MaxEnt (II): Modeling and Decoding

LING 572
Advanced Statistical Methods for NLP
January 30, 2020

Twitter Confession

I am the author behind this now viral tweet. I own my mistake, and now I rock it. #largeboulder

San Miguel Sheriff @SheriffAlert · Jan 27

Large boulder the size of a small boulder is completely blocking east-bound lane Highway 145 mm78 at Silverpick Rd. Please use caution and watch for emergency vehicles in the area.

Outline

- Overview
- The Maximum Entropy Principle

- Modeling**
- Decoding

Training**

Case study

Modeling

The Setting

- From the training data, collect (x, y) pairs:
 - x in X: observed data
 - y in Y: thing to be predicted (e.g., a class in a classification problem)
 - Ex: In a text classification task
 - x: a document
 - y: the category of the document

Goal: estimate P(y | x)

Basic Idea

Goal: estimate p(y | x)

 Choose p(x, y) with maximum entropy (or "uncertainty") subject to the constraints (or "evidence").

$$H(p) = -\sum_{(x,y)\in X\times Y} p(x,y)\log p(x,y)$$

Outline for Modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

Forms of P(x, y) and P(y I x)

Feature function

Definition

A feature function is (usually) a binary-valued function on events:

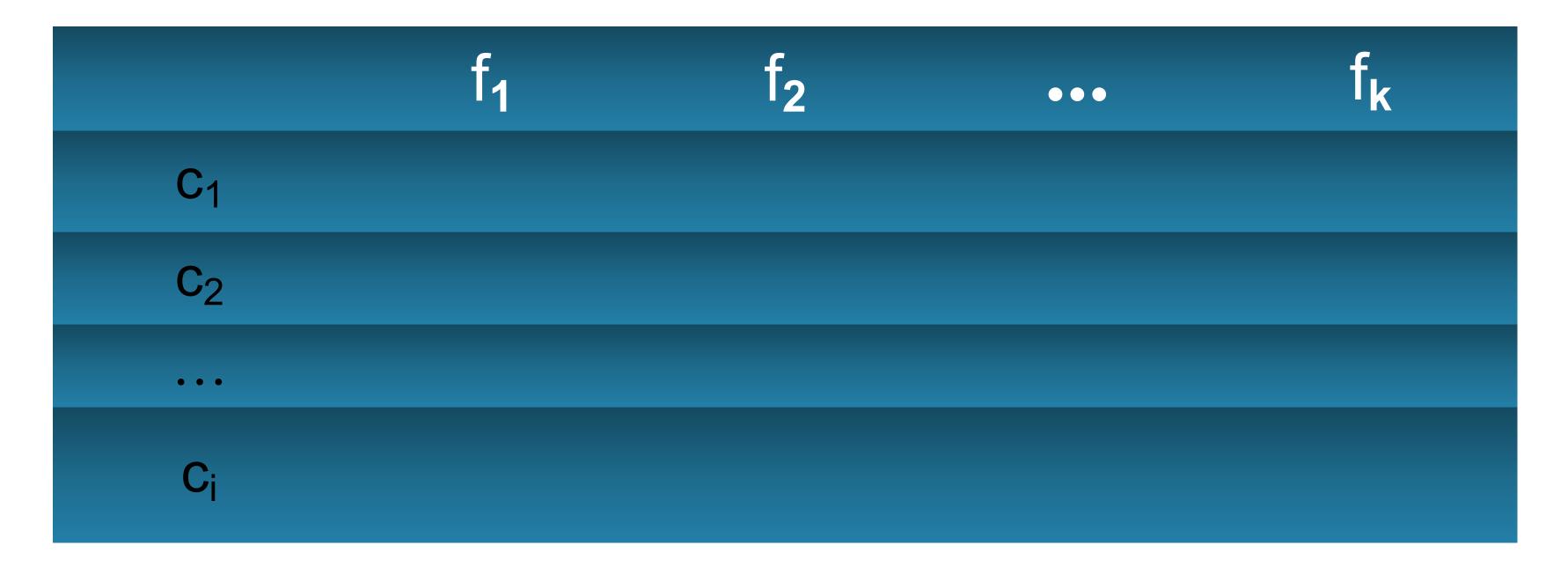
$$f_j: X \times Y \rightarrow \{0,1\}$$

• The j corresponds to a (feature, class) pair. Often:

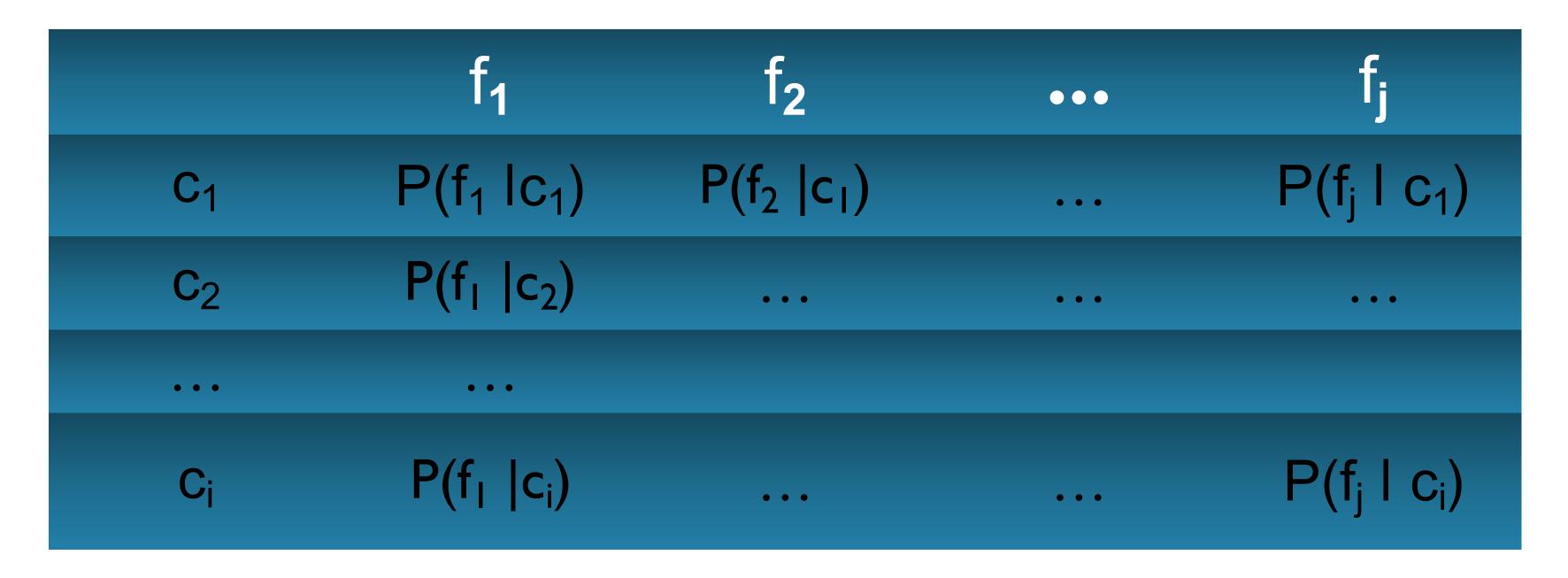
$$f_j(x, y) = 1$$
 iff t is present in x and $y = c$

• Example: $f_j(x, y) = \begin{cases} 1 & y = \text{politics and } x \text{ contains 'war'} \\ 0 & \text{otherwise} \end{cases}$

