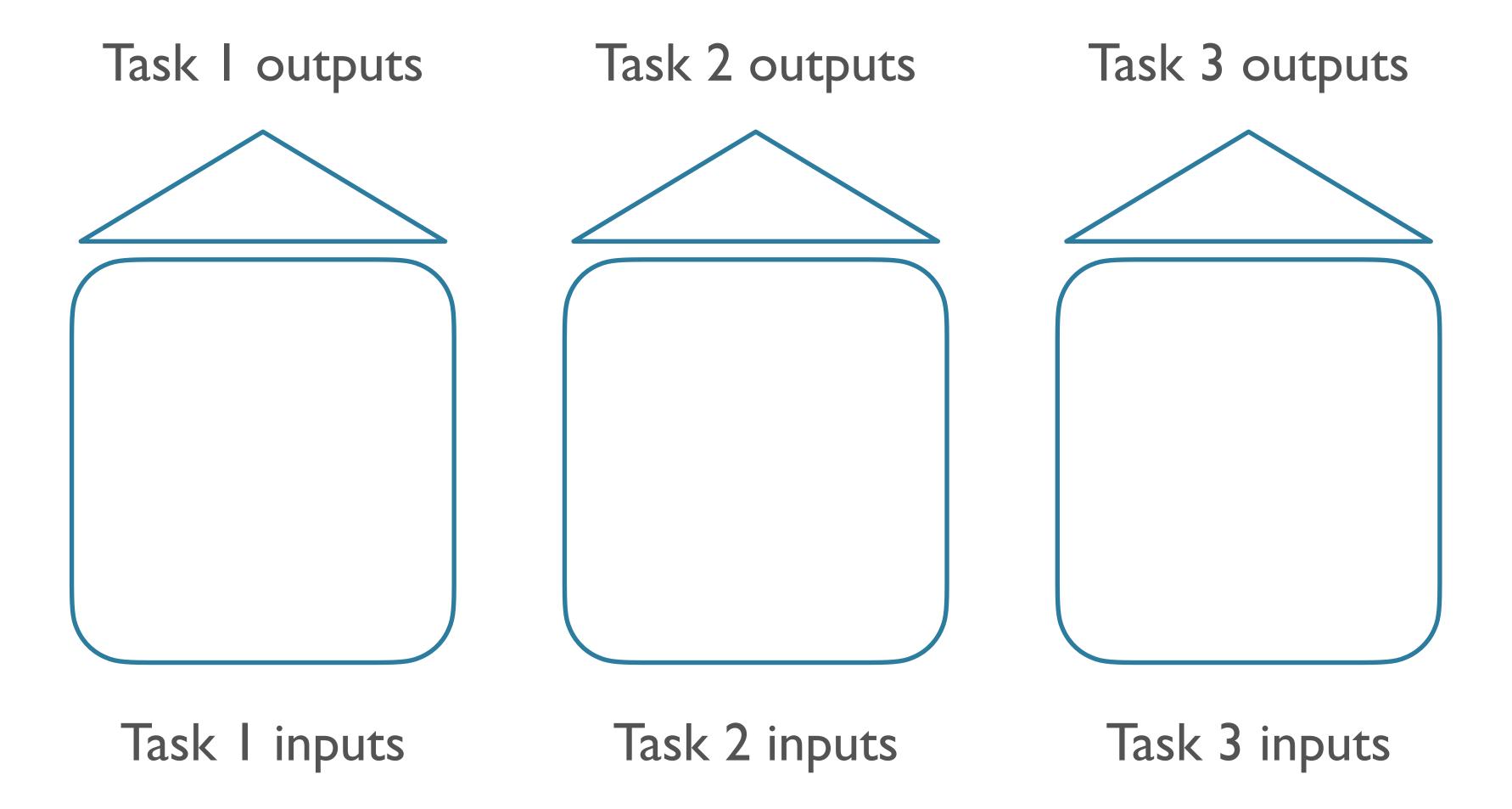
- Transfer learning in general
- Language model pre-training: initial steps
- Transformer-based pre-training
 - Encoder only
 - Decoder only
 - Encoder-Decoder
 - [Some] limitations [more later in course]

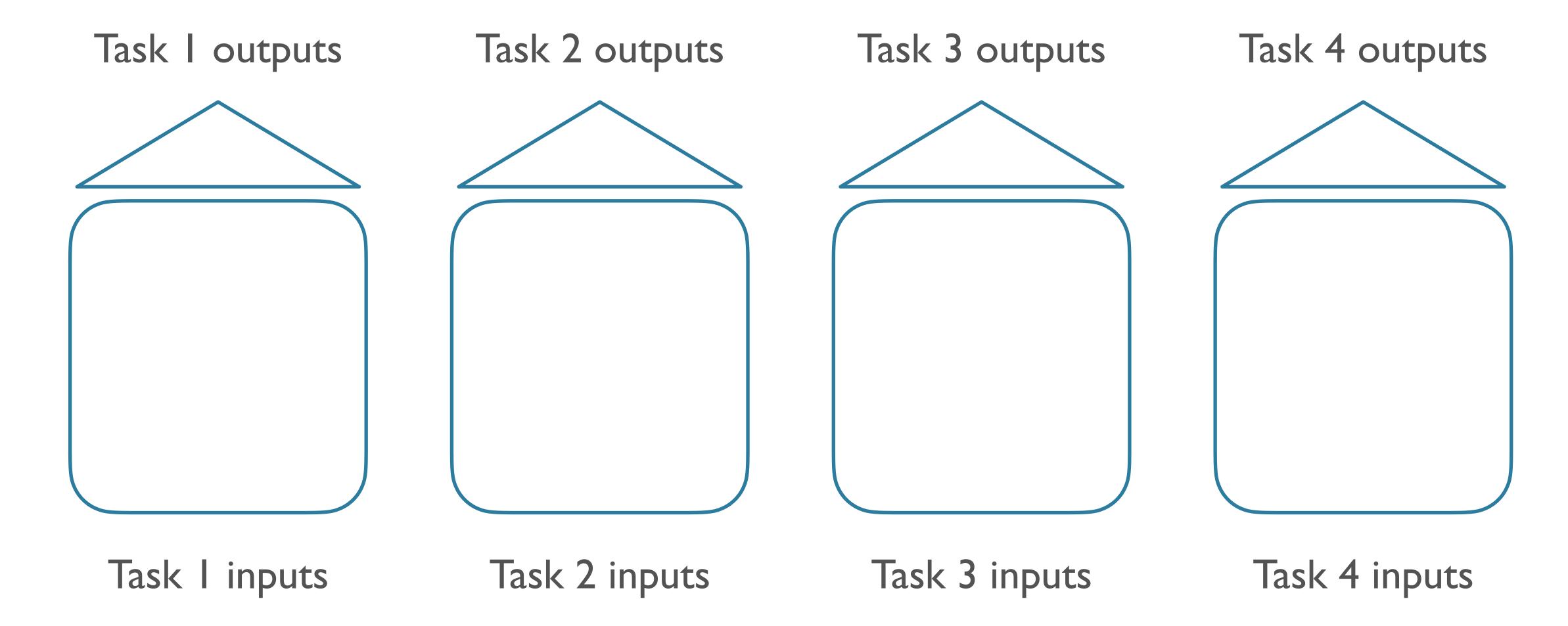
Task I outputs



Task I inputs

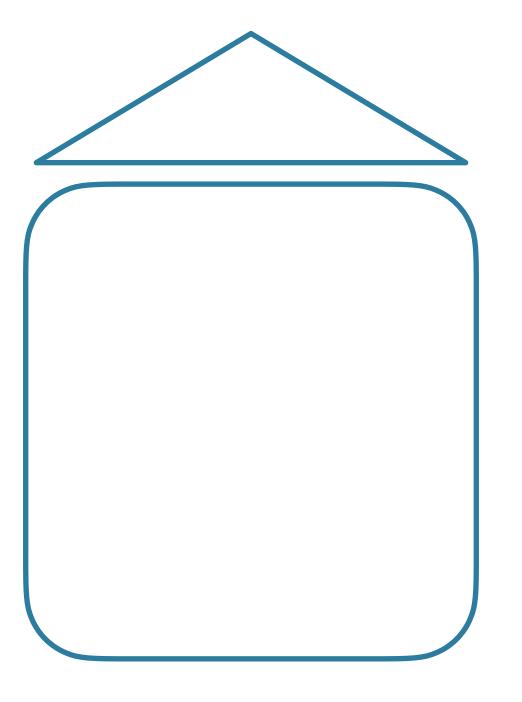






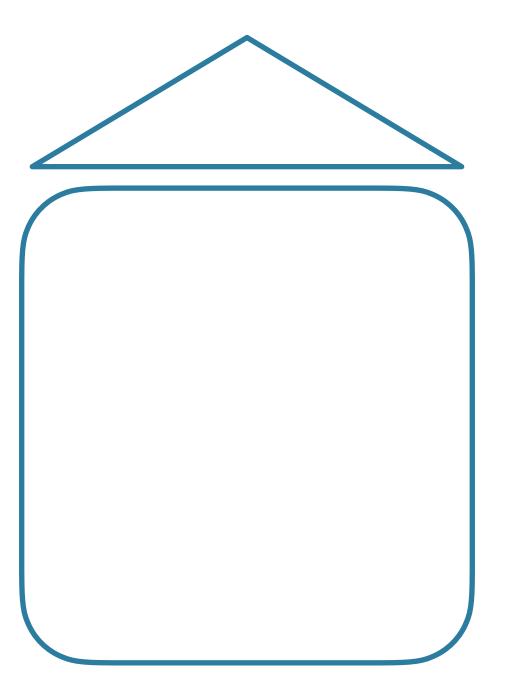
- New task = new model
- Expensive!
 - Training time
 - Storage space
 - Data availability
 - Can be impossible in low-data regimes

