Maximum Entropy Model (I)

LING 572
Advanced Statistical Methods for NLP
January 28, 2020

MaxEnt in NLP

• The maximum entropy principle has a long history.

 The MaxEnt algorithm was introduced to the NLP field by Berger et. al. (1996).

Used in many NLP tasks: Tagging, Parsing, PP attachment, ...

Readings & Comments

- Several readings:
 - (Berger, 1996), (Ratnaparkhi, 1997)
 - (Klein & Manning, 2003): Tutorial
 - Note: Some of these are very 'dense'
 - Don't spend huge amount of time on every detail
 - Take a first pass before class, review after lecture
- Going forward:
 - Techniques more complex
 - Goal: Understand basic model, concepts
 - Training is complex; we'll discuss, but not implement

Notation

We use this one

	Input	Output	Pair	
Berger et al 1996	X	y	(x, y)	
Ratnaparkhi 1997	b	a	X	
Ratnaparkhi 1996	h	t	(h, t)	
Klein and Manning 2003	d	C	(d, c)	V

Outline

- Overview
- The Maximum Entropy Principle

- Modeling**
- Decoding

Training**

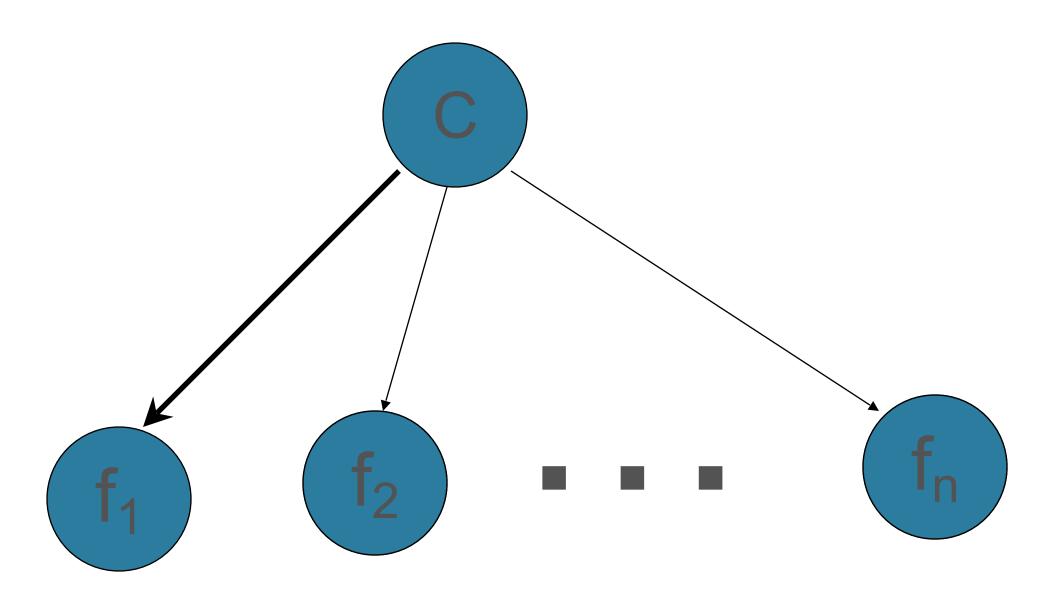
Case study: POS tagging

Overview

Joint vs. Conditional models

- Given training data $\{(x,y)\}$, we want to build a model to predict y for new x's. For each model, we need to estimate the parameters μ .
- Joint (aka generative) models estimate P(x,y) by maximizing the likelihood: $P(X,Y|\mu)$
 - Ex: n-gram models, HMM, Naïve Bayes, PCFG
 - Choosing weights is trivial: just use relative frequencies.
- Conditional (aka discriminative) models estimate P(y I x) by maximizing the conditional likelihood: P(Y I X, μ)
 - Ex: MaxEnt, SVM, CRF, etc.
 - Computing weights is more complex.

Naïve Bayes Model



Assumption: each f_i is conditionally independent from f_j given C.

The conditional independence assumption

f_m and f_n are conditionally independent given c:

$$P(f_m \mid c, f_n) = P(f_m \mid c)$$

Counter-examples in the text classification task:

- P("Manchester" | entertainment) !=

P("Manchester" | entertainment, "Oscar")

Q: How to deal with correlated features?

A: Many models, including MaxEnt, do not assume that features are conditionally independent.

Naïve Bayes highlights

Choose

```
c^* = arg max_c P(c) \prod_k P(f_k \mid c)
```

- Two types of model parameters:
 - Class prior: P(c)
 - Conditional probability: P(f_k I c)
- The number of model parameters:

```
ICI+ICVI
```

P(f I c) in NB

	f_1	f ₂		f
C ₁	P(f ₁ lc ₁)	$P(f_2 c_1)$	• • •	$P(f_j \mid c_1)$
C ₂	$P(f_1 \mid c_2)$	• • •	• • •	• • •
• • •	• • •			
Ci	P(f _I c _i)	•••	•••	P(f _j I c _i)

Each cell is a weight for a particular (class, feat) pair.