Weights in NB

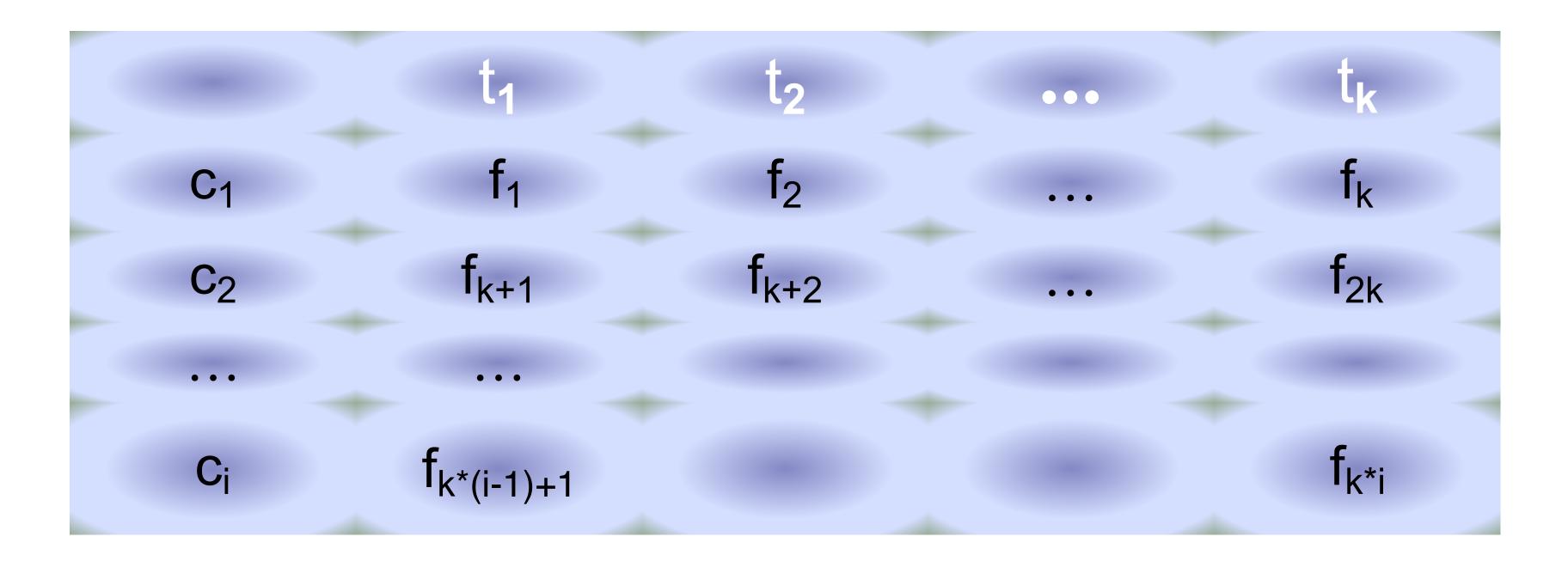


Weights in NB



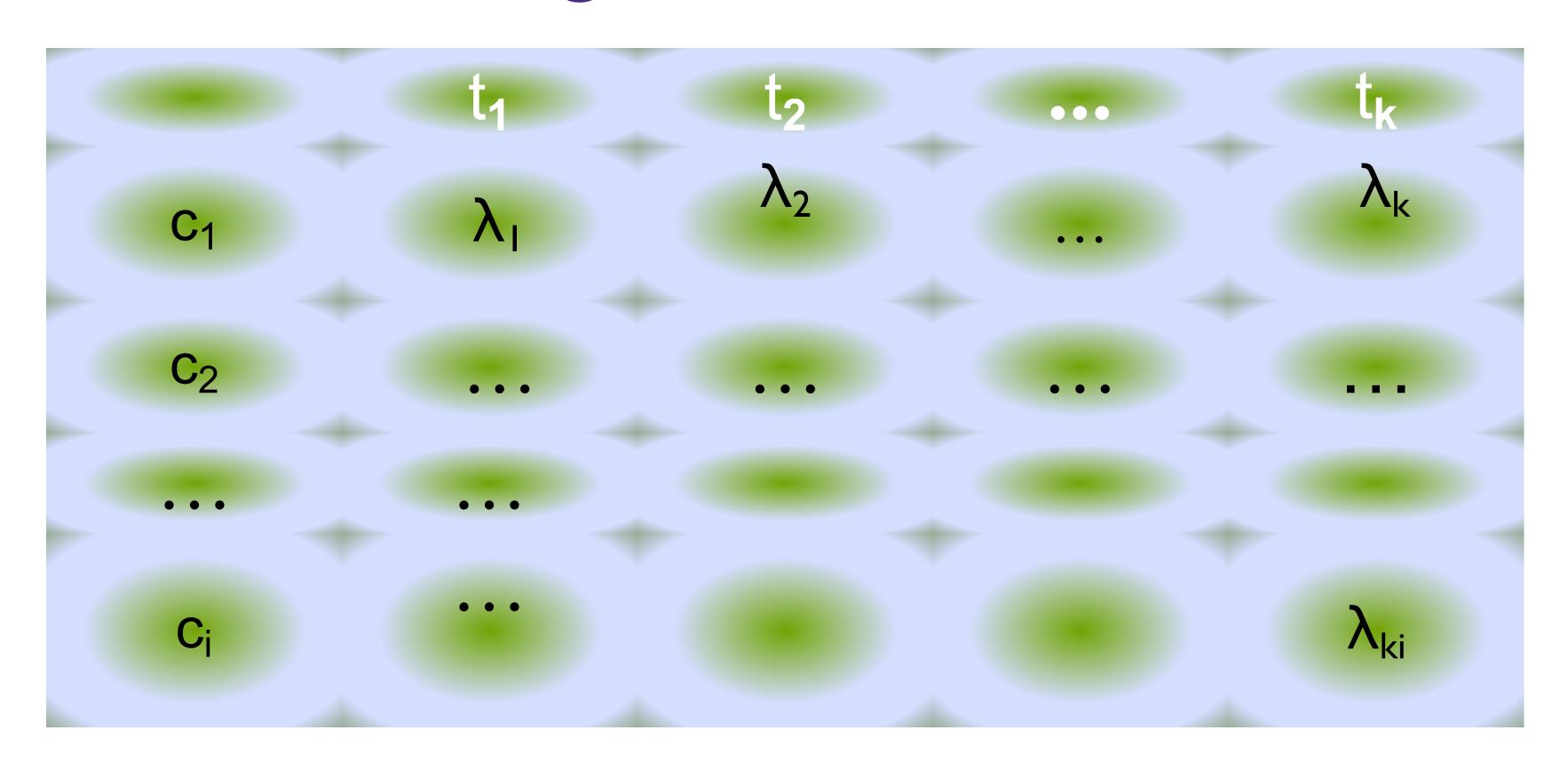
Each cell is a weight for a particular (class, feat) pair.