"pre-training" task outputs

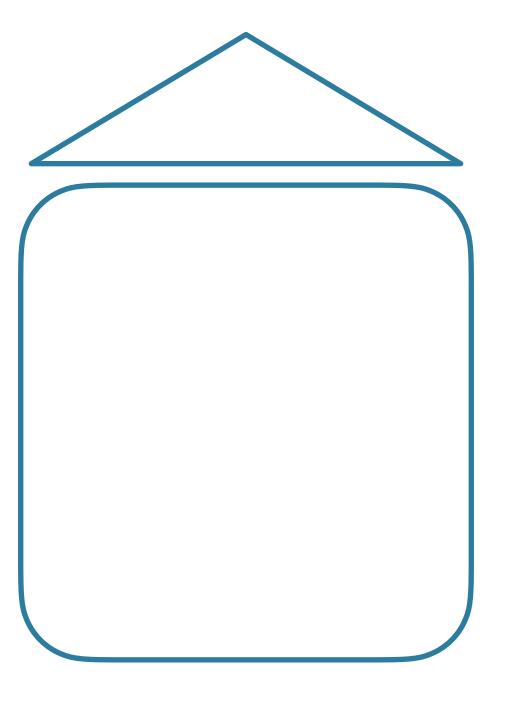


"pre-training" task inputs

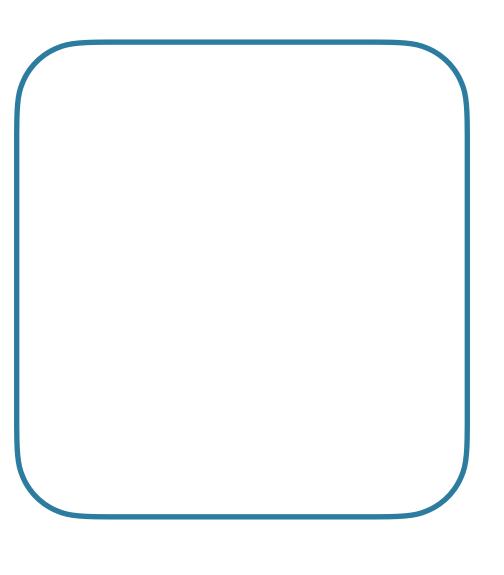
"pre-training" task outputs



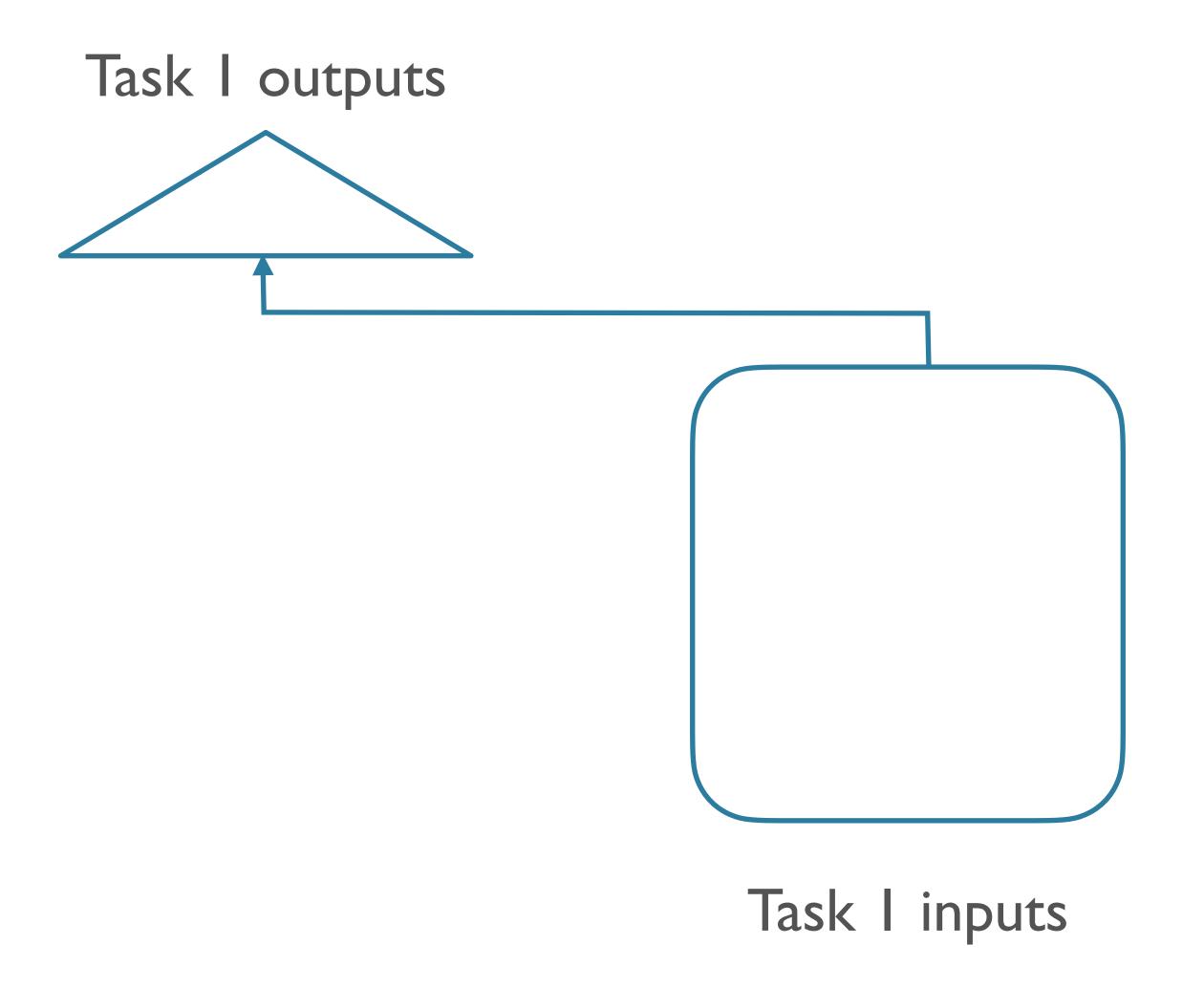
"pre-training" task outputs

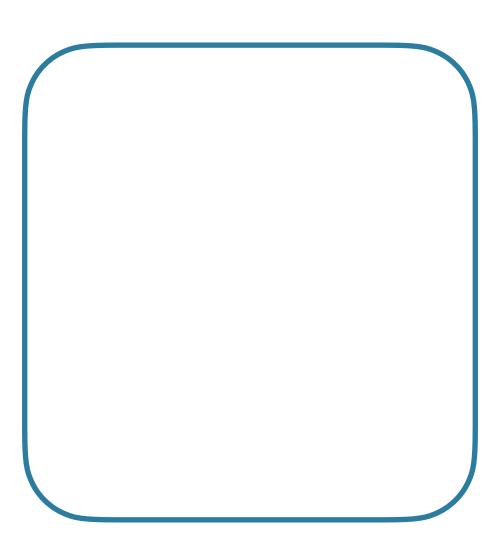


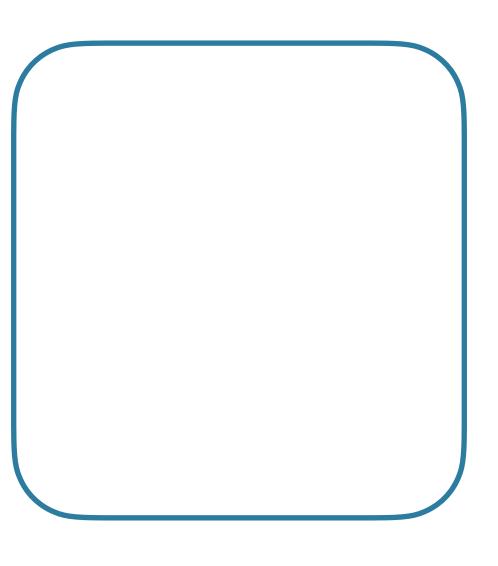
Task I inputs



Task I inputs

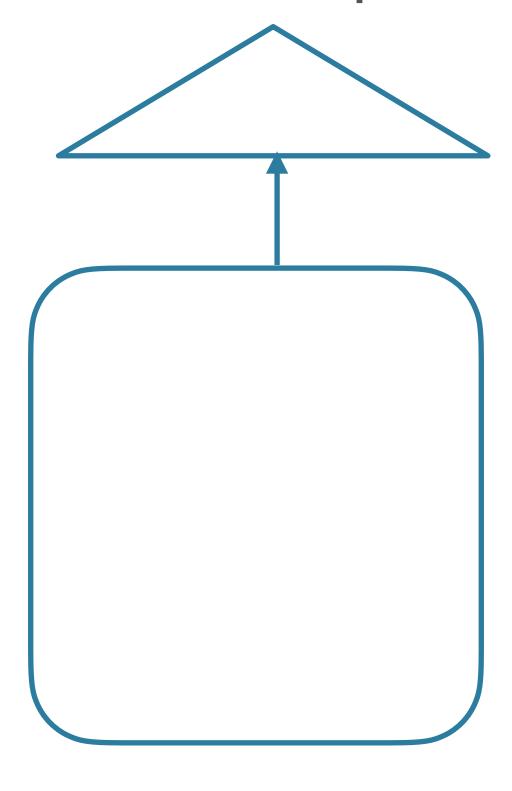




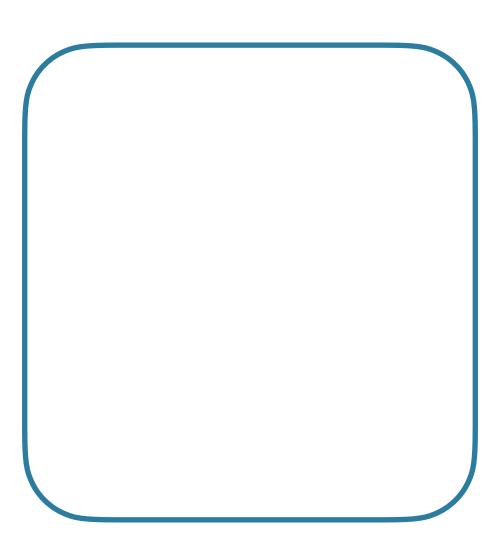


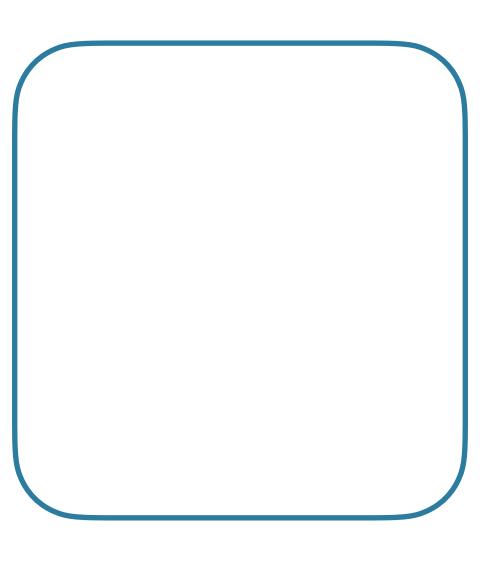
Task 2 inputs

Task 2 outputs

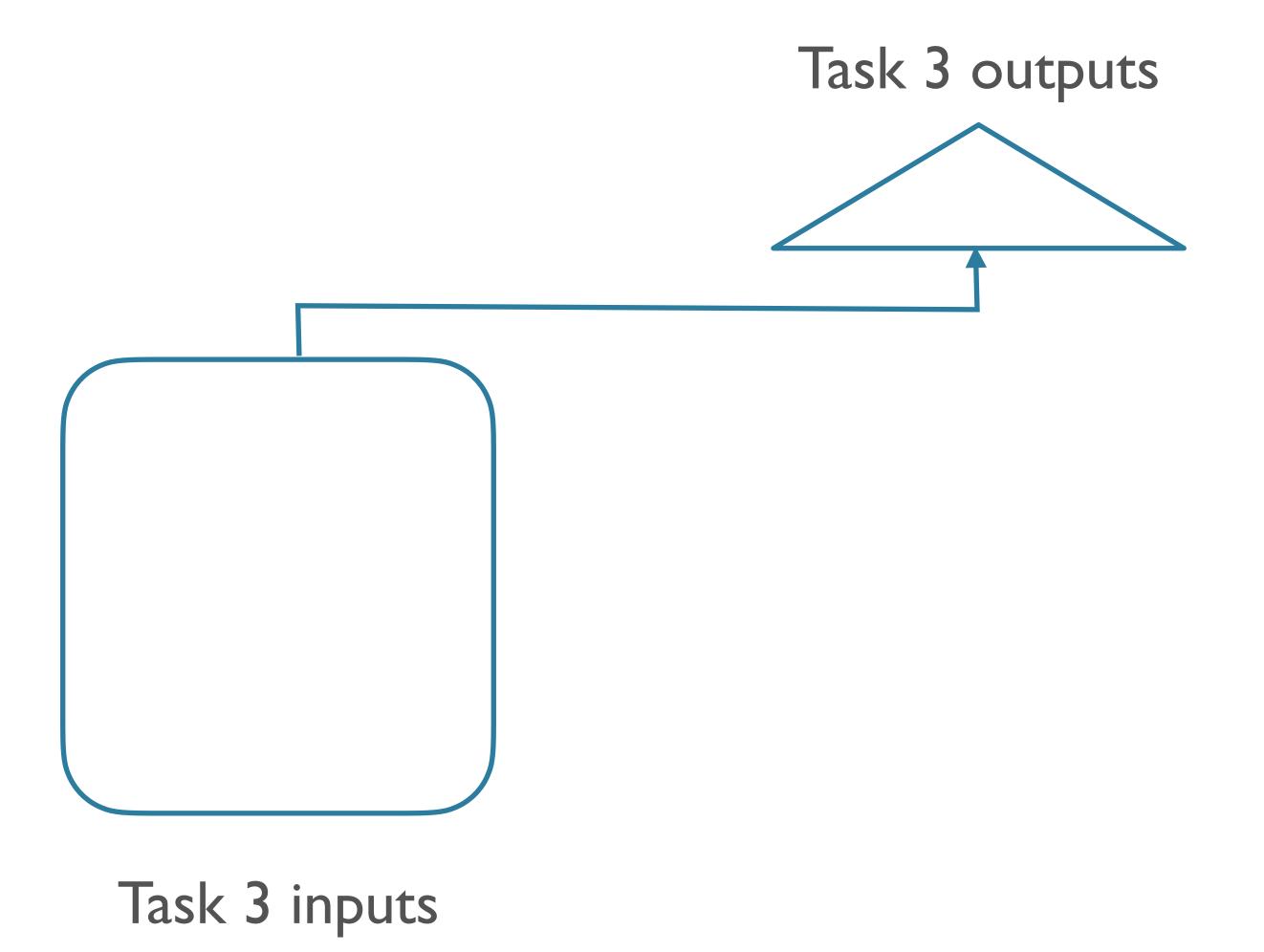


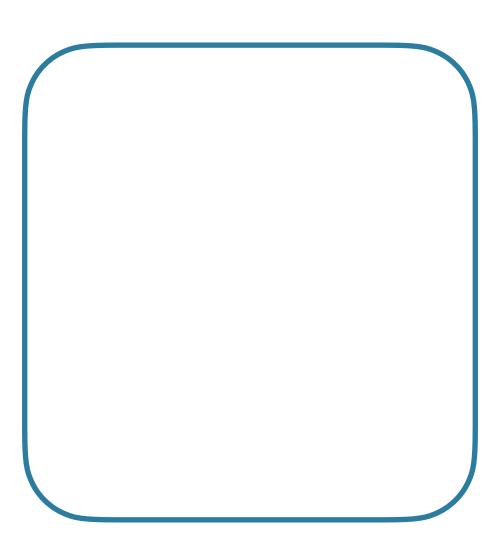
Task 2 inputs

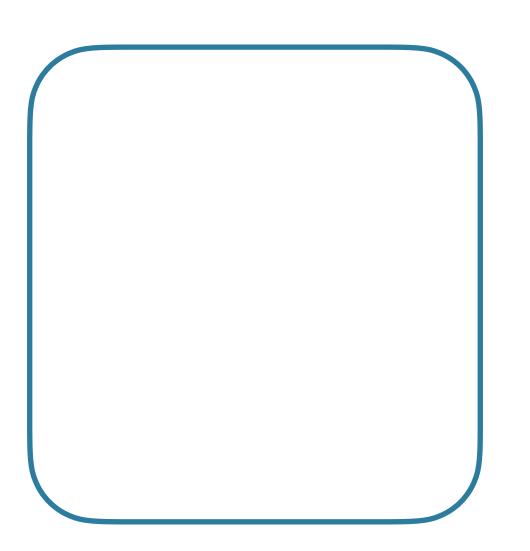




Task 3 inputs







Pre-trained model, either:

- General feature extractor
- Fine-tuned on tasks

Pre-training + Fine-tuning

- Step 1: pre-train a model on a "general" task
 - Questions: which task for pre-training? More in a minute.
 - Goal: produce general-purpose representations of the input ("representation learning"), that will be useful when "transferred" to a more specific task.
- Step 2: fine-tune that model on the main task
 - Replace the "head" of the model with some task-specific layers
 - Run supervised training with the resulting model

Transfer Learning in Computer Vision

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson CVAP, KTH (Royal Institute of Technology)
Stockholm, Sweden

{razavian, azizpour, sullivan, stefanc}@csc.kth.se

"We use features extracted from the OverFeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the OverFeat network was trained to solve [cf. ImageNet].

Astonishingly, we report consistent superior results compared to the highly tuned state-of-theart systems in all the visual classification tasks on various datasets"

Language Model Pre-training

 Goal: find a linguistic task that will build general-purpose / transferable representations

- Goal: find a linguistic task that will build general-purpose / transferable representations
- Possibilities:

- Goal: find a linguistic task that will build general-purpose / transferable representations
- Possibilities:
 - Constituency or dependency parsing

- Goal: find a linguistic task that will build general-purpose / transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing

- Goal: find a linguistic task that will build general-purpose / transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation

- Goal: find a linguistic task that will build general-purpose / transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA

- Goal: find a linguistic task that will build general-purpose / transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA
 - ...

