Summary / Review

LING 574 Deep Learning for NLP Shane Steinert-Threlkeld

Announcements

Course evaluations open only until Friday (more later)

Today's Plan

- Survey of what we covered in the class
 - Core progression
 - Guest lectures
 - Assignments
- Some pointers to what's next
- Question time

Learning Objectives

- Provide hands-on experience with building neural networks and using them for NLP tasks
- Theoretical understanding of building blocks
 - Computation graphs + gradient descent
 - Forward/backward API
 - Chain rule for computing gradients [backpropagation]
 - Various network architectures; their structure and biases

Topics Covered

Getting Started

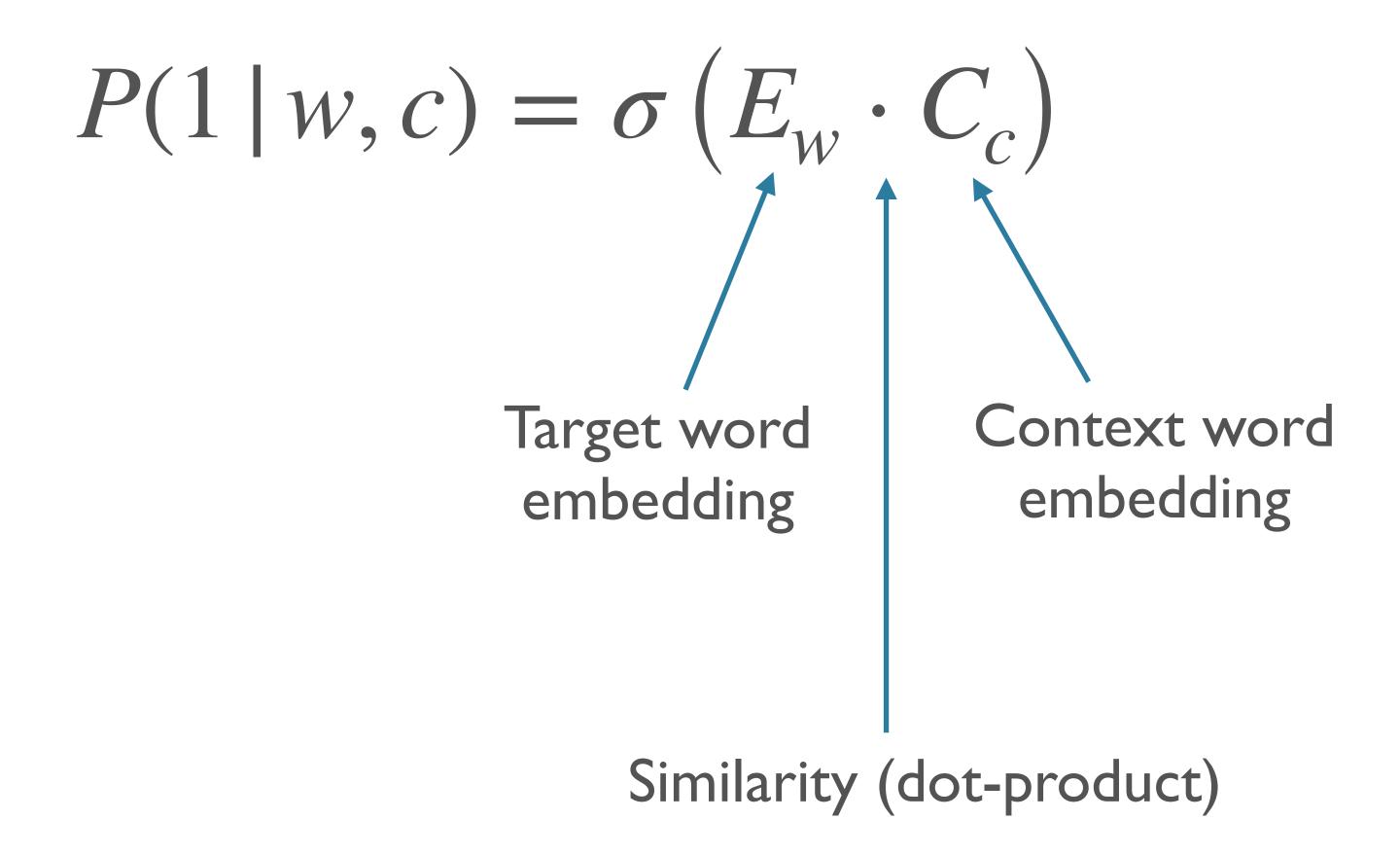
- History
- Gradient descent optimization
 - Regularization, mini-batches, etc.
- Word vectors / word2vec
- Main tasks: classification (sentiment analysis), language modeling

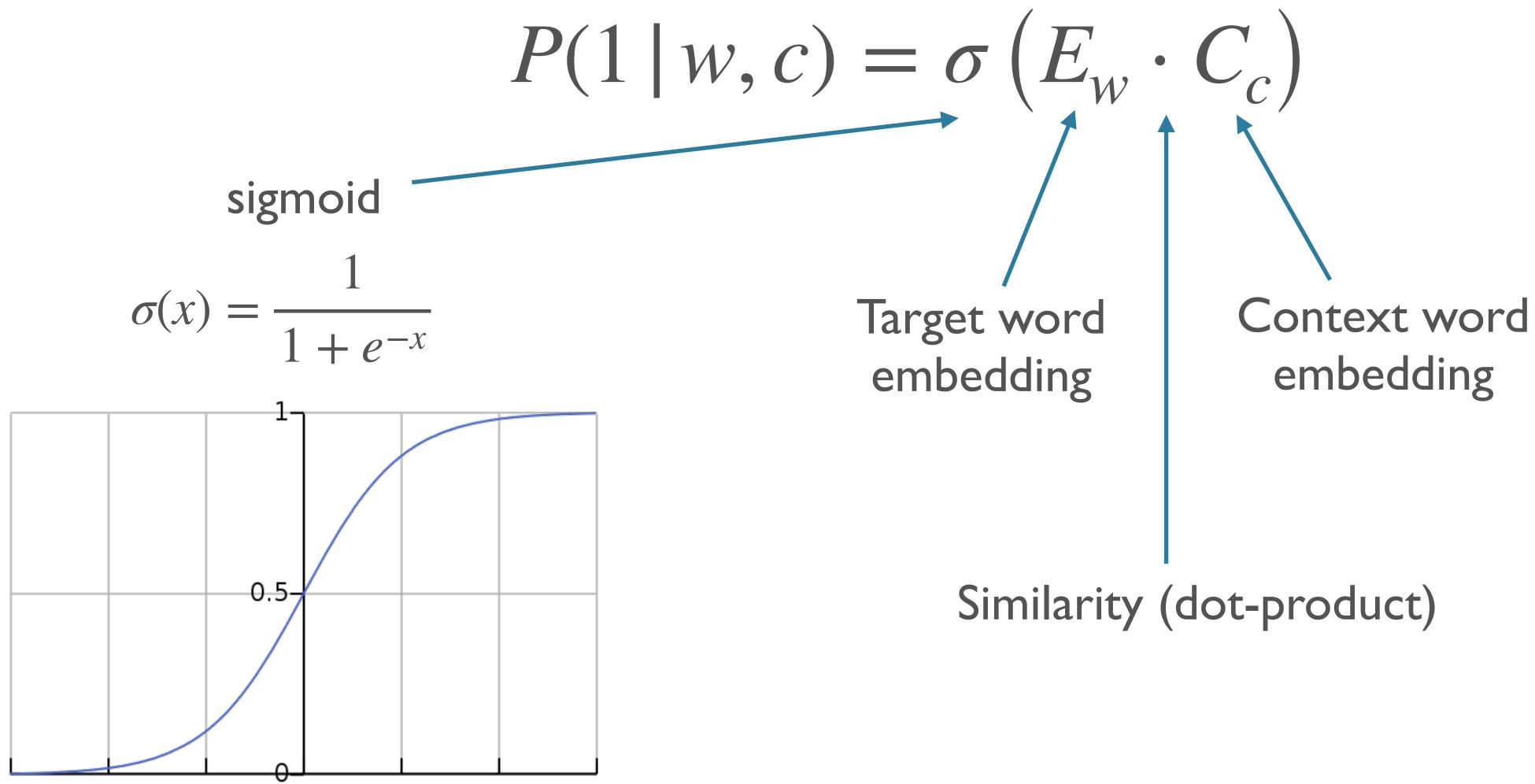
Very potted history

$$P(1 \mid w, c) = \sigma(E_w \cdot C_c)$$

$$P(1 \mid w, c) = \sigma \left(E_w \cdot C_c \right)$$
 Target word embedding

$$P(1 \mid w, c) = \sigma \left(E_w \cdot C_c \right)$$
 Target word embedding Context word embedding

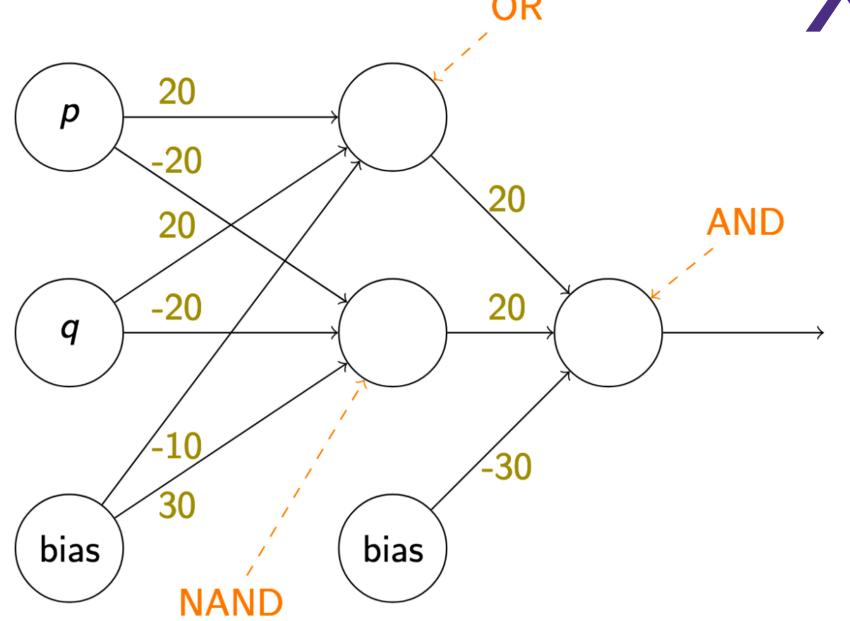




Neural Networks: Foundations

- Neural networks: intro
 - Expressive power / limitations
- Computation graph abstraction
- Backpropagation

XOR Network

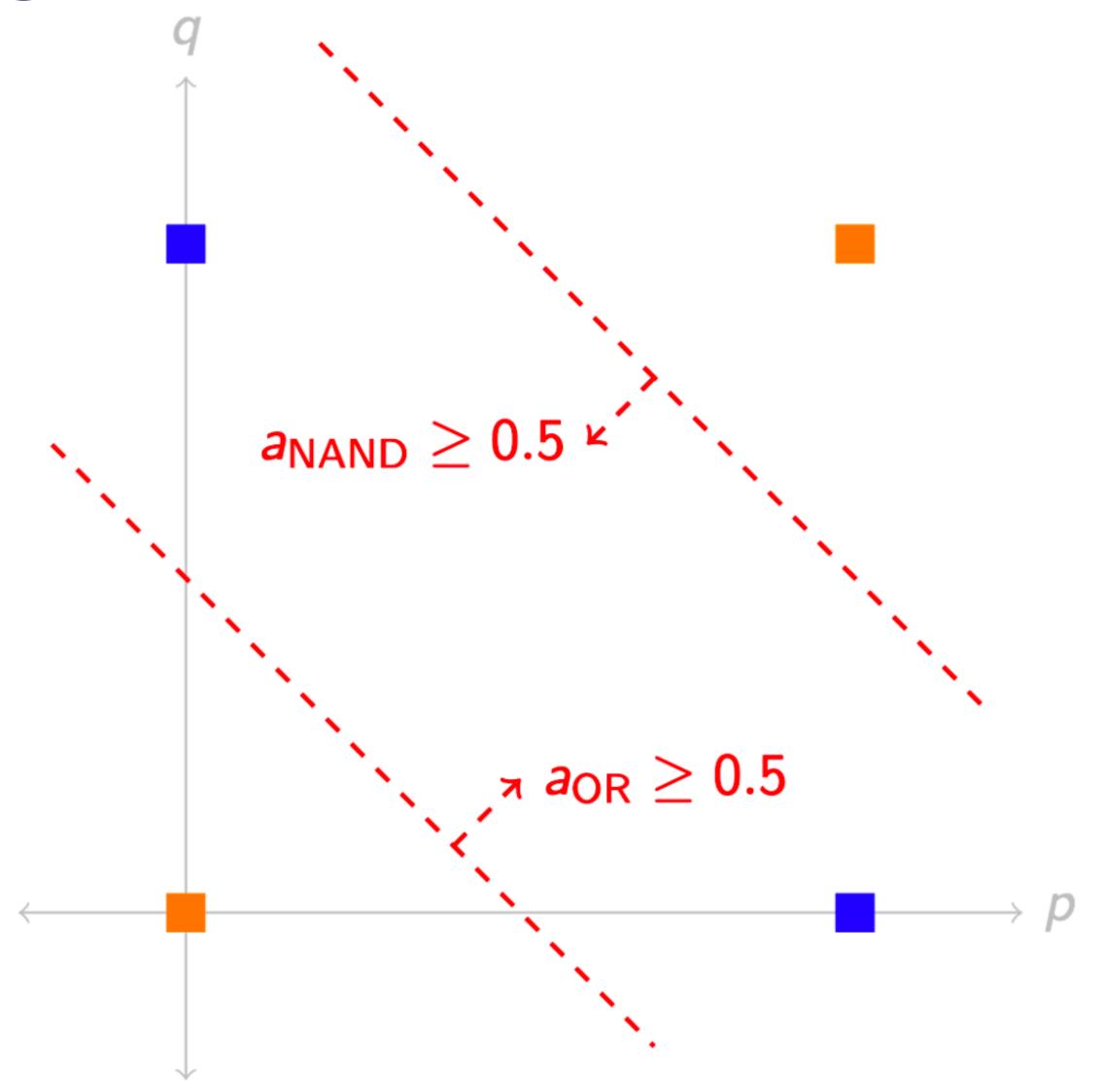


$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + b^{\text{and}} \right)$$

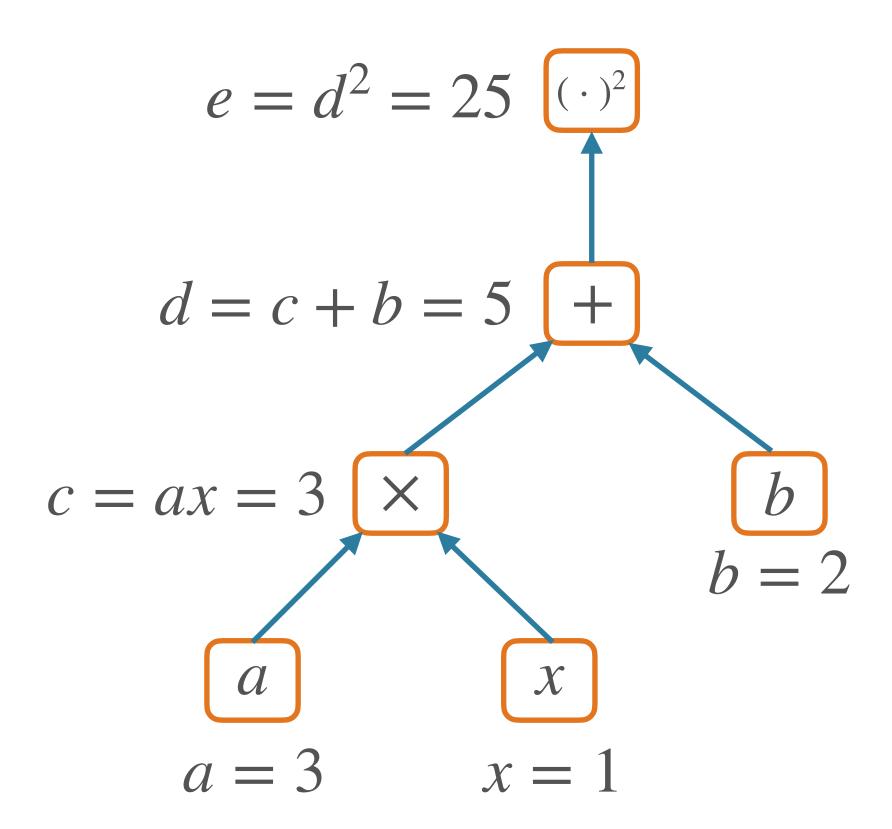
$$= \sigma \left([a_{\text{or}} \quad a_{\text{nand}}] \begin{bmatrix} w_{\text{or}} \\ w_{\text{or}} \end{bmatrix} + b^{\text{and}} \right)$$

$$a_{\text{and}} = \sigma \left(\sigma \left(\begin{bmatrix} a_p & a_q \end{bmatrix} \begin{bmatrix} w_p^{\text{or}} & w_p^{\text{nand}} \\ w_q^{\text{or}} & w_q^{\text{nand}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} & b^{\text{nand}} \end{bmatrix} \right) \begin{bmatrix} w_p^{\text{and}} \\ w_p^{\text{and}} \end{bmatrix} + b^{\text{and}}$$

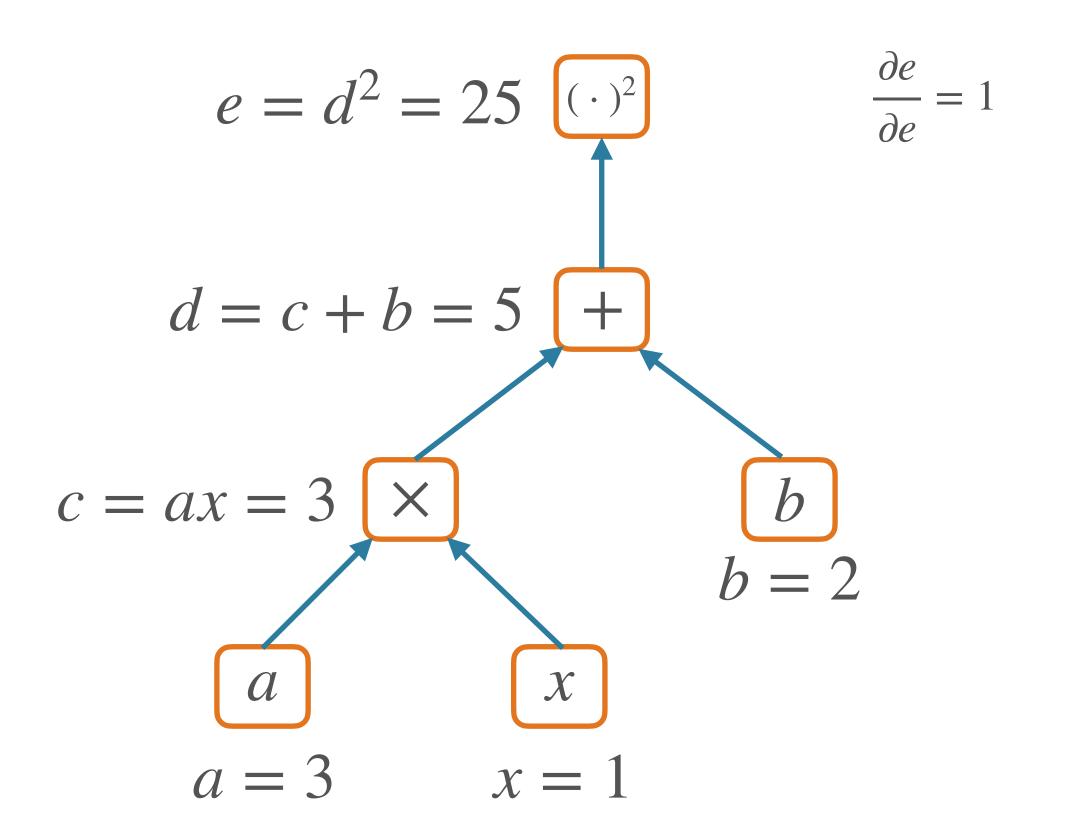
Computing XOR (not linearly-separable)



