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Outline
● Overview

● The Maximum Entropy Principle

● Modeling**

● Decoding

● Training**

● Case study
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Modeling
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The Setting
● From the training data, collect (x, y) pairs:
● x in X: observed data
● y in Y: thing to be predicted (e.g., a class in a classification problem)
● Ex: In a text classification task 
● x: a document
● y: the category of the document

● Goal: estimate P(y | x) 
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Basic Idea
● Goal: estimate p(y | x)

● Choose p(x, y) with maximum entropy (or “uncertainty”) subject 
to the constraints (or “evidence”).
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H(p) = − ∑
(x,y)∈X×Y

p(x, y)log p(x, y)



Outline for Modeling
● Feature function:  

● Calculating the expectation of a feature function

● Forms of P(x, y) and P(y | x)

fj(x, y)
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Feature function
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Definition
● A feature function is (usually) a binary-valued function on events: 

● The j corresponds to a (feature, class) pair.  Often:

● Example:
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fj : X × Y → {0,1}

fj(x, y) = 1 iff t is present in x and y = c

fj(x, y) = {1 y = politics and x contains 'war'
0 otherwise



Weights in NB
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f1 f2 … fk
c1  

c2

…

ci



Weights in NB
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f1 f2 … fj
c1 P(f1 |c1) P(f2 |c1) … P(fj | c1)
c2 P(f1 |c2) … … …

… …

ci P(f1 |ci) … … P(fj | ci)

Each cell is a weight for a particular (class, feat) pair. 



Matrix in MaxEnt
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t1 t2 … tk
c1  f1 f2 … fk
c2 fk+1 fk+2 … f2k

… …

ci fk*(i-1)+1 fk*i

Each feature function fj corresponds to a (feat, class) pair.



Weights in MaxEnt
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t1 t2 … tk

c1  λ1
λ2 …

 λk

c2  … … … …
… …

ci
… λki

Each feature function fj has a weight λj.



Feature function summary
● A feature function in MaxEnt corresponds to a (feat, class) pair.

● The number of feature functions in MaxEnt is approximately |C| 
* |V|.

● A MaxEnt trainer learns the weights for the feature functions.
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The outline for modeling
● Feature function:  

● Calculating the expectation of a feature function

● The forms of P(x,y) and P(y | x)

fj(x, y)
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Expected Return
● Ex1:
● Flip a coin 
● if it’s heads, you win 100 dollars
● if it’s tails, you lose 50 dollars
● What is the expected return?
    P(X=H) * 100 + P(X=T) * (-50)

● Ex2:
● If it is xi, you will receive vi dollars?
● What is the expected return?
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∑
i

P(X = xi)vi



Calculating the expectation  
of a function

17



Empirical expectation
● Denoted as: 

● Ex1:  Toss a coin four times and get H, T, H, and H.  

● The average return: (100-50+100+100)/4 = 62.5

● Empirical distribution: 

● Empirical expectation:

        ¾ * 100 + ¼ * (-50) = 62.5

p̃(x)
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p̃(X = h) = 3/4; p̃(X = t) = 1/4



Model Expectation
● Ex1:   Toss a coin four times and get H, T, H, and H. 

● A model:
● Assume a fair coin
● P(X=H) = P(X=T) = 1/2 

●  Model expectation:
       1/2 * 100 + 1/2 * (-50) = 25
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Some Notation
● Training data: S

● Empirical distribution: 

● Model: 

● jth feature function: 

●
Empirical expectation of :  
 

●
Model expectation of : 

p̃(x, y)
p(x, y)

fj(x, y)
fj ∑

(x,y)

p̃(x, y)fj(x, y)

fj ∑
(x,y)

p(x, y)fj(x, y)
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Empirical expectation**
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An example
● Training data: 

      x1  c1   t1  t2   t3

      x2  c2   t1  t4  

      x3  c1   t3 t4

      x4  c3   t1 t3
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t1 t2 t3 t4
c1 1 1 2 1
c2 1 0 0 1
c3 1 0 1 0