- Goal: find a linguistic task that will build general-purpose / transferable representations
- Possibilities:
 - Constituency or dependency parsing
 - Semantic parsing
 - Machine translation
 - QA
 - ...
- Scalability issue: all require expensive annotation

Language Modeling

Language Modeling

 A good language model should produce good general-purpose and transferable representations

Language Modeling

 A good language model should produce good general-purpose and transferable representations

- Linguistic knowledge:
 - The bicycles, even though old, were in good shape because _____ ...
 - The bicycle, even though old, was in good shape because _____

Language Modeling

 A good language model should produce good general-purpose and transferable representations

- Linguistic knowledge:
 - The bicycles, even though old, were in good shape because _____ ...
 - The bicycle, even though old, was in good shape because _____

- World knowledge:
 - The University of Washington was founded in _____
 - Seattle had a huge population boom as a launching point for expeditions to _____

Data for LM is cheap

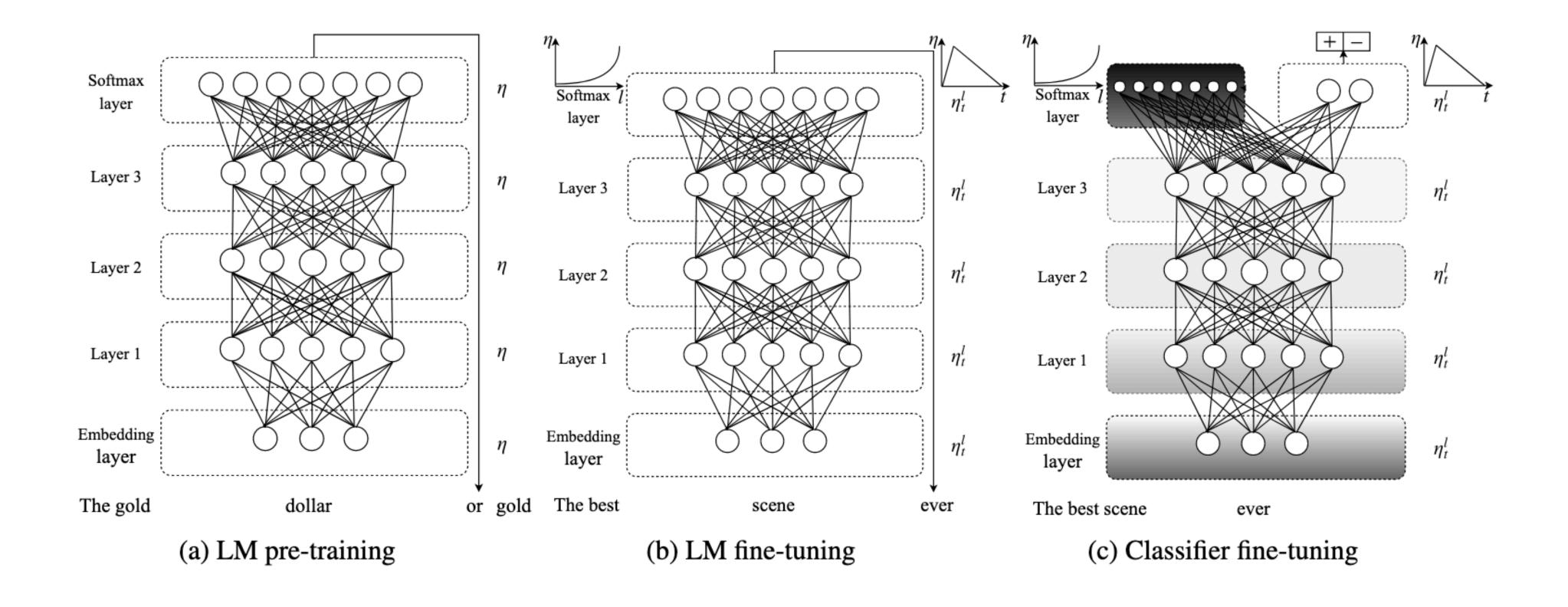
Data for LM is cheap

Data for LM is cheap

Language Model Pre-training

- A currently powerful paradigm for training models for NLP tasks:
 - Pre-train a large language model on a large amount of raw text
 - Fine-tune a small model on top of the LM for the task you care about
 - [or use the LM as a general feature extractor]
 - [or prompt it for "in-context learning"; later]

ULMFiT

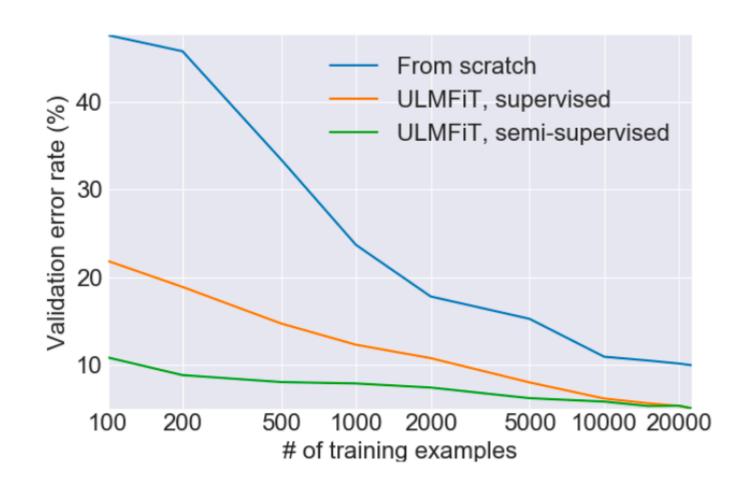


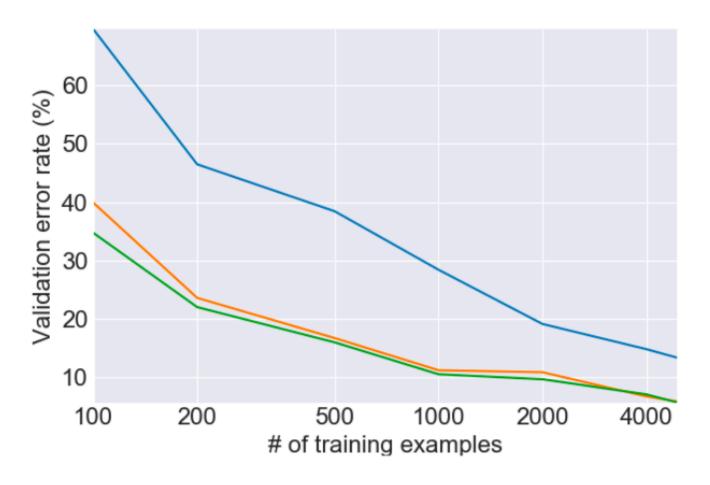
Universal Language Model Fine-tuning for Text Classification (ACL'18)

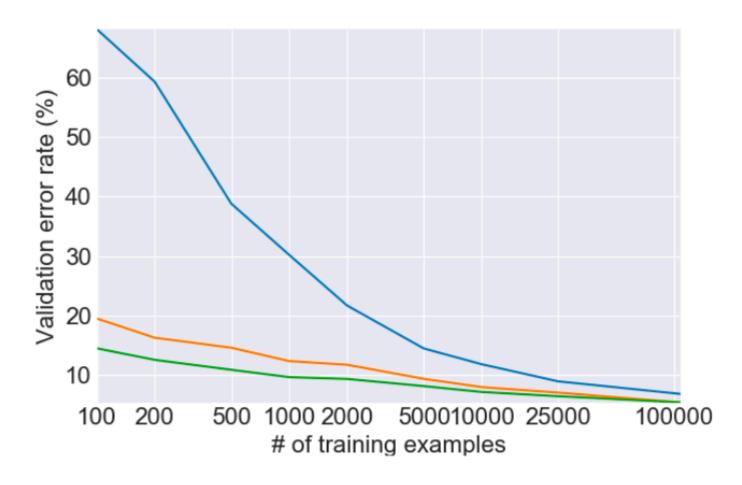
ULMFiT

Model	Test	Model	Test
CoVe (McCann et al., 2017)	8.2	CoVe (McCann et al., 2017)	4.2
ch-LSTM (Johnson and Zhang, 2016)	5.9	CoVe (McCann et al., 2017) TBCNN (Mou et al., 2015)	4.0
Virtual (Miyato et al., 2016)	5.9	LSTM-CNN (Zhou et al., 2016)	3.9
ULMFiT (ours)	4.6	ULMFiT (ours)	3.6

ULMFiT







Peters et. al (2018)

Peters et. al (2018)

NAACL 2018 Best Paper Award

Peters et. al (2018)

- NAACL 2018 Best Paper Award
- Embeddings from Language Models (ELMo)
 - [aka the OG NLP Muppet]

ELMo

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer** {csquared, kentonl, lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract

We introduce a new type of deep contextual*ized* word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pretrained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

guage model (LM) objective on a large text corpus. For this reason, we call them ELMo (Embeddings from Language Models) representations. Unlike previous approaches for learning contextualized word vectors (Peters et al., 2017; McCann et al., 2017), ELMo representations are deep, in the sense that they are a function of all of the internal layers of the biLM. More specifically, we learn a linear combination of the vectors stacked above each input word for each end task, which markedly improves performance over just using the top LSTM layer.

Combining the internal states in this manner allows for very rich word representations. Using intrinsic evaluations, we show that the higher-level LSTM states capture context-dependent aspects of word meaning (e.g., they can be used without modification to perform well on supervised

ELMo

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer** {csquared, kentonl, lsz}@cs.washington.edu

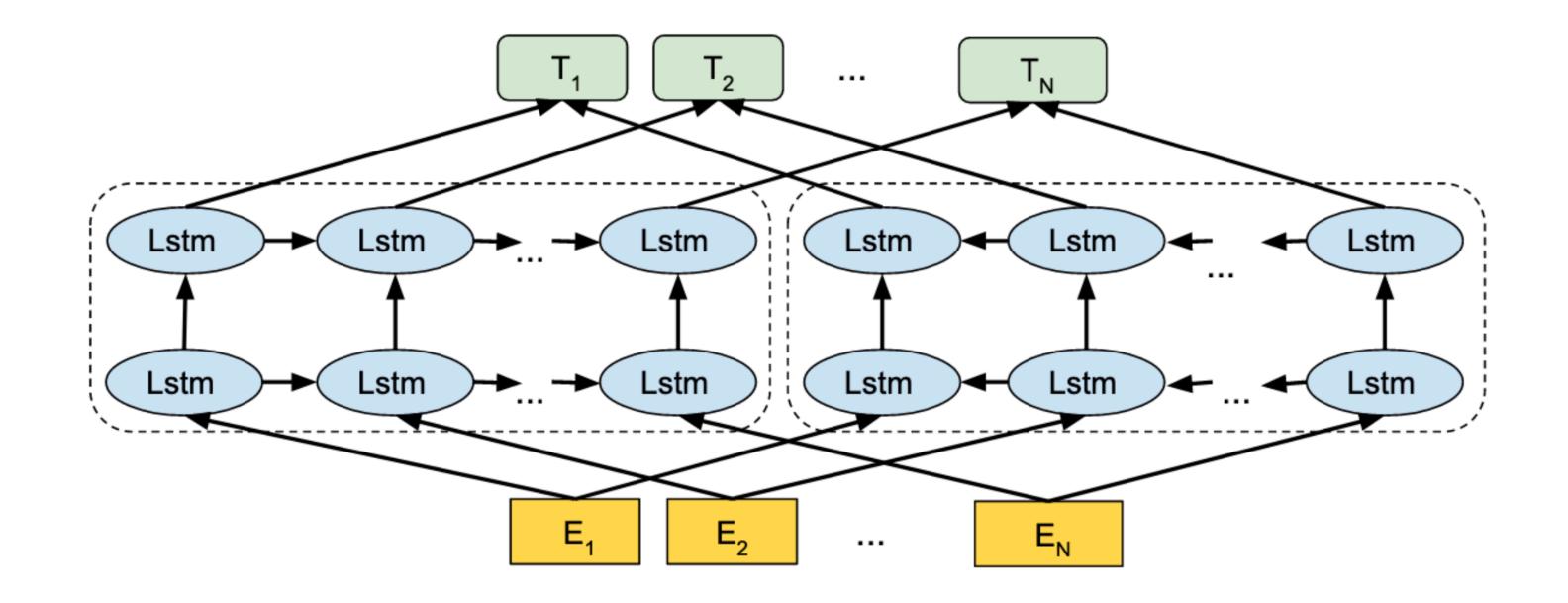
[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

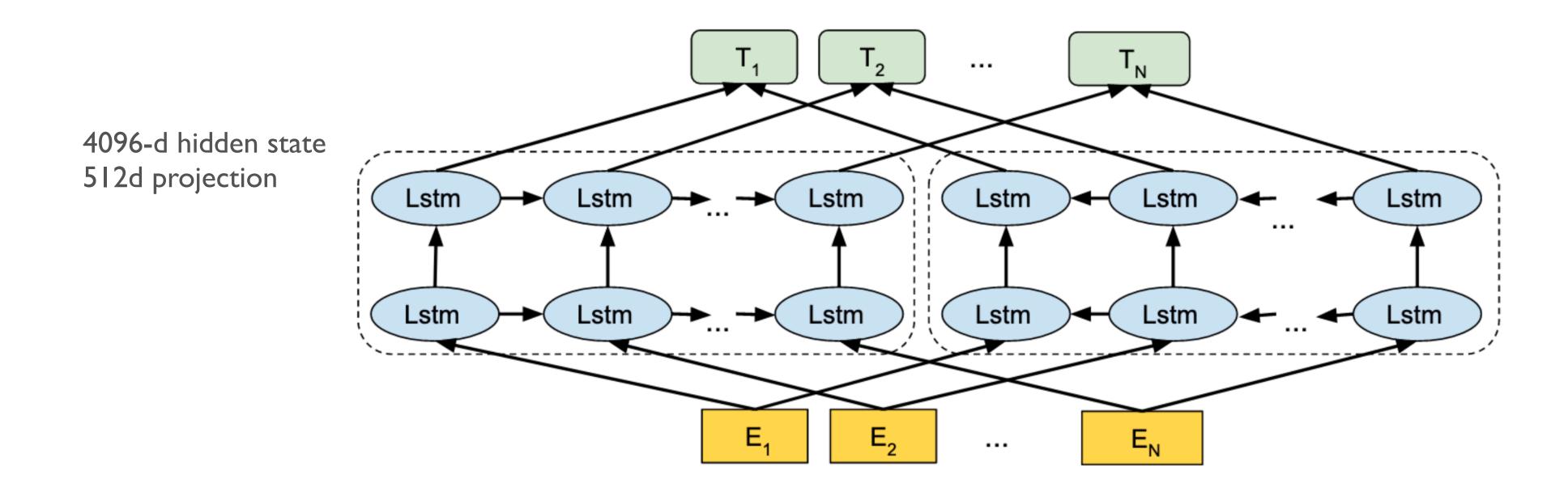
Abstract

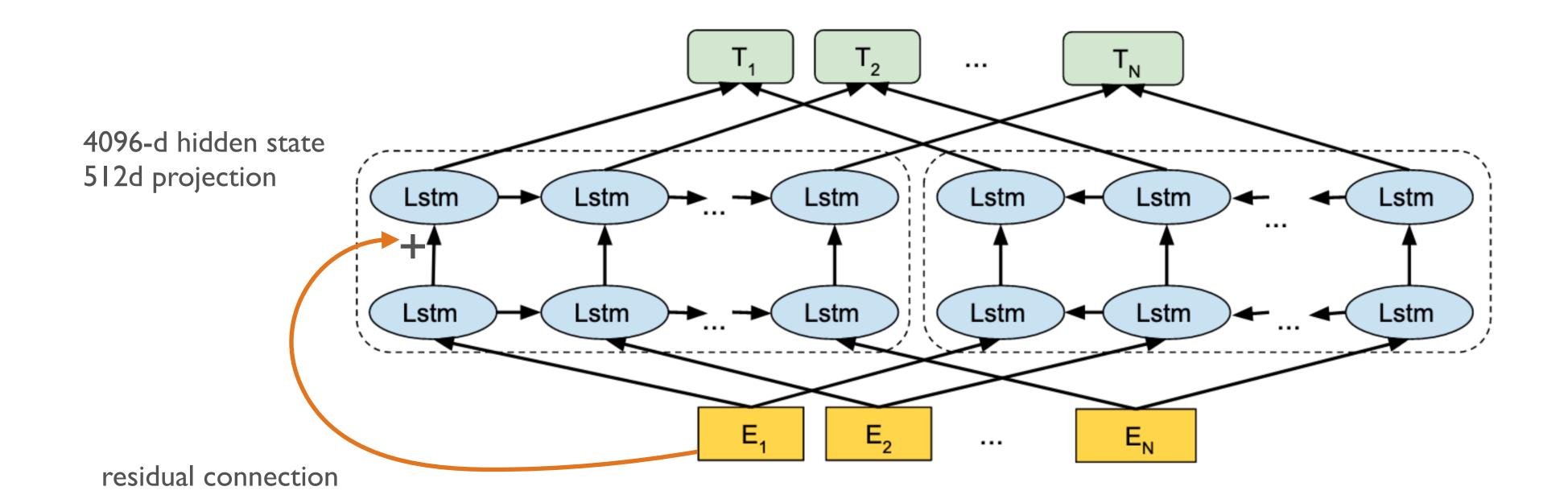
We introduce a new type of deep contextual*ized* word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pretrained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