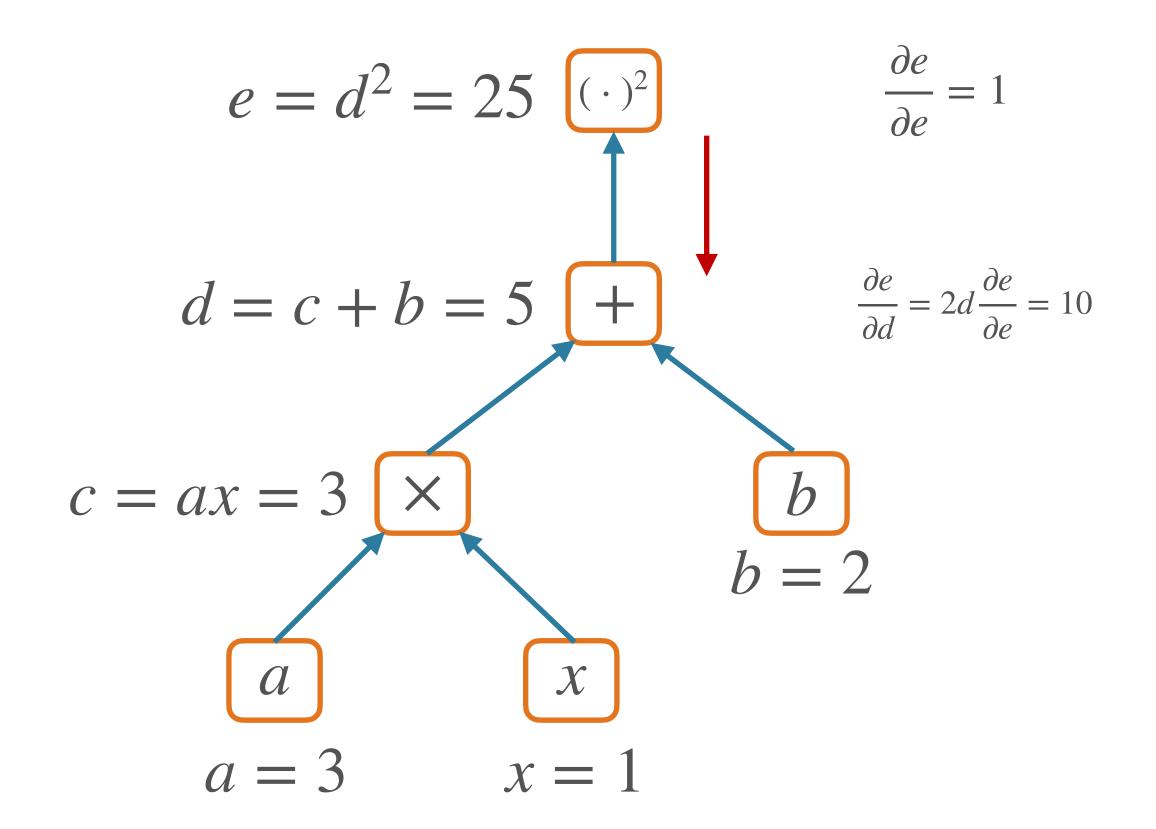
$$f(x; a, b) = (ax + b)^2$$



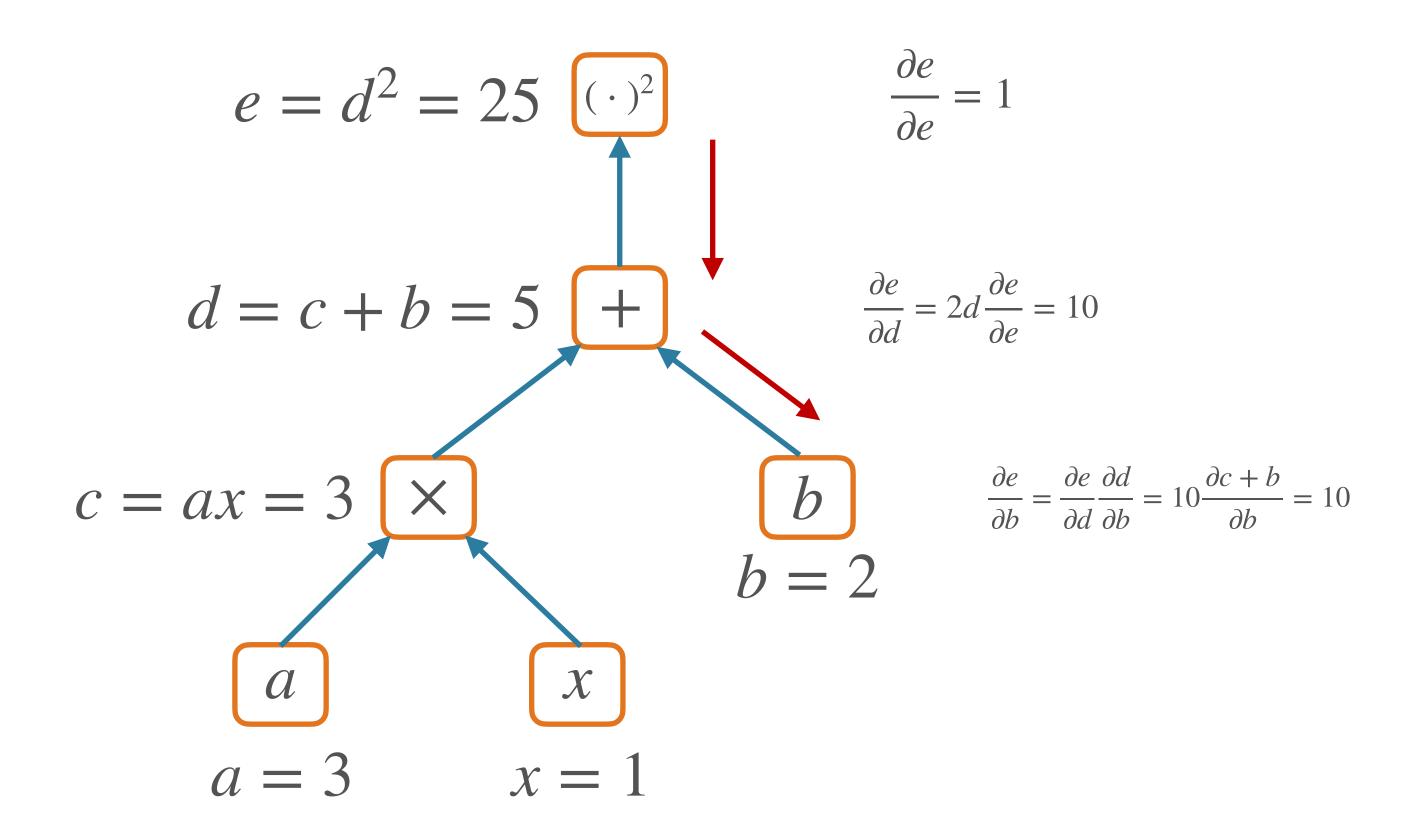
$$f(x; a, b) = (ax + b)^2$$



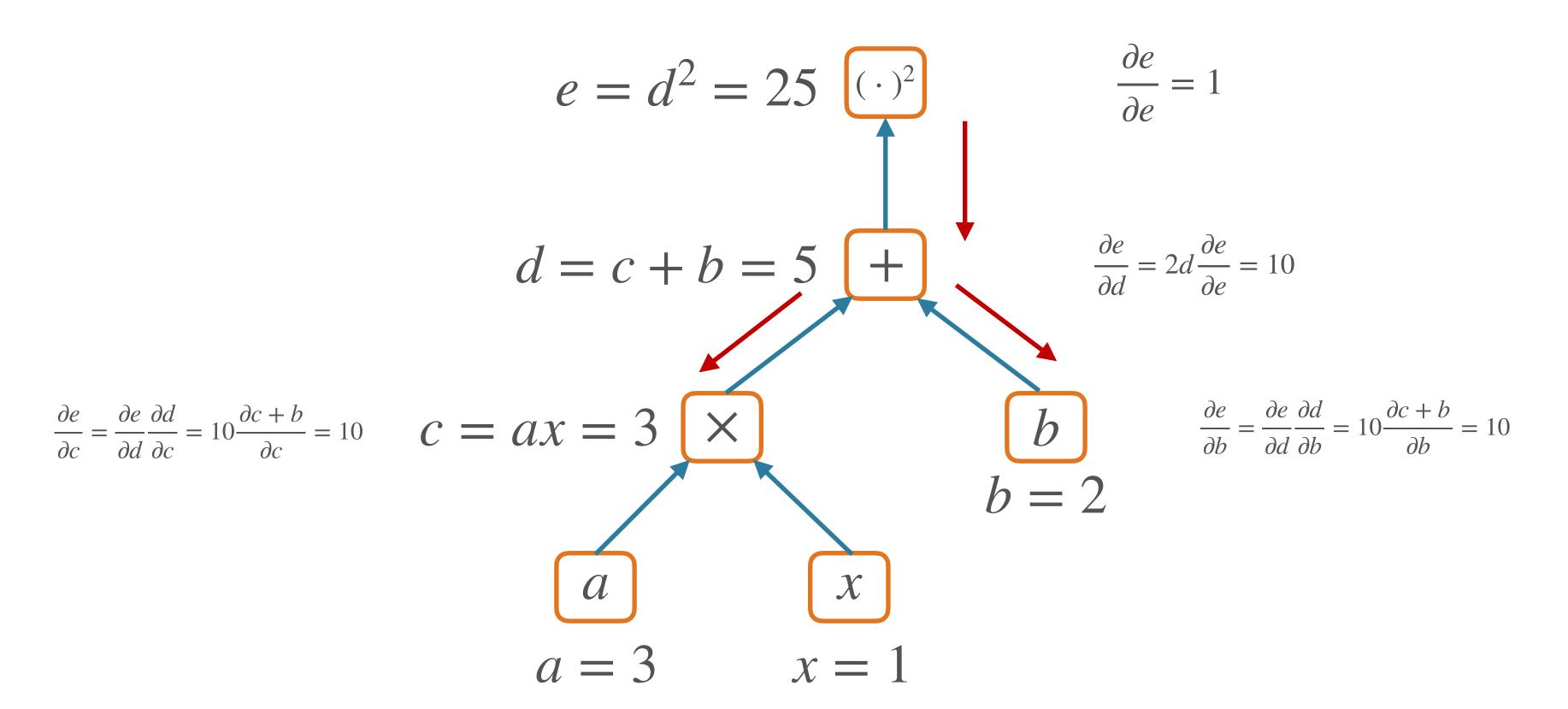
$$f(x; a, b) = (ax + b)^2$$



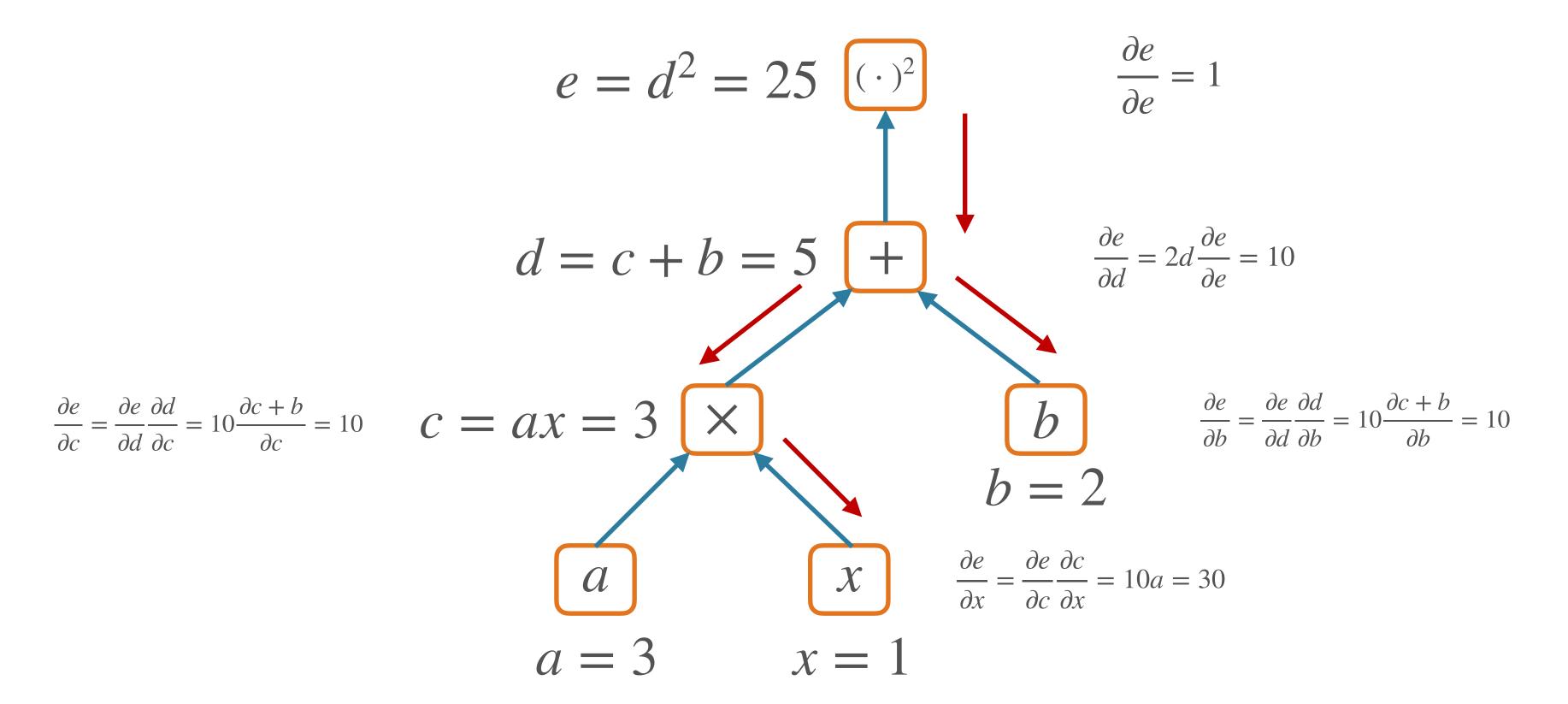
$$f(x; a, b) = (ax + b)^2$$



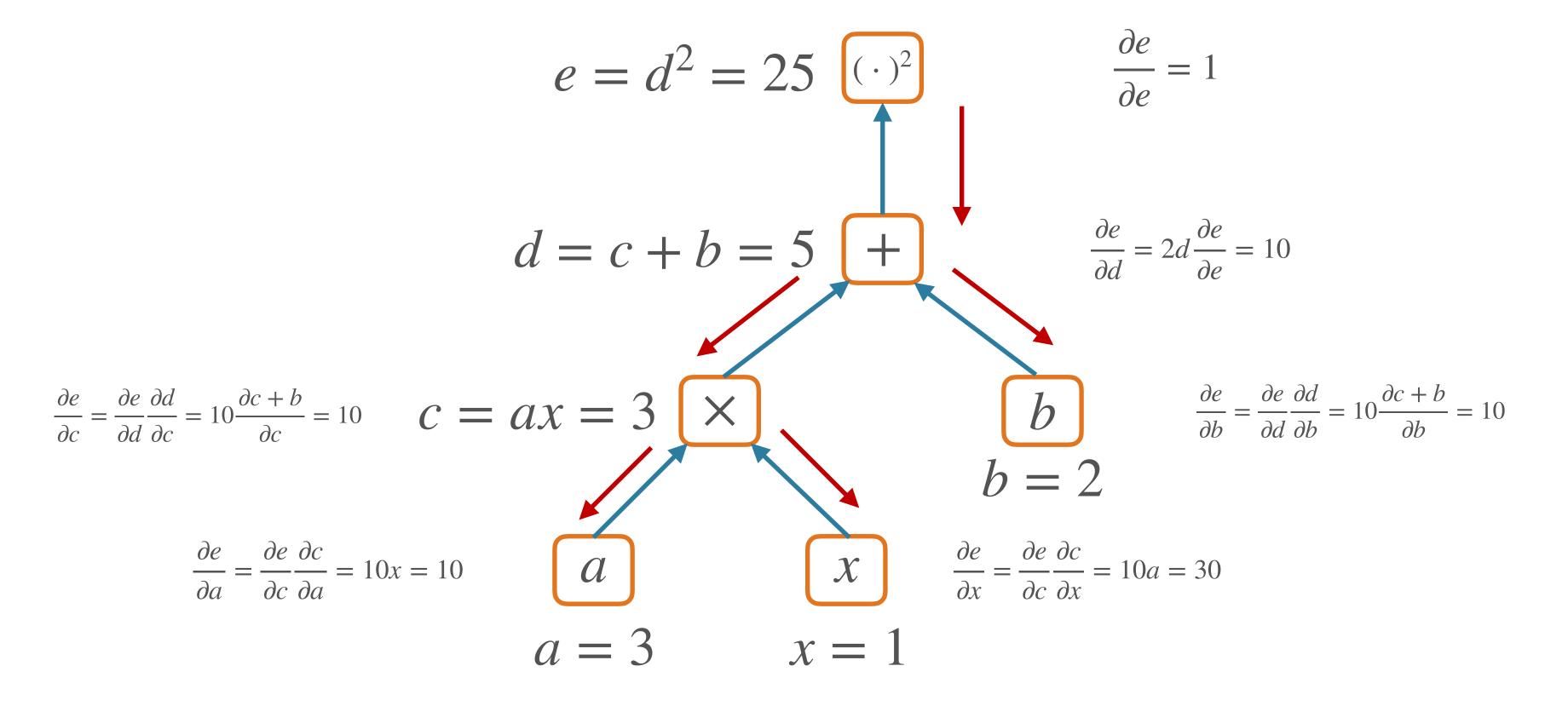
$$f(x; a, b) = (ax + b)^2$$



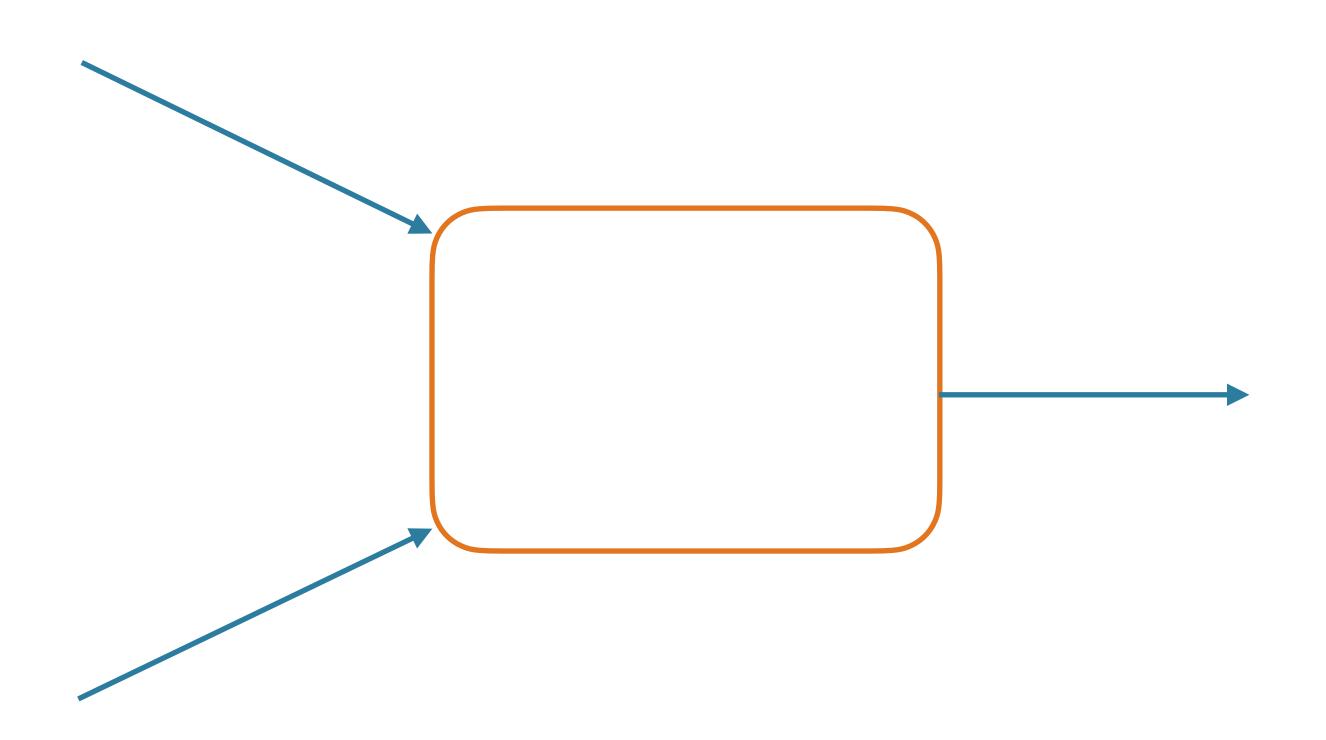
$$f(x; a, b) = (ax + b)^2$$



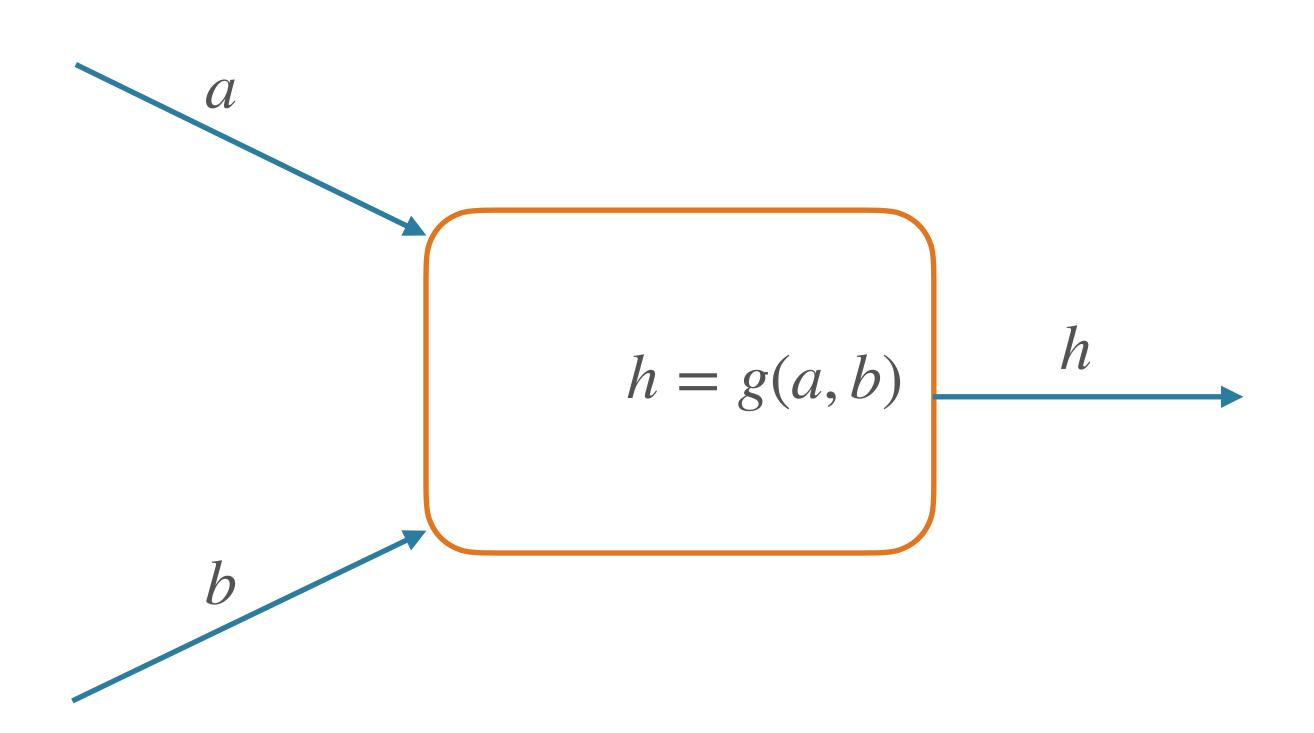
$$f(x; a, b) = (ax + b)^2$$



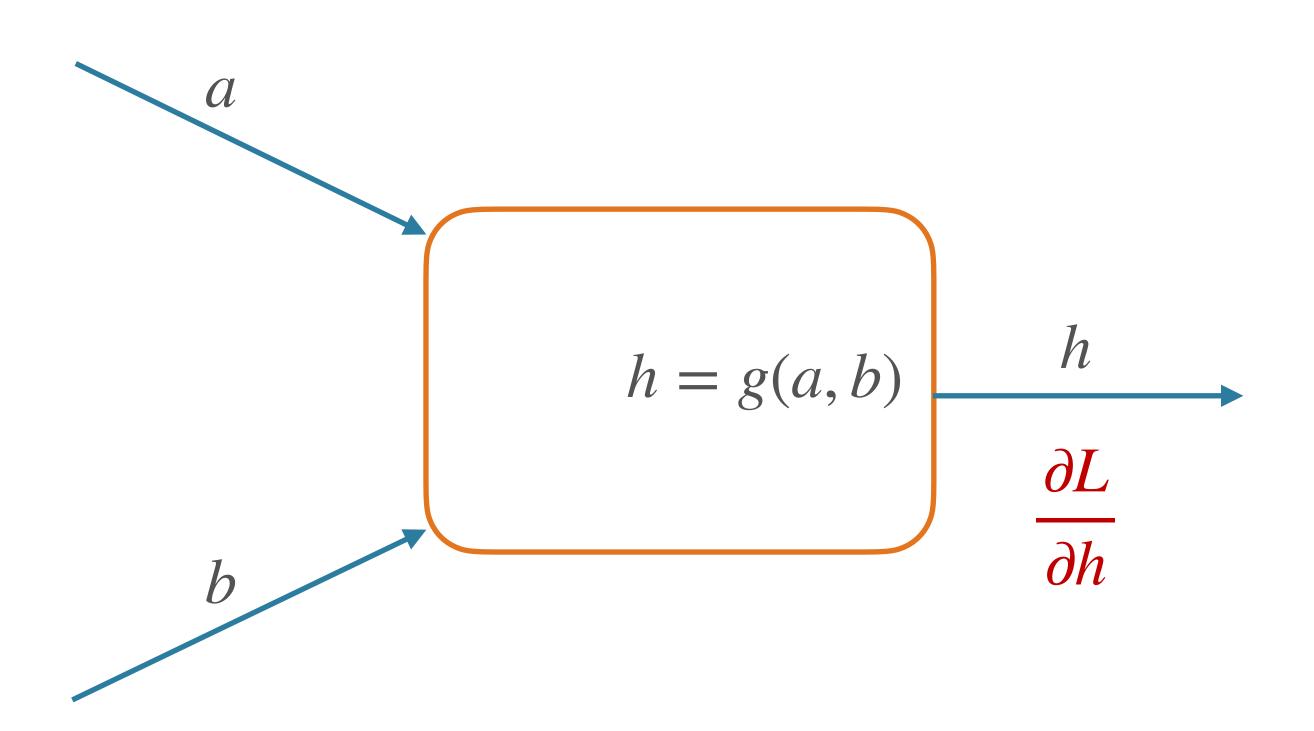
- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



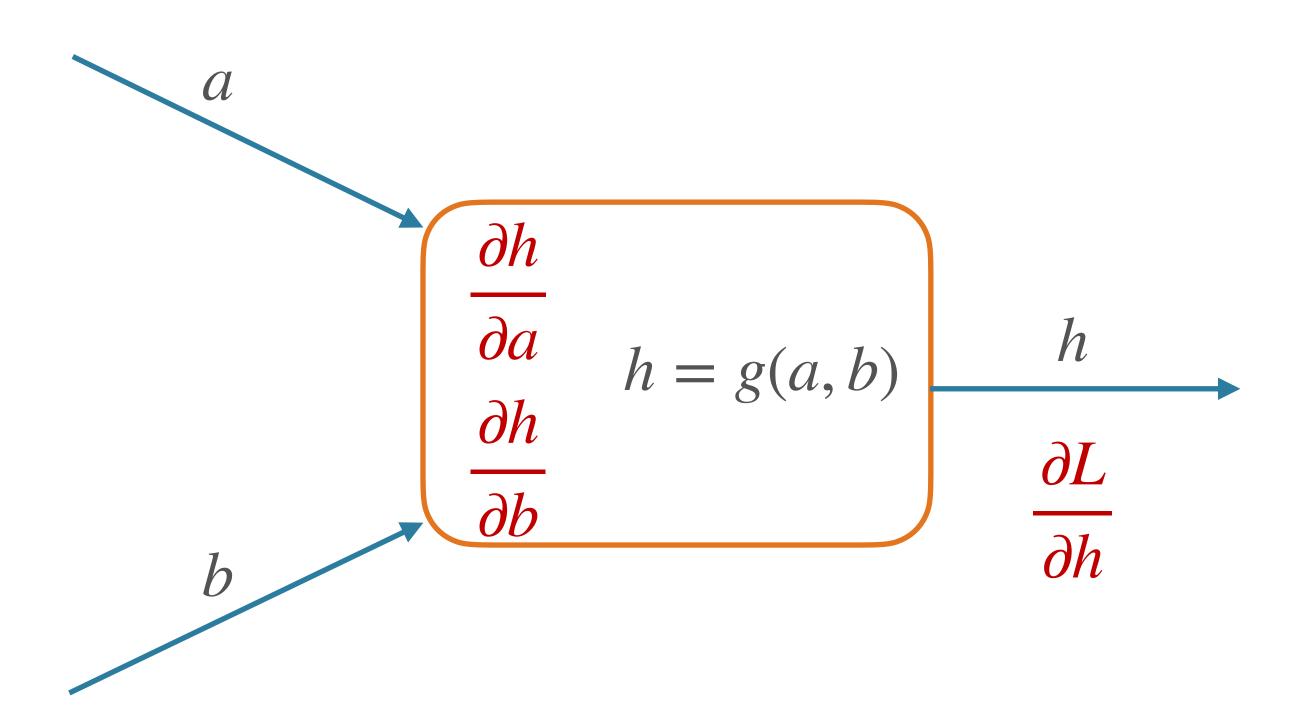
- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



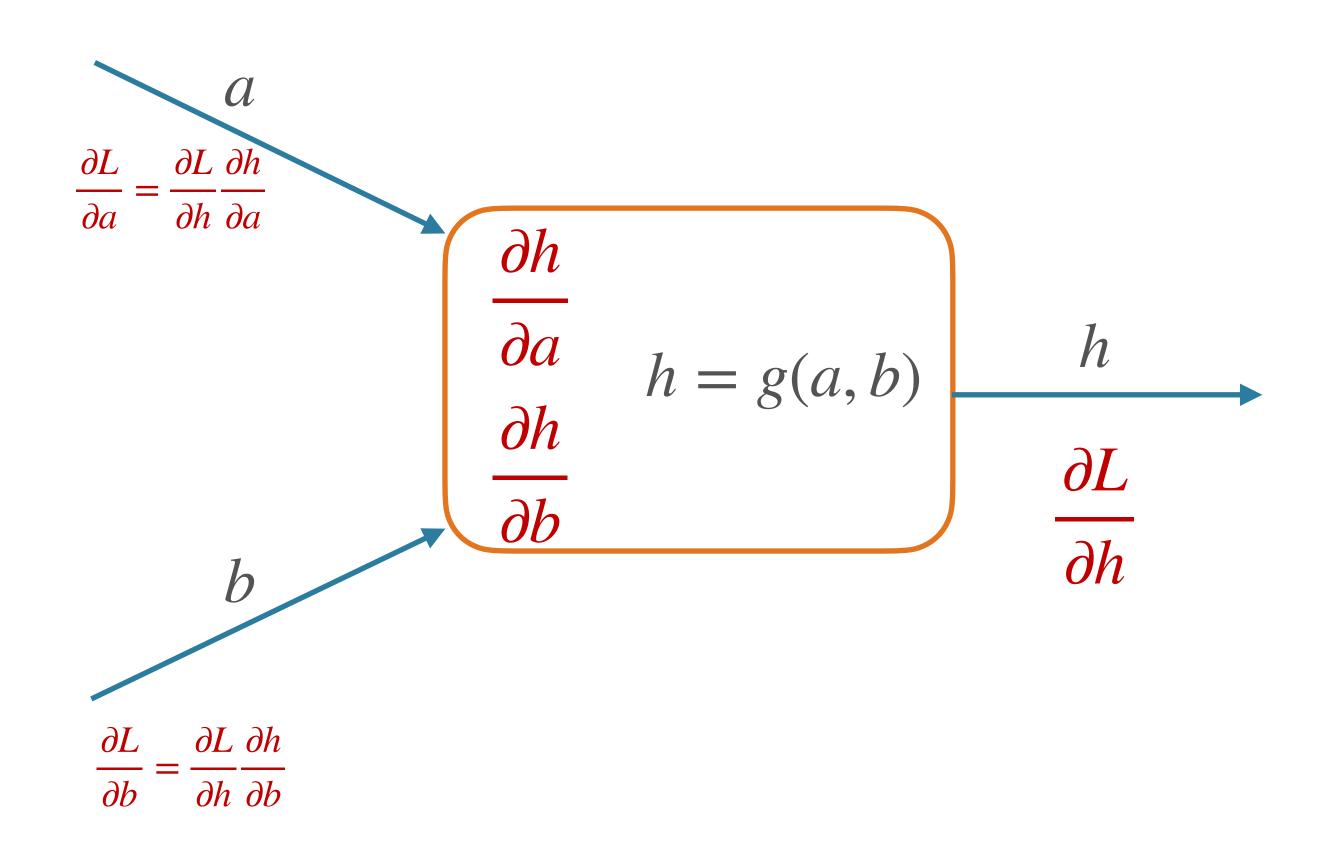
- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



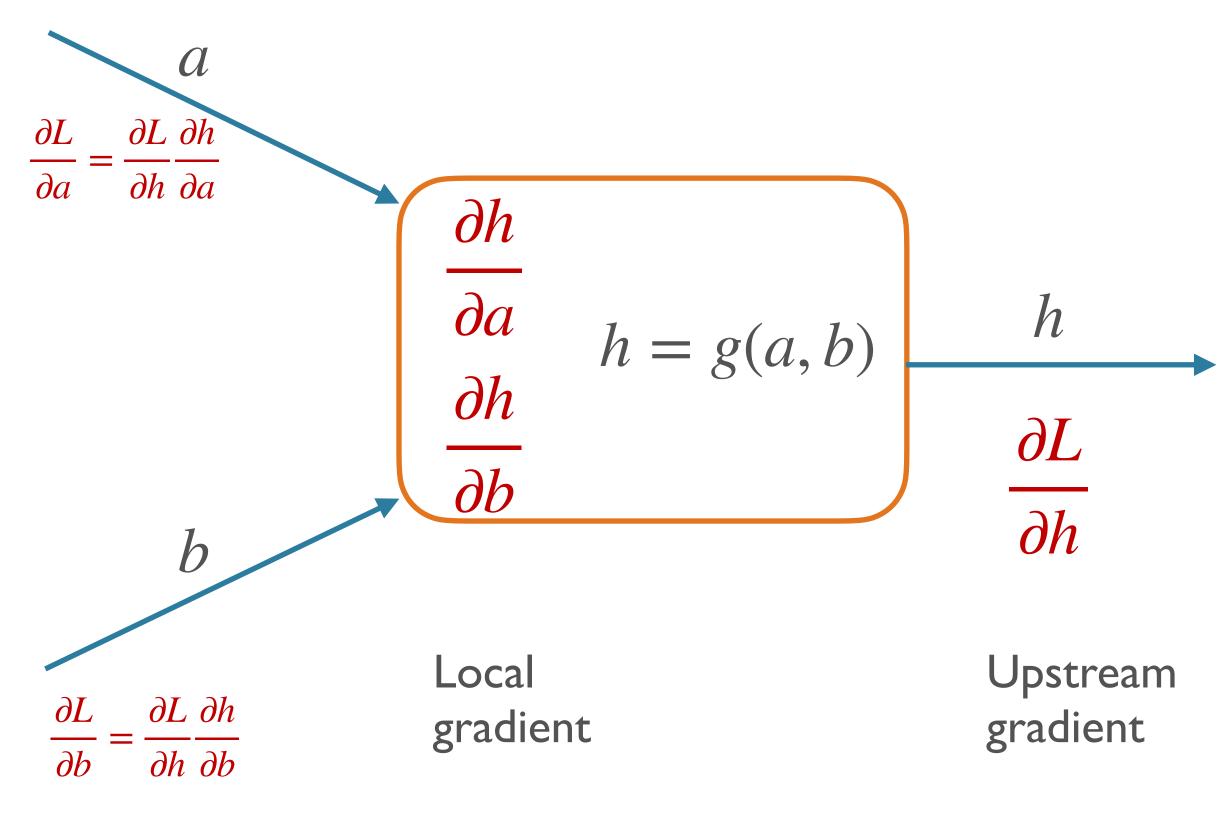
- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



- Forward pass:
 - Compute value given parents' values
- Backward pass:
 - Compute parents' gradients given children's



Downstream gradient

```
@tensor_op
class relu(Operation):
    @staticmethod
   def forward(ctx, value):
        new_val = np.maximum(0, value)
        ctx.append(new_val)
        return new_val
    @staticmethod
   def backward(ctx, grad_output):
        value = ctx[-1]
        return [(value > 0).astype(float) * grad_output]
```

```
@tensor_op
class relu(Operation):
    @staticmethod
   def forward(ctx, value):
        new_val = np.maximum(0, value)
        ctx.append(new_val)
        return new_val
    @staticmethod
   def backward(ctx, grad_output):
        value = ctx[-1]
        return [(value > 0).astype(float) * grad_output]
```

Save and retrieve the input value!

```
@tensor_op
class relu(Operation):
    @staticmethod
    def forward(ctx, value):
        new_val = np.maximum(0, value)
        ctx.append(new_val)
        return new_val
    @staticmethod
   def backward(ctx, grad_output):
        value = ctx[-1]
        return [(value > 0).astype(float) * grad_output]
                  local gradient
                                              upstream
                                      times
```

Save and retrieve the input value!

```
@tensor_op
class relu(Operation):
    @staticmethod
    def forward(ctx, value):
        new_val = np.maximum(0, value)
        ctx.append(new_val)
        return new_val
    @staticmethod
    def backward(ctx, grad_output):
        value = ctx[-1]
        return [(value > 0).astype(float) * grad_output]
                  local gradient
                                              upstream
                                      times
                                              gradient
```

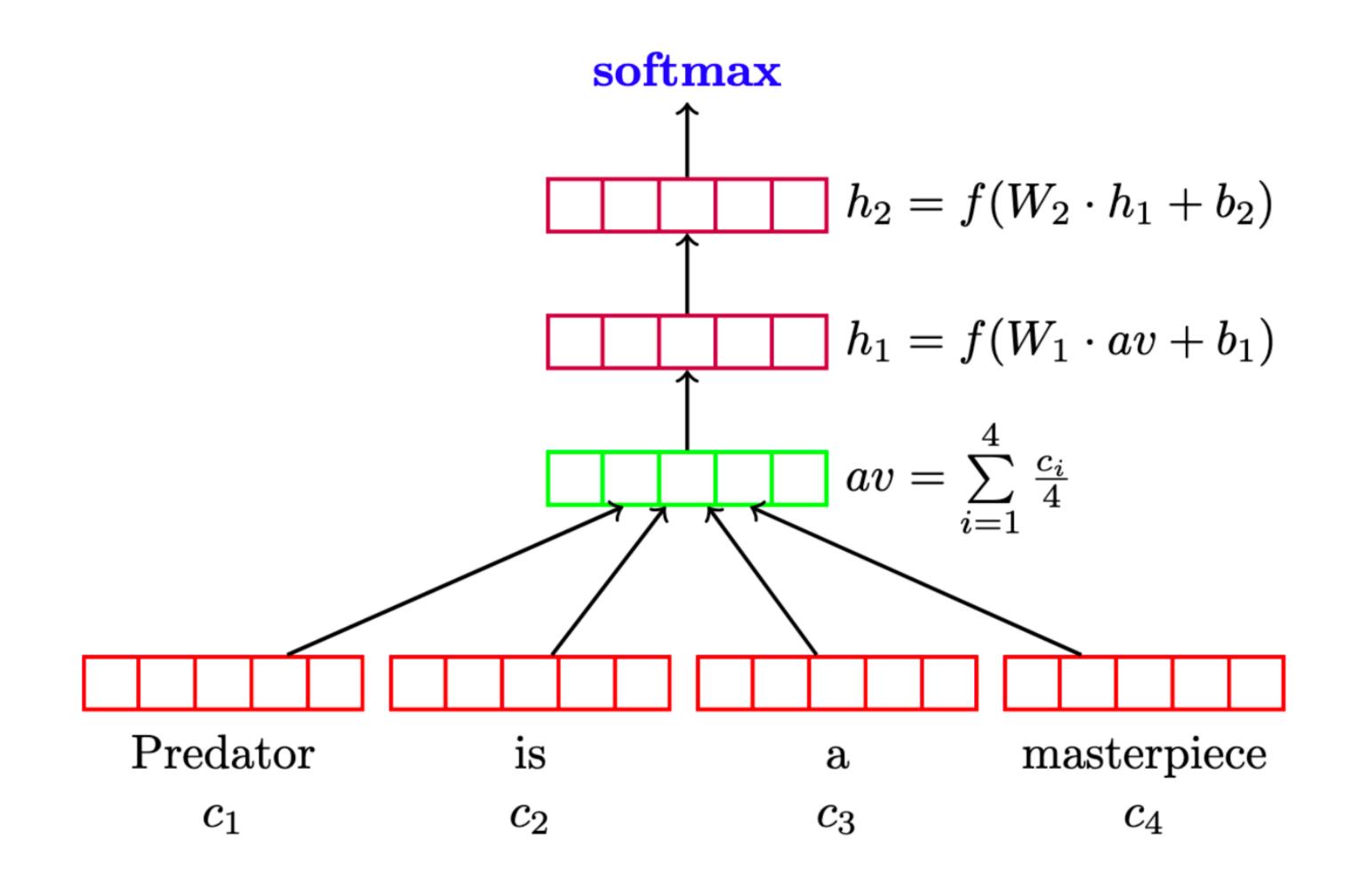
Save and retrieve the input value!