Matrix in MaxEnt



Each feature function f_j corresponds to a (feat, class) pair.

Weights in MaxEnt



Each feature function f_j has a weight λ_j .

Feature function summary

• A feature function in MaxEnt corresponds to a (feat, class) pair.

 The number of feature functions in MaxEnt is approximately ICI * IVI.

A MaxEnt trainer learns the weights for the feature functions.

The outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

The forms of P(x,y) and P(y I x)

Expected Return

- Ex1:
 - Flip a coin
 - if it's heads, you win 100 dollars
 - if it's tails, you lose 50 dollars
 - What is the expected return?
 P(X=H) * 100 + P(X=T) * (-50)

- Ex2:
 - If it is x_i, you will receive v_i dollars?
 - What is the expected return?

$$\sum_{i} P(X = x_i) v_i$$

Calculating the expectation of a function

Let P(X = x) be a distribution of a random variable X.

Let f(x) be a function of x.

Let $E_p(f)$ be the expectation of f(x) based on P(x).

$$E_P(f) = \sum_i P(X = x_i) f(x_i)$$

$$\sum_{i} P(X = x_i) v_i$$

Empirical expectation

- Denoted as: $\tilde{p}(x)$
- Ex1: Toss a coin four times and get H, T, H, and H.
- The average return: $(100-50+100+100)/4 \neq 62.5$
- Empirical distribution: $\tilde{p}(X = h) = 3/4; \tilde{p}(X = t) = 1/4$
- Empirical expectation:

Model Expectation

• Ex1: Toss a coin four times and get H, T, H, and H.

- A model:
 - Assume a fair coin
 - P(X=H) = P(X=T) = 1/2

Model expectation:

$$1/2 * 100 + 1/2 * (-50) = 25$$

Some Notation

- Training data: S
- Empirical distribution: $\tilde{p}(x, y)$
- Model: p(x, y)
- jth feature function: $f_j(x, y)$

Empirical expectation of
$$f_j$$
:
$$\sum_{(x,y)} \tilde{p}(x,y) f_j(x,y)$$

Model expectation of
$$f_j$$
:
$$\sum_{(x,y)} p(x,y)f_j(x,y)$$

Empirical expectation**

$$E_{\widetilde{p}}f_{j} = \sum_{x \in X, y \in Y} \widetilde{p}(x, y) f_{j}(x, y)$$

$$= \sum_{x \in X, y \in Y} \widetilde{p}(x) \widetilde{p}(y \mid x) f_j(x, y) = \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y)$$

$$= \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} \widetilde{p}(y \mid x_i) f_j(x_i, y)$$

$$= \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

An example

Training data:

$$\sum_{i=1}^{N} f_j(x_i, y_i)$$

	tl	t2	t3	t4
сl			2	
c2		0	0	
c 3		0		0

$$E_{\widetilde{p}}f_j = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

An example

Training data:

$$E_{\widetilde{p}}f_j = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

Empirical expectation

	tl	t2	t3	t4
сI	1/4	1/4	2/4	1/4
c2	1/4	0/4	0/4	1/4
c3	1/4	0/4	1/4	0/4

Calculating empirical expectation

Let N be the number of training instances

for each instance x in the training data

let y be the true class label of x

for each feature t in x

empirical_expect [t] [y] += 1/N

Model expectation**

$$E_{p}f_{j} = \sum_{x \in X, y \in Y} p(x, y) f_{j}(x, y)$$

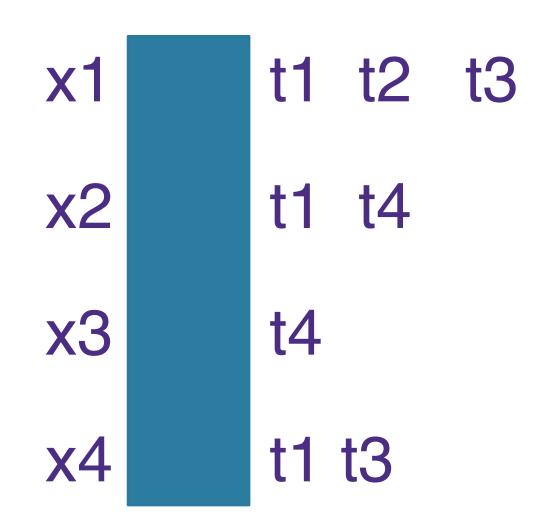
$$= \sum_{x \in X, y \in Y} p(x)p(y|x)f_j(x,y) \approx \sum_{x \in X, y \in Y} \widetilde{p}(x)p(y|x)f_j(x,y)$$

$$= \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y) \qquad = \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_i) f_j(x_i, y)$$

An example

- Suppose $P(y \mid x_i) = 1/3$
- Training data:



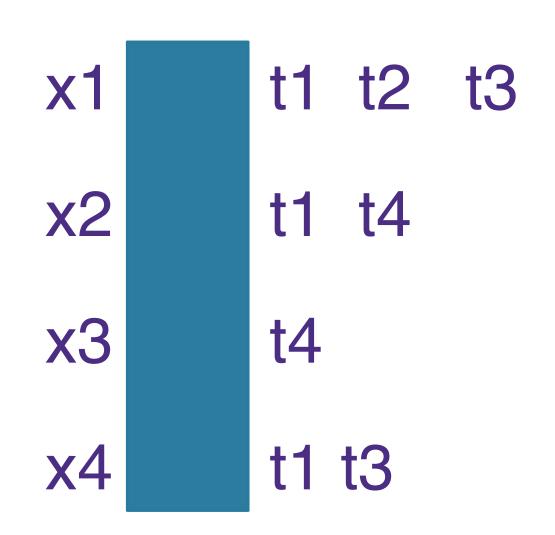
"Raw" counts

	tl	t2	t3	t4
сI	3/3	1/3	2/3	2/3
c 2	3/3	1/3	2/3	2/3
c3	3/3	1/3	2/3	2/3

$$E_p f_j = \frac{1}{N} \left[\sum_{i=1}^N \sum_{y \in Y} p(y \mid x_i) f_j(x_i, y) \right]$$

An example

- Suppose $P(y \mid x_i) = 1/3$
- Training data:



Model expectation

	tl	t2	t3	t4
сI	3/12	1/12	2/12	2/12
c2	3/12	1/12	2/12	2/12
c3	3/12	1/12	2/12	2/12

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Calculating model expectation

Let N be the number of training instances

for each instance x in the training data

calculate P(y I x) for every y in Y

for each feature t in x

for each y in Y

 $model_expect[t][y] += 1/N * P(y | x)$

$$E_{p}f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Empirical expectation vs. model expectation

$$E_{\widetilde{p}}f_j = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

$$E_p f_j = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_i) f_j(x_i, y)$$

Outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

The forms of P(x, y) and P(y I x)**

Constraints

Model expectation = Empirical expectation

$$E_p f_j = E_{\tilde{p}} f_j = d_j$$

- Why impose such constraints?
 - MaxEnt principle: Model what is known
 - Maximize the conditional likelihood: see Slides #24-28 in (Klein and Manning, 2003)

The conditional likelihood (**)

• Given the data (X,Y), the conditional likelihood is a function of the parameters ,

$$log P(Y|X,\lambda)$$

$$= log \prod_{(x,y)\in(X,Y)} P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{\sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}$$

$$= \sum_{(x,y)\in(X,Y)} (log e^{\sum_{j} \lambda_{j} f_{j}(x,y)} - log \sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)})$$