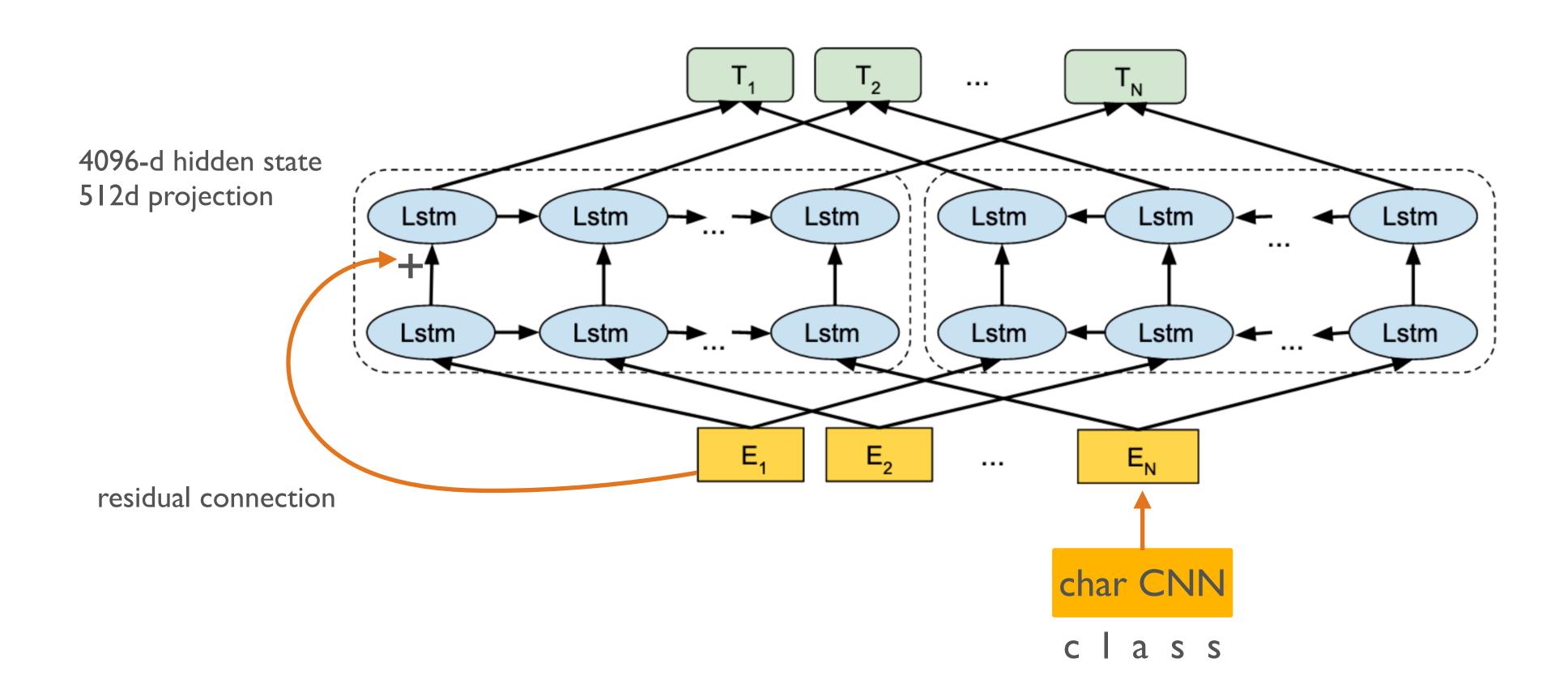
guage model (LM) objective on a large text corpus. For this reason, we call them ELMo (Embeddings from Language Models) representations. Unlike previous approaches for learning contextualized word vectors (Peters et al., 2017; McCann et al., 2017), ELMo representations are deep, in the sense that they are a function of all of the internal layers of the biLM. More specifically, we learn a linear combination of the vectors stacked above each input word for each end task, which markedly improves performance over just using the top LSTM layer.

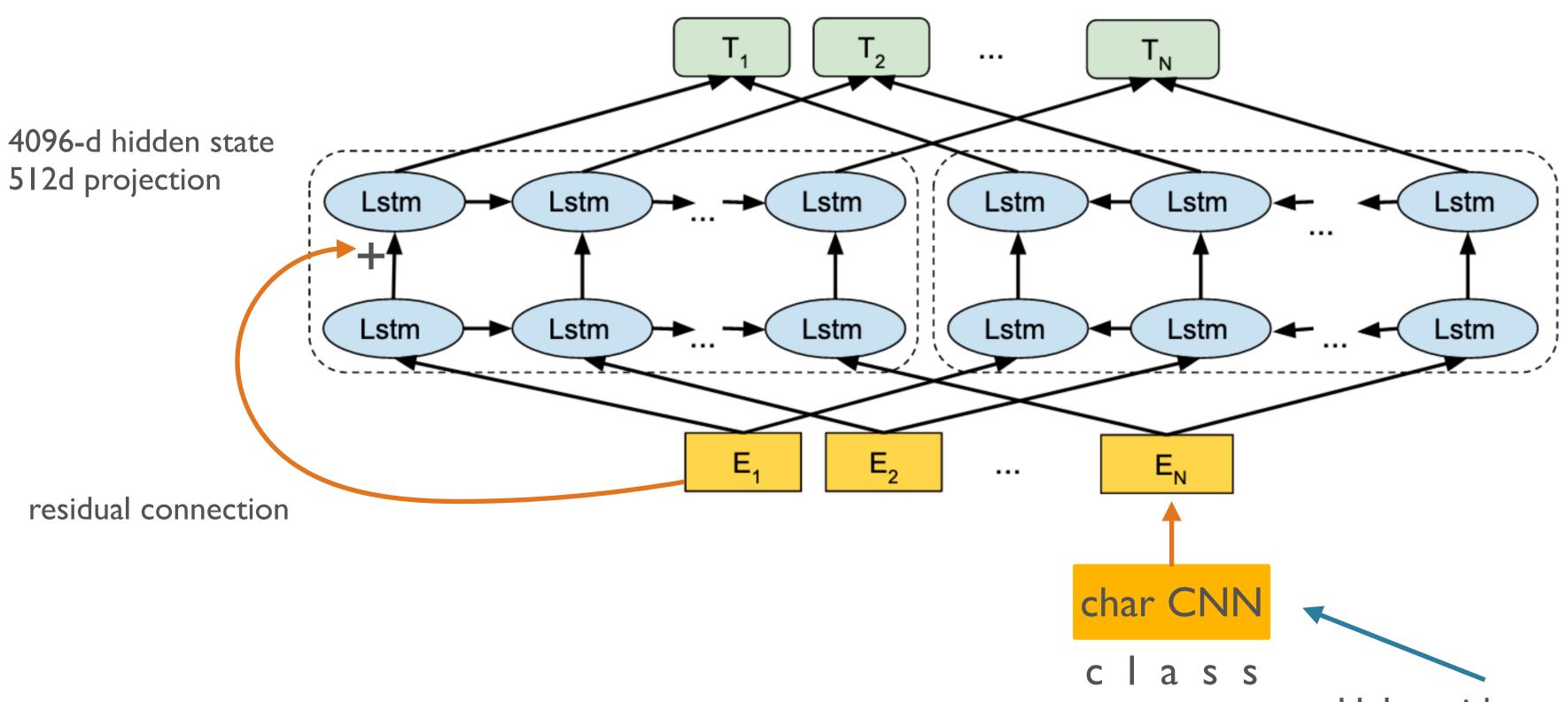
Combining the internal states in this manner allows for very rich word representations. Using intrinsic evaluations, we show that the higher-level LSTM states capture context-dependent aspects of word meaning (e.g., they can be used without modification to perform well on supervised











Helps with rare / new words (no OOV)

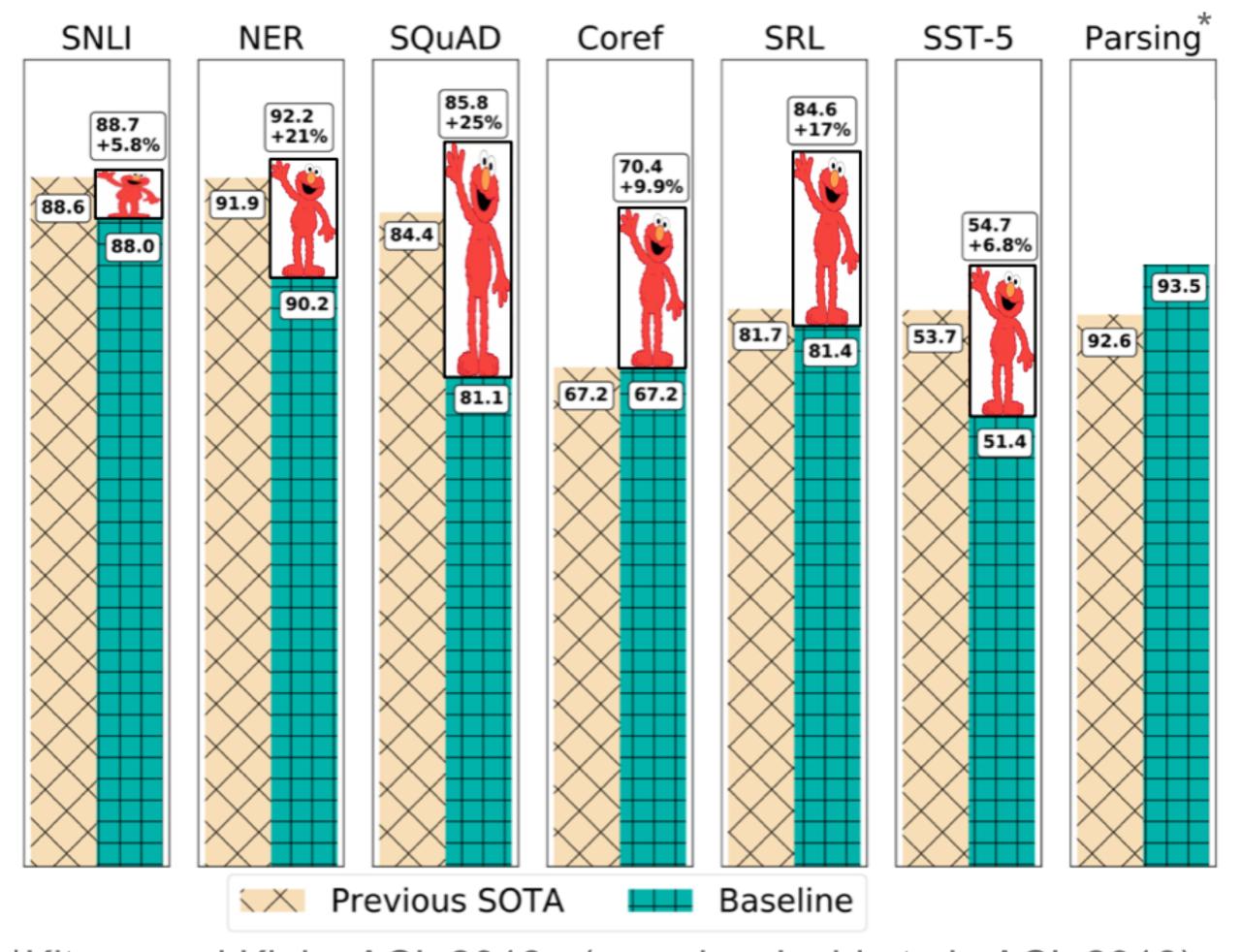
ELMo Training

- 10 epochs on <u>1B Word Benchmark</u>
- NB: not SOTA perplexity even at time of publishing
 - See "Exploring the Limits of Language Modeling" paper
- Regularization:
 - Dropout
 - L2 norm

Peters et. al (2018)

 Used in place of other embeddings on multiple tasks:

SQuAD = <u>Stanford Question Answering Dataset</u> SNLI = <u>Stanford Natural Language Inference Corpus</u> SST-5 = Stanford Sentiment Treebank



^{*}Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

23

Global vs. Contextual Word Vectors

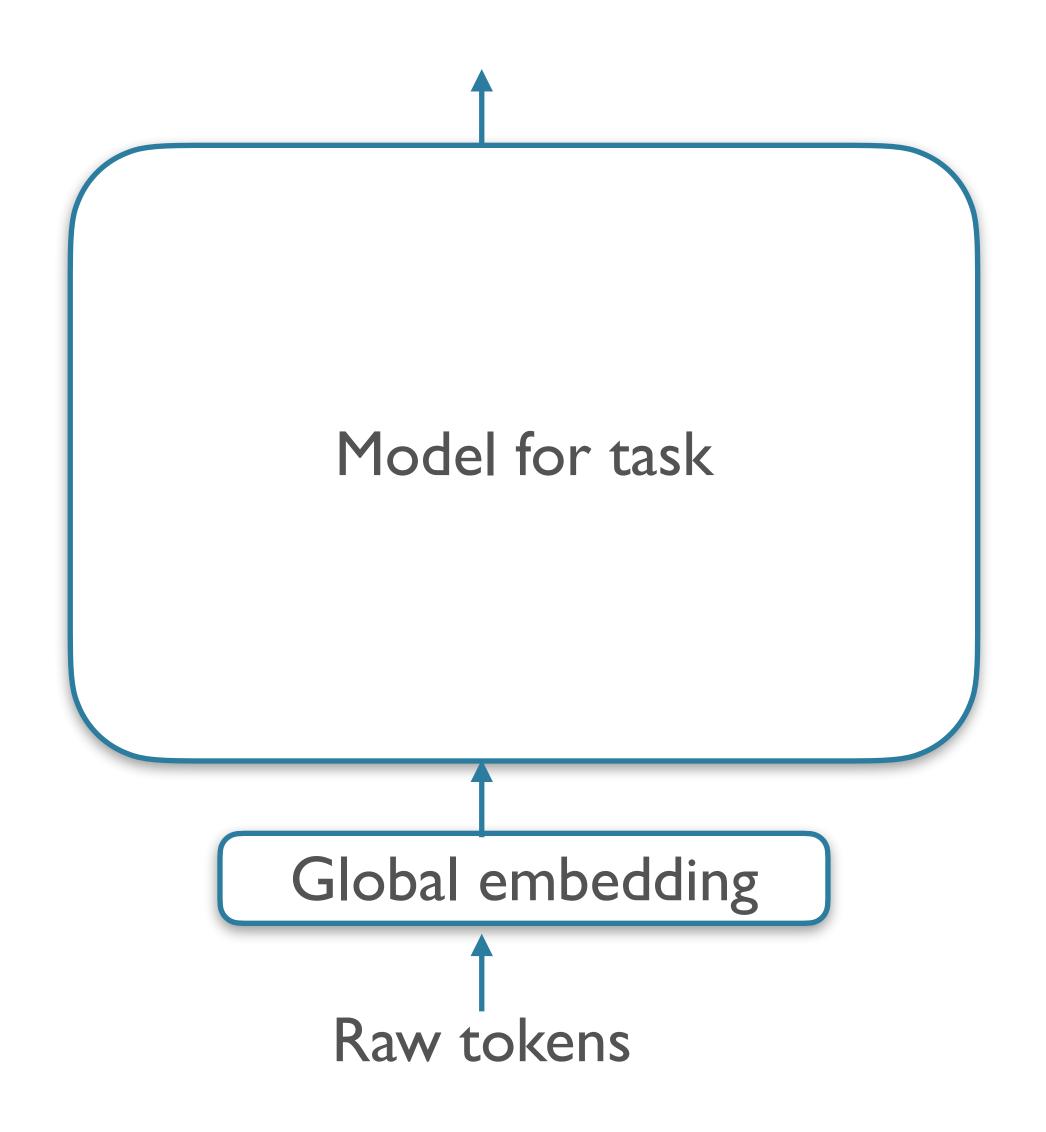
- Global vectors: one vector per word-type
 - E.g. word2vec, GloVe
 - No difference between e.g. "play" as a verb, noun, or its different senses
- Contextual vectors: one vector per word-occurrence
 - "We saw a really great play last week."
 - "Do you want to play basketball tomorrow?"
 - Each occurrence gets its own vector representation.