NB: list, one downstream gradient per input (in this case, one)

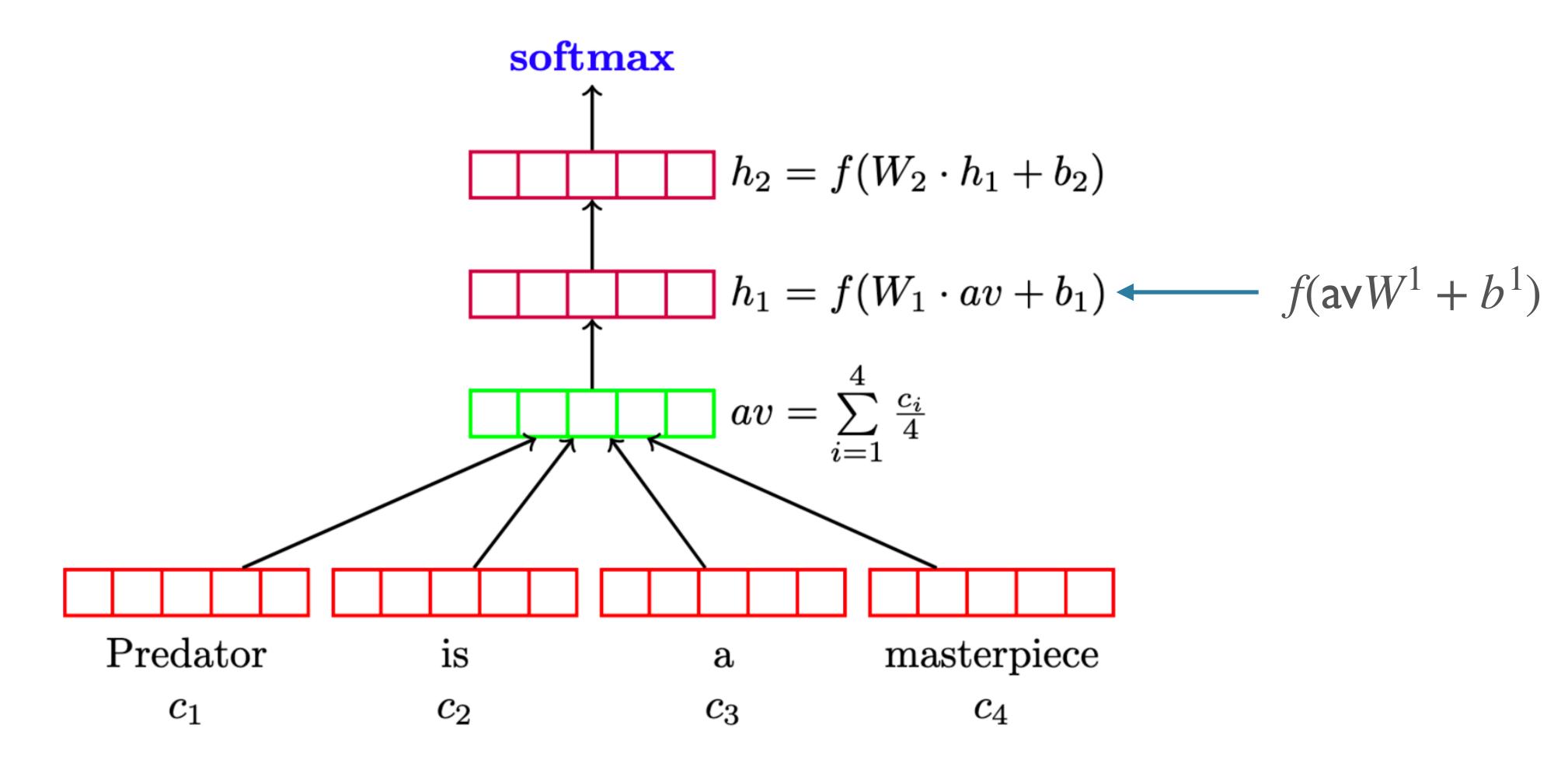
Neural Networks, I

- Feed-forward networks
 - Fixed size: average, fixed window of prep tokens
- Recurrent neural networks: sequence processors
 - Vanishing gradients, gated variants (LSTM)
 - Encoder-decoder / seq2seq architecture and tasks
 - Attention mechanism

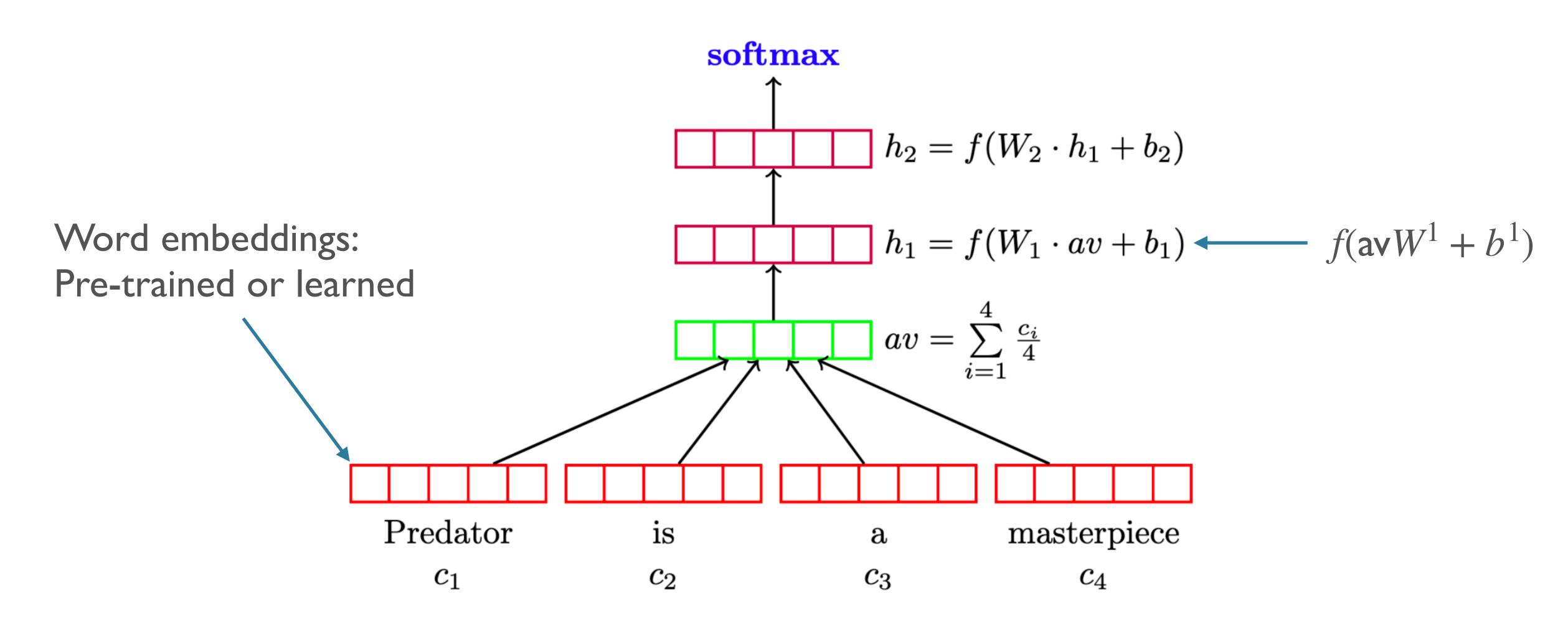
Model Architecture, One Input

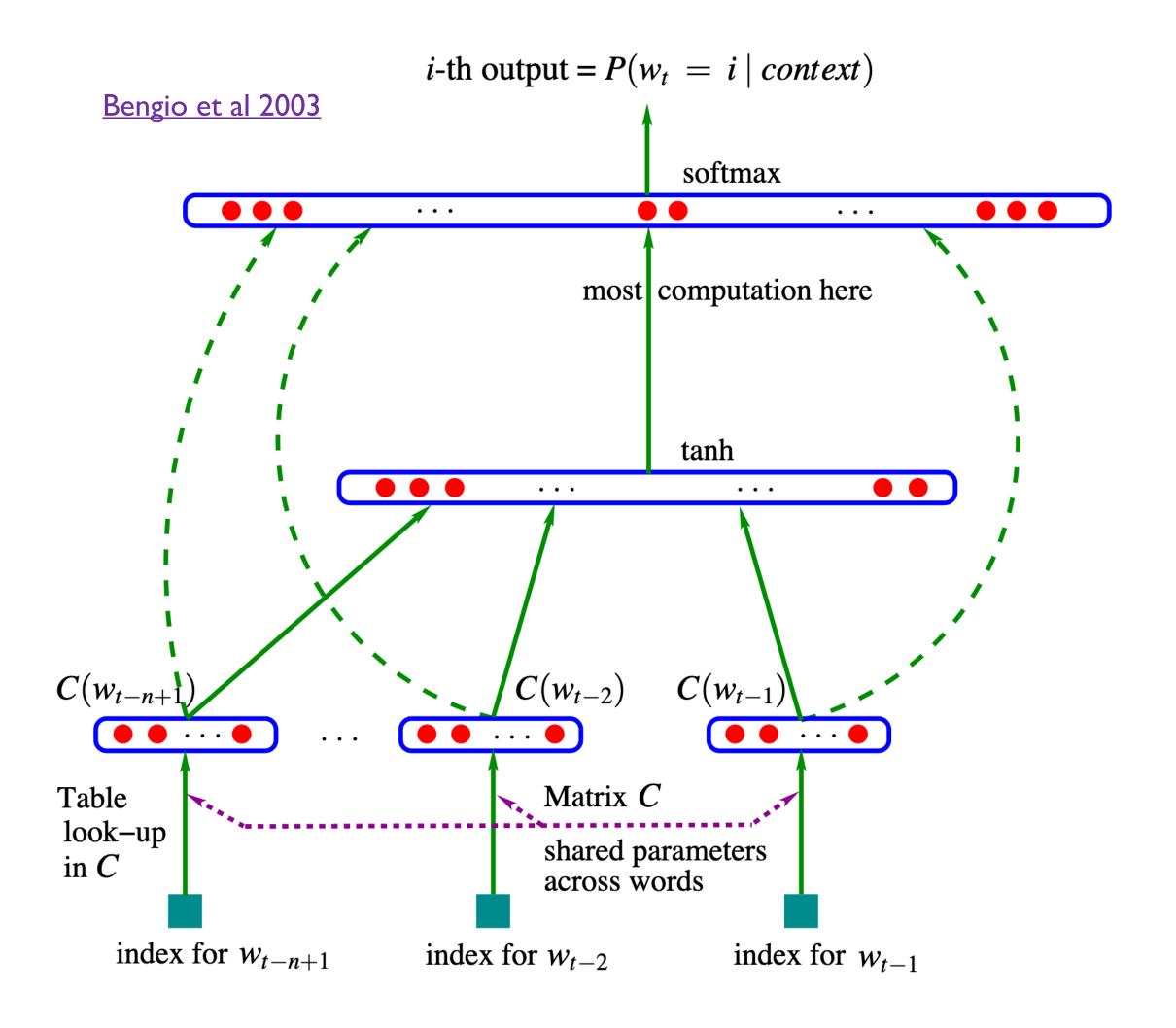


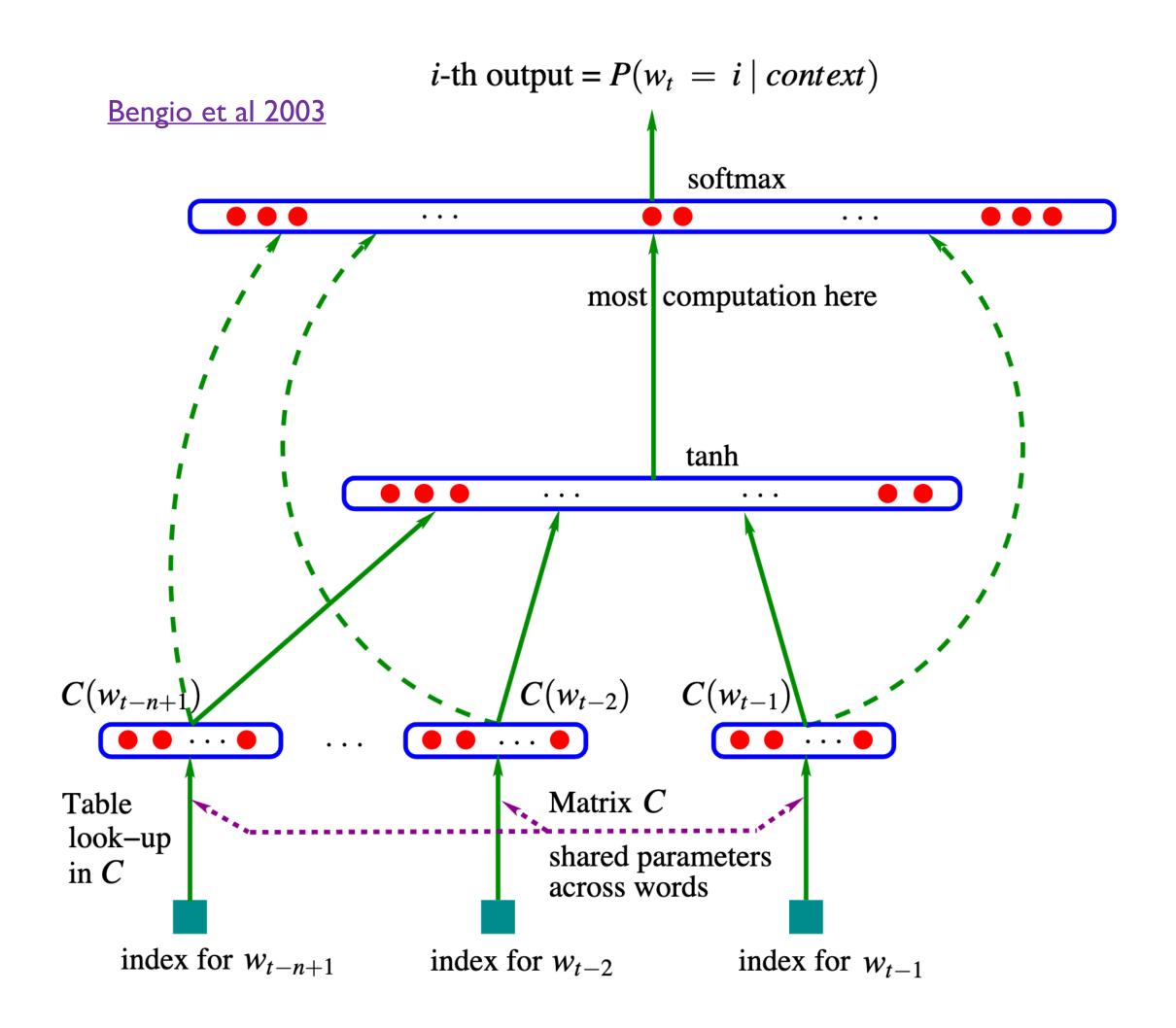
Model Architecture, One Input



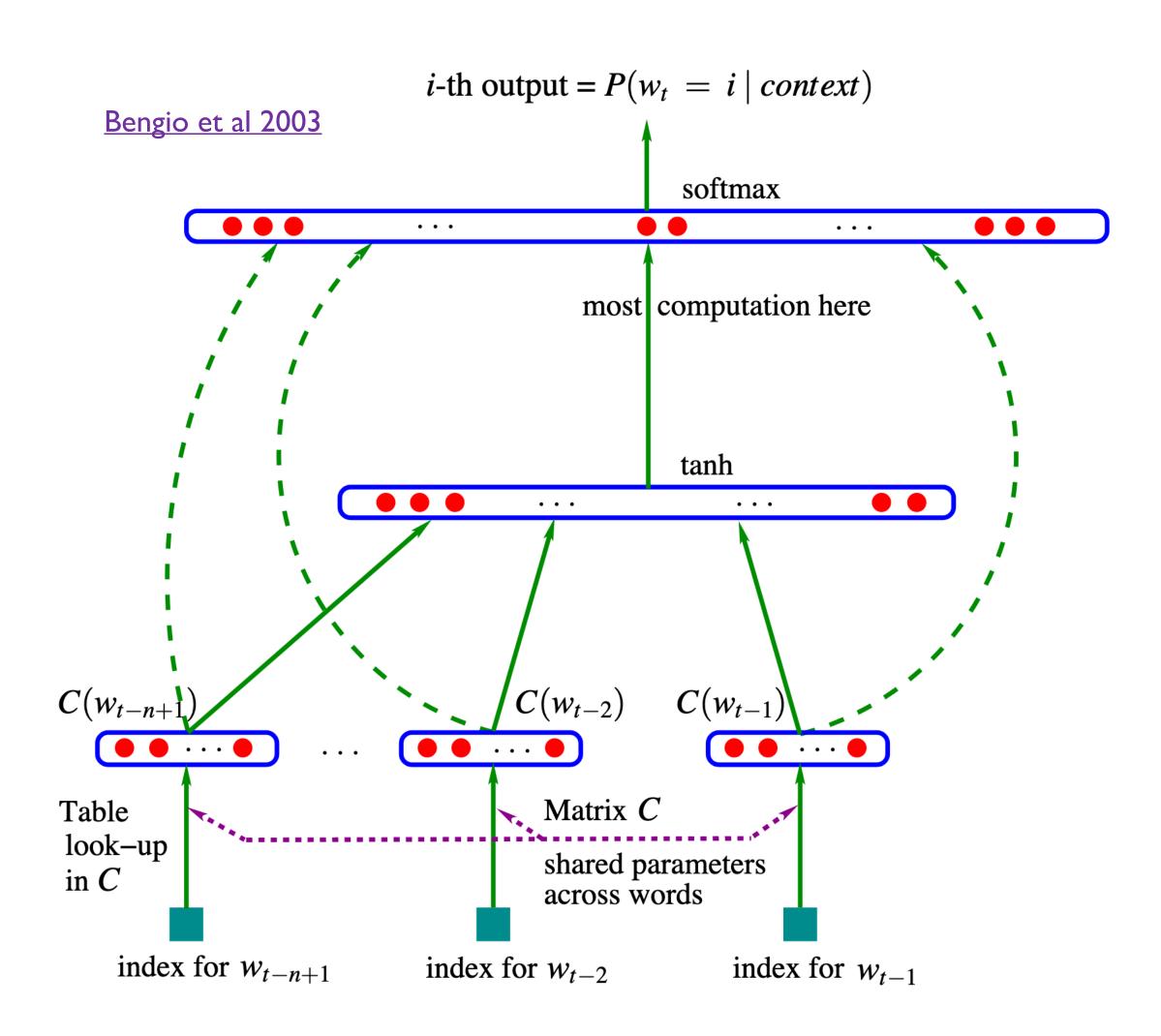
Model Architecture, One Input





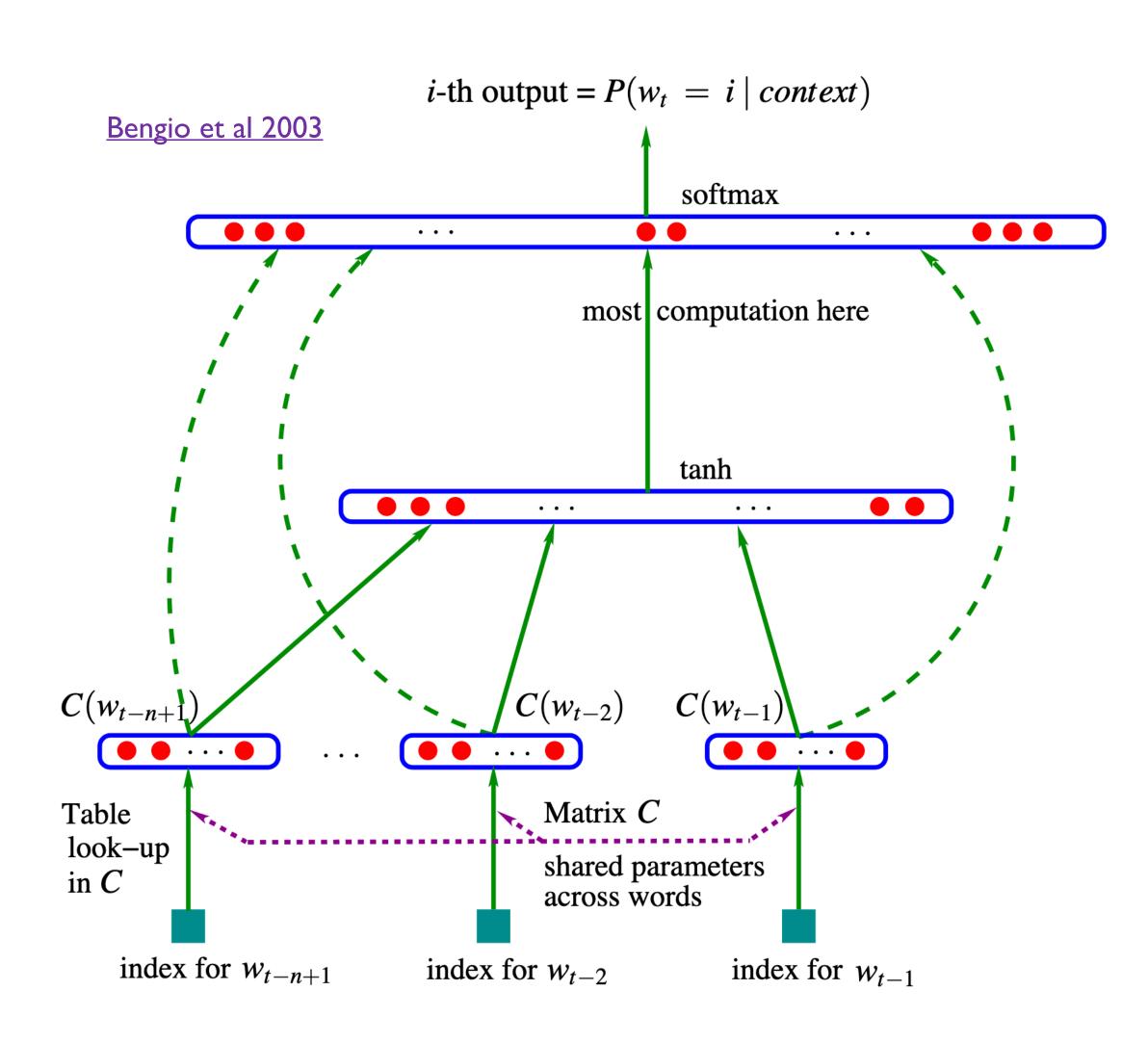


 w_t : one-hot vector



embeddings = concat(
$$w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C$$
)

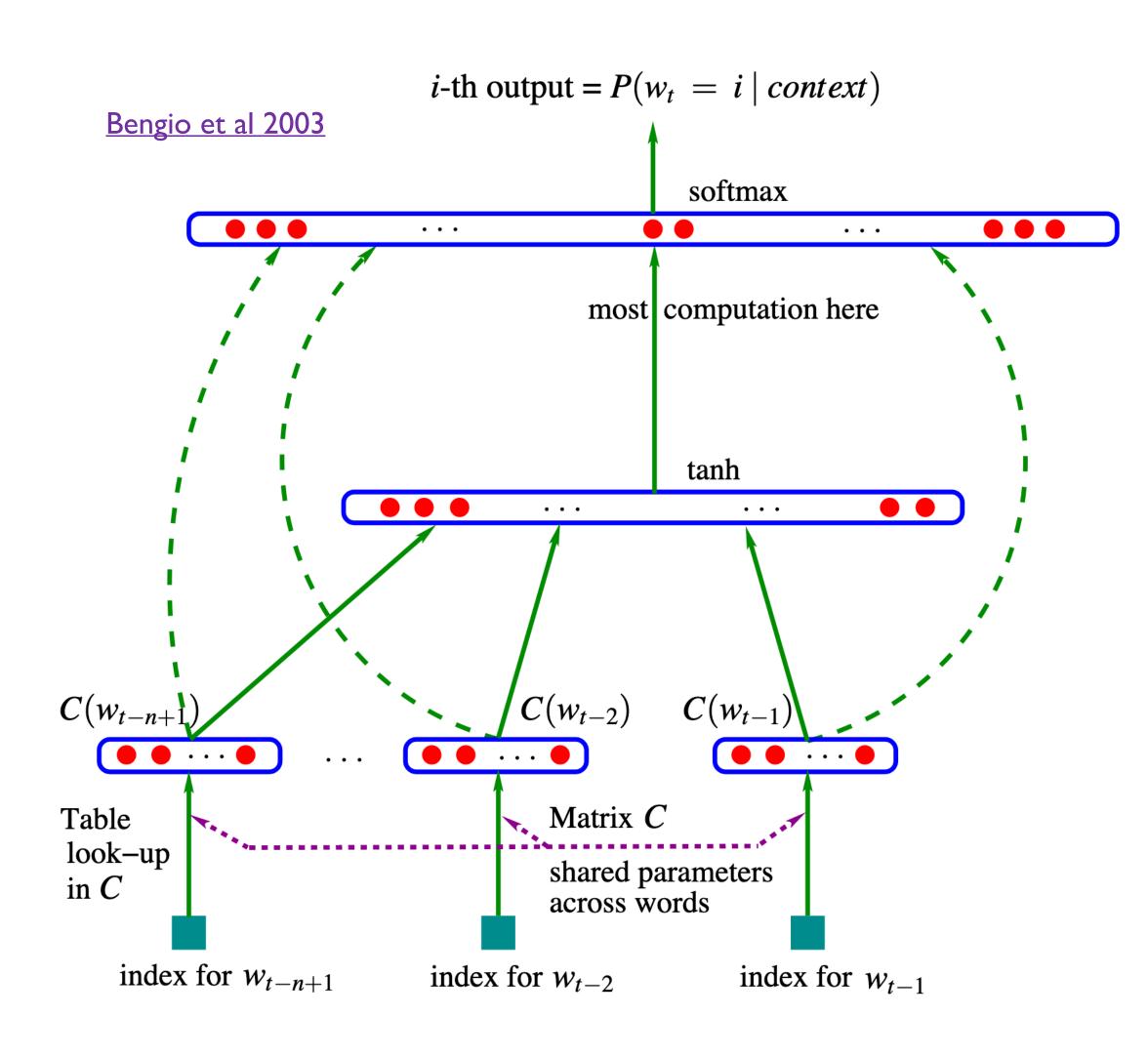
 W_t : one-hot vector



 $hidden = tanh(embeddingsW^1 + b^1)$

embeddings = concat($w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C$)

 w_t : one-hot vector



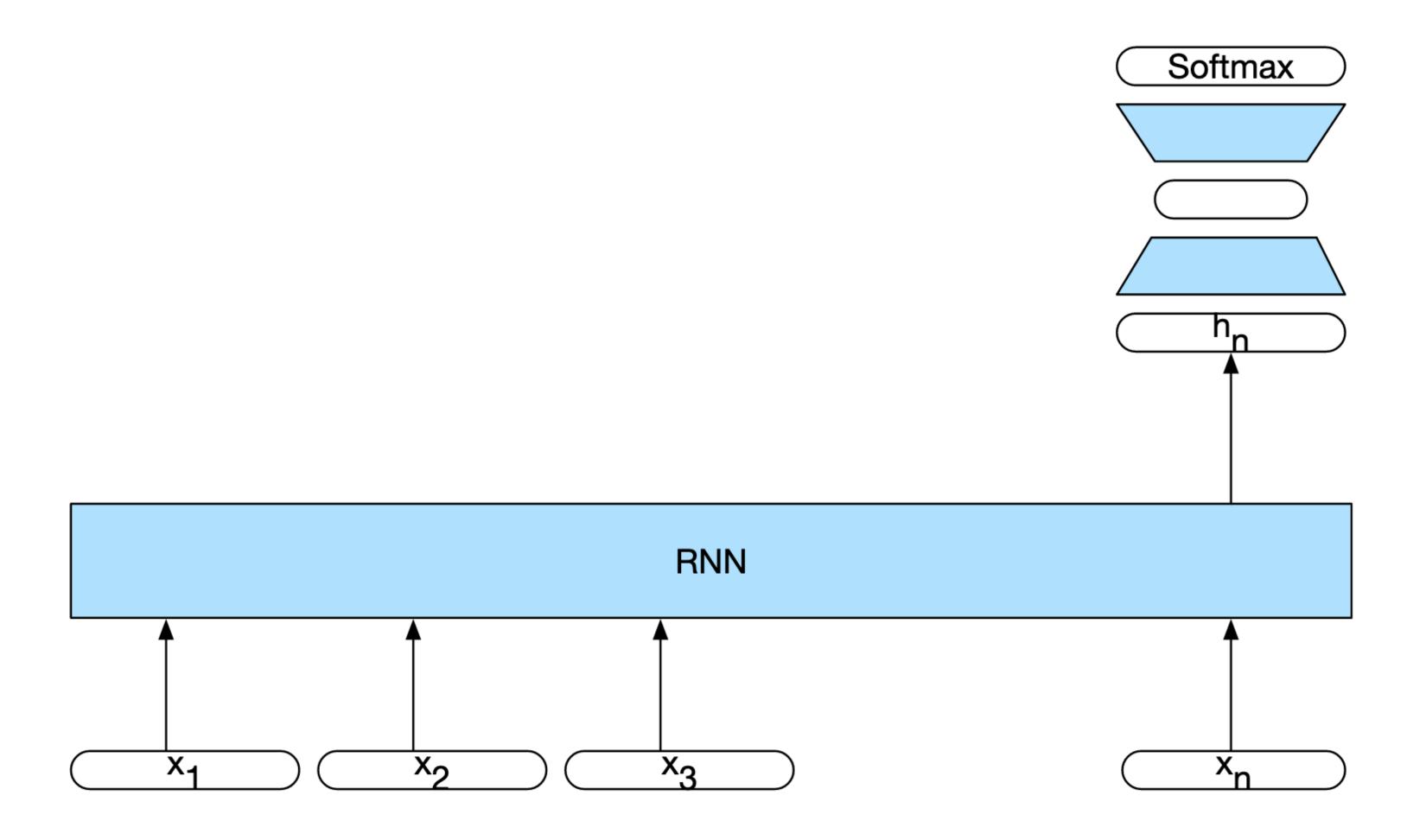
probabilities = softmax(hidden $W^2 + b^2$)