Weights in NB and MaxEnt

- In NB
 - P(f I y) are probabilities (i.e., in [0,1])
 - P(f I y) are multiplied at test time

$$P(y|x) = \frac{P(y) \prod_{k} P(f_k|y)}{Z} = \frac{e^{\ln(P(y)) \prod_{k} P(f_k|y))}}{Z}$$
$$= \frac{e^{\ln(P(y)) + \ln(\prod_{k} P(f_k|y))}}{Z} = \frac{e^{\ln(P(y)) + \sum_{k} \ln(P(f_k|y))}}{Z}$$

- In MaxEnt
- In MaxEnt $\hbox{ the weights are real numbers: they can be negative. } P(y|x) =$

$$P(y|x) = \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{Z}$$

Highlights of MaxEnt

$$P(y|x) = \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{Z}$$

 $f_j(x,y)$ is a feature function, which normally corresponds to a (feature, class) pair.

Training: to estimate λ_j

Testing: to calculate P(y | x)

Main questions

What is the maximum entropy principle?

What is a feature function?

Modeling: Why does P(ylx) have the form?

$$P(y|x) = \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{Z}$$

• Training: How do we estimate λ_i ?

Outline

- Overview
- The Maximum Entropy Principle

- Modeling**
- Decoding

Training*

Case study

Maximum Entropy Principle

Maximum Entropy Principle

 Intuitively, model all that is known, and assume as little as possible about what is unknown.

Related to Occam's razor and other similar justifications for scientific inquiry

• Also: Laplace's *Principle of Insufficient Reason:* when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely.

Maximum Entropy

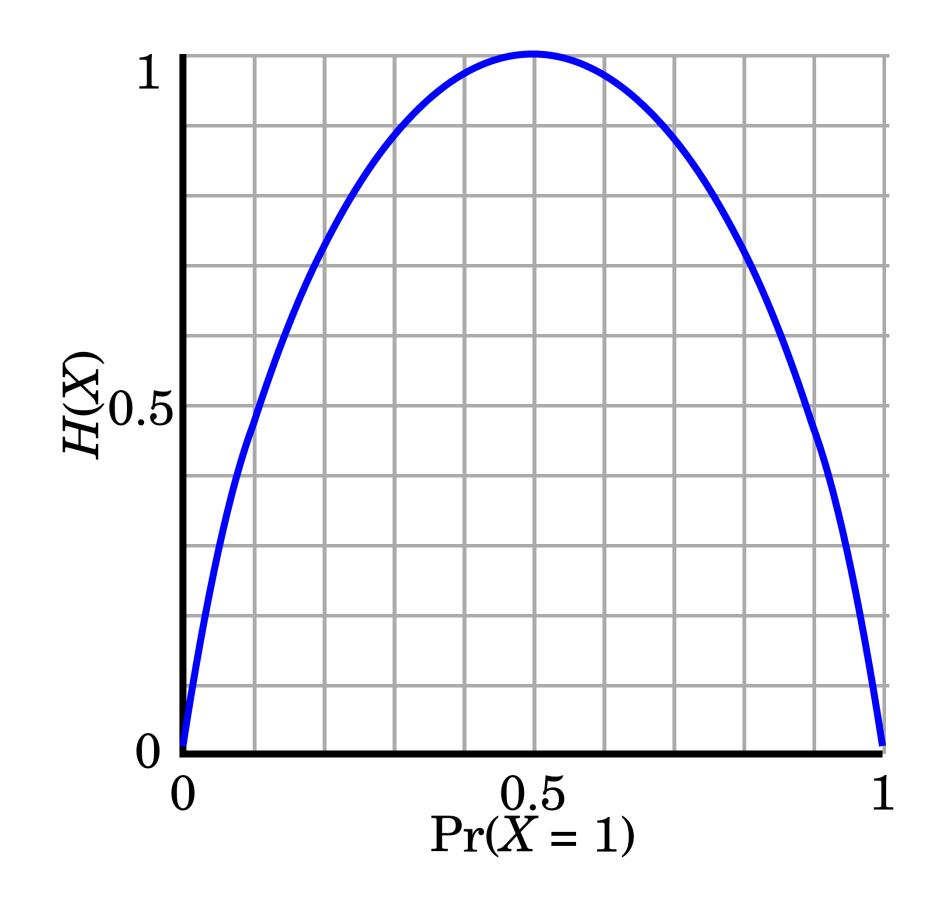
- Why maximum entropy?
 - Maximize entropy = Minimize commitment

- Model all that is known and assume nothing about what is unknown.
 - Model all that is known: satisfy a set of constraints that must hold
 - Assume nothing about what is unknown: choose the most "uniform" distribution
 - choose the one with maximum entropy

Ex1: Coin-flip example (Klein & Manning, 2003)

- Toss a coin: p(H)=p1, p(T)=p2.
- Constraint: p1 + p2 = 1
- Question: what's p(x)? That is, what is the value of p1?
- Answer: choose the p that maximizes

$$H(p) = -\sum_{x} p(x) \log p(x)$$



Ex2: An MT example (Berger et. al., 1996)