 $= \dots$

The effect of adding constraints

Bring the distribution closer to the data

Bring the distribution further away from uniform

Lower the entropy

Raise the likelihood of data

Restating the problem

The task: find p* s.t.

$$p^* = \underset{p \in P}{\operatorname{arg\,max}} H(p)$$

where

$$P = \{ p \mid E_p f_j = E_{\widetilde{p}} f_j, j = \{1, ..., k\} \}$$

Objective function: H(p)

Constraints:

$$\{E_p f_j = E_{\widetilde{p}} f_j = d_j, j = \{1, ..., k\}\}$$

Using Lagrange multipliers (**)

Minimize A(p):

$$A(p) = -H(p) - \sum_{j=1}^{k} \lambda_j (E_p f_j - d_j) - \lambda_0 (\sum_{x, y} p(x, y) - 1)$$

$$A'(p) = 0$$

$$\Rightarrow \frac{\delta\left(\sum_{x,y} p(x,y) \ln p(x,y) - \sum_{j=1}^{k} \lambda_j \left(\left(\sum_{x,y} p(x,y) f_j(x,y)\right) - d_j\right) - \lambda_0 \left(\sum_{x,y} p(x,y) - 1\right)\right)}{\delta p(x,y)} = 0$$

$$\Rightarrow 1 + \ln p(x, y) - \sum_{j=1}^{k} \lambda_j f_j(x, y) - \lambda_0 = 0$$

$$\Rightarrow \ln p(x,y) = (\sum_{j=1}^{k} \lambda_j f_j(x,y)) + \lambda_0 - 1$$

$$\Rightarrow p(x,y) = e^{\sum_{j=1}^{k} \lambda_j f_j(x,y) + \lambda_0 - 1} = e^{\sum_{j=1}^{k} \lambda_j f_j(x,y) + \lambda_0 - 1}$$

$$\Rightarrow p(x,y) = \frac{e^{\sum_{j=1}^{k} \lambda_{j} f_{j}(x,y)}}{Z} \quad where \quad Z = e^{1-\lambda_{0}}$$

Questions

$$p^* = \mathop{\rm arg\,max}_{p \in P} H(p)$$
 where
$$P = \{p \mid E_p f_j = E_{\widetilde{p}} f_j, j = \{1, ..., k\}\}$$

- Is P empty?
- Does p* exist?
- Is p* unique?
- What is the form of p*?
- How can we find p*?

What is the form of p*? (Ratnaparkhi, 1997)

$$P = \{p \mid E_p f_j = E_{\widetilde{p}} f_j, j = \{1, ..., k\}\}$$

$$Q = \{ p \mid p(x, y) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x, y)}, \alpha_j > 0 \}$$

Theorem: if
$$p^* \in P \cap Q$$
 then $p^* = \arg\max_{p \in P} H(p)$

Furthermore, p* is unique.

Two equivalent forms

$$p(x,y) = \pi \prod_{j=1}^k \alpha_j^{f_j(x,y)}$$

$$p(x,y) = \frac{e^{\sum_{j=1}^{k} \lambda_j f_j(x,y)}}{Z}$$

$$\pi = \frac{1}{Z} \quad \lambda_j = \ln \alpha_j$$

Modeling summary

Goal: find p* in P, which maximizes H(p).

$$P = \{ p \mid E_p f_j = E_{\widetilde{p}} f_j, j = \{1, ..., k\} \}$$

It can be proved that, when p* exists,

- it is unique
- it maximizes the conditional likelihood of the training data
 - it is a model in Q, where

$$Q = \{ p \mid p(x) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x)}, \alpha_j > 0 \}$$