Raw counts



An example
● Training data: 

      x1  c1   t1  t2   t3

      x2  c2   t1  t4  

      x3  c1   t3 t4

      x4  c3   t1 t3
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t1 t2 t3 t4

c1 1/4 1/4 2/4 1/4

c2 1/4 0/4 0/4 1/4

c3 1/4 0/4 1/4 0/4

Empirical expectation



Calculating empirical expectation
Let N be the number of training instances

for each instance x in the training data
    let y be the true class label of x
    for each feature t in x
         empirical_expect [t] [y] += 1/N
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Model expectation**
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An example
● Suppose P(y | xi) = 1/3

● Training data: 

      x1  c1   t1  t2   t3

      x2  c2   t1  t4  

      x3  c1   t4

      x4  c3   t1 t3
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t1 t2 t3 t4

c1 3/3 1/3 2/3 2/3

c2 3/3 1/3 2/3 2/3

c3 3/3 1/3 2/3 2/3

“Raw” counts
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An example
● Suppose P(y | xi) = 1/3

● Training data: 

      x1  c1   t1  t2   t3

      x2  c2   t1  t4  

      x3  c1   t4

      x4  c3   t1 t3
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t1 t2 t3 t4

c1 3/12 1/12 2/12 2/12

c2 3/12 1/12 2/12 2/12

c3 3/12 1/12 2/12 2/12

Model expectation
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Calculating model expectation
Let N be the number of training instances

for each instance x in the training data

    calculate P(y | x) for every y in Y

    for each feature t in x

        for each y in Y         

           model_expect [t] [y] += 1/N * P(y | x)
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Empirical expectation vs. 
 model expectation
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Outline for modeling
● Feature function: 

● Calculating the expectation of a feature function

● The forms of P(x, y) and P(y | x)**

fj(x, y)
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Constraints
● Model expectation = Empirical expectation 
 
 
 
 

● Why impose such constraints?
● MaxEnt principle: Model what is known
● Maximize the conditional likelihood: see Slides #24-28 in (Klein and Manning, 

2003)
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Ep fj = Ep̃ fj = dj



The conditional likelihood (**)
● Given the data (X,Y), the conditional likelihood is a function of the 

parameters ¸
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The effect of adding constraints 
● Bring the distribution closer to the data

● Bring the distribution further away from uniform

● Lower the entropy

● Raise the likelihood of data
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Restating the problem
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The task: find p* s.t. 

where

Objective function:  H(p)

Constraints: 



Using Lagrange multipliers (**)
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Minimize A(p): 



Questions

● Is P empty?
● Does p* exist?
● Is p* unique?
● What is the form of p*? 
● How can we find p*?
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What is the form of p*?  
(Ratnaparkhi, 1997)
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                Furthermore, p* is unique.



Two equivalent forms
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Modeling summary
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- it is unique        
- it maximizes the conditional likelihood of the training data 
       - it is a model in Q, where 
 

Goal: find p* in P, which maximizes H(p).

It can be proved that, when p* exists,



Outline
● Overview

● The Maximum Entropy Principle

● Modeling**

● Decoding

● Training**

● Case study: POS tagging
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Decoding

41



Decoding
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Procedure for calculating P(y | x) 
Z=0;

for each y in Y

   sum = default_weight_for_class_y;

   for each feature t present in x

       sum +=  weight for (t, y);

   result[y] = exp(sum);

   Z += result[y];

 for each y in Y

    P(y | x) = result[y] / Z;
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MaxEnt summary so far
● Idea: choose the p*  that maximizes entropy while satisfying all the constraints.
● p* is also the model within a model family that maximizes the conditional 

likelihood of the training data.

● MaxEnt handles overlapping features well.

● In general, MaxEnt achieves good performance on many NLP tasks.

● Next: Training: many methods (e.g., GIS, IIS, L-BFGS).
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