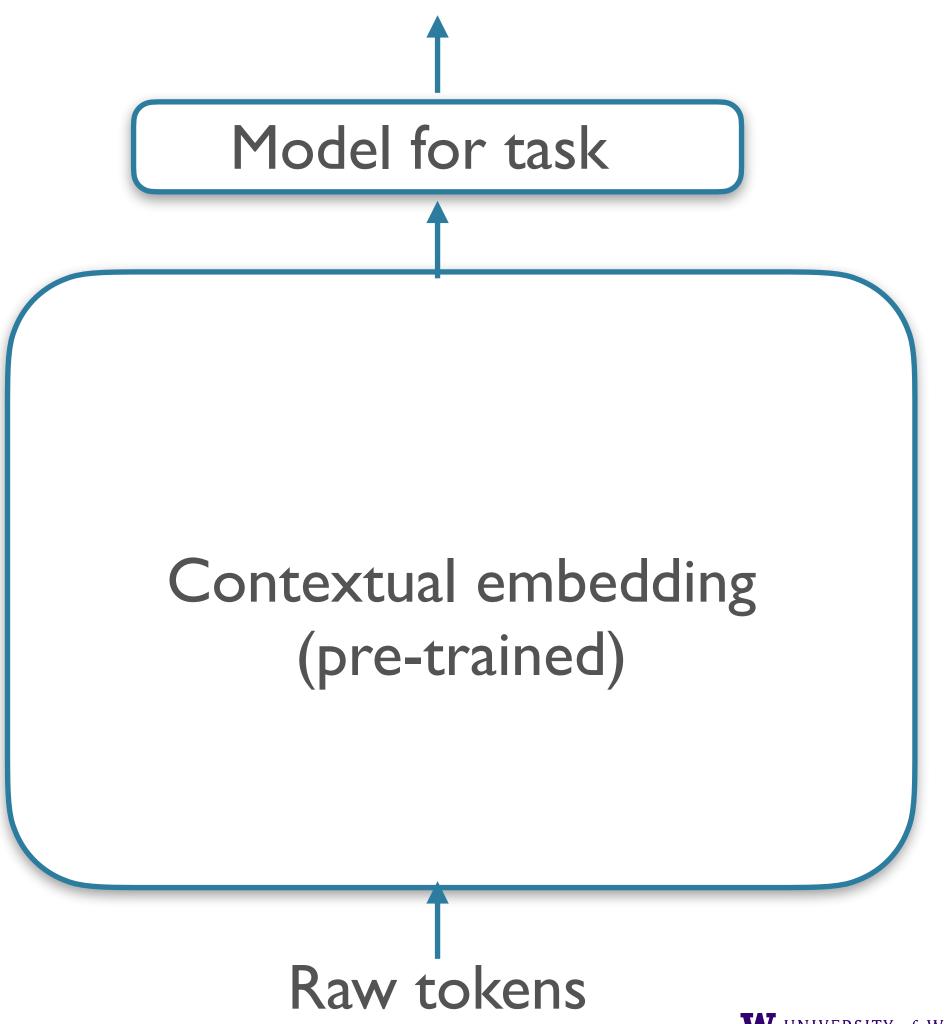
Peters et. al (2018)

Comparison to GloVe:

	Source	Nearest Neighbors
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
biLM	Chico Ruiz made a spectacular play on Alusik's grounder	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round excellent play.
	Olivia De Havilland signed to do a Broadway play for Garson	they were actors who had been handed fat roles in a successful play , and had talent enough to fill the roles competently, with nice understatement.

Shallow vs Deep Pre-training





Pre-trained Transformers

Paralellizability + Scale

- ULMFiT + ELMo:
 - Demonstrate the value of LM pre-training + transfer learning
 - Noted that there are "virtually unlimited" quantities of data for LM
 - Used bi-LSTMs for the LM
- Concurrently: Transformer paper introduced
- Triggered an explosion in the pretraining approach
 - Lack of recurrence —> paralellizability —> scaling up both model size and dataset size

Pre-trained Transformers: Encoder-only

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al NAACL 2019

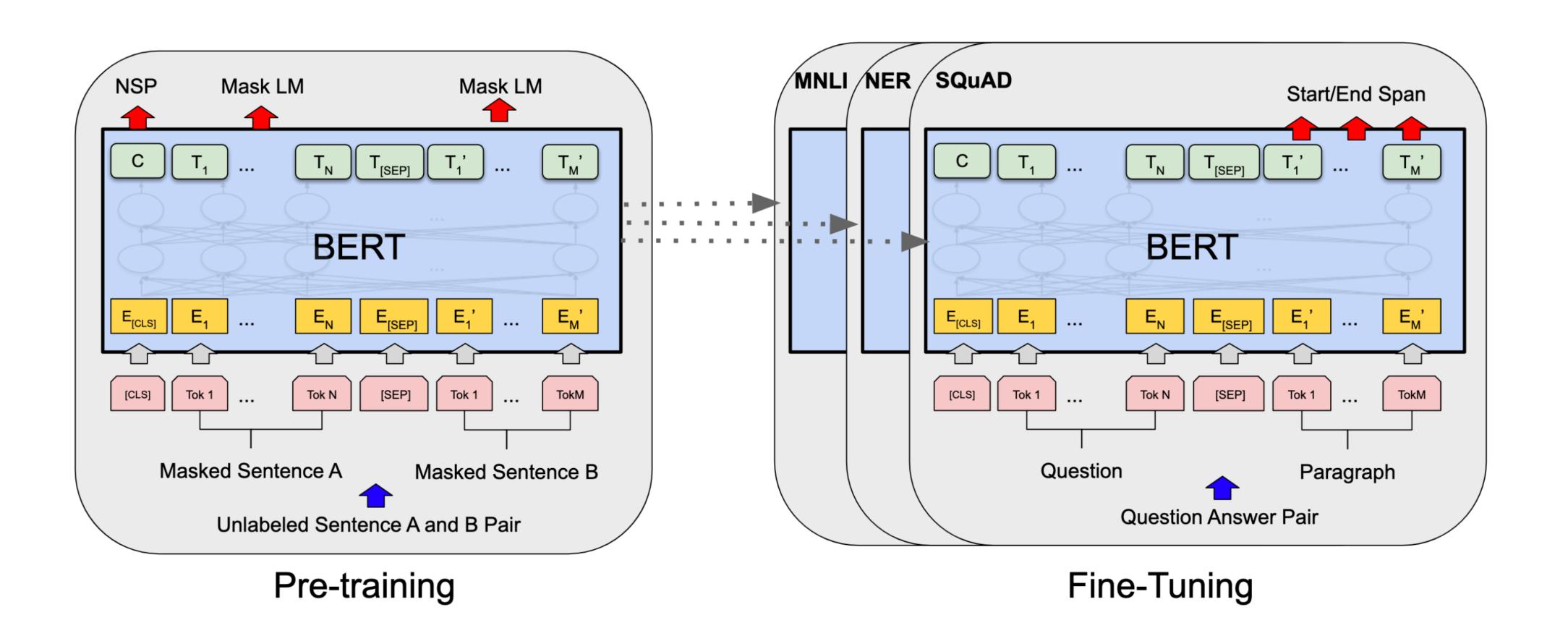
Overview

- Encoder Representations from Transformers:
- Bidirectional:?
 - BiLSTM (ELMo): left-to-right and right-to-left
 - Self-attention: every token can see every other
 - NB: adirectional probably a better term
- How do you treat the encoder as an LM (as computing $P(w_t | w_{t-1}, w_{t-2}, ..., w_1)$)?
 - Don't: modify the task

Masked Language Modeling

- Language modeling: next word prediction
- Masked Language Modeling (a.k.a. cloze task): fill-in-the-blank
 - The University of ____ has three campuses, the ____ being in Seattle.
 - Seattle ____ some snow, so UW was delayed due to ____ roads.
- I.e. $P(w_t | w_{t+k}, w_{t+(k-1)}, \dots, w_{t+1}, w_{t-1}, \dots, w_{t-(m+1)}, w_{t-m})$
 - (very similar to CBOW: continuous bag of words from word2vec)
- Auxiliary training task: next sentence prediction.
 - Given sentences A and B, binary classification: did B follow A in the corpus or not?

Schematically



- BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M

- BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M

- BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M

this is the first work to demonstrate convincingly that scaling to extreme model sizes also leads to large improvements on very small scale tasks, provided that the model has been sufficiently pre-trained. Peters et al. (2018b) presented

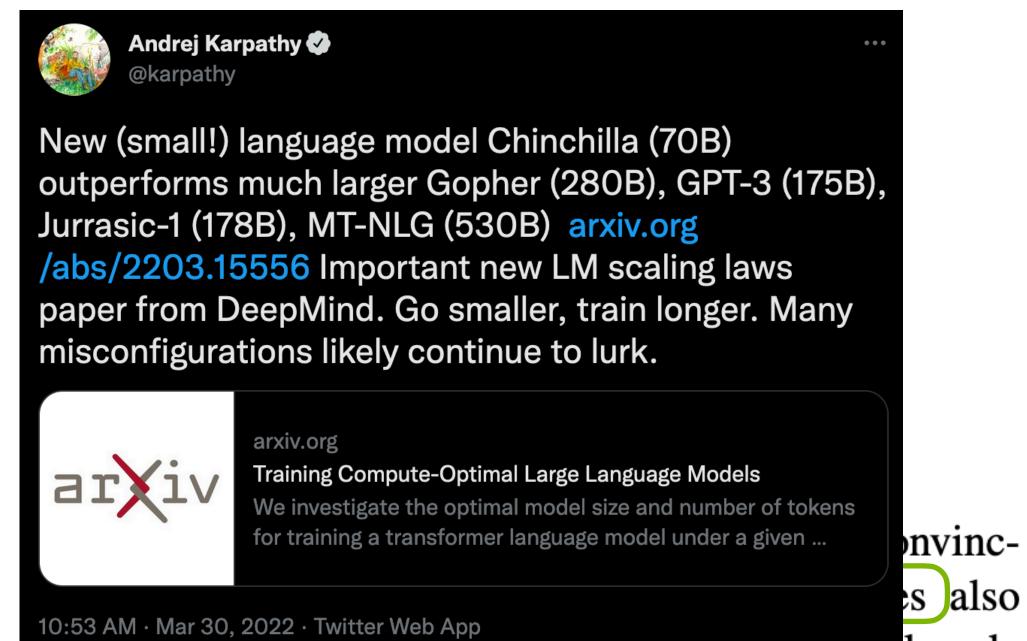
Some details

- BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M

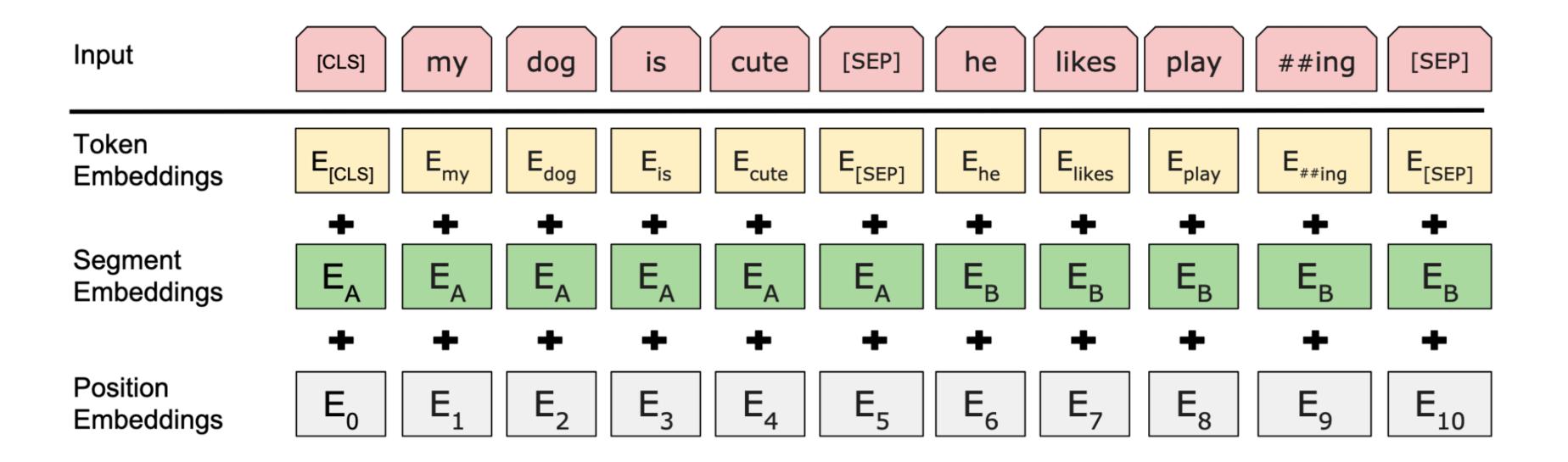
this is the first work to demonstrate convincingly that scaling to extreme model sizes also leads to large improvements on very small scale tasks, provided that the model has been sufficiently pre-trained. Peters et al. (2018b) presented