 $hidden = tanh(embeddingsW^1 + b^1)$

embeddings = concat($w_{t-1}C, w_{t-2}C, ..., w_{t-(n+1)}C$)

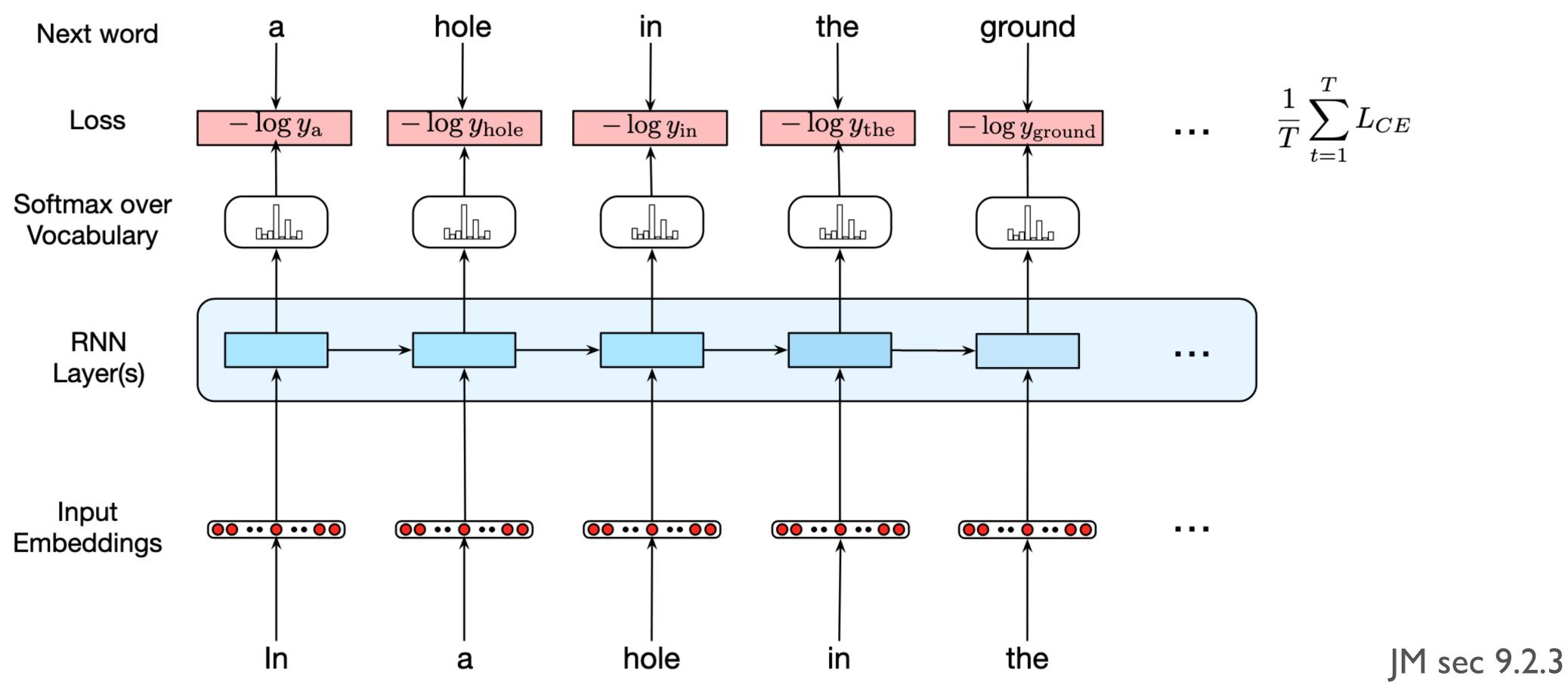
 w_t : one-hot vector

RNN for Text Classification

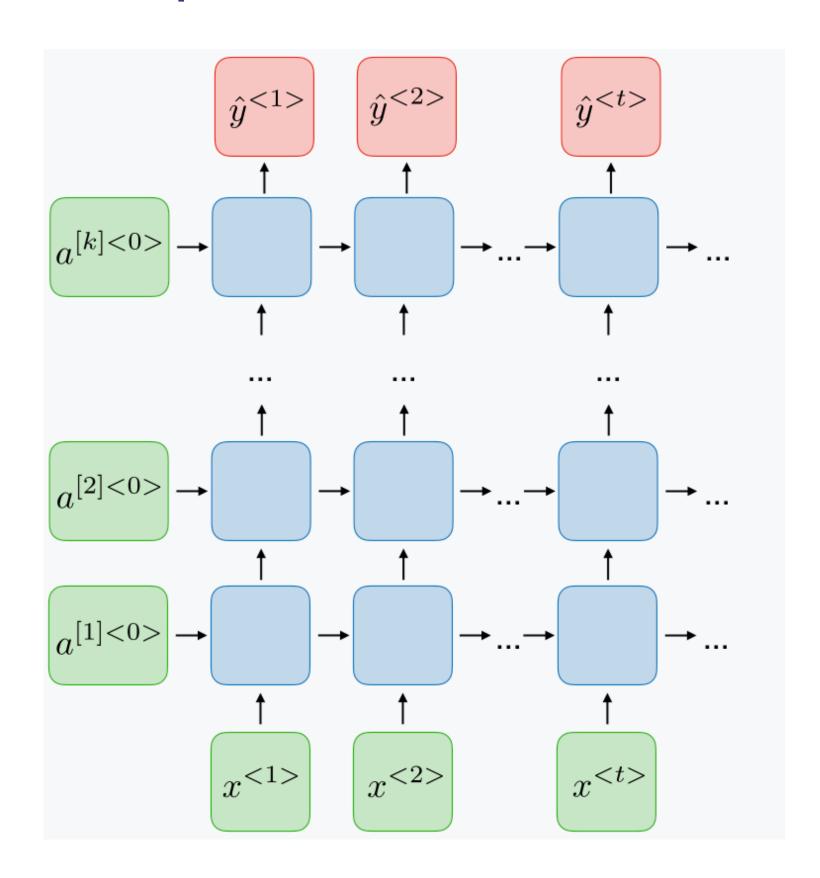


JM sec 9.2.5

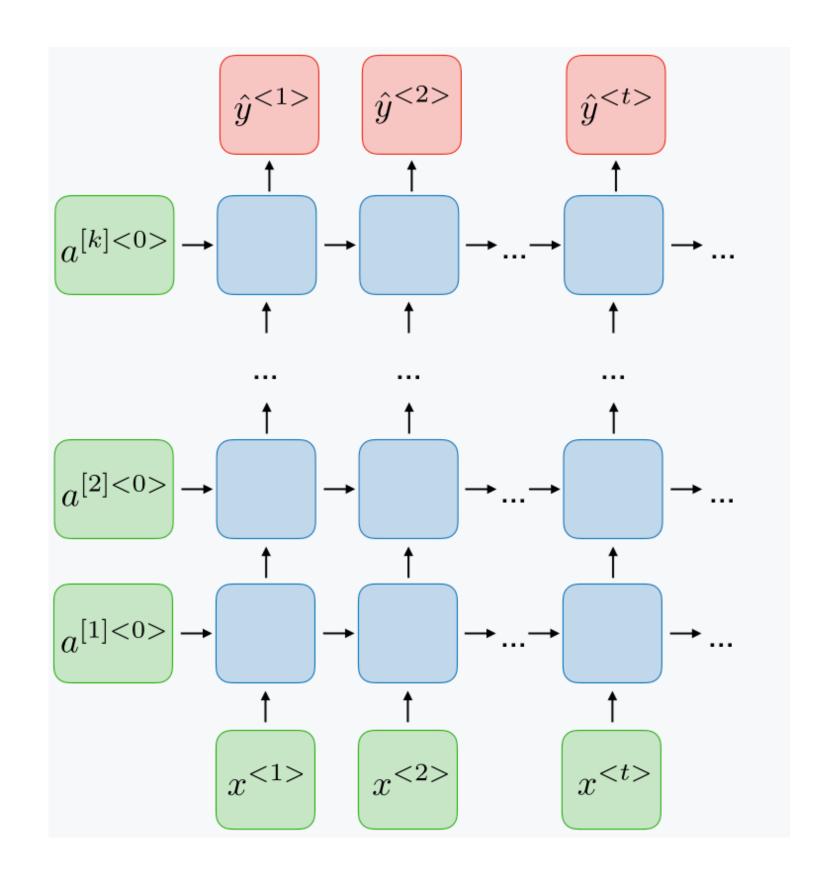
RNNs for Language Modeling

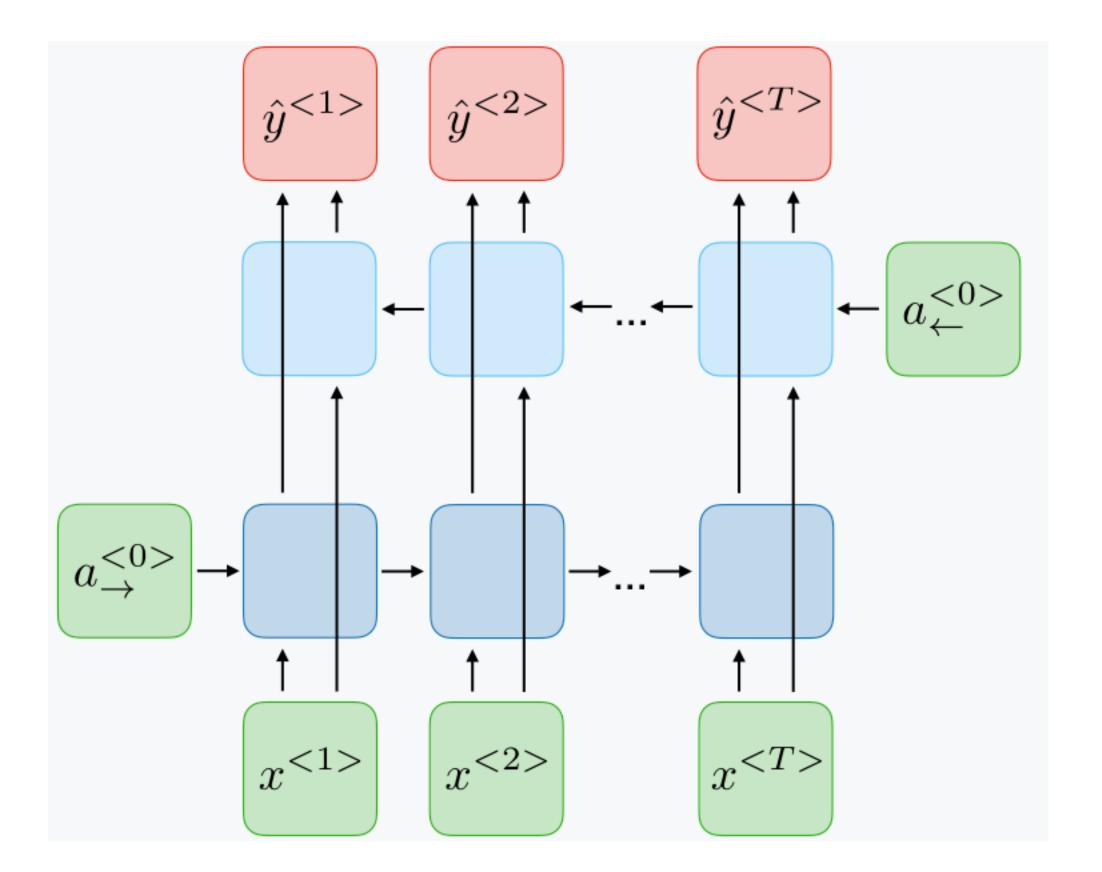


Deep RNNs:

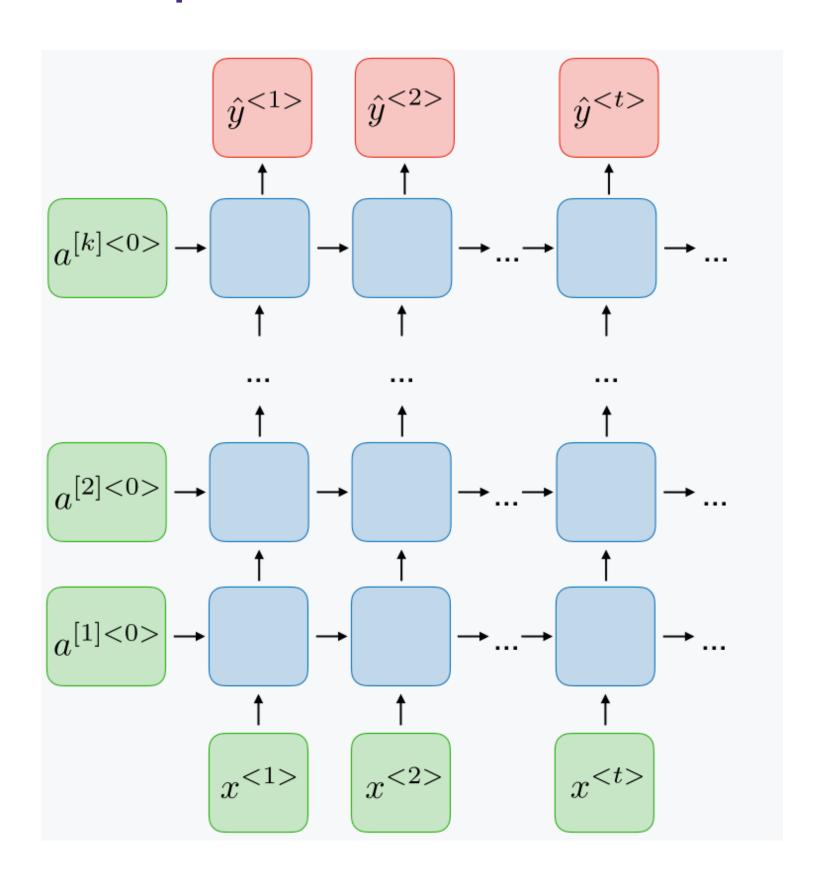


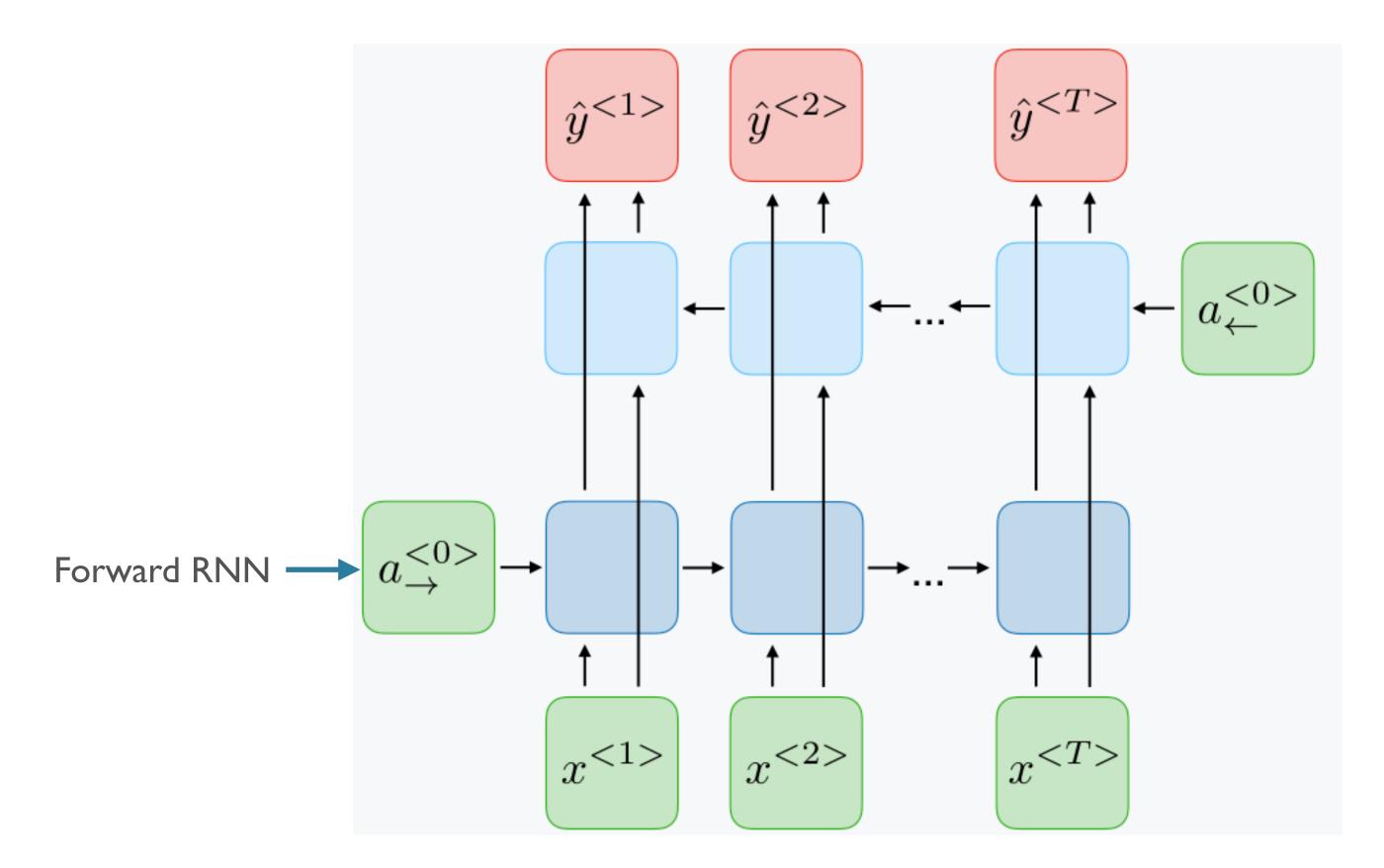
Deep RNNs:



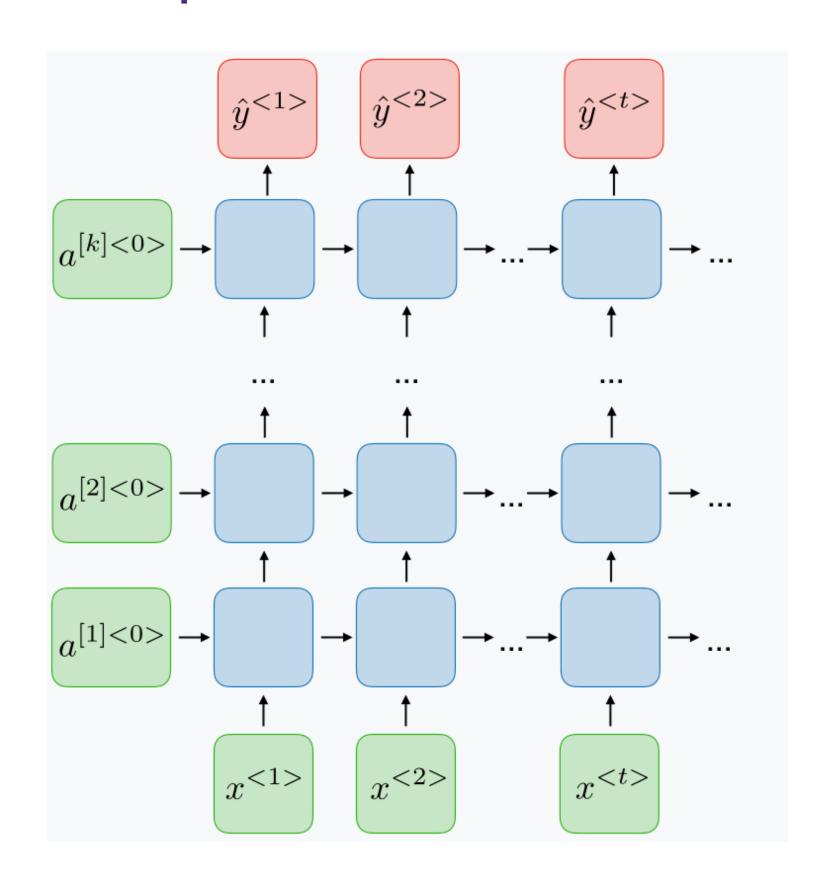


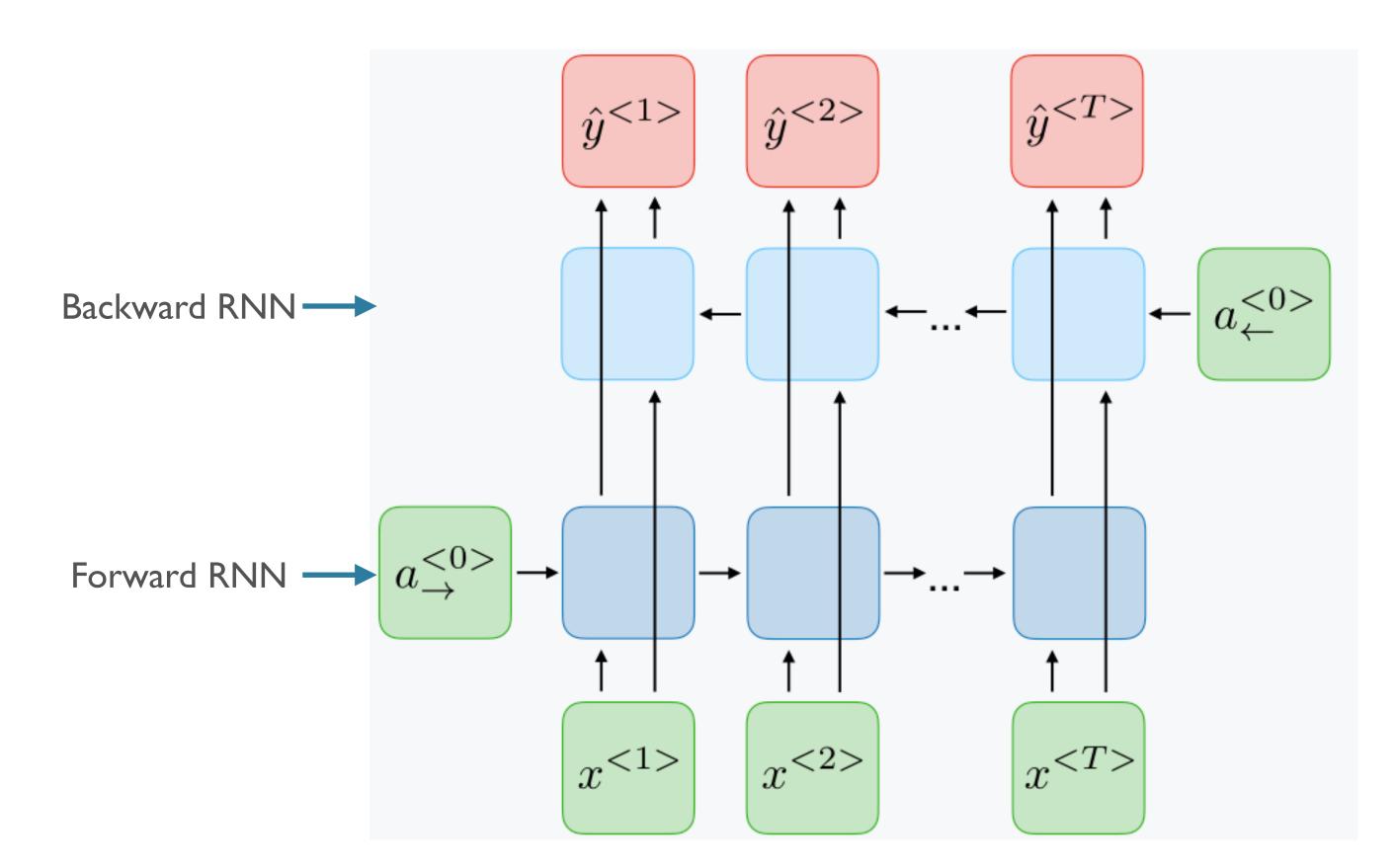
Deep RNNs:



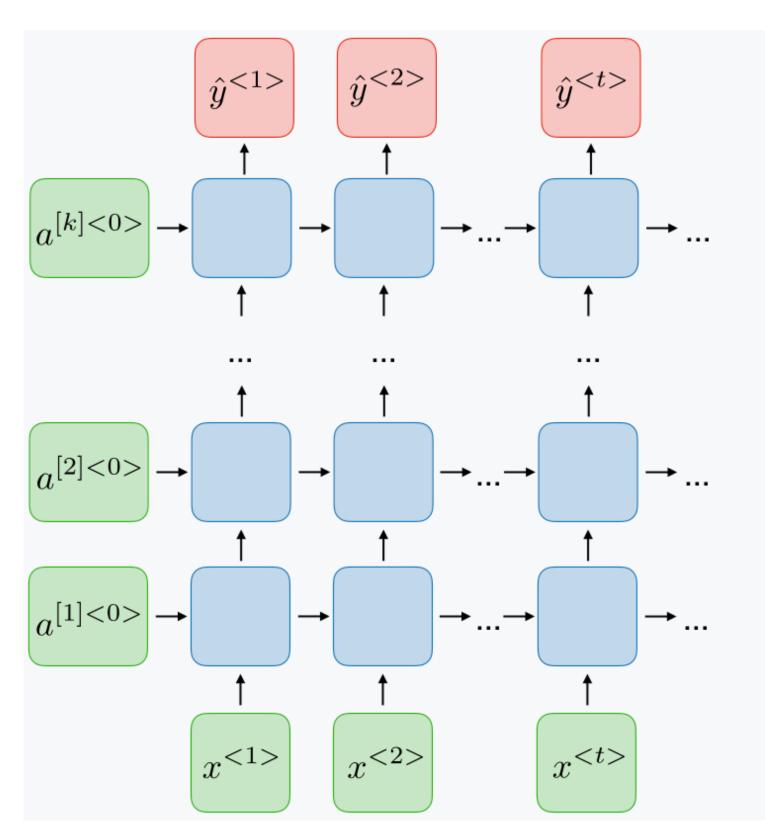


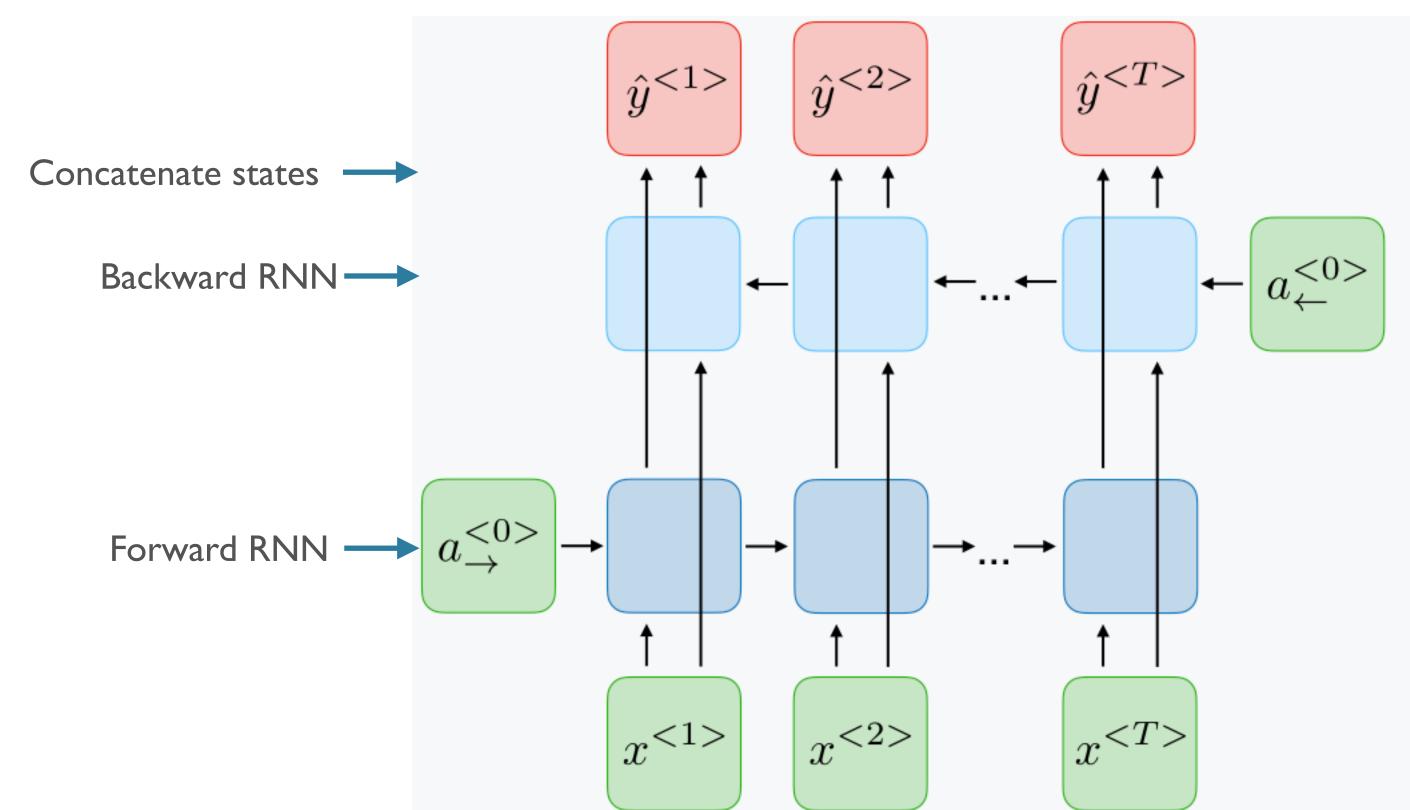
Deep RNNs:

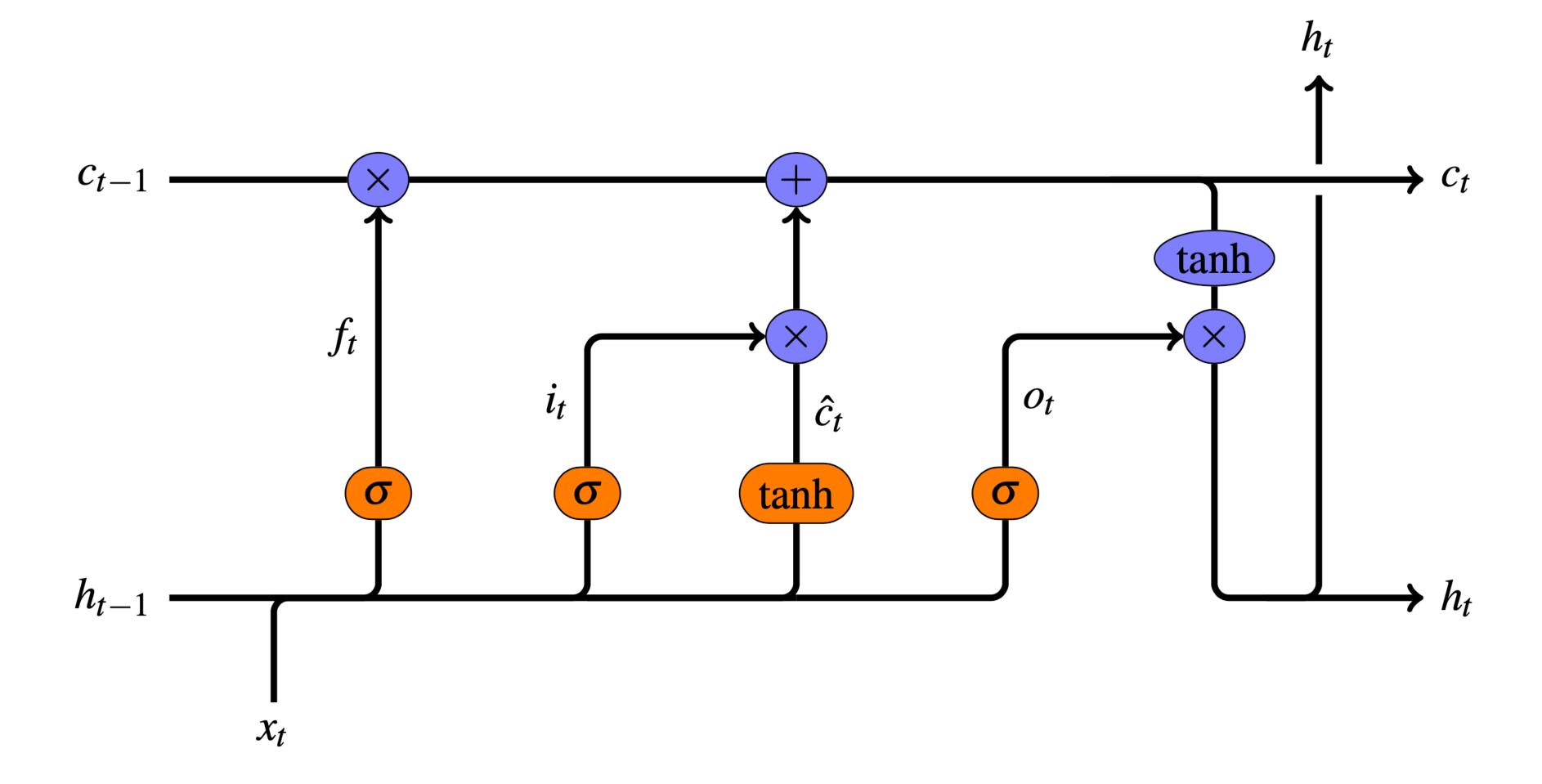


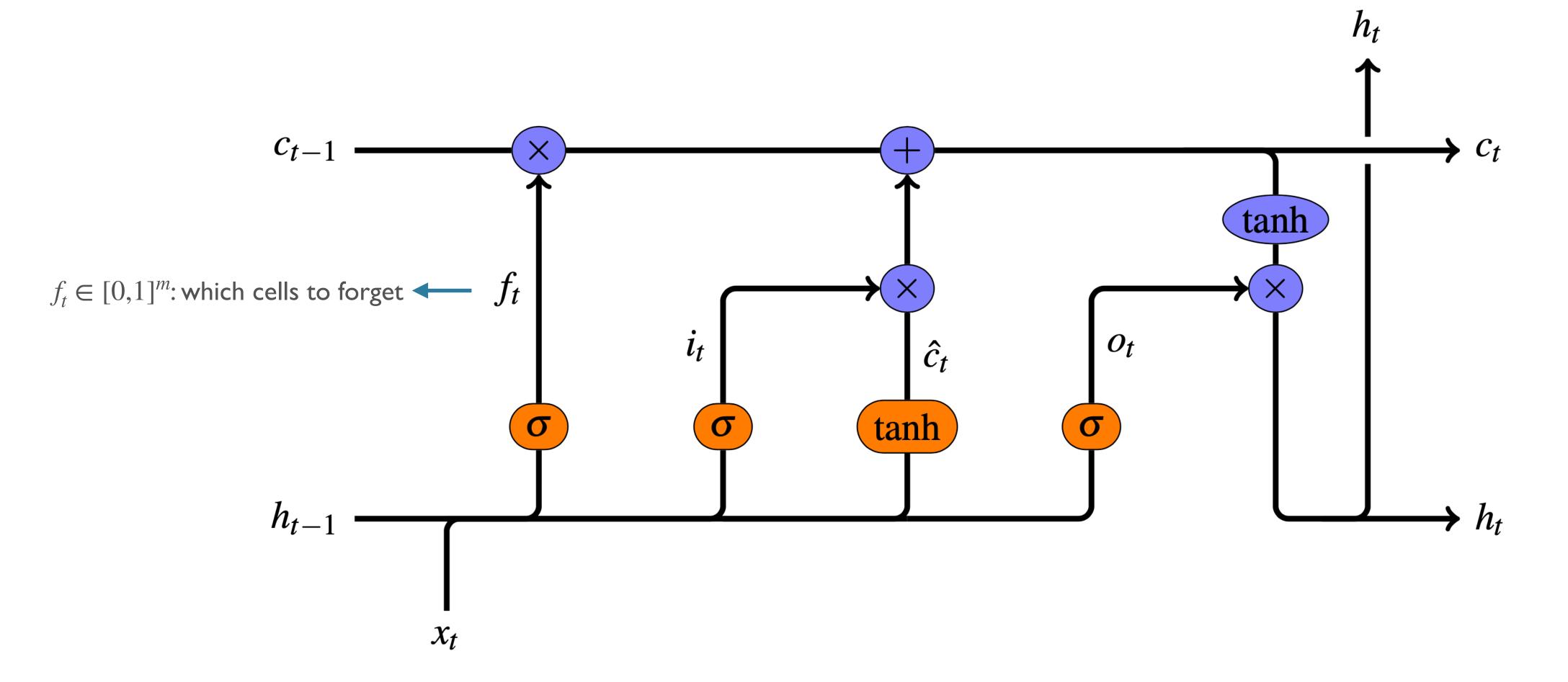


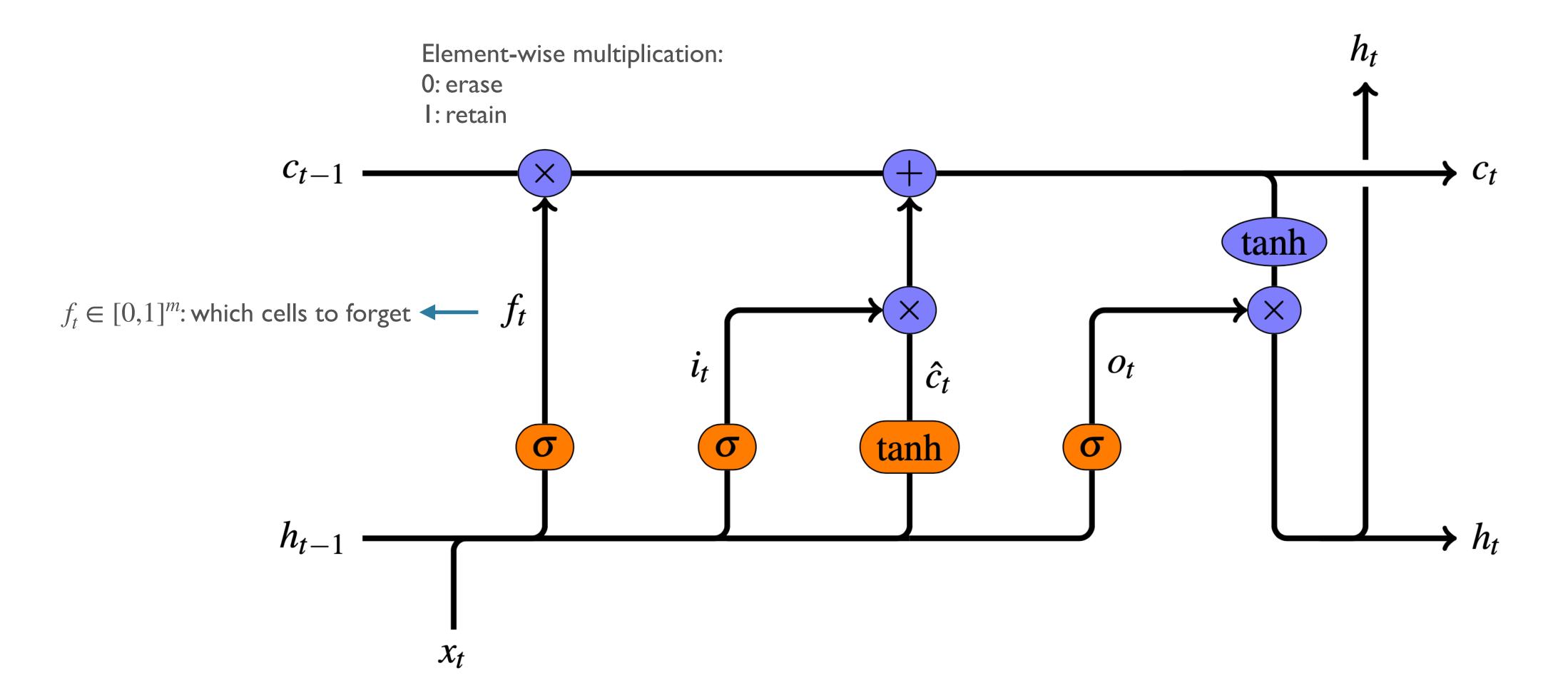
Deep RNNs:

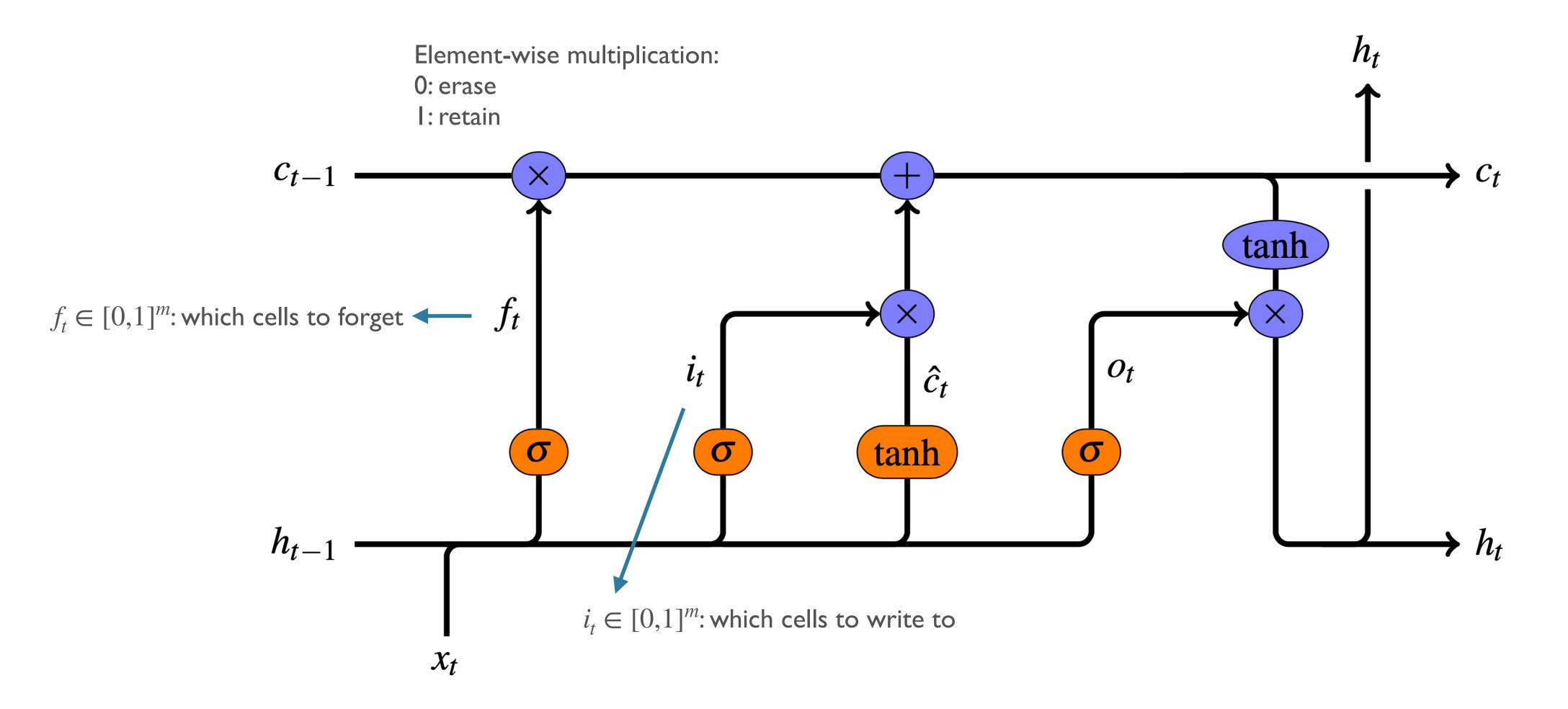


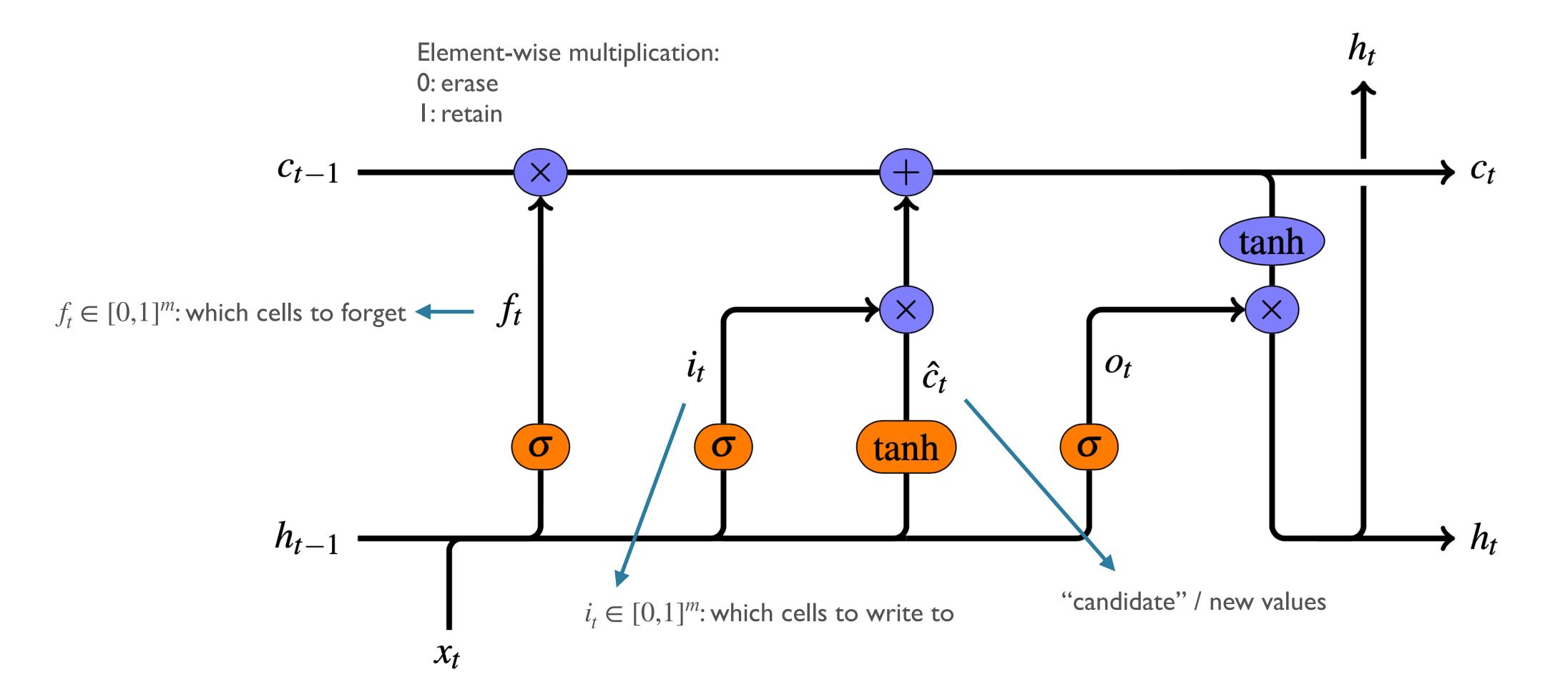


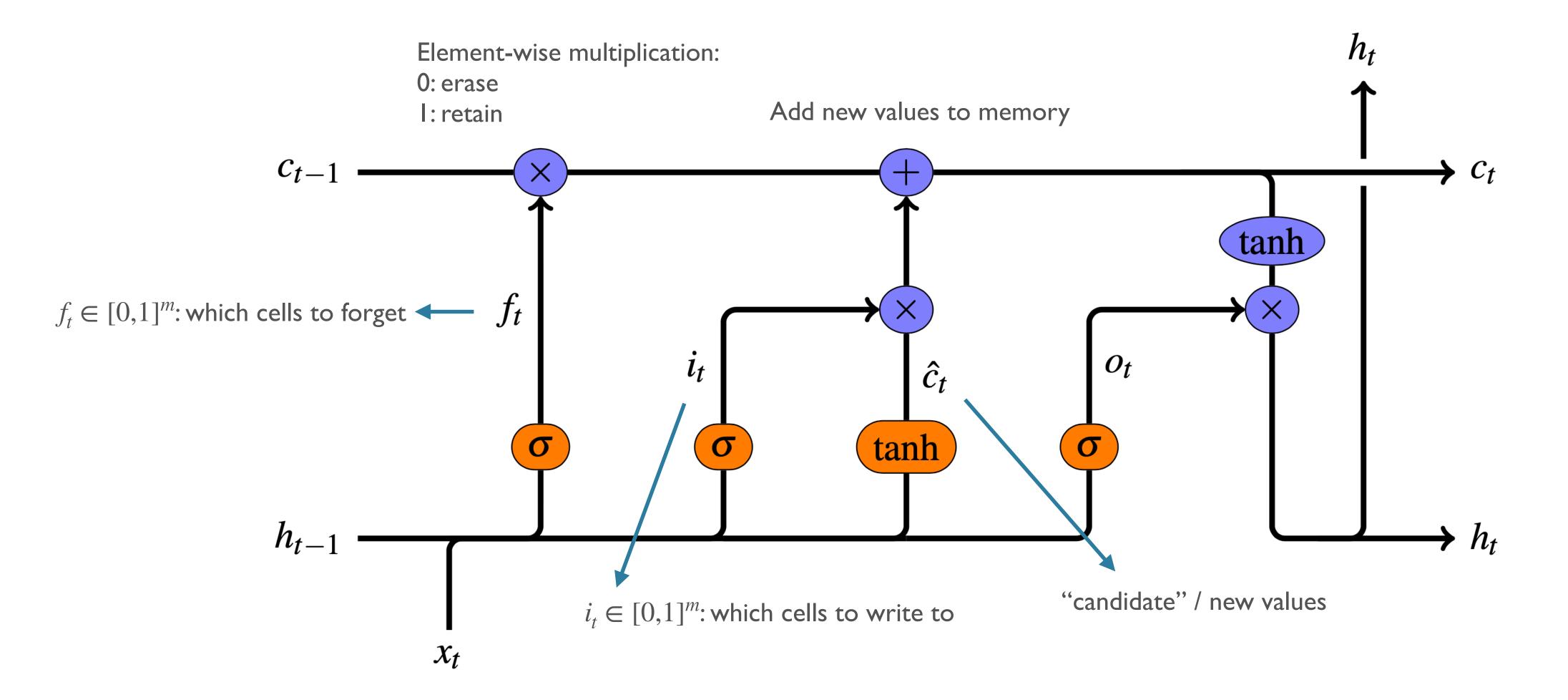


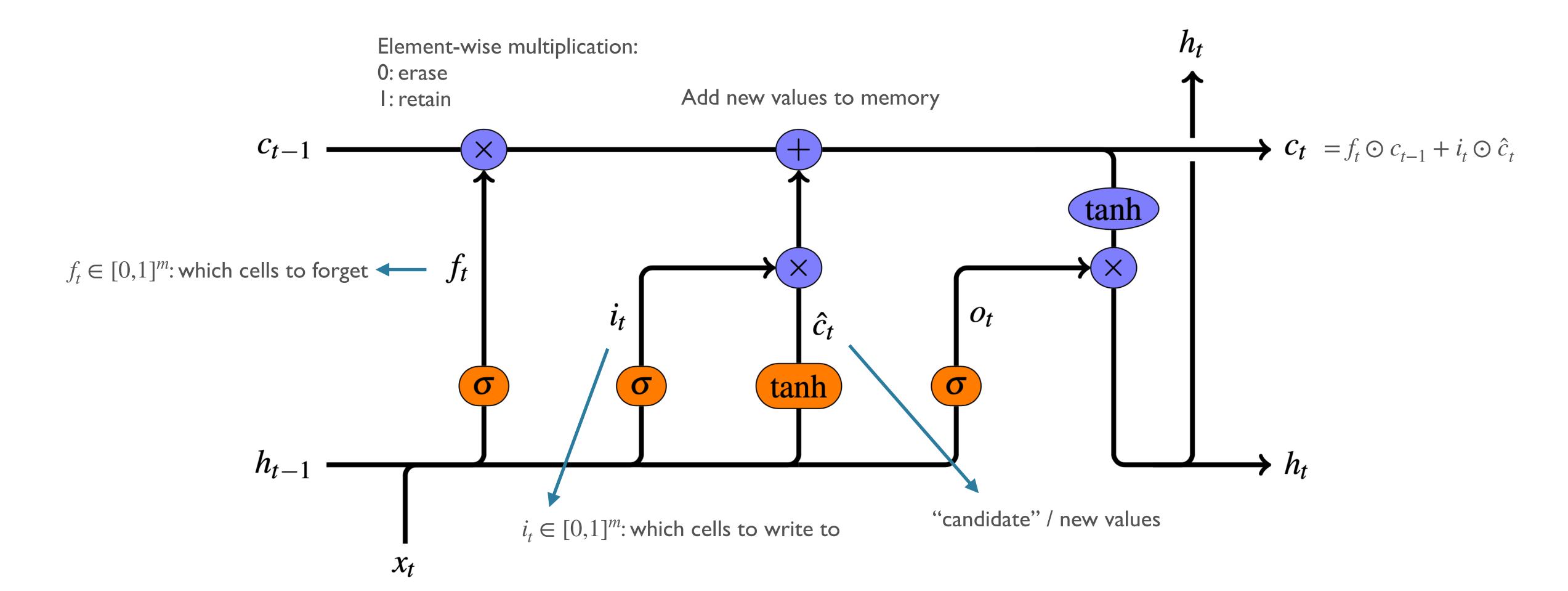




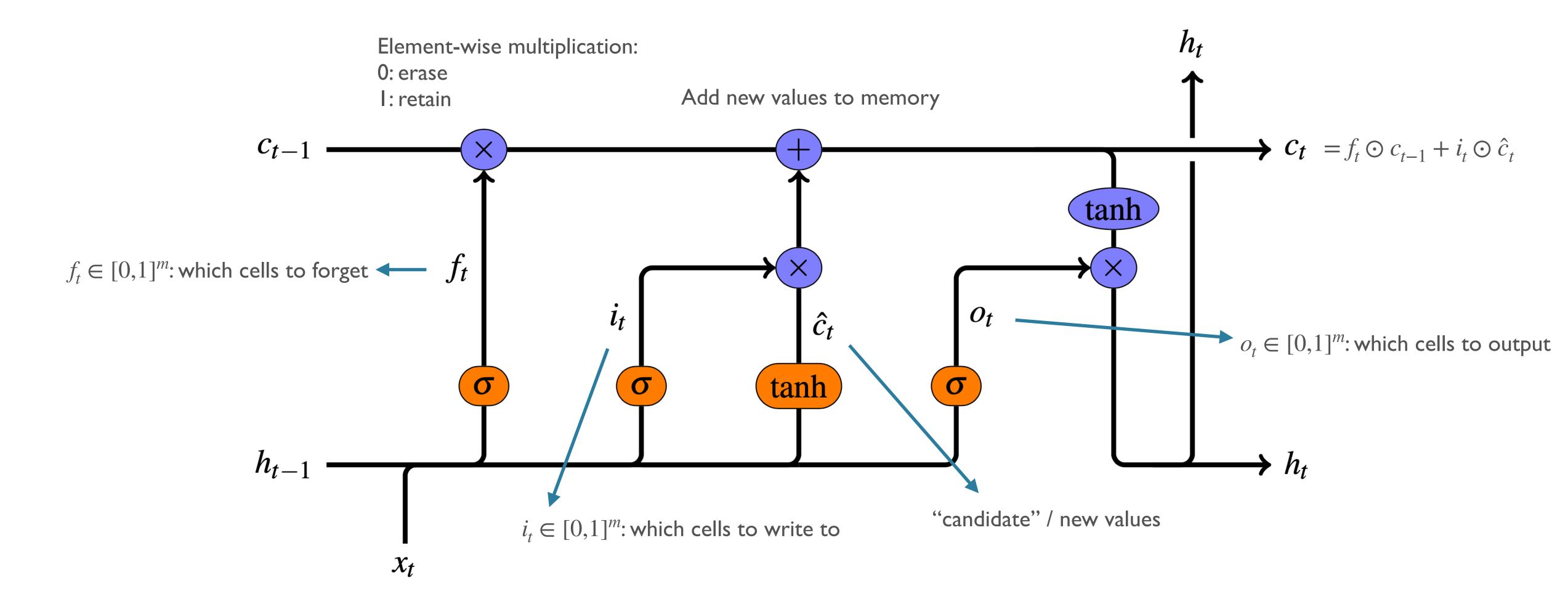




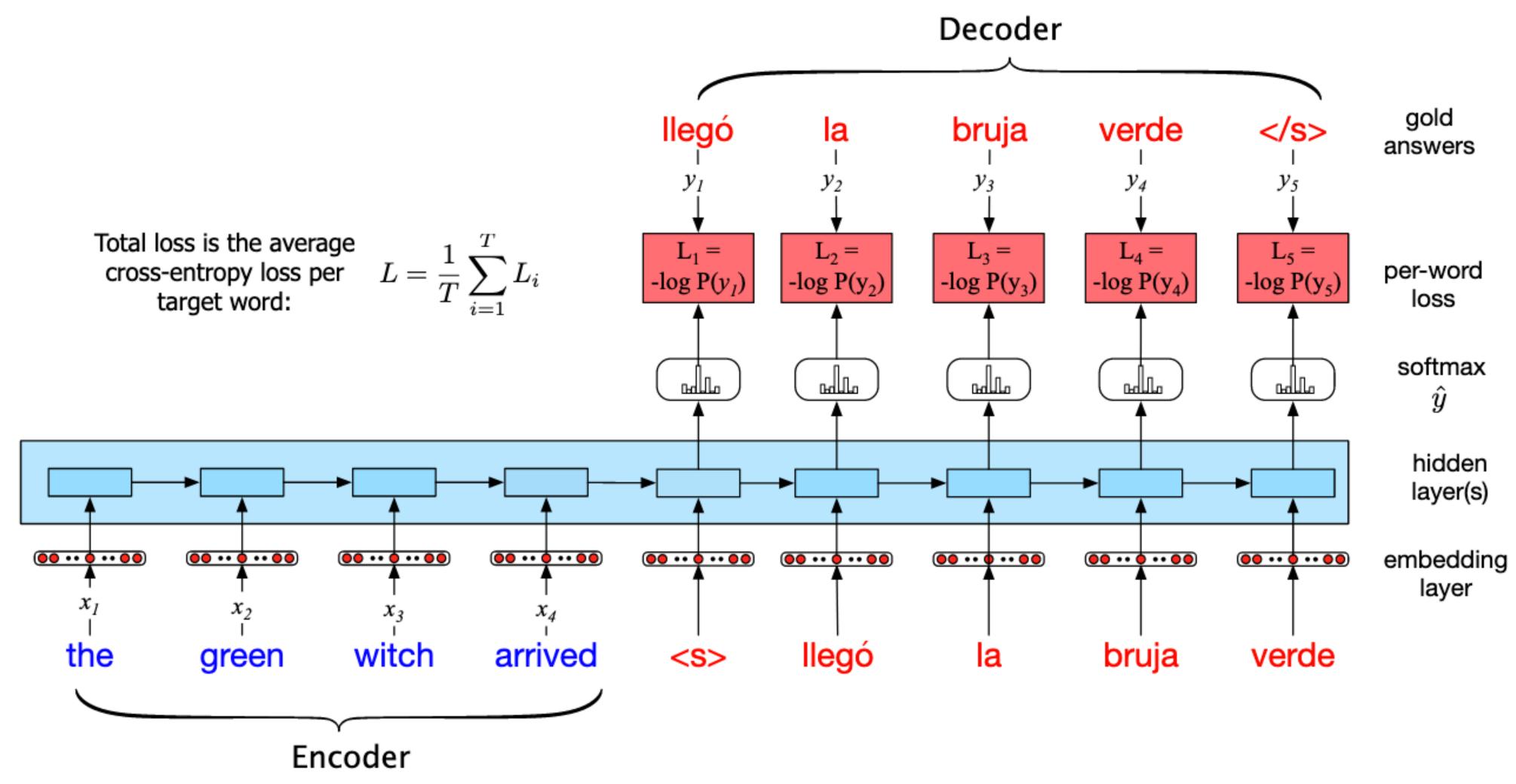


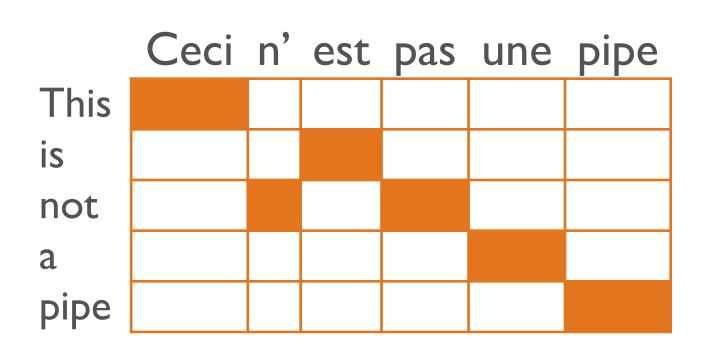


LSTMs

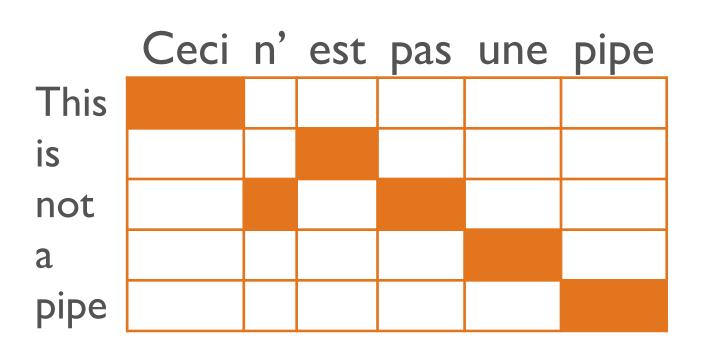


Training an encoder-decoder RNN



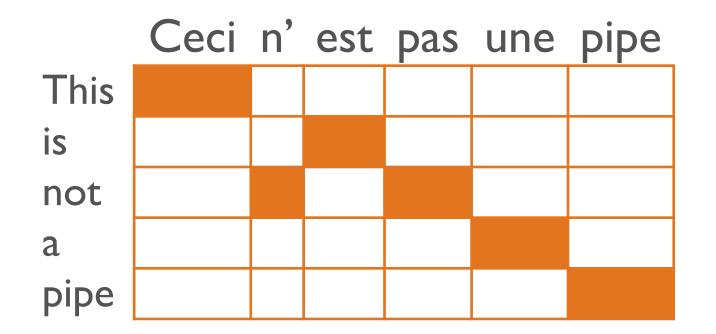


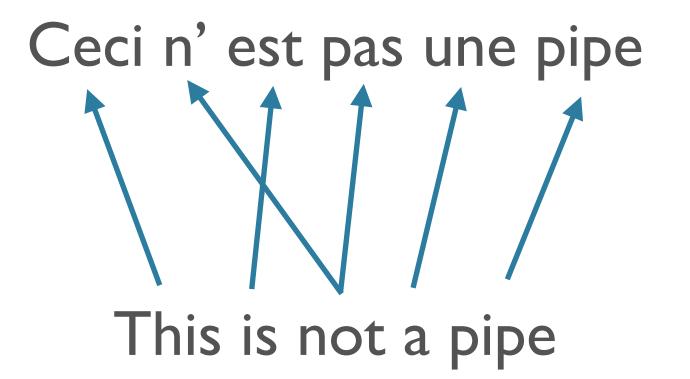
Ceci n' est pas une pipe

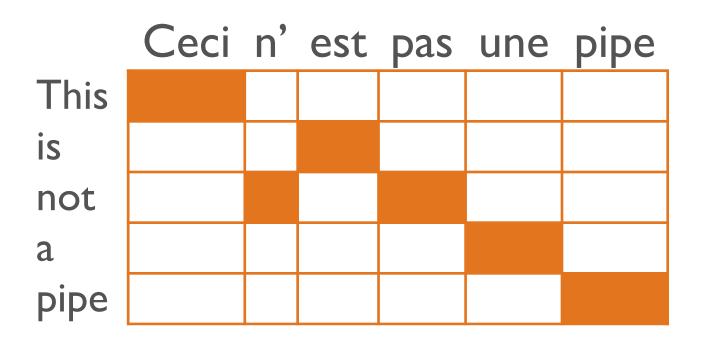


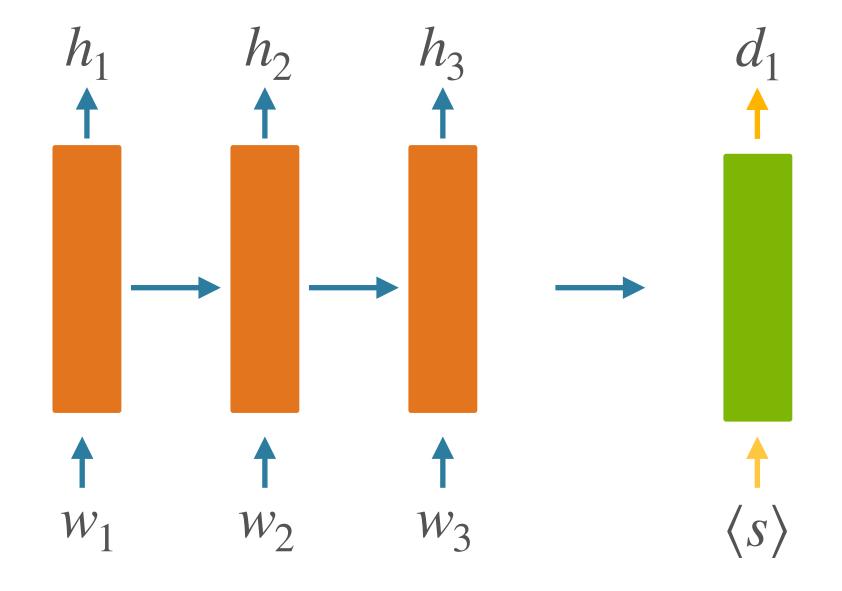
Ceci n' est pas une pipe

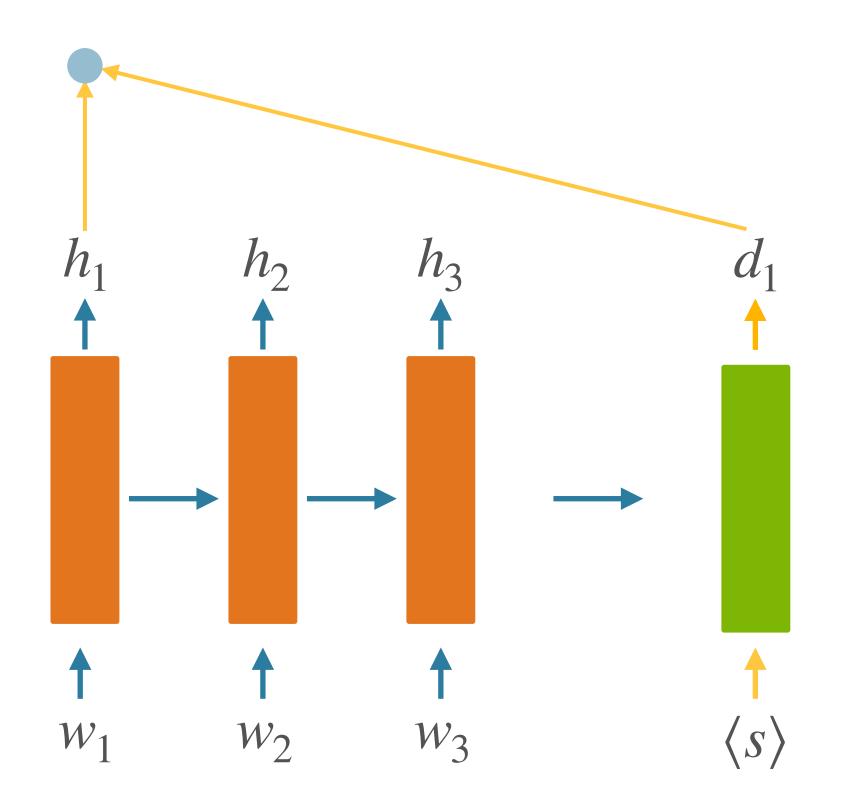
This is not a pipe

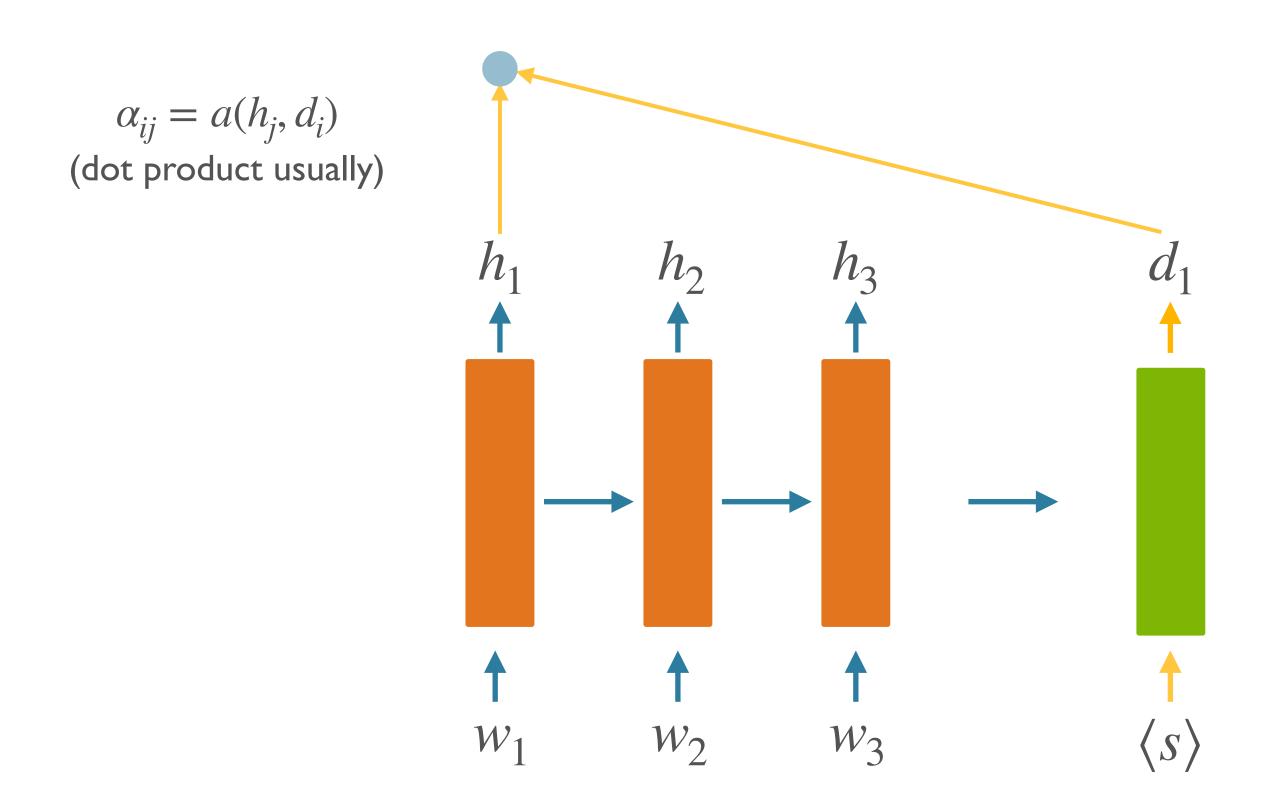


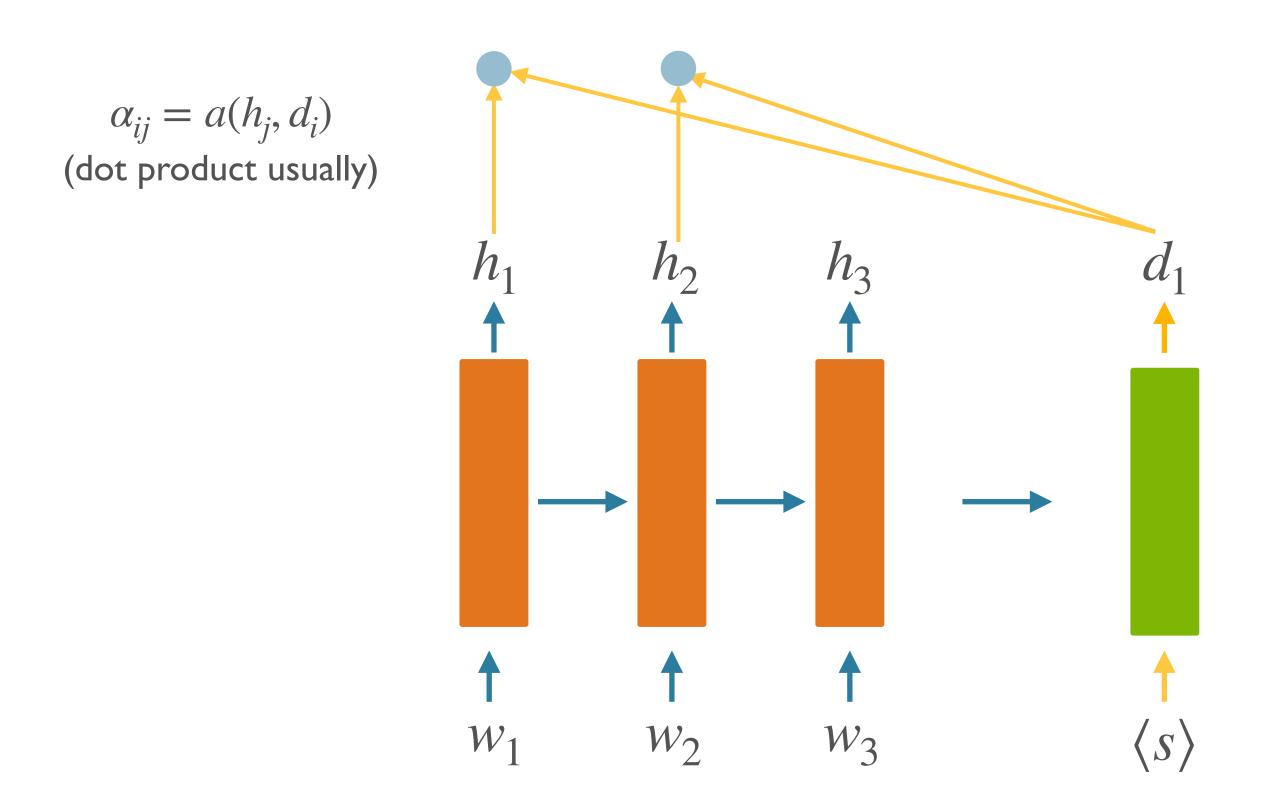


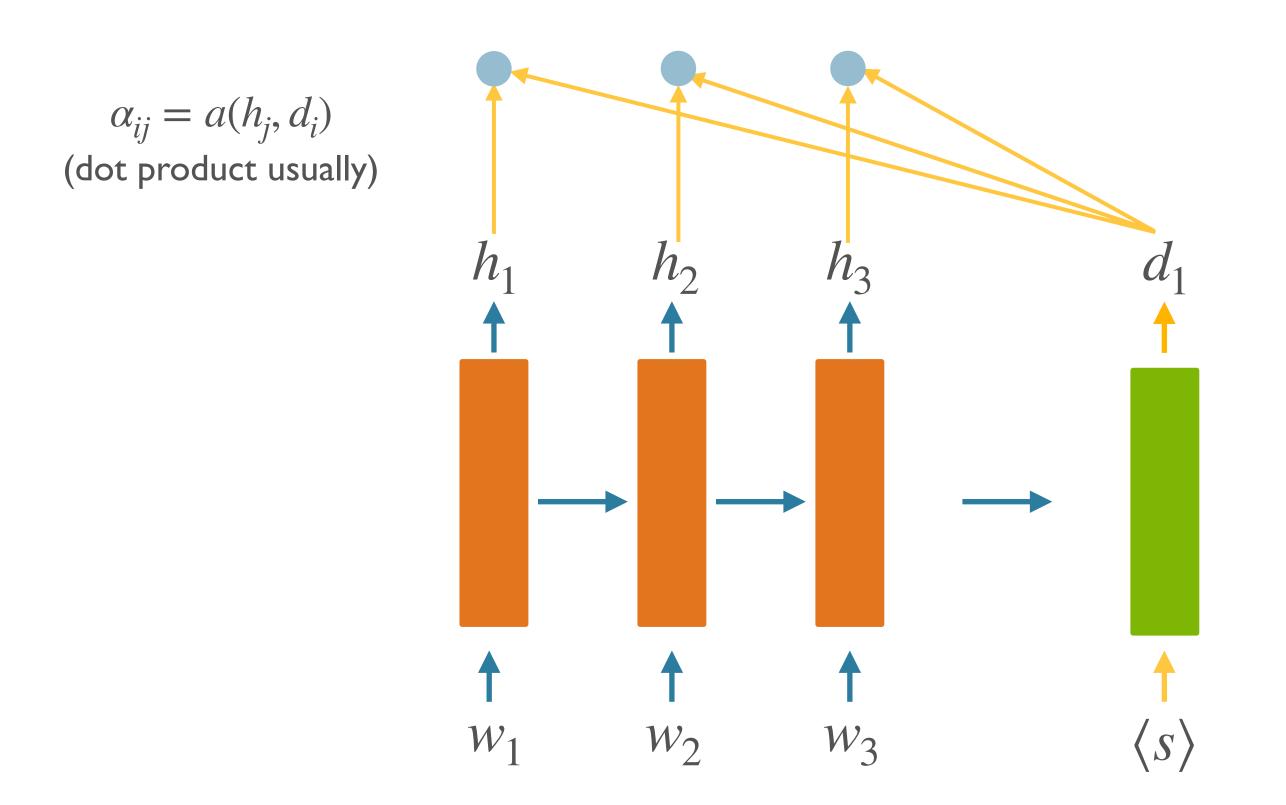


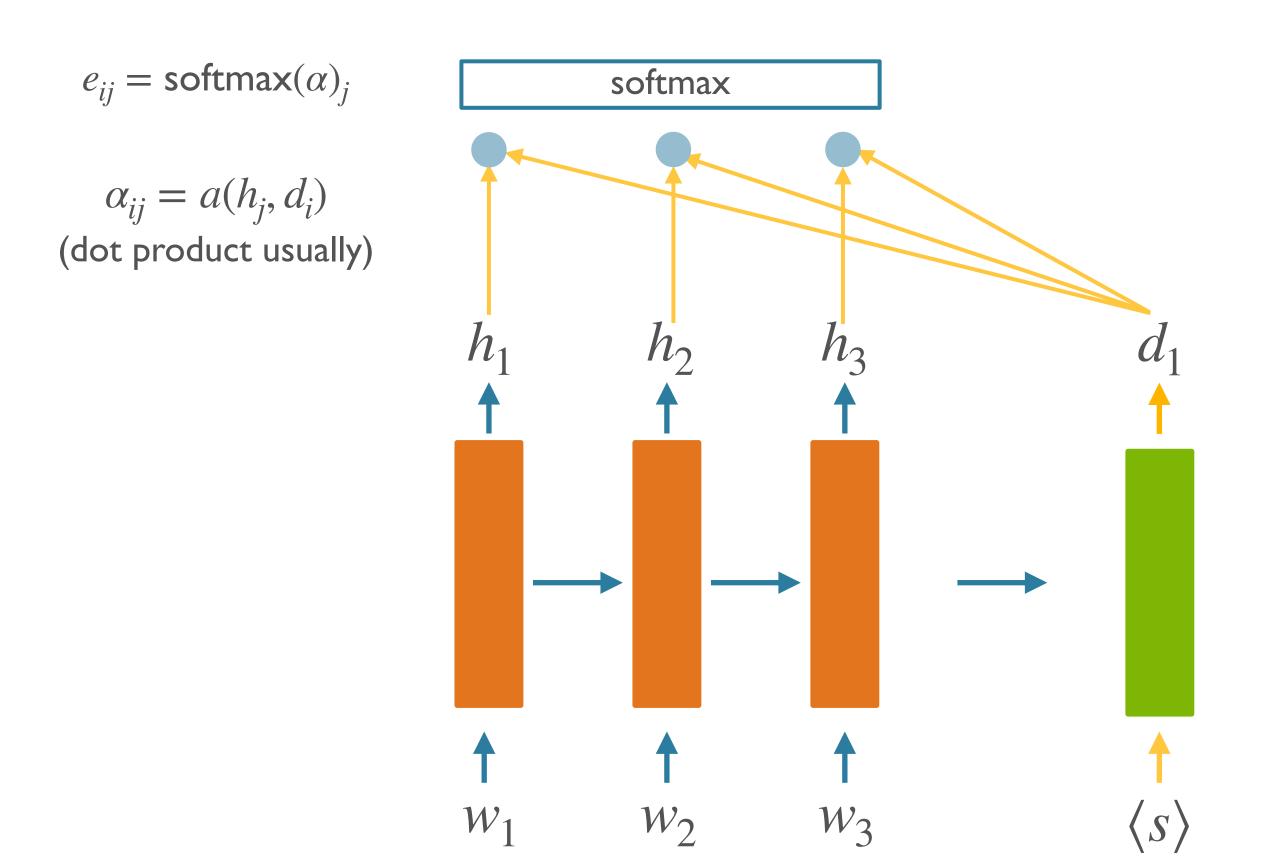


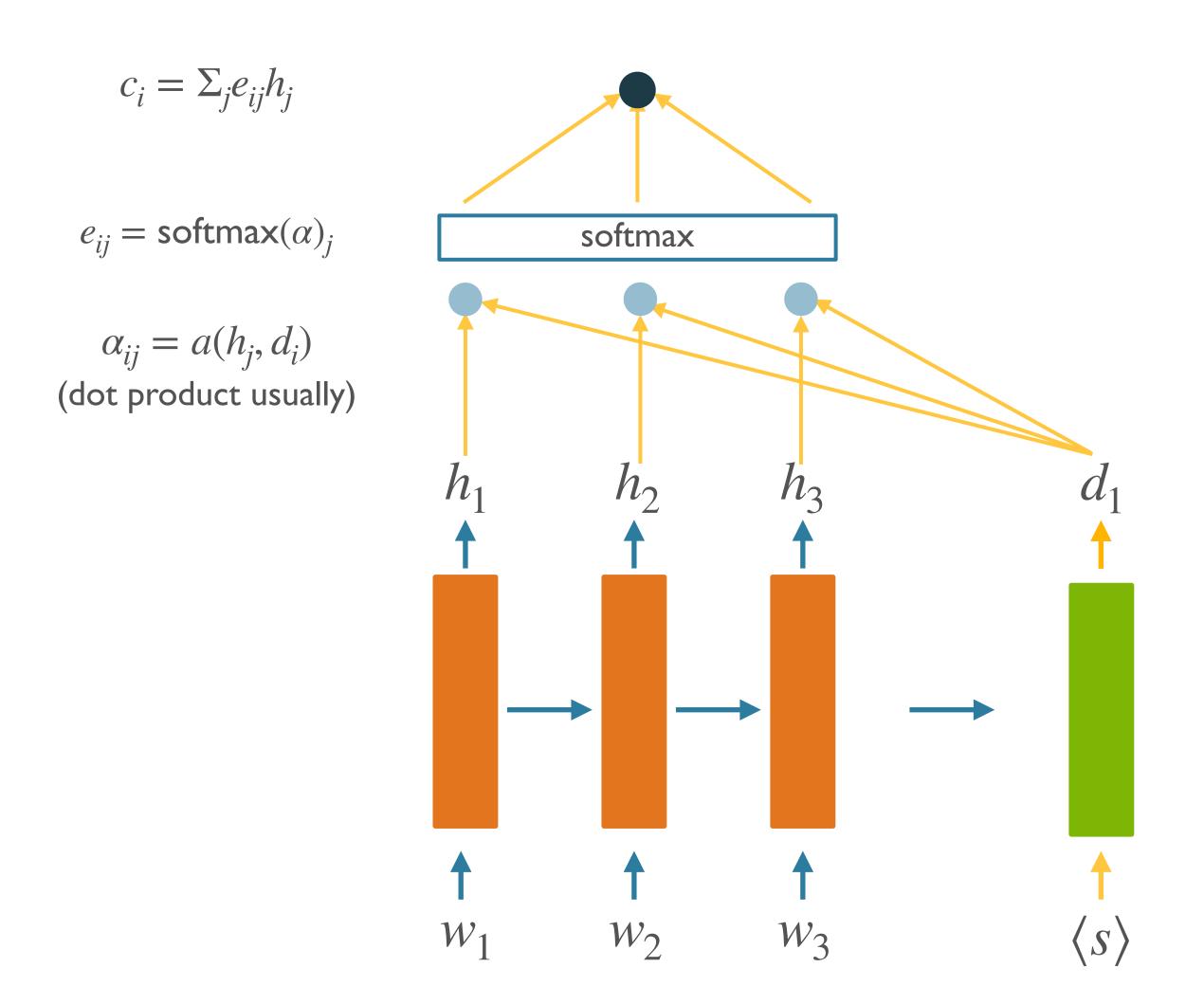


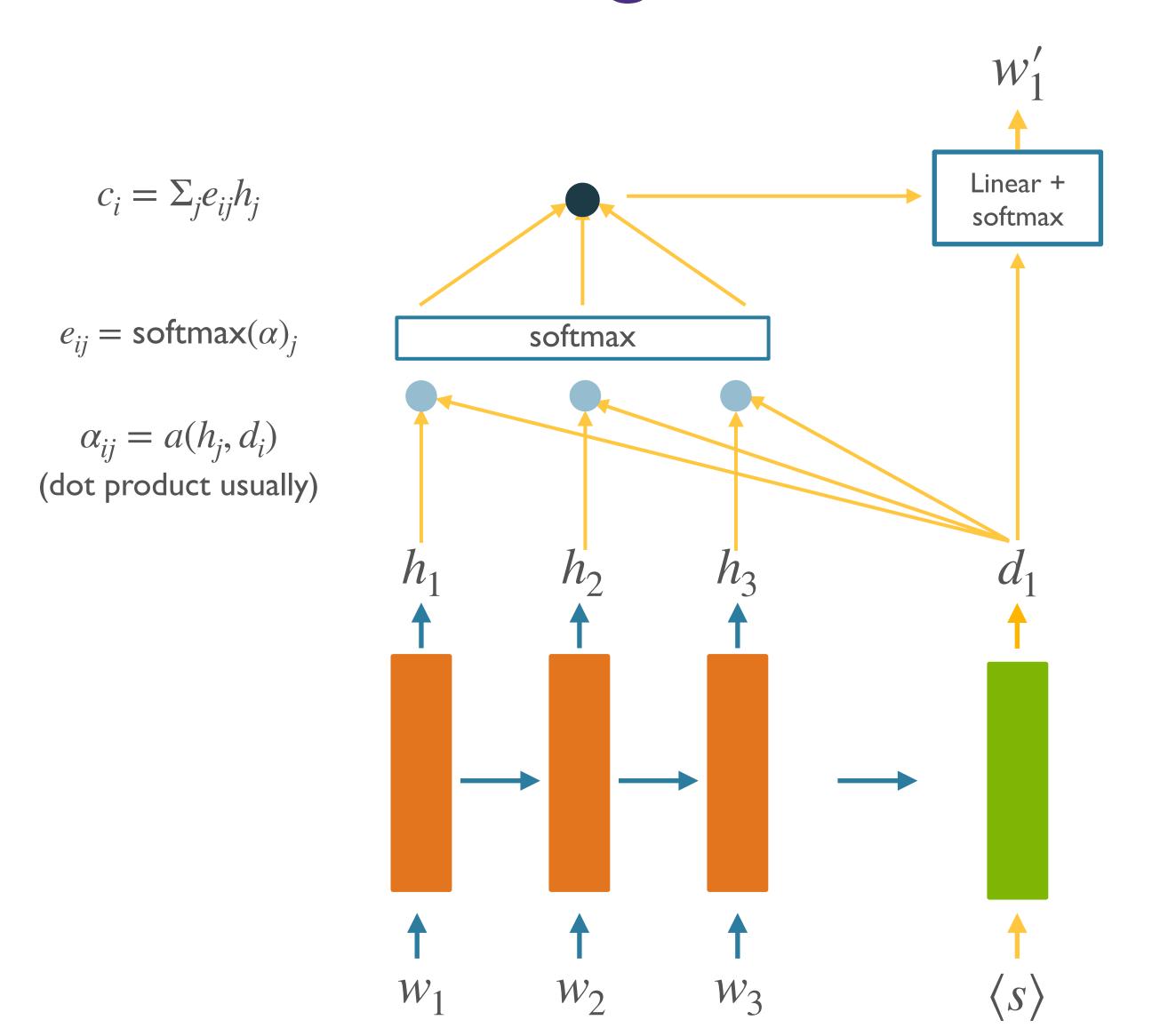


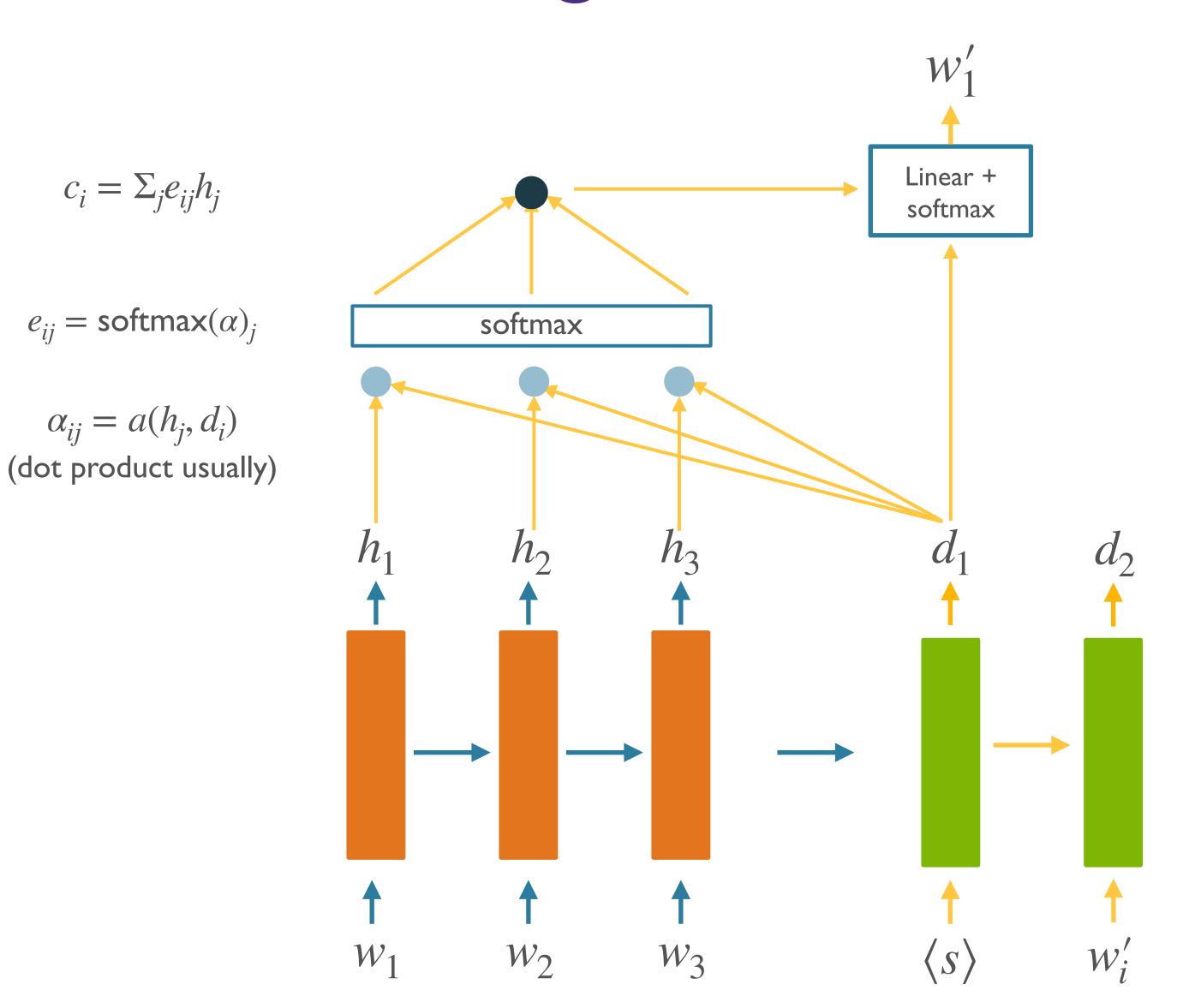












Neural Networks, II

- Transformers
 - Core architecture
 - Pre-training + Fine-tuning Paradigm
- Interpretability / analysis

Lack of Parallelizability

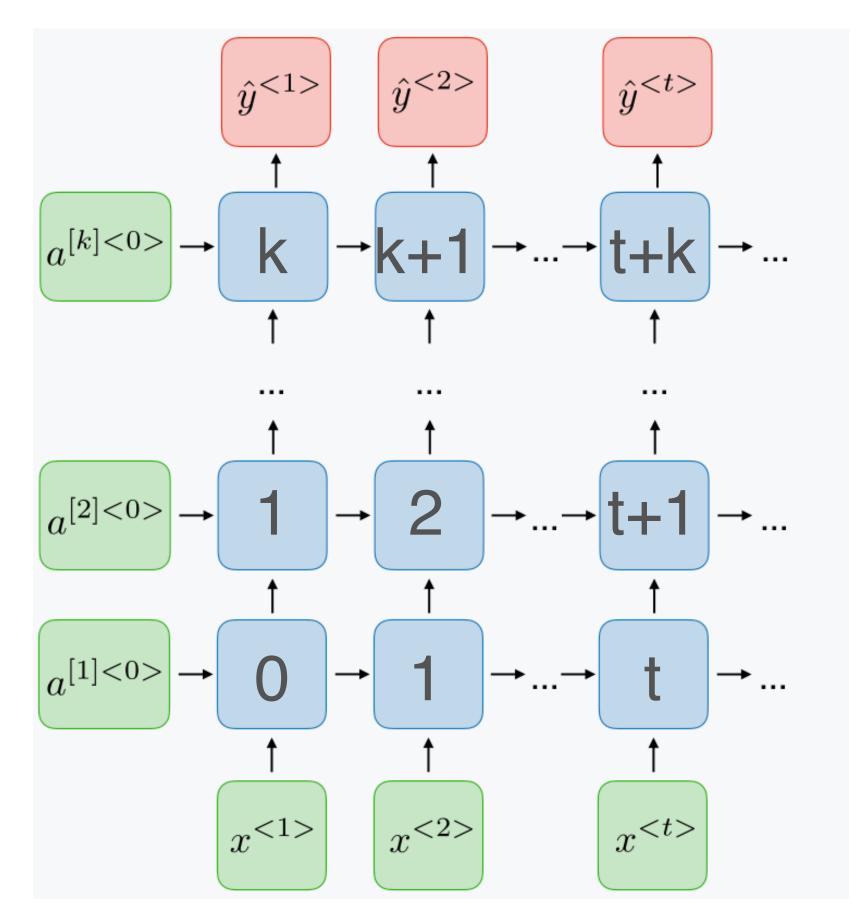
- Modern hardware (e.g. GPUs) are very good at doing independent computations in parallel
- RNNs are inherently serial:
 - Cannot compute future time steps without the past
- Bottleneck that makes scaling up difficult



Students who ... enjoy

Lack of Parallelizability

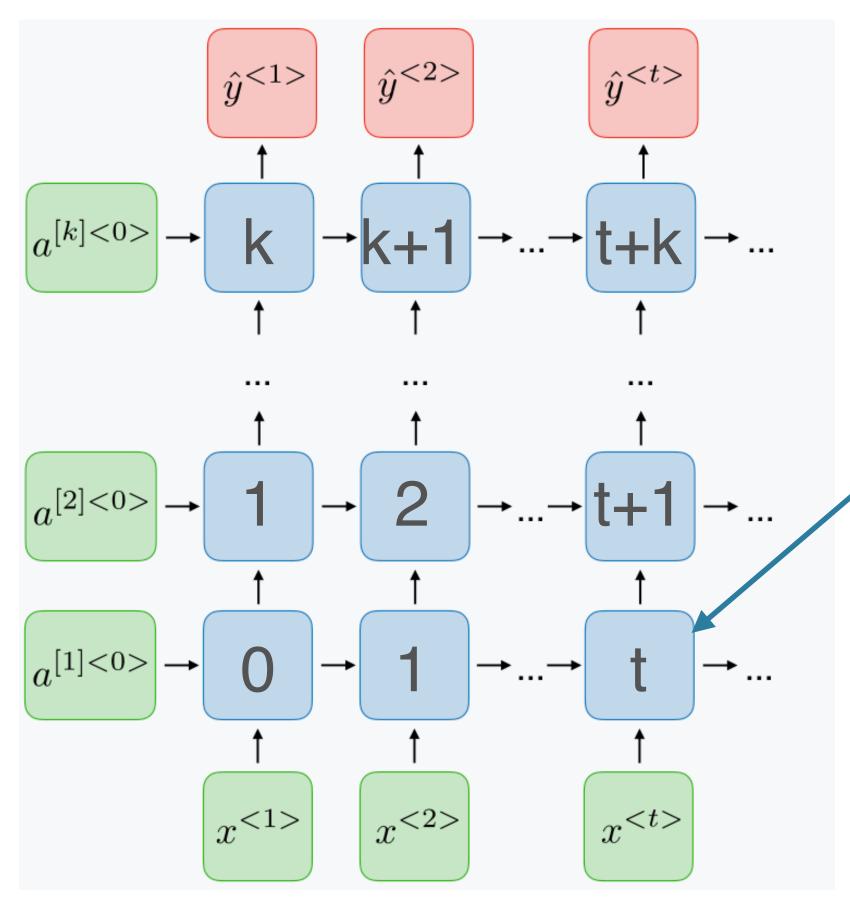
- Modern hardware (e.g. GPUs) are very good at doing independent computations in parallel
- RNNs are inherently serial:
 - Cannot compute future time steps without the past
- Bottleneck that makes scaling up difficult



Students who ... enjoy

Lack of Parallelizability

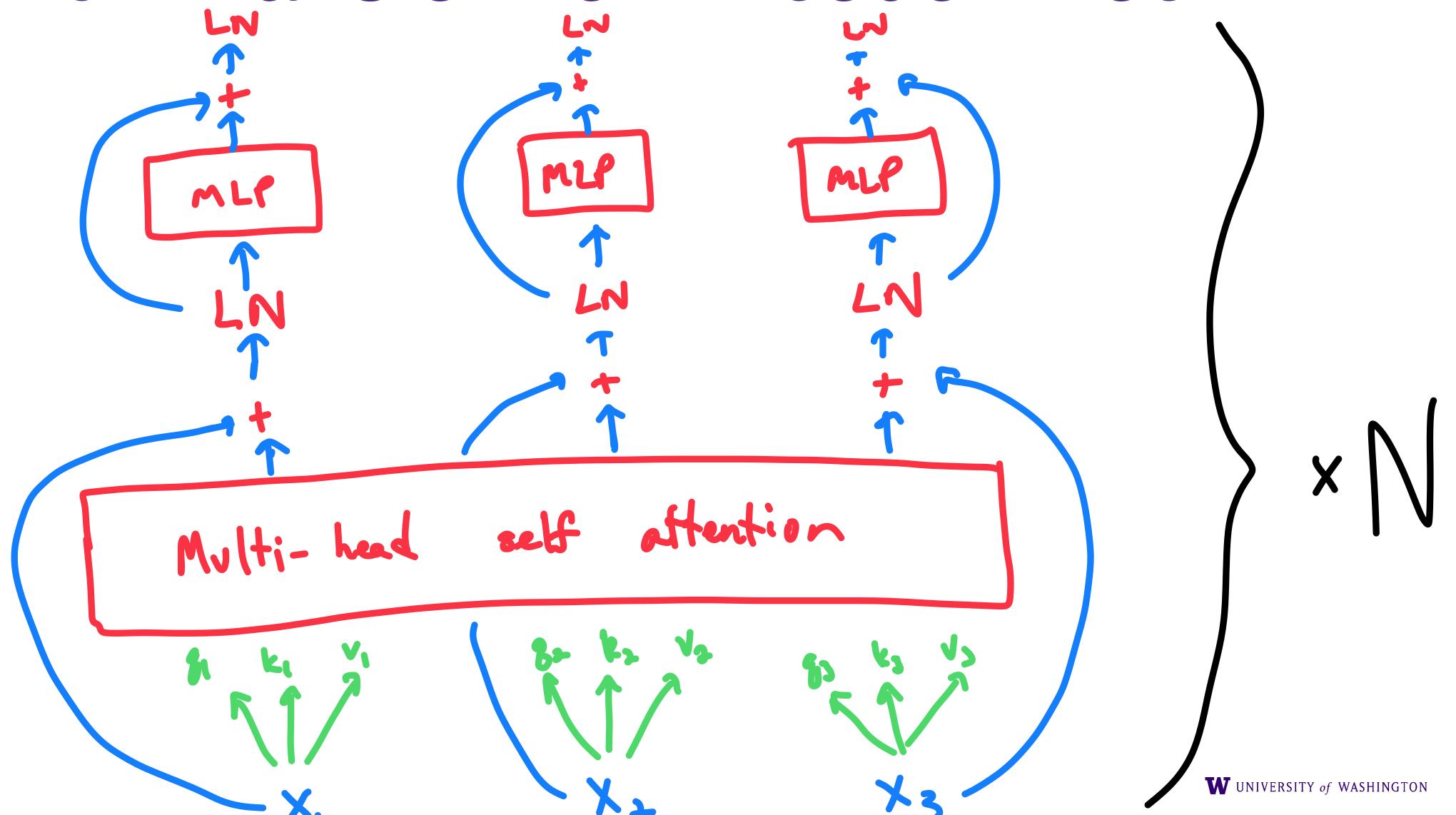
- Modern hardware (e.g. GPUs) are very good at doing independent computations in parallel
- RNNs are inherently serial:
 - Cannot compute future time steps without the past
- Bottleneck that makes scaling up difficult



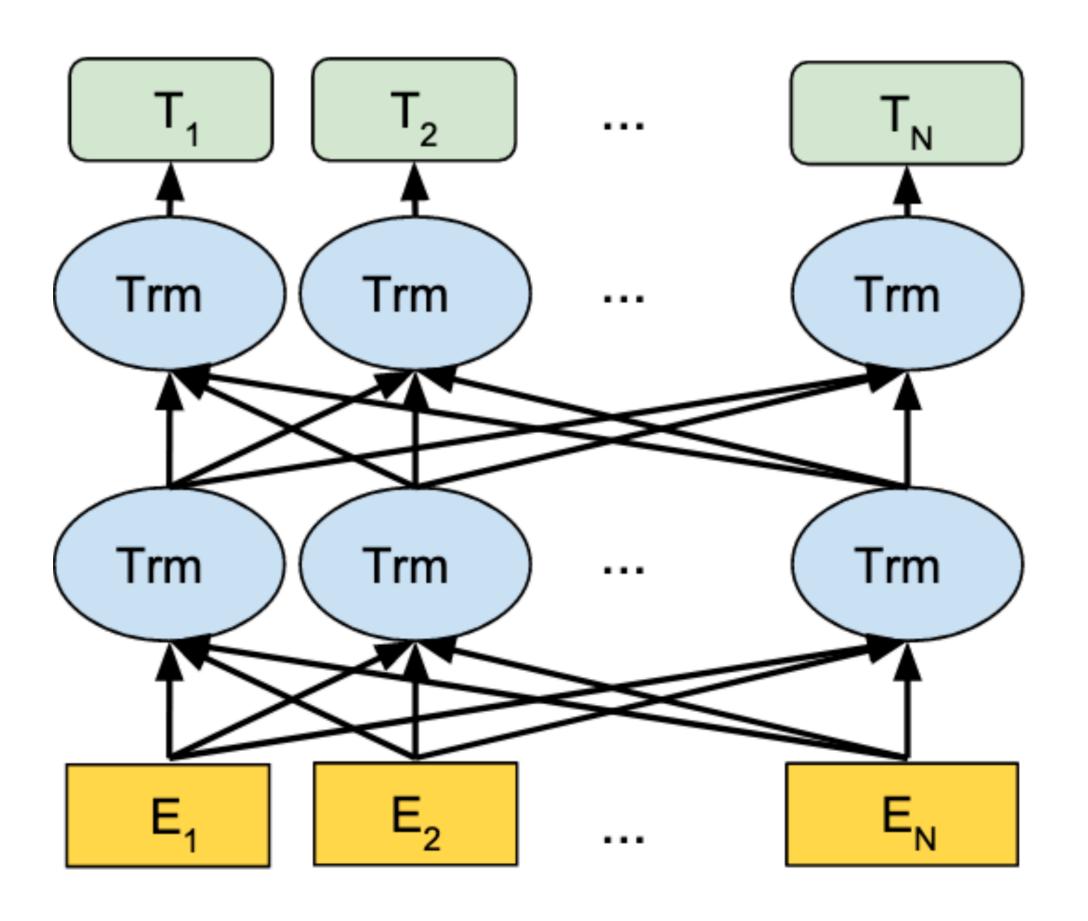
Students who ... enjoy

Number of computation steps required: linear in sequence length

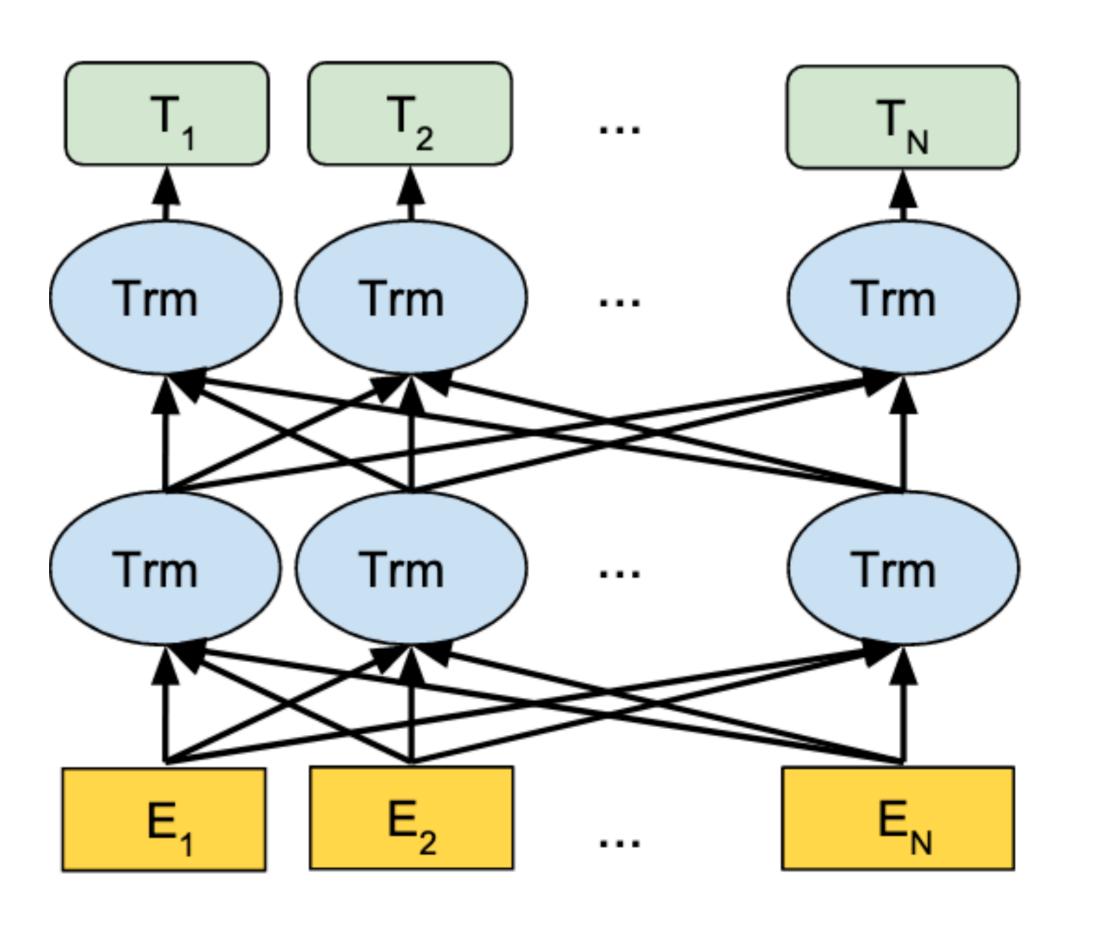
Full Transformer Encoder Block



Transformer: Path Lengths + Parallelism



Transformer: Path Lengths + Parallelism



Path lengths between tokens: 1 [constant, not linear]

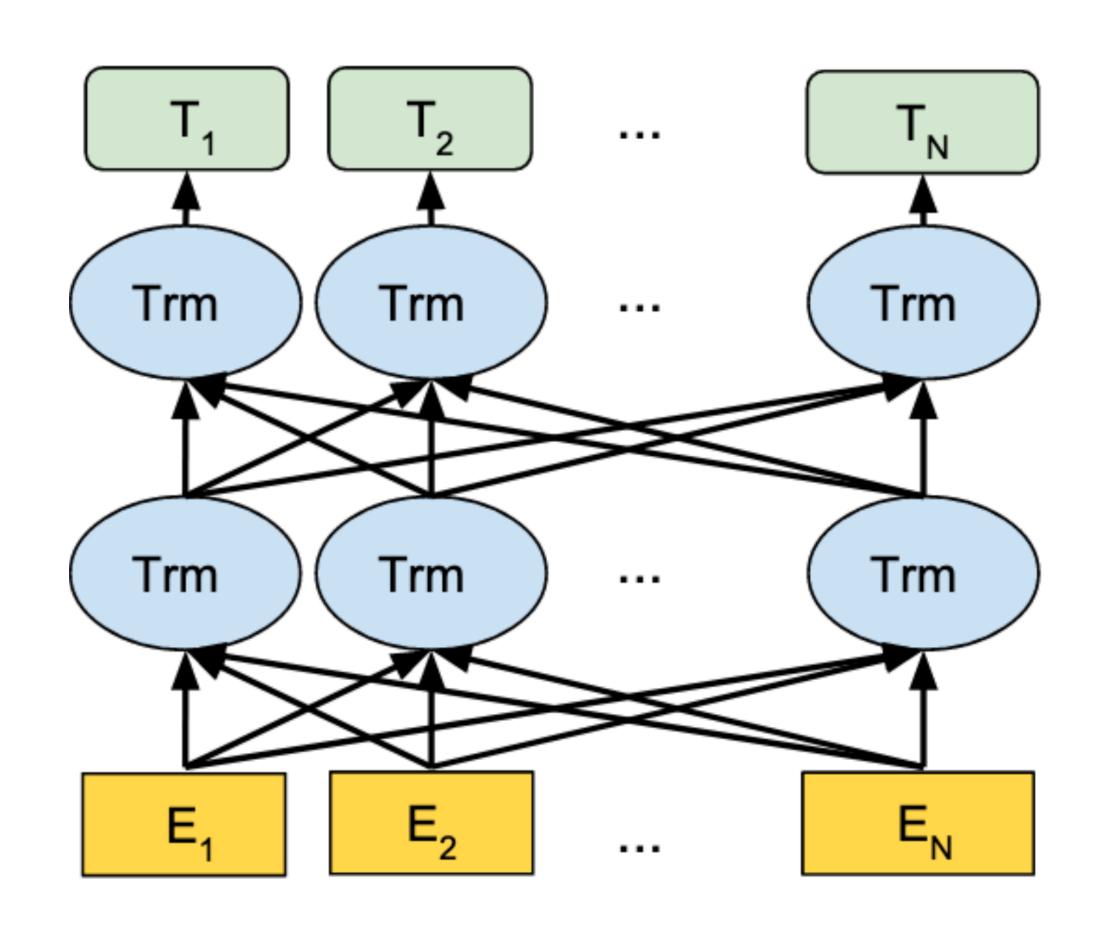
Transformer: Path Lengths + Parallelism

Computation order:

Entire second layer: 1

Entire first layer: 0

Also not linear in sequence length! Can be parallelized.



