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MaxkEnt in NLP

e [he maximum entropy principle has a long history.

e The MaxEnt algorithm was introduced to the NLP field by Berger et. al.
(1996).

e Used in many NLP tasks: Tagging, Parsing, PP attachment, ...



Readings & Comments

e Several readings:
e (Berger, 1996), (Ratnaparkhi, 1997)
e (Klein & Manning, 2003): Tutorial
e Note: Some of these are very ‘dense’
e Don’t spend huge amount of time on every detalil
e Take a first pass before class, review after lecture

e (Going forward:
e Jechniques more complex
e (Goal: Understand basic model, concepts
e Training is complex; we’ll discuss, but not implement
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Notation

WVe use this one
\ Input Output Pair

Berger et al 1996 X y (X, Y)
Ratnaparkhi 1997 b a X
Ratnaparkhi 1996 h t (h, t)

Kilein and Manning 2003 d C (d, c)
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Overview
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Joint vs. Conditional models

e (iven training data {(x,y)}, we want to build a model to predict y for new x’s. For each model, we
need to estimate the parameters L.

e Joint (aka generative) models estimate P(x,y) by maximizing the likelihood: P(X,YIu)
e EX: n-gram models, HMM, Naive Bayes, PCFG
e Choosing weights is trivial: just use relative frequencies.

e (Conditional (aka discriminative) models estimate P(y | x) by maximizing the conditional likelihood:
P(Y 1 X, )

e EXx: MaxEnt, SVM, CRF, etc.
e (Computing weights is more complex.
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Naive Bayes Model

Assumption: each f; is conditionally independent from
fi given C.



The conditional independence assumption

fr, and f, are conditionally independent given c:

P(fnIc, f,) =P(f,1cC)

Counter-examples in the text classification task:
- P("Manchester” | entertainment) =

P(“Manchester” | entertainment, “Oscar”)

Q: How to deal with correlated features?

A: Many models, including MaxEnt, do not assume that features are conditionally independent.
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Naive Bayes highlights

e Choose
c* =arg max; P(c) | |« P(fc | c)

e Two types of model parameters:
e Class prior: P(c)
e Conditional probability: P(f, | c)

e The number of model parameters:
|ICI+ICVI



P(f 1 c)

iIn NB
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Weights in NB and MaxEnt

e In NB
e P(f|y) are probabillities (i.e., in [0,1])
e P(fly)are multiplied at test time

Py [], P(fely) REXCJOOY [ R e )
k. —

P(ylxz) = Z
B elnP(y)Jrln(l_Lc P(frly)) B elnP(y)Jrzk InP(f1.|y)
- Z - Z
e In MaxEnt
e the weights are real numbers: they can be negative. ezj Ajli(@y)
e the weighted features are added at test time P (?JIQE ) — 7
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Highlights of MaxEnt

Z.Aj fi(x,y)
P(y|z) = <= Z

fi(x,y) is a feature function, which normally
corresponds to a (feature, class) pair.

Training: to estimate ~ A;

Testing: to calculate P(y | x)



Main questions

What is the maximum entropy principle?
What is a feature function?

Modeling: Why does P(ylx) have the form?

Z.Aj fi(x,y)
P(y|$) = £ — 7

Training: How do we estimate A; ?
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Maximum Entropy Principle
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Maximum Entropy Principle

e |ntuitively, model all that is known, and assume as little as possible about
what I1s unknown.

e Related to Occam’s razor and other similar justifications for scientific
inquiry

e Also: Laplace’s Principle of Insufficient Reason: when one has no
information to distinguish between the probability of two events, the best

strateqgy Is to consider them equally likely.



Maximum Entropy

e \Why maximum entropy?
e Maximize entropy = Minimize commitment

e Model all that is known and assume nothing about what is
unknown.

e Model all that is known: satisfy a set of constraints that must hold

e Assume nothing about what is unknown:
choose the most “uniform” distribution

=> choose the one with maximum entropy
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Ex1: Coin-flip example
(Klein & Manning, 2003)

Toss a coin: p(H)=p1, p(T)=p2.
Constraint: p1 + p2 = 1 1
Question: what’s p(x)? That is, what is the value of p1?

Answer: choose the p that maximizes

>
H(p) = - ZP(X)l()gP(X) S



Ex2: An MT example
(Berger et. al., 1996)

Possible translation for the word “Iin” is: {dans, en, a, au cours de, pendant}

Constraint:

Intuitive answer:

p(dans)

p(en)
p(a)
p(au cours de)

p(pendant)

p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1

1/5
1/5
1/5
1/5
1/5



An MT example (cont)

Constraints: p(dans) + p(en)
p(dans) + p(en) + p(a) + p(au cours de) + p(pendant)

3/10

{
e

Intuitive answer:

p(dans) = 3/20

plen) = 3/20

pia) = 7/30

plau coursde) = 7/30
p(pendant) = 7/30



An MT example (cont)

Constraints: p(dans) + p(en)
p(dans) + p(en) + p(a) + p(au cours de) + p(pendant)

p(dans) + p(a)

Intuitive answer: ?7?

3/10

1/2



Ex3: POS tagging
(Klein and Manning, 2003)

« Lets say we have the following event space:

= ... and the following empirical data:

3 5 1 13 3 1

= Maximize H:

1/e |1/e |1/e |1/e |[1/e |1/e

= ... want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1



https://people.eecs.berkeley.edu/~klein/papers/maxent-tutorial-slides.pdf

Ex3 (cont)

= oo uniform!

« N*are more common than V*, so we add the feature f, = {NN,
NNS, NNP, NNPS}, with E[f,] =32/36

NN [NNS |[NNP [NNPS |VBZ
8/36 |8/36 |8/36 |8/36 (2/36 |2/36

= ... and proper nouns are more frequent than common nouns,
so we add f, = (NNP, NNPS}, with E[/.] =24/36

NN [NNS [NNP |NNPS |VBZ |VBD
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Ex4: Overlapping features
(Klein and Manning, 2003)

Empirical

NNNNNNNNNNNNNNNNNNNNNN



26



Empumal

Ex4 (cont)

| —
A=2/3

B=2/3

A Ja --
B [4/902/9
ﬂ
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The MaxEnt Principle summary

e (Goal: Among all the distributions that satisfy the constraints,
choose the one, p*, that maximizes H(p).

p* = arg max H(p)
peP

e Q1: How to represent constraints?

e Q2: How to find such distributions?



