
LING 574 HW6

Due 11:59PM on May 15 17, 2025

In this assignment, you will

• Develop understanding of recurrent neural networks

• Implement components of data processing

• Implement key pieces of two variants of a recurrent model architecture

• Train recurrent models for text classification and language modeling

All files referenced herein may be found in /mnt/dropbox/24-25/574/hw6/ on patas.

1 Recurrent Neural Network Encoders [50 pts]

1.1 Written Questions [20 pts]

Q1: Understanding RNNs

• What is the main limitation of feed-forward neural networks that is overcome by recurrent networks,
and how do recurrent networks achieve this? [3 pts]

• The Vanilla RNN equation has the form ht = f(ht−1, xt). What extra ‘ingredient’ does the LSTM
add to this general form? What problem is the LSTM designed to solve? [2 pts]

Q2: LSTM Update One of the “central” equations in the LSTM computation is the following:

ct = ft ⊙ ct−1 + it ⊙ ĉt

This equation performs an essential update of one part of the LSTM. Please answer: [10 pts]

• What is ct?

• What is the range of ft and what is its purpose?

• What is the range of it and what is its purpose?

• What is ĉt?

• In your own words, describe how this equation implements the central “update” inside of an LSTM.

Q3: Counting parameters Let de be the dimension of word embeddings and dh the hidden state size.
Focusing on just the recurrent cell (and so ignoring the embedding and output layers): [5 pts]

• How many parameters are there in a Vanilla RNN cell? [2 pts]

• How many parameters are there in an LSTM cell? [3 pts]

Note: for this problem, you can assume that the RNN cell is at the ‘bottom’ of a possibly-deep RNN, so
the inputs to the cell are word embeddings, not earlier layers’ hidden states.

1



1.2 Implementing an RNN Sentiment Classifier [20 pts]

In the coding portion of this assignment, you will implement (components of) a classifier for the Stanford
Sentiment Treebank, using RNNs as encoders. In particular, the model will take the final hidden state of
an RNN that has read reviews as input in order to predict the sentiment labels thereof. Here, you will
implement some data pre-processing and two major types of RNN “cell” (i.e. one time-step of computation).
These are then used in other RNN modules that we provide to process entire sequences.
For the modeling portion, we are now using PyTorch instead of edugrad. While the API is similar, PyTorch
is more ‘user-friendly’, with a lot of utilities that are numpy-like as well. You can find the PyTorch docu-
mentation at https://pytorch.org/docs/stable/index.html. Note that common activation functions
have top-level names, i.e. torch.sigmoid and torch.tanh.

Q1: Data processing The reviews in the SST dataset come in various lengths. In the previous models
we have looked at in the class, this has not been an issue because they rely either on a bag-of-words repre-
sentation (Deep Averaging Network) or a fixed-sized window of previous tokens (Feed-Forward Language
Model). RNNs, however, require the use of padding: given a batch of reviews of various lengths, we pad
the shorter sequences with a special padding token so that all sequences are as long as the longest one.
In data.py, please implement the pad batch method. Please read the method signature and docstring
carefully for details on the input and output. [3 pts]

Q2: Vanilla RNN Cell The “cell” of an RNN does one time-step of computation. For a Vanilla RNN,
we saw that this was

ht = tanh (Whht−1 + bh +Wxxt + bx)

where ht−1 is the previous hidden state, xt is the current input, and the W s and bs are parameters for
linear transformations.
In model.py, implement this computation in VanillaRNNCell.forward. The initializer defines the linear
layers that you will need. [7 pts]

Q3: LSTM Cell An LSTM cell computes the next hidden state and memory based on the previous
hidden state and memory together with the current input. Please consult these slides (clickable link) for
the entire set of equations (and details about motivation).
In model.py, implement this computation in LSTMCell.forward. The initializer defines the linear layers
that you will need. [10 pts]

1.3 Running the Classifier [10 pts]

run sst.py contains a basic training loop for SST classification, using the last hidden state of an RNN.
It will record the training and dev loss at each epoch, and save the best model according to dev loss. At
the end, it samples 10 random dev data points and prints the review, the gold label, and the model’s
prediction.

Q1: Four different runs By default, a Vanilla RNN will be used. You can use an LSTM by specifying
--lstm as a command-line argument. Following this paper, we have added dropout to the non-recurrent
connections (i.e. from the inputs and to the output) of the model.
Please run each of the following variations. For each run, include in your readme.pdf: the best dev loss,
the epoch at which the best dev loss was achieved, and the best model’s dev accuracy. [4 pts]

• Vanilla RNN, default parameters. (This is just run sst.py with no command-line arguments.)

2

https://pytorch.org/docs/stable/index.html
https://www.shane.st/teaching/574/spr25/slides/8_lstm.pdf
https://arxiv.org/abs/1409.2329


• Vanilla RNN, with L2 regularization (via --l2) at 1e-4 and dropout (via --dropout) at 0.5.

• LSTM, default parameters.