Outline

- Overview
- The Maximum Entropy Principle

- Modeling**
- Decoding

Training**

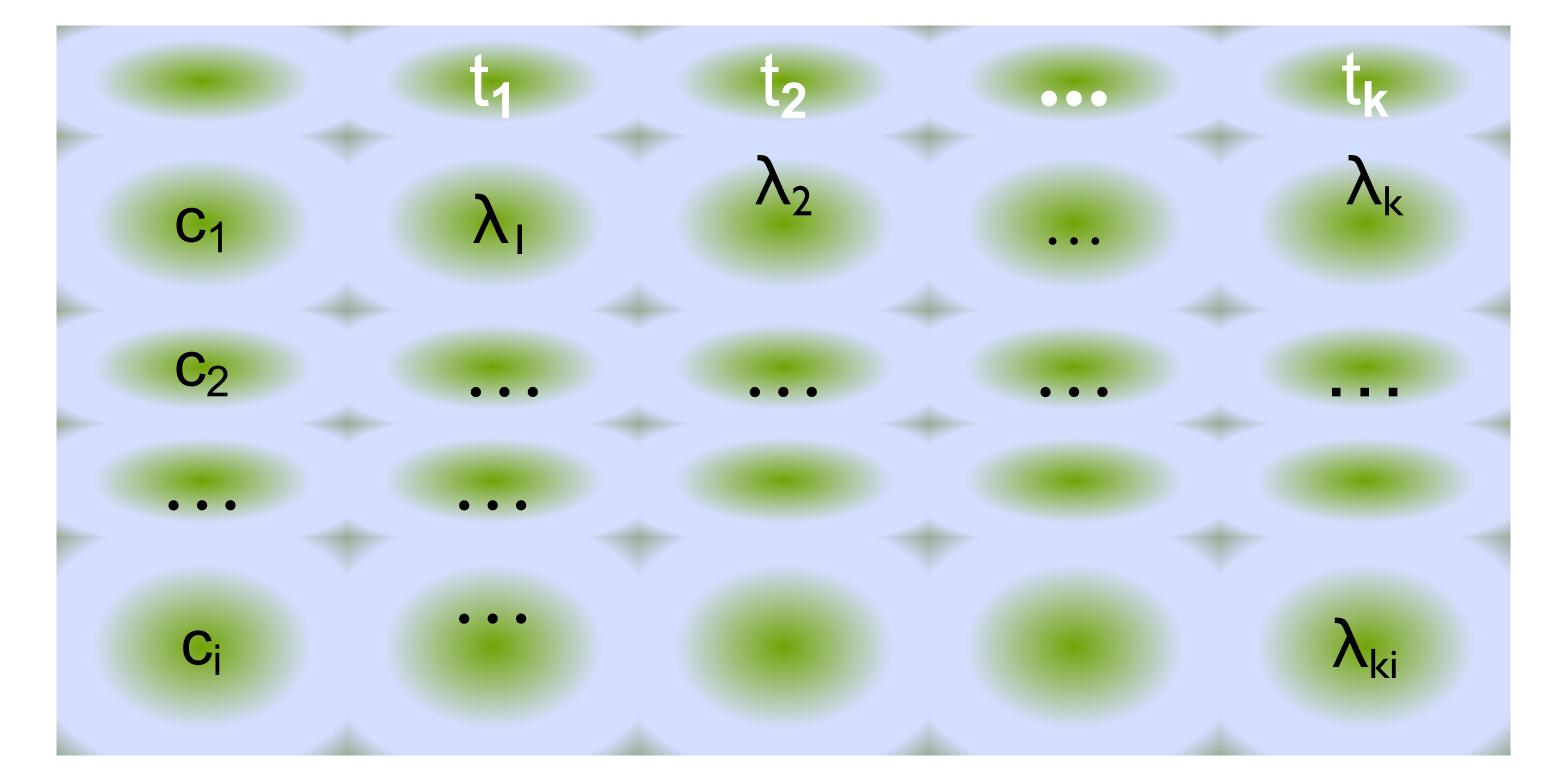
Case study: POS tagging

Decoding

Decoding
$$p(y \mid x) = \frac{e^{\sum_{j=1}^{k} \lambda_{j} f_{j}(x,y)}}{Z}$$

$$t_{1} \qquad t_{2} \qquad \cdots$$

Z is the normalizer.



Procedure for calculating P(y I x)

```
Z=0;
for each y in Y
 sum = default_weight_for_class_y;
 for each feature t present in x
    sum += weight for (t, y);
 result[y] = exp(sum);
 Z += result[y];
for each y in Y
  P(y | x) = result[y] / Z;
```

MaxEnt summary so far

- Idea: choose the p* that maximizes entropy while satisfying all the constraints.
- p* is also the model within a model family that maximizes the conditional likelihood of the training data.
- MaxEnt handles overlapping features well.

- In general, MaxEnt achieves good performance on many NLP tasks.
- Next: Training: many methods (e.g., GIS, IIS, L-BFGS).