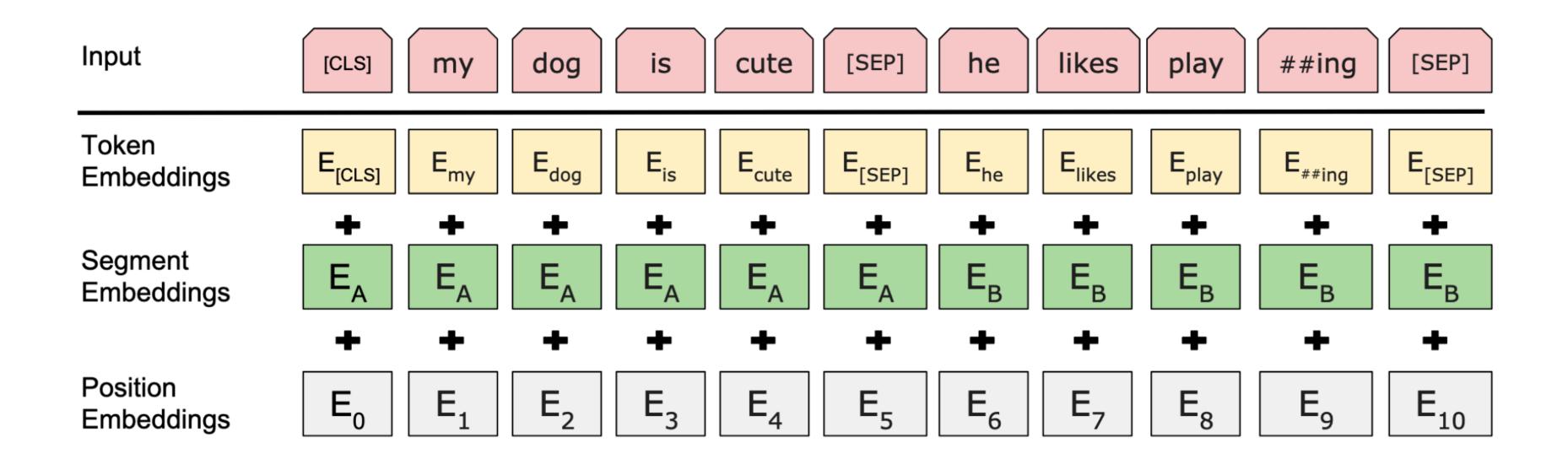
Some details

- BASE model:
 - 12 Transformer Blocks
 - Hidden vector size: 768
 - Attention heads / layer: 12
 - Total parameters: 110M
- LARGE model:
 - 24 Transformer Blocks
 - Hidden vector size: 1024
 - Attention heads / layer: 16
 - Total parameters: 340M

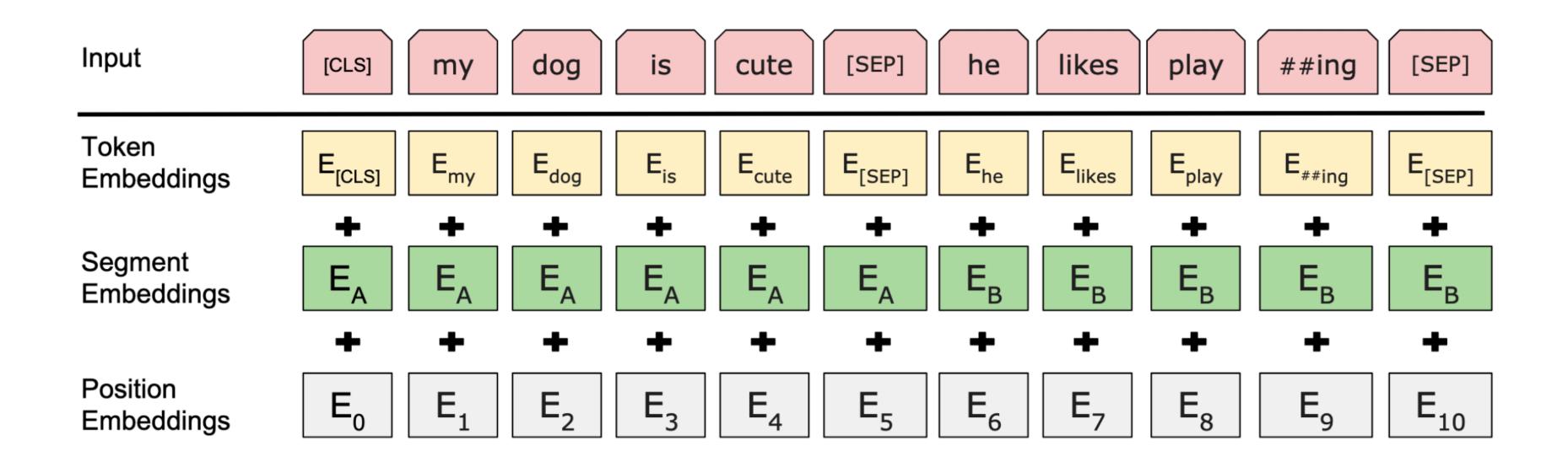


teads to large improvements on very small scale tasks, provided that the model has been sufficiently pre-trained. Peters et al. (2018b) presented

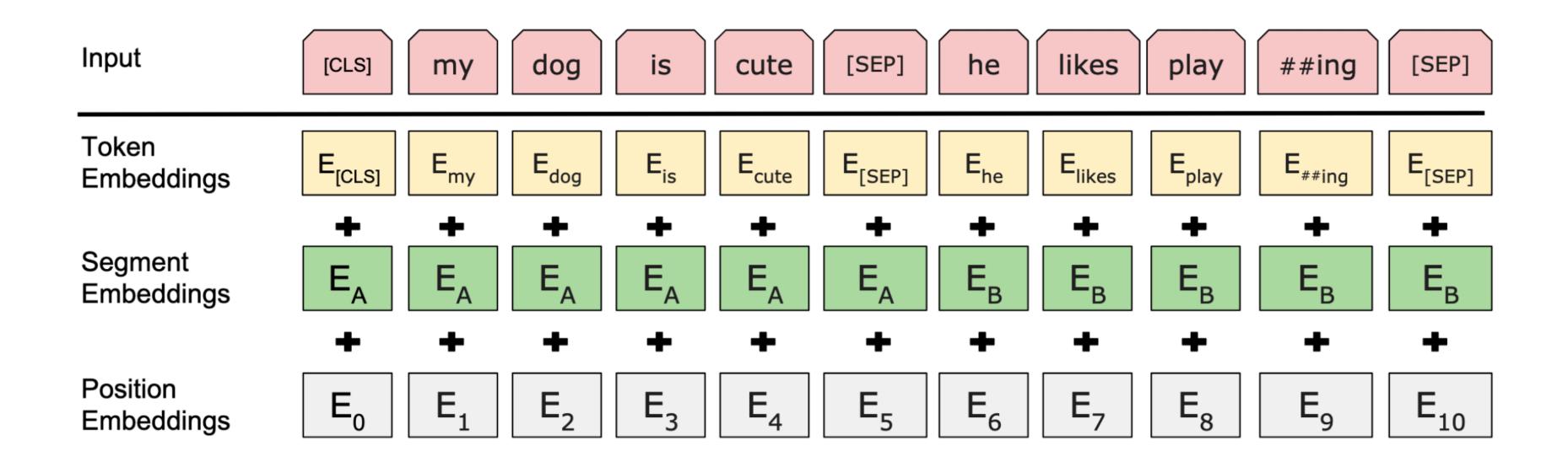




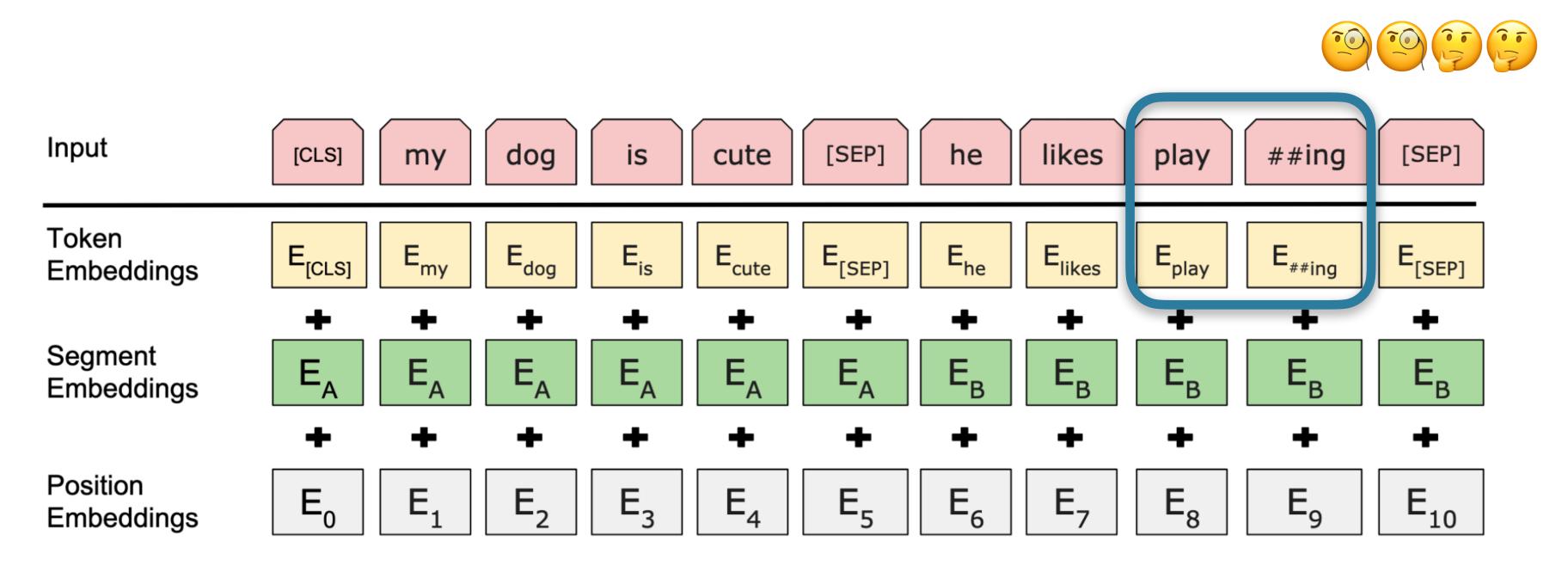
• [CLS], [SEP]: special tokens



- [CLS], [SEP]: special tokens
- Segment: is this a token from sentence A or B?



- [CLS], [SEP]: special tokens
- Segment: is this a token from sentence A or B?
- Position embeddings: provide position in sequence (*learned* in this case, not fixed)



- [CLS], [SEP]: special tokens
- Segment: is this a token from sentence A or B?
- Position embeddings: provide position in sequence (*learned* in this case, not fixed)

Training Details

- BooksCorpus (800M words) + Wikipedia (2.5B)
- Masking the input text. 15% of all tokens are chosen. Then:
 - 80% of the time: replaced by designated '[MASK]' token
 - 10% of the time: replaced by random token
 - 10% of the time: unchanged
- Loss is cross-entropy of the prediction at the masked positions.
- Max seq length: 128 tokens for first 90%, 512 tokens for final 10%
- 1M training steps, batch size 256 = 4 days on 4 or 16 TPUs

Initial Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Ablations

Ну	perpar	ams		Dev Se	et Accura	псу
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2
3	768	12	5.84	77.9	79.8	88.4
6	768	3	5.24	80.6	82.2	90.7
6	768	12	4.68	81.9	84.8	91.3
12	768	12	3.99	84.4	86.7	92.9
12	1024	16	3.54	85.7	86.9	93.3
24	1024	16	3.23	86.6	87.8	93.7

 Not a given (depth doesn't help ELMo); possibly a difference between finetuning vs. feature extraction

]	Dev Set		
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
$\overline{\mathrm{BERT}_{\mathrm{BASE}}}$	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Many more variations to explore

Other Prominent Encoders

- RoBERTa: robustly optimized BERT approach
 - BERT was very *under-trained*: give it more data, train it longer [keep model the same otherwise]
 - Good default encoder
- <u>ELECTRA</u>: replace Masked Language Modeling with "replaced token detection", trains just as well with much less data
- SpanBERT: mask out entire spans instead of single tokens
- DeBERTa: disentangled attention and novel position encoding
- BabyBERTa/miniBERTa: very small range of models, and smaller data too

Limitation of Encoders

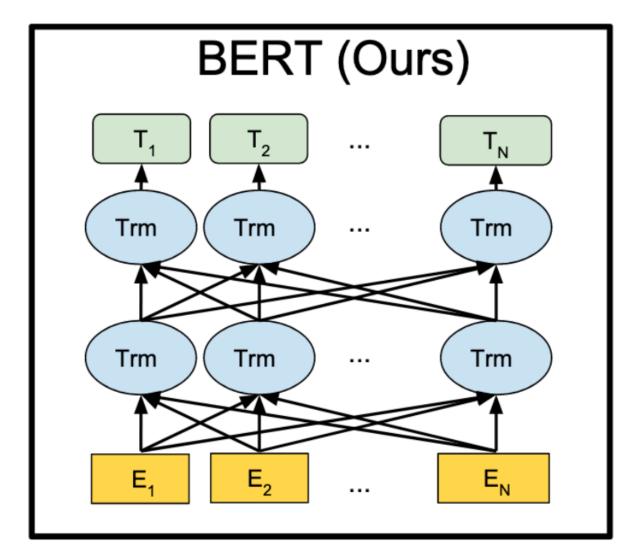
- No left-to-right modeling assumption
- Good for NLU (understanding/comprehension) tasks
- Does not straightforwardly generate text