• LSTM, with L2 regularization (via --l2) at 1e-4 and dropout (via --dropout) at 0.5.

Q2: Inspecting outputs For the fourth run above, please include in your readme.pdf the 10 random
dev examples, with gold labels and model predictions here. In 2-3 sentences, describe what you see and
observe any trends in what the model gets right and what (and/or how) it gets things wrong. [6 pts]

2 Recurrent Neural Network Decoders/Taggers [25 pts]

2.1 Written Portion [10 pts]

Q1: Evaluating Language Models Given a corpus W = w1w2 . . . wN (so N is the number of tokens in
the corpus), a common (intrinsic) evaluation metric for language models is perplexity, defined as

PP (W ) = P (w1 . . . wN )−
1
N

This can be thought of as the inverse probability that the model assigns to the corpus, normalized by the
size of the corpus.

• Is a lower or higher perplexity better? [1 pts]

• For a recurrent language model, write an expression for P (w1 . . . wN ) using the chain rule of proba-
bility. How is this different from the expression for a feed-forward language model? [3
pts]

• Show that
PP (W ) = e−

1
N

∑N
i=1 logP (wi|w<i)

where w<i = w1w2 . . . wi−1 and log is the natural (base e) logarithm. [2 pts]

[Note: using base e measures perplexity in a unit known as nats. Using base 2 would measure it in
bits.]

• What is another name for the exponent − 1
N

∑N
i=1 logP (wi | w<i) in the above expression? [Hint: it

appears in training as well.] [1 pts]

• Suppose that the same text corpus were tokenized with two different vocabularies of different sizes
(perhaps, e.g., one replaces infrequent tokens with an UNK token) and two language models were
trained on the resulting tokenized text. All else being equal, would you expect perplexity to be lower
or higher for the model with a smaller vocabulary? What consequences does this have for comparing
different language models? [3 pts]

2.2 Implementing an RNN Character Language Model [5 pts]

In the coding portion of this assignment, you will implement basic data processing for an LSTM character-
level language model for the Stanford Sentiment Treebank, using an RNN as tagger. You can read
model lm.py and run lm.py (which you do not need to modify) to see more details; the former uses
some torch-specific RNN tools instead of the LSTM that we are using for part 1 of this assignment.

3



Q1: Data processing Recall from the lectures that we can view language modeling as a sequence tagging
task. That is, each element of an input sequence is tagged with a certain target. This gets operationalized
in the data processing pipeline; you will generate the inputs/targets for one line of text.
In data.py, please implement the example from characters method. Please read the method signature
and docstring carefully for details on the input and output.

2.3 Running the Language Model [10 pts]

run lm.py contains a basic training loop for SST language modeling. It will record the training and dev
loss (and perplexity) at each epoch, and save the best model according to dev loss. Periodically (as specified
by a command-line flag), it also outputs generated text from the best model.

Q1: Default parameters Execute run lm.py with its default arguments. Paste below the texts that are
generated every 4 epochs, as well as the epoch with the best dev loss and the dev perplexity from that
epoch. In 2-3 sentences, describe any trends that you see. [Note that generated text will not necessarily
be completely coherent: recall that this is a character-level language model.] [3 pts]

Q2: Modify hyper-parameter(s) Re-run the training loop, modifying some combination of the following
hyper-parameters, which are specified by command-line flags:

• Hidden layer size

• Embedding size

• Learning rate

• Number of epochs [in particular: making it larger]

• Softmax temperature.

• L2 regularization coefficient.

• Dropout (probability with which neurons are dropped from the input and to the output during
training)

Include your model’s generated texts here. In 2-3 sentences, state exactly what hyper-parameter change(s)
you made, and what effects (if any) you see in terms of the dev set perplexity and text that the model
generated. [2 pts]

Q3: Comparison to feed-forward language model In 2-3 sentences, please explain what differences
you see in the text generated by this LSTM language model and the feed-forward language model that you
trained in HW5. What do you think may be causing these effects (or lack thereof)? [5 pts]

3 Testing your code

In the dropbox folder for this assignment, we will include a file test all.py with a few very simple unit
tests for the methods that you need to implement. You can verify that your code passes the tests by
running pytest from your code’s directory, with the course’s conda environment activated.

4



Submission Instructions

In your submission, include the following:

• readme.(txt|pdf) that includes your answers to §1.1, §1.3, §2.1, and §2.3.

• hw6.tar.gz containing:

– run hw6.sh. This should contain the code for your run commands for §1.3 and §2.3 above. You
can use scripts from previous assignments as a template.

– data.py

– model.py

5


	Recurrent Neural Network Encoders [50 pts]
	Written Questions [20 pts]
	Implementing an RNN Sentiment Classifier [20 pts]
	Running the Classifier [10 pts]

	Recurrent Neural Network Decoders/Taggers [25 pts]
	Written Portion [10 pts]
	Implementing an RNN Character Language Model [5 pts]
	Running the Language Model [10 pts]

	Testing your code

