
LING 574 HW5

Due 11:59PM on May 8, 2025

In this assignment, you will

• Develop understanding of a feed-forward neural language model

• Implement components of data processing and text generation

• Implement key pieces of the model architecture

All files referenced herein may be found in /mnt/dropbox/24-25/574/hw5/ on patas.

1 Understanding the Feed-Forward Language Model [20 pts]

Q1: Architecture You can find a description of the model in the second half of the slides from lecture
#6. [12 pts]

• How many parameters are there? Please write your answer in terms of the following quantities: de,
the token embedding dimension; |V |, the size of the vocabulary; dh: the dimension of the hidden
layer; n: the n-gram size, i.e. how many previous tokens are used as input to the model. [Note: you
may assume that there are no “direct connections” between the embeddings and the final layer.]

• A traditional n-gram language model estimates probabilities p(wt|wt−1, . . . , wt−n) using counts from
a corpus. How does the feed-forward language model compute this probability? Answer with a
sentence or two describing the overall computation.

• What is a major advantage of the feed-forward language model over traditional n-gram models?

Q2: tanh The model uses the hyperbolic tangent (tanh) activation function, defined as: [8 pts]

tanh(x) =
ex − e−x

ex + e−x

• Show that tanh(x) = 2σ(2x)− 1, where σ(x) is the sigmoid function.

• Show that d
dx tanh(x) = 1− tanh2(x).

2 Implementing the Feed-Forward Language Model [40 pts]

In the remainder, you will implement key components of a character-level language model. Technically,
moving from words to characters just changes the data pre-processing and vocabulary. But it has one big
advantage for us: character-level language models have a very small vocabulary (on the order of 50-70)
when compared to words (tens of thousands usually). The output of a language model is a softmax over
the vocabulary, and so having a much smaller vocabulary greatly speeds up computation at that step (since
the sum in the denominator of softmax is costly).

1

Q1: Data processing The basic ingredient of a language model is a dataset of next-token predictions.
In data.py, you will find a basic dataset class SSTLanguageModelingDataset. In its from file method, it
iterates through the lines in a file, and calls a helper function to generate example pairs. [10 pts]

• Implement the method examples from characters. Read the docstring closely for desired behavior.

Q2: Implementing tanh In ops.py, you will find a skeleton Operation for tanh. Using your written
answer above as a guide, implement the forward and backward methods for this op. [12 pts]

Q3: Implementing the Language Model In model.py, you will find the main model class FeedFor-
wardLanguageModel, with its initialization method written. Implement the .forward method, using its
docstring as a guide. [Hint: ops.concat, which we provide, will be necessary. As above, do not provide
any “direct connections”.] [10 pts]

Q4: Generating the next character In run.py, there is code for generating text from a language
model. You will implement one helper method: sample next character.py. The docstring specifies the
method’s behavior: it takes a batch of distributions over the vocabulary (characters), and samples a batch
of next characters. Text generation basically loops over this operation. [Hint: np.random.choice is your
friend.] [8 pts]

3 Running the Language Model [15 pts]

run.py contains a basic training loop for a feed-forward language model, which will record the training
loss and generate text every N epochs (controlled by the flag --generate every, set to 4 by default).

Q1: Basic parameters Execute run.py with its default arguments. Paste below the texts that are
generated every 4 epochs. In 2-3 sentences, describe any trends that you see. [Note that generated text
will not necessarily be completely coherent: recall that this is a character-level language model.] [5 pts]

Q2: Modify one hyper-parameter Re-run the training loop, modifying one of the following hyper-
parameters, which are specified by command-line flags:

• Hidden layer size

• Embedding size

• Number of previous characters (i.e. n-gram size; this is --num prev chars)

• Learning rate

• Number of epochs [in particular: making it larger]

• Softmax temperature. (We did not cover this in class: higher values of this temperature make the
softmax probabilities more closely approximate argmax, while lower values make it look more and
more like a uniform distribution. A value of 1 is the ‘default’ softmax value.)

Include your model’s generated texts here. In 2-3 sentences, state exactly what hyper-parameter change
you made, and what effects (if any) you see in terms of the text that the model generated. [10 pts]

2

4 Testing your code

In the dropbox folder for this assignment, you will find a file test all.py with a few very simple unit tests
for the methods that you need to implement. You can verify that your code passes the tests by running
pytest from your code’s directory, with the course’s conda environment activated.

Submission Instructions

In your submission, include the following:

• readme.(txt|pdf) that includes your answers to §1 and §3.

• hw5.tar.gz containing:

– run hw5.sh. This should contain the code for activating the conda environment and your run
commands for §3 above. You can use run hw4.sh from the previous assignment as a template.

– data.py

– model.py

– ops.py

– run.py

3

	Understanding the Feed-Forward Language Model [20 pts]
	Implementing the Feed-Forward Language Model [40 pts]
	Running the Language Model [15 pts]
	Testing your code