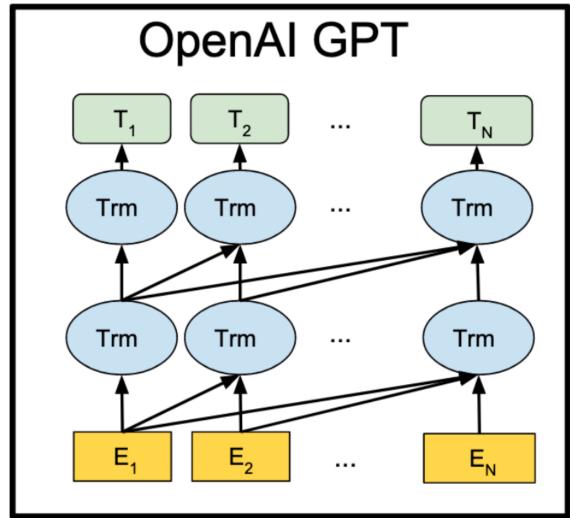
Pre-trained Transformers: Decoder-only

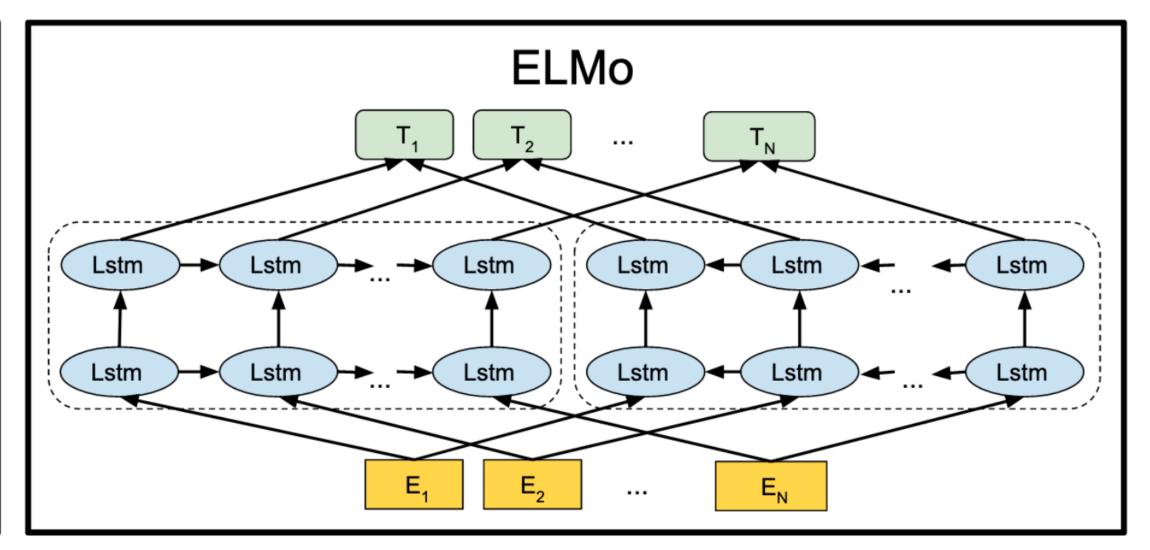
GPT(2)

- Generative Pre-training
 - Radford et al <u>2018</u>; <u>2019</u> (GPT2); Brown et al <u>2020</u> (GPT3)
- Uses Transformer decoder instead of encoder
 - "Self"-attention: masked so that only can attend to previous tokens
 - Pure LM training objective
 - Can be used for text generation
- GPT: same params as BERT-BASE; GPT2 much bigger; GPT3 muuuuuch bigger (175B params)
- Training data: crawled from outbound Reddit links w/ >3 karma, not public

Comparison







Source: BERT paper

Samples from GPT2 (Cherry-picked)

SYSTEM PROMPT (HUMAN-WRITTEN) A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts are unknown.

MODEL
COMPLETION
(MACHINEWRITTEN, FIRST
TRY)

The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal Railroad Administration to find the thief.

"The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation," said Tom Hicks, the U.S. Energy Secretary, in a statement. "Our top priority is to secure the theft and ensure it doesn't happen again."

The stolen material was taken from the University of Cincinnati's Research Triangle Park nuclear research site, according to a news release from Department officials.

The Nuclear Regulatory Commission did not immediately release any information.

Samples from GPT2 (Cherry-picked)

SYSTEM PROMPT (HUMAN-WRITTEN)

Recycling is good for the world.

NO! YOU COULD NOT BE MORE WRONG!!

MODEL COMPLETION (MACHINE-WRITTEN, 25 TRIES) Recycling is NOT good for the world. It is bad for the environment, it is bad for our health, and it is bad for our economy. I'm not kidding. Recycling is not good for the environment. It is destructive to the earth and it is a major contributor to global warming. Recycling is not good for our health. It contributes to obesity and diseases like heart disease and cancer. Recycling is bad for our economy. It increases the cost of a product, and in turn, the price of everything that is made with that product. Recycling is not good for our nation. We pay a tremendous price for the privilege of having the world's most advanced and efficient recycling system. Recycling is a huge, colossal waste of time, energy, money, and resources. And THAT is why we need to get back to basics and get back to basics in our recycling efforts. One of the best ways to start is to look at the process of creating a paper product. When you make a paper product, it is basically a long chain of materials. Everything from the raw materials (wood, cardboard, paper, etc.), to the reagents (dyes, solvents, etc.) to the printing equipment (chemicals, glue, paper, ink, etc.), to the packaging, to the packaging materials (mercury, chemicals, etc.) to the processing equipment (heating, cooling, etc.), to the packaging materials, to the packaging materials that are shipped overseas and to the packaging materials that are used in the United States. Each step along the way creates tons of waste that we constantly have to clean up. The process

Write With Transformer

- Prompt: Studying computational linguistics is a good idea. There are many interesting problems.
- However, there are many bad problems. The research into computational linguistics has not helped very much in the development of better solutions. One problem with computer science and machine learning is that, until recently, the problems they were supposed to solve were insufficiently well studied. Most of the people who are doing research in computer science (at least in my profession) have no understanding of how to design a particularly natural problem, for example. In the case of the reasoning problem above, most of the people I know who work on computer science or machine learning have no understanding of how to make computer programs work in ways which do not have unavoidable adverse consequences. In the best cases, computational linguistics was little help.

Write With Transformer

- Prompt: I didn't ride my bike to campus today because of the snowy weather.
- There is a lot of construction and I wanted to have a few hours of skiing. All that snow is a real pain in the ass. Good thing there was an LRT planned for that area. See you guys on campus in a few days! Photo credit: Tapto@archivosos.gr August 26, 2016: Windy Weather on the Mountain (photo credit: Diana Prat)

From Diana Prat, via tapto@archivosos.gr:

Ever since the camp that I organized to protest the modernisation of the Barranco, my beautiful alma mater, you know, going in for a press conference, I was asking why the Italian government

Nobody has responded yet.

Hang tight! Responses are coming in.

GPT3

- Same approach: pure Transformer decoder trained on LM
 - Scale: 175B params
 - Data size: ~500billion tokens, majority from filtered Common Crawl
- Few-shot "fine-tuning" paradigm:
 - Prompt with a few examples, ask to continue
 - No parameter updates

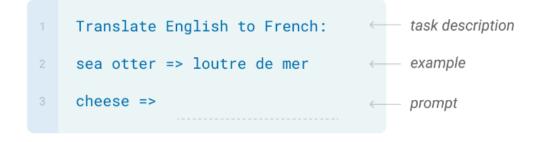
The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

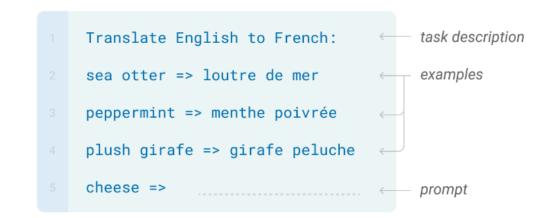
One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.



Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

GPT3 Few-Shot Results

	SuperGLUI Average	E BoolQ Accuracy	CB y Accurac	CB F1	COPA Accuracy	RTE Accuracy
Fine-tuned SOTA	89.0	91.0	96.9	93.9	94.8	92.5
Fine-tuned BERT-Large	69.0	77.4	83.6	75.7	70.6	71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	WiC Accuracy	WSC Accuracy	MultiRC Accuracy	MultiRC F1a	ReCoRD Accuracy	ReCoRD F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	49.4	80.1	30.5	75.4	90.2	91.1

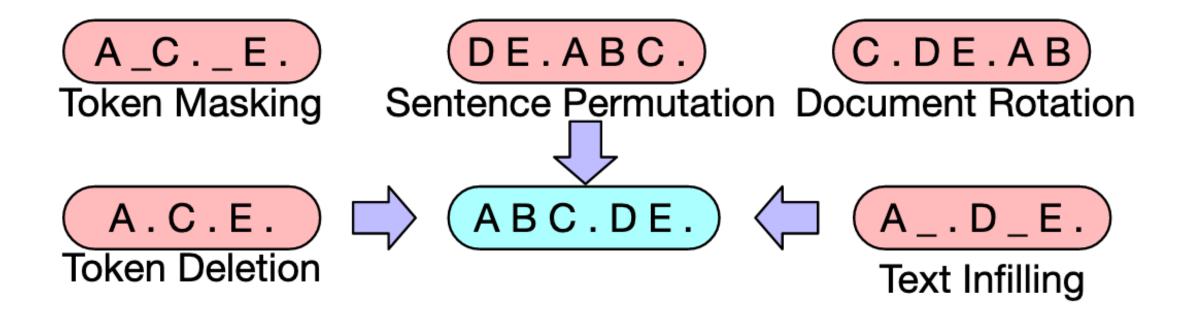
Some follow-ups on GPT3

- Has ushered in a lot of work on "prompt tuning": how to best engineer the prompts to produce the behavior that you want (more next time)
 - Very useful survey paper/website on that front: http://pretrain.nlpedia.ai/
- Putting the "open" back in:
 - <u>EleutherAI</u>: "A grassroots collective of researchers working to open source AI research."
 - Reproduce GPT-like models + datasets in entirely open way
 - OPT-175B: Meta's first open (incl logbook, etc) non-commercial replication
 - More now (varying degrees): Mosaic, Mistral, OLMo (Al2), ...

Pretrained Transformers: Encoder-Decoder

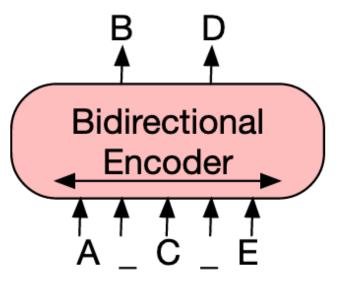
BART

- Full Transformer, i.e. encoder-decoder transducer
 - Many composable transformations of raw text, presented to encoder
 - Goal of decoder is to reconstruct the original text ("denoising auto-encoding")

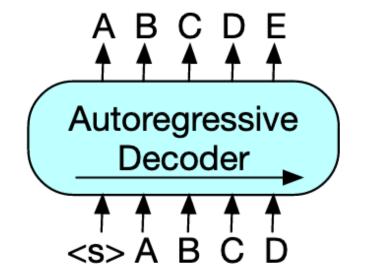


Good for both discrimination and generation

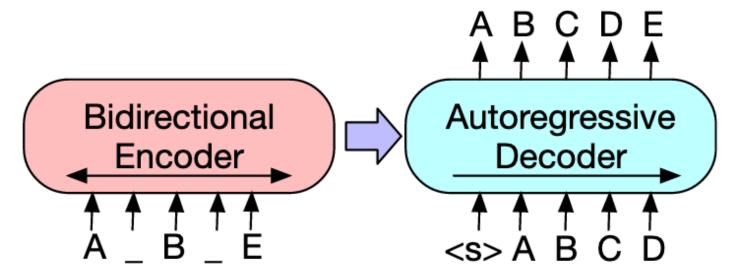
High-level Overview



(a) BERT: Random tokens are replaced with masks, and the document is encoded bidirectionally. Missing tokens are predicted independently, so BERT cannot easily be used for generation.



(b) GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions.



(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.

Comparison of Pre-training Objectives

Model	SQuAD 1.1 F1	MNLI Acc	ELI5 PPL	XSum PPL	ConvAI2 PPL	CNN/DM PPL
BERT Base (Devlin et al., 2019)	88.5	84.3	-	-	-	-
Masked Language Model	90.0	83.5	24.77	7.87	12.59	7.06
Masked Seq2seq	87.0	82.1	23.40	6.80	11.43	6.19
Language Model	76.7	80.1	21.40	7.00	11.51	6.56
Permuted Language Model	89.1	83.7	24.03	7.69	12.23	6.96
Multitask Masked Language Model	89.2	82.4	23.73	7.50	12.39	6.74
BART Base						
w/ Token Masking	90.4	84.1	25.05	7.08	11.73	6.10
w/ Token Deletion	90.4	84.1	24.61	6.90	11.46	5.87
w/ Text Infilling	90.8	84.0	24.26	6.61	11.05	5.83
w/ Document Rotation	77.2	75.3	53.69	17.14	19.87	10.59
w/ Sentence Shuffling	85.4	81.5	41.87	10.93	16.67	7.89
w/ Text Infilling + Sentence Shuffling	90.8	83.8	24.17	6.62	11.12	5.41

Advantages of Encoder-Decoder Models

- "Best of both worlds"
 - On a par with RoBERTa on NLU / discrimination tasks
 - State-of-the-art on many generation tasks (e.g. summarization)
- Others:
 - MASS
 - <u>T5</u>
 - uses labeled data
 - "Unified" text-to-text format

Source Document (abbreviated) BART Summary The researchers examined three types of coral in reefs off the Fisheries off the coast of Fiji are protectcoast of Fiji ... The researchers found when fish were plentiful, ing coral reefs from the effects of global they would eat algae and seaweed off the corals, which appeared warming, according to a study in the jourto leave them more resistant to the bacterium Vibrio coralliilytinal Science. cus, a bacterium associated with bleaching. The researchers suggested the algae, like warming temperatures, might render the corals' chemical defenses less effective, and the fish were protecting the coral by removing the algae. Sacoolas, who has immunity as a diplomat's wife, was involved Boris Johnson has said he will raise the isin a traffic collision ... Prime Minister Johnson was questioned sue of US diplomat Anne Sacoolas' diploabout the case while speaking to the press at a hospital in Watmatic immunity with the White House. ford. He said, "I hope that Anne Sacoolas will come back ... if we can't resolve it then of course I will be raising it myself personally with the White House."