Possible translation for the word "in" is: {dans, en, à, au cours de, pendant}

Constraint:
$$p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1$$

Intuitive answer:

$$p(dans) = 1/5$$

$$p(en) = 1/5$$

$$p(\grave{a}) = 1/5$$

$$p(au \ cours \ de) = 1/5$$

$$p(pendant) = 1/5$$

An MT example (cont)

Constraints:

$$p(dans) + p(en) = 3/10$$

$$p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1$$

Intuitive answer:

$$p(dans) = 3/20$$

$$p(en) = 3/20$$

$$p(\grave{a}) = 7/30$$

$$p(au cours de) = 7/30$$

p(pendant) = 7/30

An MT example (cont)

Constraints:

$$p(dans) + p(en) = 3/10$$

$$p(dans) + p(en) + p(\grave{a}) + p(au \ cours \ de) + p(pendant) = 1$$

$$p(dans) + p(\grave{a}) = 1/2$$

Intuitive answer: ??

Ex3: POS tagging (Klein and Manning, 2003)

Lets say we have the following event space:

NN NNS NNP NNPS VBZ VBD

... and the following empirical data:

3 5	11	13	3	1
-----	----	----	---	---

Maximize H:

```
1/e 1/e 1/e 1/e 1/e
```

want probabilities: E[NN,NNS,NNP,NNPS,VBZ,VBD] = 1

```
1/6 1/6 1/6 1/6 1/6
```

Ex3 (cont)

- Too uniform!
- N* are more common than V*, so we add the feature $f_N = \{NN, NNS, NNP, NNPS\}$, with $E[f_N] = 32/36$

NN	NNS	NNP	NNPS	VBZ	VBD
8/36	8/36	8/36	8/36	2/36	2/36

• ... and proper nouns are more frequent than common nouns, so we add $f_P = \{NNP, NNPS\}$, with $E[f_P] = 24/36$

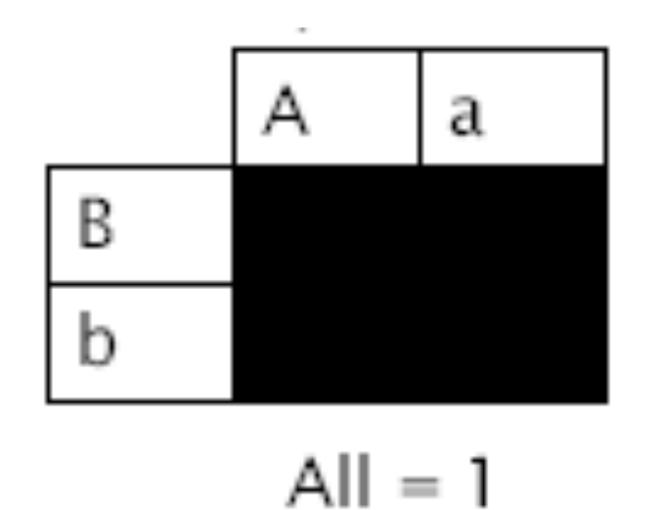
NN	NNS	NNP	NNPS	VBZ	VBD
4/36	4/36	12/36	12/36	2/36	2/36

Ex4: Overlapping features (Klein and Manning, 2003)

Empirical

	Α	a
В	1	1
b	1	0

	Α	a
В	p1	p2
b	рЗ	p4



	Α	a
В	1/4	1/4
b	1/4	1/4

Ex4 (cont)

Empirical

	4	a
В	1	1
b	1	0

	Α	a
В	p1	p2
b	$\frac{2}{3} - p_1$	$\frac{1}{3} - p_2$

$$A = 2/3$$

	Α	a
В	1/3	1/6
b	1/3	1/6

Ex4 (cont)

Empirical

	Α	a
В	1	1
b	1	0

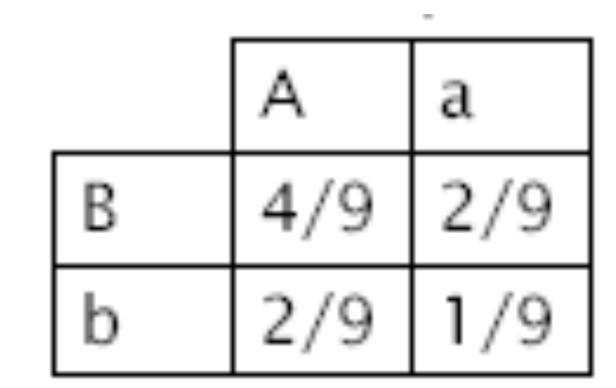
	Α	a
В		
b		

$$A = 2/3$$

	Α	a
В		
b		

$$\begin{array}{|c|c|c|c|}\hline A & a \\ & p_1 & \frac{2}{3} - p_1 \\ \hline \frac{2}{3} - p_1 & p_1 - \frac{1}{3} \\ \hline \end{array}$$

В



B = 2/3

The MaxEnt Principle summary

 Goal: Among all the distributions that satisfy the constraints, choose the one, p*, that maximizes H(p).

$$p^* = \arg \max_{p \in P} H(p)$$

Q1: How to represent constraints?

• Q2: How to find such distributions?