Path lengths between tokens: 1 [constant, not linear]

Decoder: Masking Out the Future

<\$>

Ceci

pipe

n'

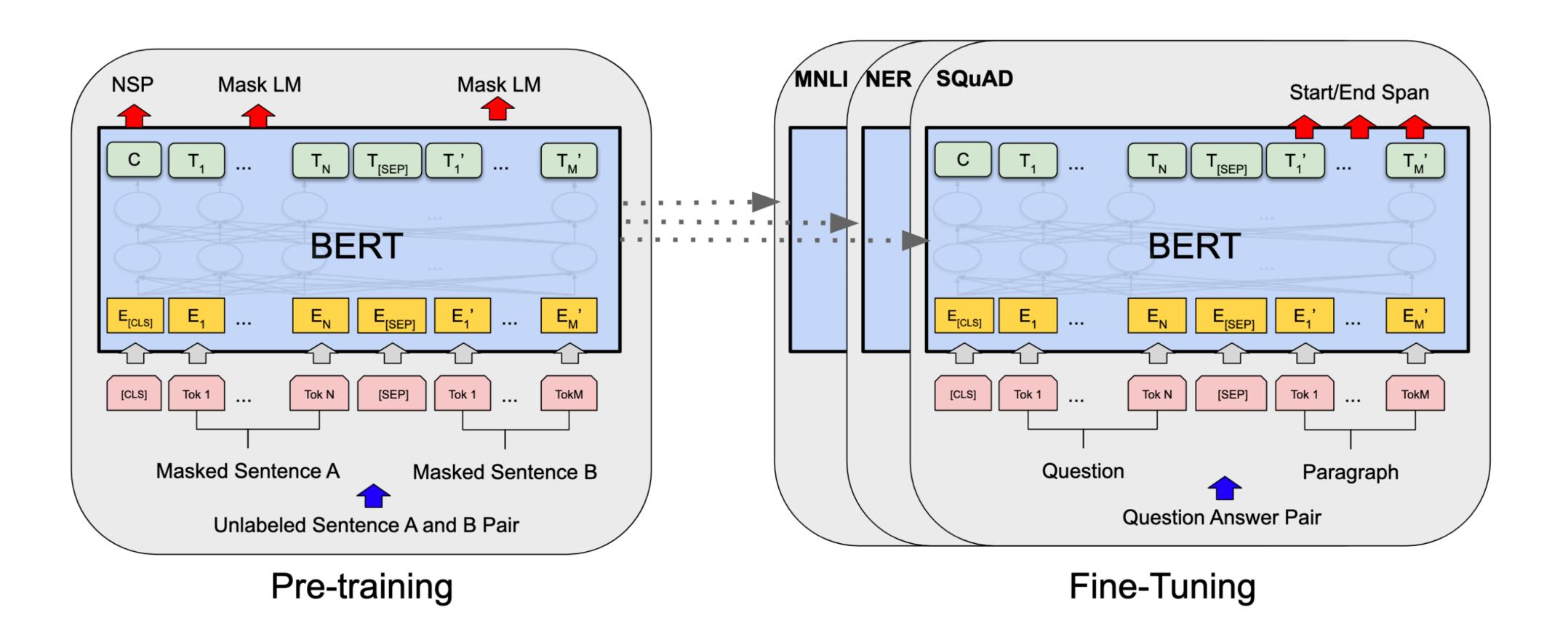
 QK^T : total attention scores

$$\mathsf{mask}_{ij} = \begin{cases} -\infty & j > i \\ 0 & \mathsf{otherwise} \end{cases}$$

$$\mathsf{MaskedAttention}(Q, K, V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + \mathsf{mask}\right)V$$

<s></s>	Ceci	n'	est	pas	une	pipe
0	-inf	-inf	-inf	-inf	-inf	-inf
0	0	-inf	-inf	-inf	-inf	-inf
0	0	0	-inf	-inf	-inf	-inf
0	0	0	0	-inf	-inf	-inf
0	0	0	0	0	-inf	-inf
0	0	0	0	0	0	-inf
0	0	0	0	0	0	0

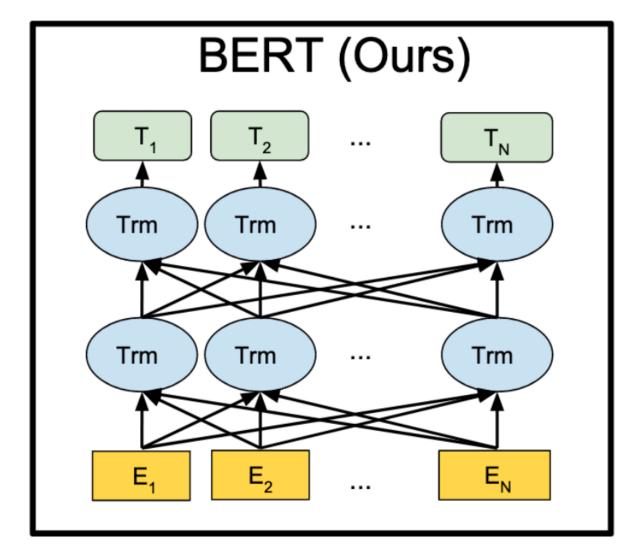
Schematically

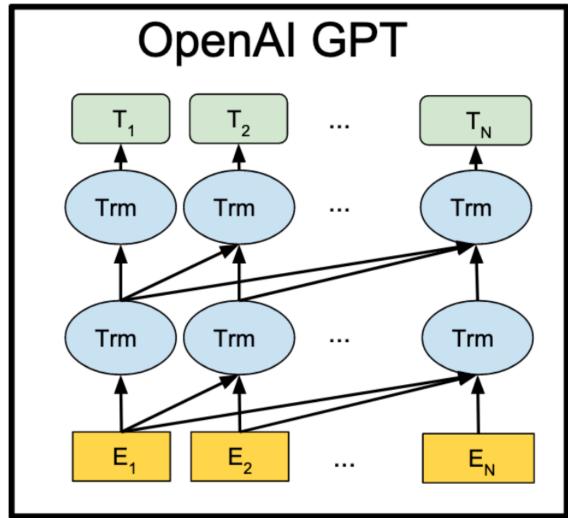


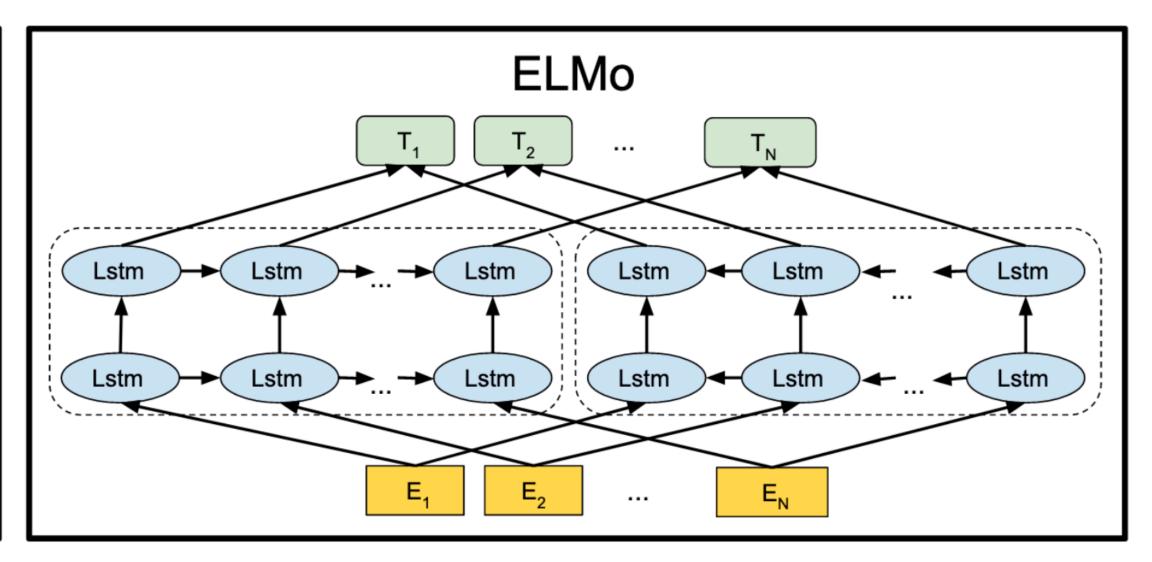
Initial Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Comparison







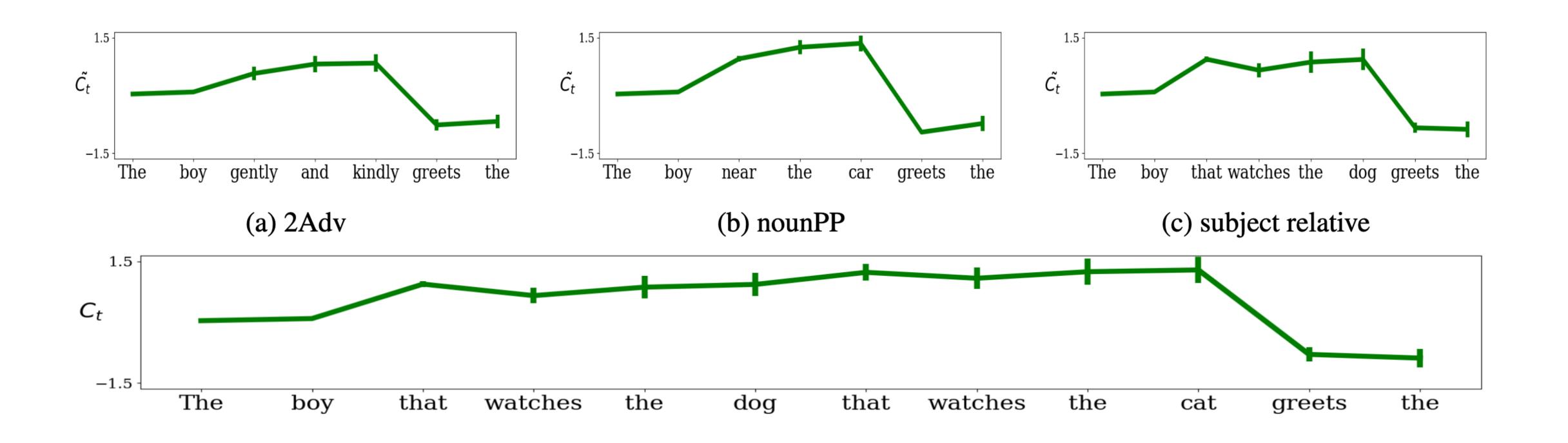
Source: BERT paper

Multilingual Pre-training

- One other main dimension: *mono-* vs *multi-*lingual pre-training
 - Roughly: concatenate (in fancy way) corpora from many languages, then do the same kind of pre-training
 - Much more info from Agatha's lecture on May 22

	Encoder-only	Decoder-only	Encoder-decoder		
English-only *	BERT, RoBERTa, XLNet, ALBERT,	GPT-n	BART		
Multilingual	mBERT, XLM(-R),	BLOOM (HF BigScience), XGLM	mBART, MASS, mT5 W UNIVERSITY of WASHINGTON		

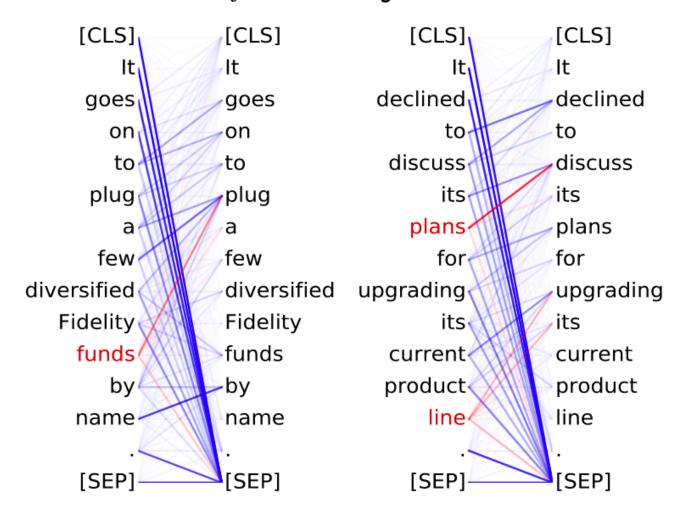
Cell dynamics for a syntax unit



Examples

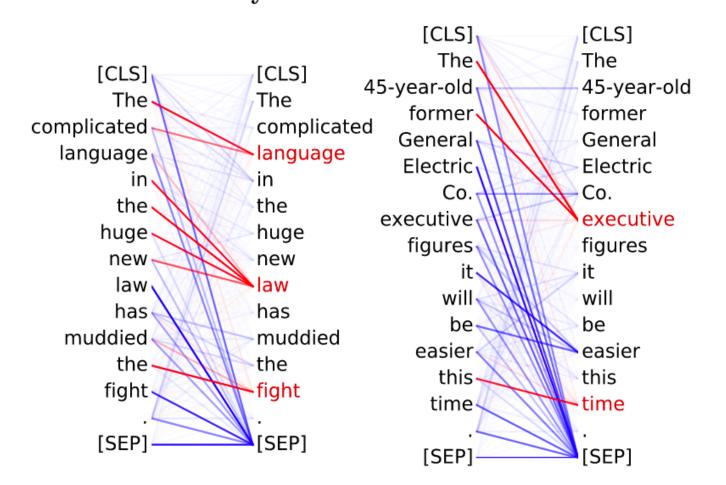
Head 8-10

- **Direct objects** attend to their verbs
- 86.8% accuracy at the dobj relation



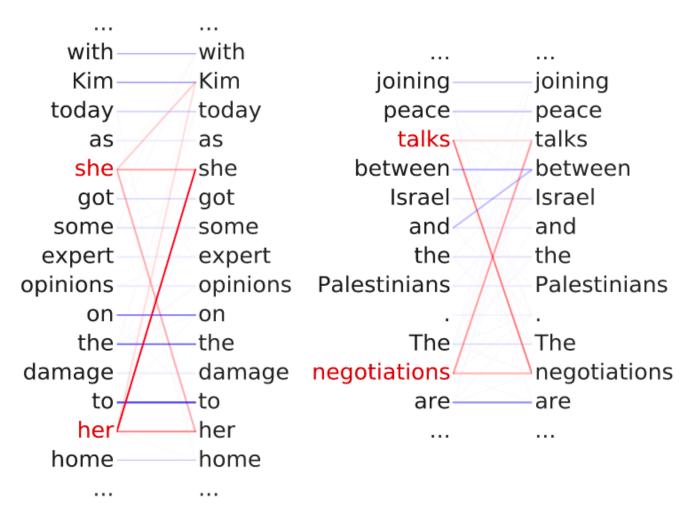
Head 8-11

- **Noun modifiers** (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

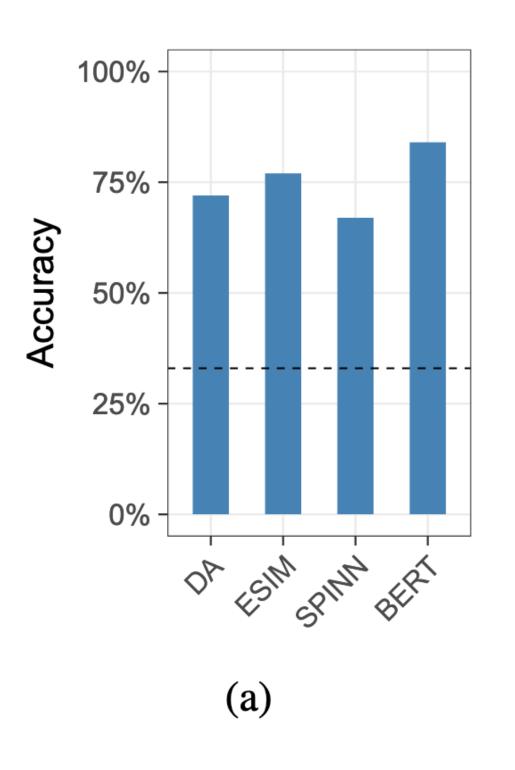


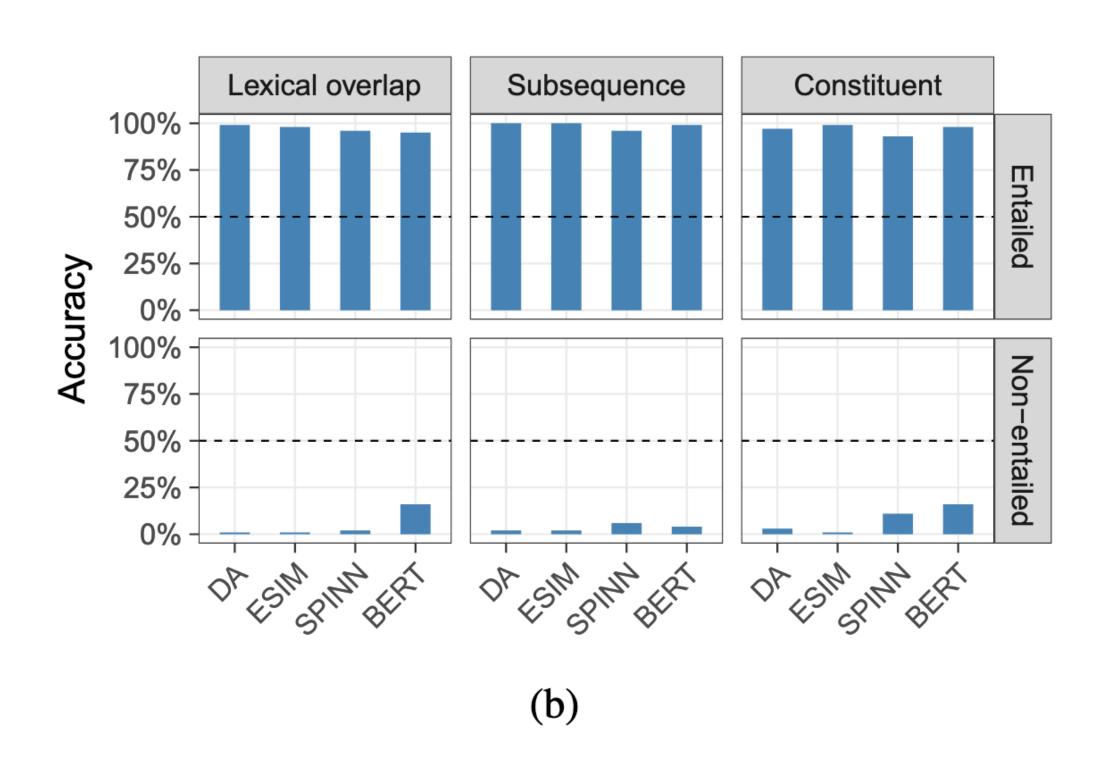
Head 5-4

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a coreferent mention to the head of an antecedent



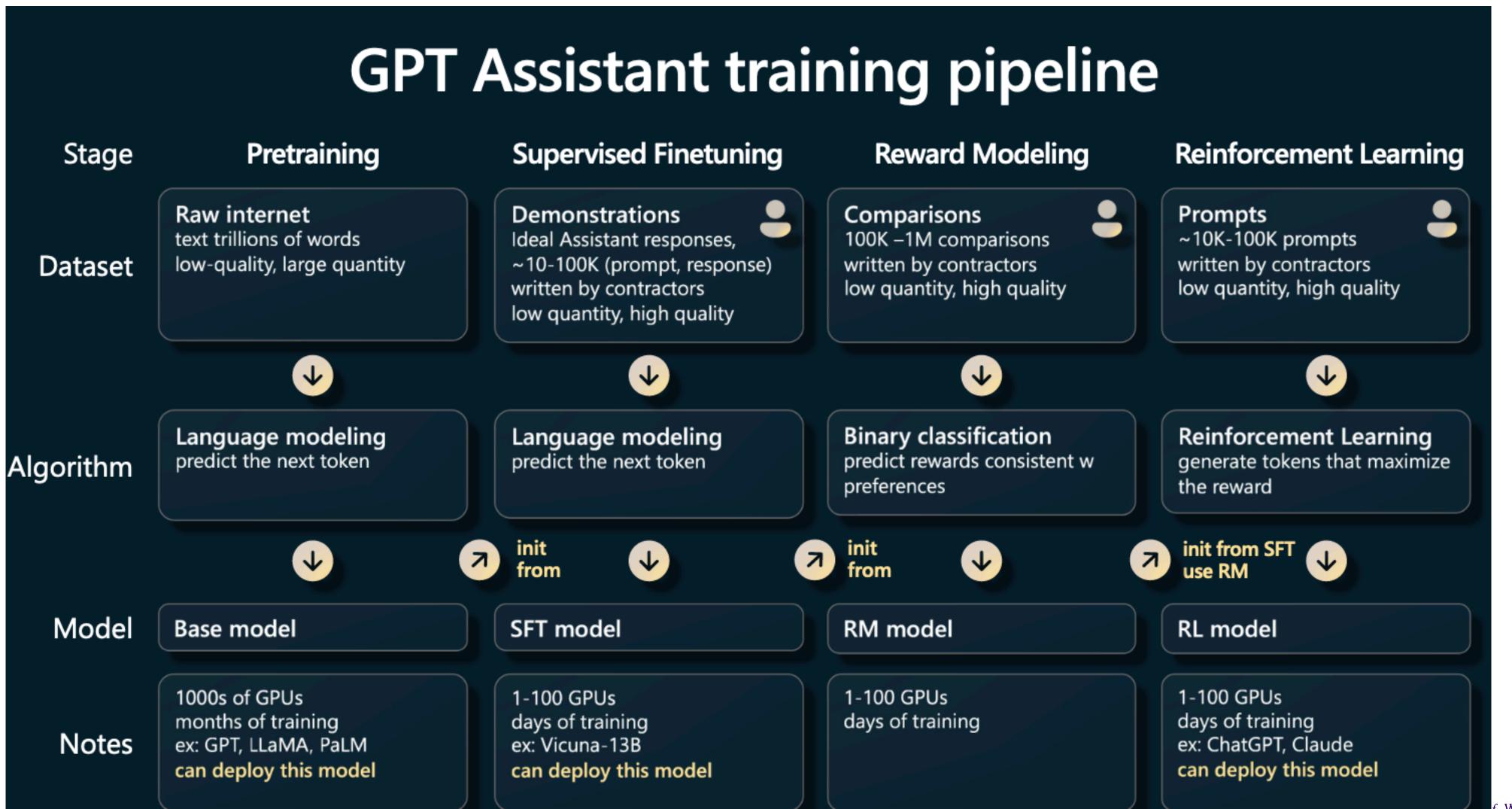
Results





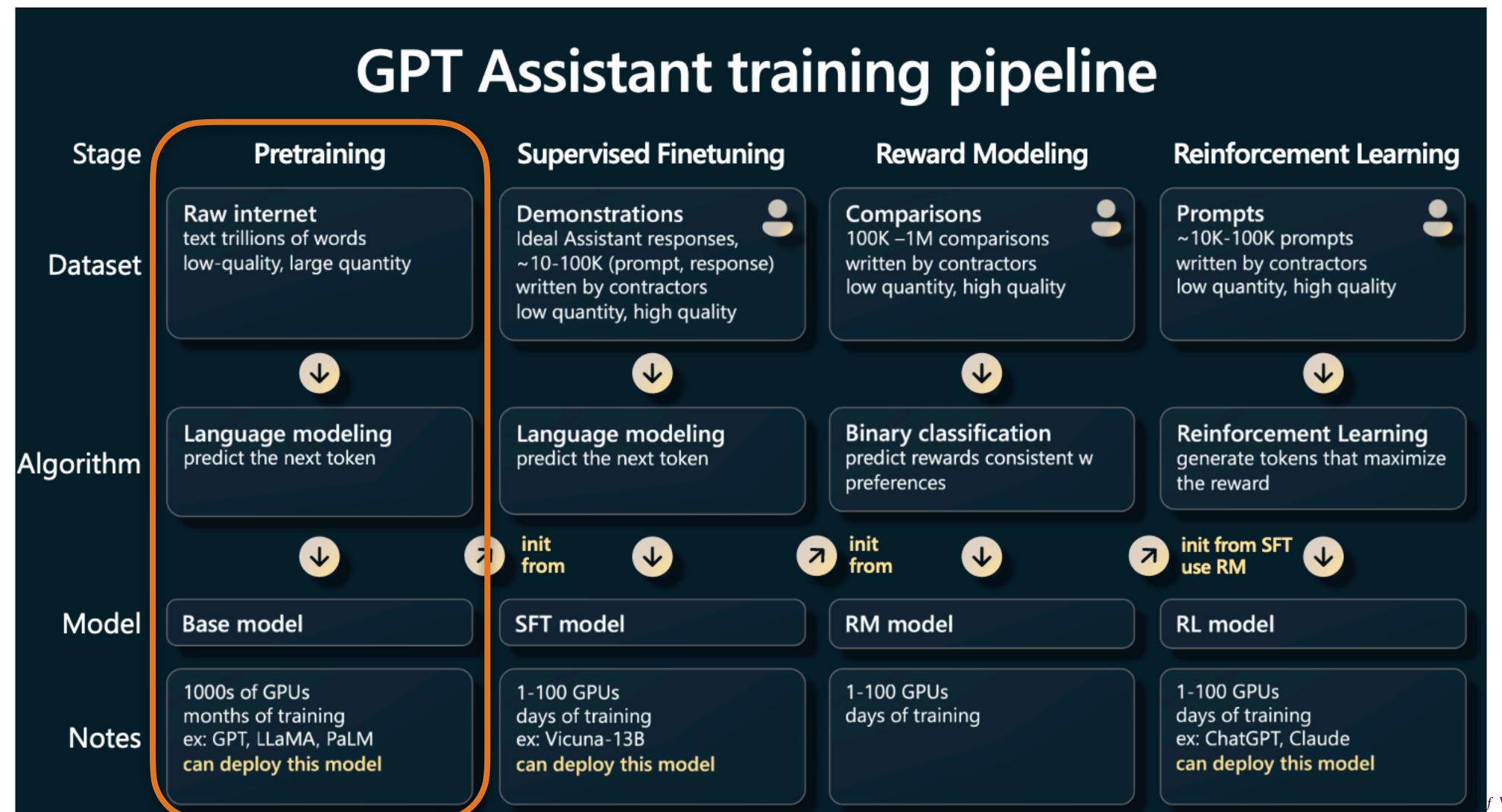
(performance improves if fine-tuned on this challenge set)

From GPT to ChatGPT



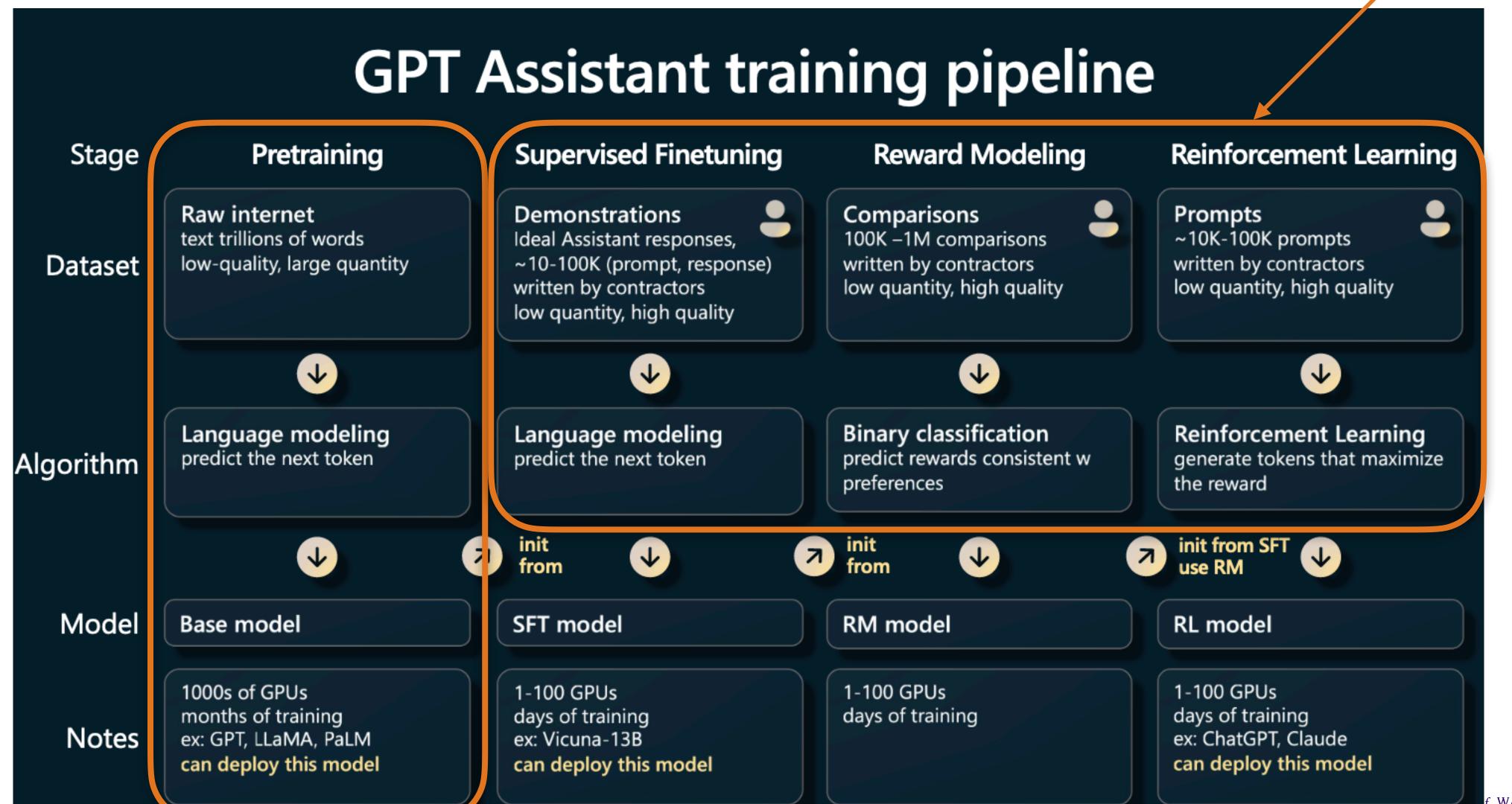
<u>source</u>

From GPT to ChatGPT



<u>source</u>

From GPT to ChatGPT



<u>source</u>

RLHF: Reinforcement Learning

- Take a pretrained LM
 - Prompt it, generate response
 - Feed (prompt, response) to reward model RM
 - Use that reward to update LM
- This is reinforcement learning with the RM playing the role of external environment (provider of rewards)

$$\mathcal{L}(\theta_{\mathsf{LM}}) = \mathbb{E}_{x,\hat{y} \sim P_{\mathsf{LM}}\left(\cdot \mid x; \theta_{\mathsf{LM}}\right)} \left(\mathsf{RM}(x,\hat{y}) - \beta \log \left(\frac{P_{\mathsf{LM}}(\hat{y} \mid x; \theta_{\mathsf{LM}})}{P_{\mathsf{LM}}(\hat{y} \mid x; \theta_{\mathsf{pretrained}})} \right) \right)$$

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

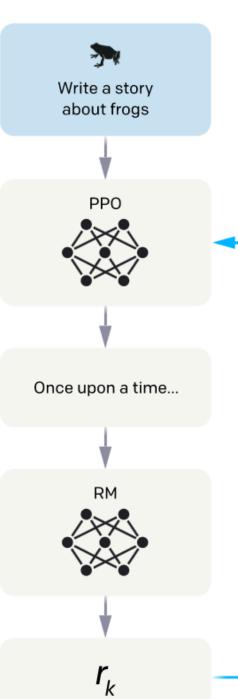
The reward model

The reward is used to update the policy using PPO.

calculates a

reward for

the output.



Special Topics

- Emily M Bender: ChatGP-why
- C.M. Downey: Multilingual NLP

Assignments

- 1: Vocabulary + Data Statement
- 2: Word2Vec (raw numpy)
- 3: Computation graphs (word2vec in edugrad)
- 4: Deep Averaging Network classifier (edugrad)
- 5: Feed-forward language model (edugrad)
- 6: RNN text classifier
- 7: RNN language model
- 8: Seq2Seq + Attention [translation]
- 9: Pre-trained transformer classifier

What's Next?

Learning Outcomes

- One way of operationalizing the goal: you can hopefully now read many/ most new papers at NLP conferences and understand what they're doing
 - Expressions like "we pre-trained a bi-directional LSTM language model on various tasks and then fine-tuned on a standard suite" are now parseable
 - And with deeper / more hands-on familiarity with the models and their architectures, you are in a position to assess new developments as they come (and contribute to them as well!)

Topics Not Covered

- Full suite of "tips and tricks" for training
 - e.g. learning rate schedules
 - Best methods for hyper parameter tuning
- Other architectures sometimes used: convolutional networks, tree-based RNNs, state-space models
- Wide variety of NLP tasks: parsing, QA, toxic language detection, etc.
- Generation: decoding strategies, evaluation
- N.B.: you are now well-positioned to read and learn about all of these on your own!

Where to Learn More

- Where to learn more?
 - Read papers and chase references when confused
 - CMU's course has lots of online materials: http://www.phontron.com/class/nn4nlp2021/
 - Advanced NLP: http://www.phontron.com/class/anlp2024/
 - Stanford CS224U (pre-recorded videos) http://web.stanford.edu/class/cs224u/
 - And CS224N (live lectures) http://web.stanford.edu/class/cs224n/
- NLP Newsletter: https://newsletter.ruder.io/
- ACL Anthology: https://www.aclweb.org/anthology/ [more and more videos too]
- Semantic Scholar / arXiv sanity similar paper searches

General Question Time

Wrapping Up

Course Evaluations

- Course evals are open now through May 31
- Please do fill them out as soon as possible!
 - E.g. right now:)
 - Help me:
 - Improve the course for future iterations
 - Get tenure ;)

Thank You!

- I've learned a lot from you all this quarter!
- Hopefully you're in a better place with regard to neural methods in NLP than when the course started.
- And congrats to everyone for handling such a workload amidst all of the challenges of the wider world. Very awe-inspiring.
- So: thank you, and have a great summer / future!