Multilingual Pre-training

- One other main dimension: *mono-* vs *multi-*lingual pre-training
 - Roughly: concatenate (in fancy way) corpora from many languages, then do the same kind of pre-training
 - Much more info from C.M. Downey's lecture on June 2

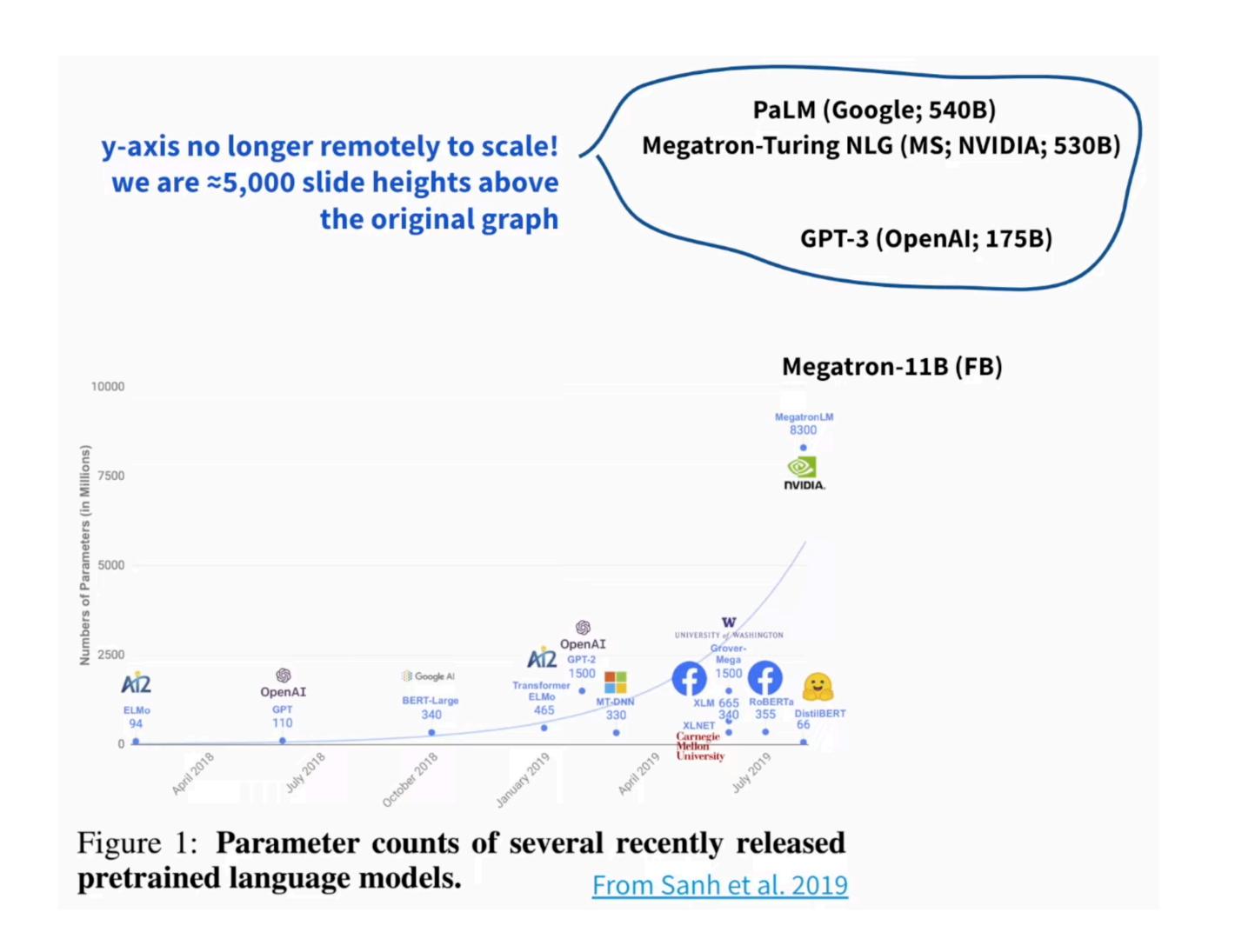
English-only * BERT, RoBERTa, XLNet, ALBERT, GPT-n, OLMo, Mistral, BART		Encoder-only	Decoder-only	Encoder-decoder
	English-only *	BERT, RoBERTa, XLNet, ALBERT,	GPT-n, OLMo, Mistral,	BART
Multilingual mBERT, XLM(-R), BLOOM (HF BigScience), XGLM mBART, MASS, mT5	Multilingual	mBERT, XLM(-R),		mBART, MASS, mT5 W UNIVERSITY of WASHINGTON

Limitations of Pre-training + Fine-tuning

State of the Field

- Manning 2017: "The BiLSTM Hegemony"
- 2019-??: "The pre-trained Transformer Hegemony"
 - By default: fine-tune a large pre-trained Transformer on the task you care about
 - Will often yield the best results
 - Beware: often not significantly better than very simple baselines (SVM, etc)

Scale scale scale



source

 Currently something of an 'arms race' between e.g. Google, Facebook, OpenAI, MS, Baidu, ...

- Currently something of an 'arms race' between e.g. Google, Facebook, OpenAl, MS, Baidu, ...
- Hugely expensive
 - Carbon emissions
 - Monetarily
 - Inequitable access
 - Dataset debt/documentation

- Currently something of an 'arms race' between e.g. Google, Facebook, OpenAI, MS, Baidu, ...
- Hugely expensive
 - Carbon emissions
 - Monetarily
 - Inequitable access
 - Dataset debt/documentation

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences
University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodology for training neural networks has ushered in a new generation of large networks trained on abundant data. These models have obtained notable gains in accuracy across many NLP tasks. However, these accuracy improvements depend on the availability of exceptionally large computational resources that necessitate similarly substantial energy consumption. As a result these models are costly to train and develop, both financially, due to the cost of hardware and electricity or cloud compute time, and environmentally, due to the carbon footprint required to fuel modern tensor

Consumption	CO ₂ e (lbs)
Air travel, 1 person, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
Training one model (GPU) NLP pipeline (parsing, SRL)	39
	39 78,468
NLP pipeline (parsing, SRL)	

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

Note on the costs of LMs

- Currently something of an 'arms race' between e.g. Google, Facebook, OpenAl, MS, Baidu, ...
- Hugely expensive
 - Carbon emissions
 - Monetarily
 - Inequitable access
 - Dataset debt/documentation

Note on the costs of LMs

 Currently something of an 'arms race' between e.g. Google, Facebook, OpenAI, MS, Baidu, ...

Hugely expensive

- Carbon emissions
- Monetarily
 - Inequitable access
- Dataset debt/documentation

Green AI

Roy Schwartz*♦ Jesse Dodge*♦♣ Noah A. Smith♦♥ Oren Etzioni♦

♦ Allen Institute for AI, Seattle, Washington, USA
 ♣ Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
 ♥ University of Washington, Seattle, Washington, USA

July 2019

Abstract

The computations required for deep learning research have been doubling every few months, resulting in an estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint [40]. Ironically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the financial cost of the computations can make it difficult for academics, students, and researchers, in particular those from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making **efficiency** an evaluation criterion for research along-side accuracy and related measures. In addition, we propose reporting the financial cost or "price tag" of developing, training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goal is to make AI both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality research papers. Green AI is an emerging focus at the Allen Institute for AI.

More on the Costs of LMs

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender*
ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA

ABSTRACT

The past 3 years of work in NLP have been characterized by the development and deployment of ever larger language models, especially for English. BERT, its variants, GPT-2/3, and others, most recently Switch-C, have pushed the boundaries of the possible both through architectural innovations and through sheer size. Using these pretrained models and the methodology of fine-tuning them for specific tasks, researchers have extended the state of the art

Timnit Gebru*
timnit@blackinai.org
Black in AI
Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

alone, we have seen the emergence of BERT and its variants [39, 70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most recently Switch-C [43], with institutions seemingly competing to produce ever larger LMs. While investigating properties of LMs and how they change with size holds scientific interest, and large LMs have shown improvements on various tasks (§2), we ask whether enough thought has been put into the potential risks associated with developing them and strategies to mitigate these risks.

For more on the reactions to this paper: https://faculty.washington.edu/
 ebender/stochasticparrots.html

Some Reasons to Pause

- Leaderboard chasing (via larger models and more data) funnels research activity into one specific and limited goal
 - Amplifies harmful biases
 - Equity costs
 - Climate costs
 - Data documentation debt
 - Does not promote human-like linguistic generalization (<u>Linzen 2020</u> summary)
- More from Angelina McMillan-Major on May 28

https://huggingface.co/transformers

Overview of the Library

- Access to many variants of many very large LMs (BERT, RoBERTa, XLNET, ALBERT, T5, language-specific models, ...) with fairly consistent API
 - Build tokenizer + model from string for name or config
 - Then use just like any PyTorch nn.Module
- Emphasis on ease-of-use
 - E.g. low barrier-to-entry to using the models, including for analysis
- Interoperable with PyTorch or TensorFlow 2.0

Example: Tokenization

```
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-2-0425-1B")
olmo = AutoModelForCausalLM.from_pretrained("allenai/0LMo-2-0425-1B")
messages = [
    "Now we love backpropagation and tokenization. Language modeling is",
    "How will you handle a different length? By",
tokens = tokenizer(messages, return_tensors="pt", padding=True, padding_side="left")
print(tokens)
print(
    tokenizer.batch_decode(
        tokens["input_ids"],
        skip_special_tokens=False,
        cleanup_tokenization_spaces=False,
```

Example: Tokenization

```
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("allenai/0LMo-2-0425-1B")
olmo = AutoModelForCausalLM.from_pretrained("allenai/0LMo-2-0425-1B")
messages = [
    "Now we love backpropagation and tokenization. Language modeling is",
    "How will you handle a different length? By",
tokens = tokenizer(messages, return_tensors="pt", padding=True, padding_side="left")
print(tokens)
print(
                                                 ['Now we love backpropagation and tokenization. Language modeling is', '<|pad|><|pad|><|pad|>>|pad|>How will you handle a different length? By']
                                                                               584, 3021, 1203, 2741, 28236,
                                                {'input_ids': tensor([[ 7184,
                                                                                                                   323,
                                                                                                                         4037, 2065,
    tokenizer.batch_decode(
                                                                                 374],
         tokens["input_ids"],
                                                                                       4438,
        skip_special_tokens=False,
                                                                                3296]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        cleanup_tokenization_spaces=False,
```

Example: Forward Pass and Generation

Example: Forward Pass and Generation

```
CausalLMOutputWithPast(loss=None, logits=tensor([[[ -0.3755, -0.3250, -5.0099, ..., -13.8532, -13.8533, -13.8532],
                     [ -4.1926, -0.3119, -5.8022, ..., -16.9667, -16.9666, -16.9666],
                     [ 2.8059, 0.6538, -3.4701, ..., -10.3102, -10.3103, -10.3102],
                      1.9170, -1.0355, -4.4342, ..., -12.2885, -12.2885, -12.2885],
                      4.8395, 1.0722, -2.4736, ..., -13.3406, -13.3406, -13.3407],
                    [-0.2973, -1.7440, -4.3537, ..., -11.7531, -11.7531, -11.7531]],
                    [[ 2.5476,
                               0.9216, -2.9144, ..., -10.7276, -10.7276, -10.7276],
                      2.5476,
                               0.9216, -2.9144, ..., -10.7276, -10.7276, -10.7276],
                               0.9216, -2.9144, ..., -10.7276, -10.7276, -10.7276],
                     [0.2922, -0.1171, -3.0827, ..., -10.8895, -10.8895, -10.8895]
                       0.7180, -1.1196, 0.5486, ..., -12.9110, -12.9111, -12.9110],
                      0.1196, -1.4207, -5.0074, ..., -11.3365, -11.3366, -11.3365]]],
                  grad_fn=<UnsafeViewBackward0>), past_key_values=<transformers.cache_utils.DynamicCache object at 0x1351dadc0>, hidden_states=(tensor([[[-0.0016, 0.0426, 0.1181, ..., 0.0268, -0.2631, -0.1382],
                    [-0.0349, -0.1085, 0.0853, ..., -0.0681, 0.0442, -0.0034],
                    [ 0.0844, 0.0143, -0.0143, ..., -0.0176, -0.1365, 0.0983],
                    [0.0336, -0.0967, -0.1301, \ldots, -0.0928, 0.0900, -0.0818],
                    [ 0.2977, 0.0118, 0.0814, ..., 0.1846, -0.0370, 0.1133],
                    [ 0.0291, -0.0235, 0.0180, ..., -0.0708, -0.0498, -0.0285]],
print(
                    [[-0.0055, 0.0011, -0.0144, ..., 0.0237, -0.0188, 0.0284],
                    [-0.0055, 0.0011, -0.0144, \ldots, 0.0237, -0.0188, 0.0284],
                    [-0.0055, 0.0011, -0.0144, ..., 0.0237, -0.0188, 0.0284],
response = olmo.generate
        **tokens, max_new_tokens=10, do_sample=True, top_k=50, top_p=0.95
```

print(tokenizer.batch_decode(response, skip_special_tokens=True))

Example: Forward Pass and Generation

```
[ 2.8059, 0.6538, -3.4701, ..., -10.3102, -10.3103, -10.3102],
                      1.9170, -1.0355, -4.4342, ..., -12.2885, -12.2885, -12.2885],
                      4.8395, 1.0722, -2.4736, ..., -13.3406, -13.3406, -13.3407],
                    [-0.2973, -1.7440, -4.3537, ..., -11.7531, -11.7531, -11.7531]],
                    [[ 2.5476,
                               0.9216, -2.9144, ..., -10.7276, -10.7276, -10.7276],
                      2.5476,
                              0.9216, -2.9144, ..., -10.7276, -10.7276, -10.7276],
                               0.9216, -2.9144, ..., -10.7276, -10.7276, -10.7276],
                     [0.2922, -0.1171, -3.0827, ..., -10.8895, -10.8895, -10.8895]
                      0.7180, -1.1196, 0.5486, ..., -12.9110, -12.9111, -12.9110],
                      0.1196, -1.4207, -5.0074, ..., -11.3365, -11.3366, -11.3365]]],
                  grad_fn=<UnsafeViewBackward0>), past_key_values=<transformers.cache_utils.DynamicCache object at 0x1351dadc0>, hidden_states=(tensor([[[-0.0016, 0.0426, 0.1181, ..., 0.0268, -0.2631, -0.1382],
                    [-0.0349, -0.1085, 0.0853, ..., -0.0681, 0.0442, -0.0034],
                    [ 0.0844, 0.0143, -0.0143, ..., -0.0176, -0.1365, 0.0983],
                    [0.0336, -0.0967, -0.1301, \ldots, -0.0928, 0.0900, -0.0818],
                    [ 0.2977, 0.0118, 0.0814, ..., 0.1846, -0.0370, 0.1133],
                    [ 0.0291, -0.0235, 0.0180, ..., -0.0708, -0.0498, -0.0285]],
print(
                    [[-0.0055, 0.0011, -0.0144, ..., 0.0237, -0.0188, 0.0284],
                    [-0.0055, 0.0011, -0.0144, \ldots, 0.0237, -0.0188, 0.0284],
                    [-0.0055, 0.0011, -0.0144, ..., 0.0237, -0.0188, 0.0284],
response = olmo.generate
        **tokens, max_new_tokens=10, do_sample=True, top_k=50, top_p=0.95
```

print(tokenizer.batch_decode(response, skip_special_tokens=True))

CausalLMOutputWithPast(loss=None, logits=tensor([[[-0.3755, -0.3250, -5.0099, ..., -13.8532, -13.8533, -13.8532],

[-4.1926, -0.3119, -5.8022, ..., -16.9667, -16.9666, -16.9666],

['Now we love backpropagation and tokenization. Language modeling is all about learning latent representations of the words in a', 'How will you handle a different length? By default it does not support different length. This is']

More on HuggingFace

- Main library: https://huggingface.co/transformers
- Model repository (w/ search, tags, etc): https://huggingface.co/models
- Datasets: https://huggingface.co/datasets

• ...