Recap

LING572 Advanced Statistical Methods for NLP January 23, 2020

• Summary of the material so far

• Reading materials

• Math formulas

Outline

- Introduction:
 - Course overview
 - Information theory
 - Overview of classification task
- Basic classification algorithms:
 - Decision tree
 - Naïve Bayes
 - kNN
- Feature selection, chi-square test and recap
- Hw1-Hw3

So far

Main steps for solving a classification task

- Prepare the data:
 - Reformulate the task into a learning problem
 - Define features
 - Feature selection
 - Form feature vectors
- Train a classifier with the training data
- Run the classifier on the test data
- **Evaluation**

Comparison of 3 Learners

	kNN	Decision Tree	Naïve Bayes
Modeling	Vote by your neighbors	Vote by your groups	Choose the c that max P(c x)
Training	None	Build a decision tree	Learn P(c) and P(f c)
Decoding	Find neighbors	Traverse the tree	Calculate P(c)P(x c)
Hyper parameters	K	Max depth	
	Similarity fn	Split function	Delta for smoothing
		Thresholds	

Implementation issues

• Taking the log:

$$\log(P(c)\prod_{i} P(f_i | c)) = \log P(c) + \sum_{i} \log P(f_i | c)$$

• Ignoring some constants: $P(d_i \mid c) = P(\mid d_i \mid c)$

Increasing small numbers before dividing

$$|) | d_i | ! \prod_{k=1}^{|V|} \frac{P(w_k | c)^{N_{ik}}}{N_{ik}!}$$

 $\log P(x, c_1) = -200; \ \log P(x, c_2) = -201$

Implementation issues (cont)

• Reformulate the formulas:

$$P(d_i, c) = P(c) \prod_{w_k \in d_i} P(c)$$

$$= P(c) \prod_{\substack{w_k \in d_i}} \frac{1}{1}$$

• Store useful intermediate results:

• Vectorize! (e.g. entropy)

 $(w_k | c)$ $(1 - P(w_k | c))$ $W_k \notin d_i$ $\frac{P(w_k \mid c)}{-P(w_k \mid c)} \prod_{w_k} (1 - P(w_k \mid c))$

 $\prod_{w_k} 1 - P(w_k | c)$

Lessons learned

- Don't follow the formulas blindly. Vectorize when possible.
 - Ex1: Multinomial NB

• Ex2: cosine function for kNN

$$\cos(d_i, d_j) = -$$

 $P(c) \prod^{V} P(w_k \mid c)^{N_{ik}}$ *k*=1

 $\sum_{k} d_{i,k} d_{j,k}$

- Next unit (2.5 weeks): two more advanced methods:
 - MaxEnt (aka multinomial logistic regression)
 - CRF (Conditional Random Fields)
- Focus:
 - Main intuition, final formulas used for training and testing
 - Mathematical foundation
 - Implementation issues

Next

Reading material

The purpose of having reading material

Something to rely on besides the slides

• Reading before class could be beneficial

• Papers (not textbooks; some blog posts) could be the main source of information in the future

Problems with the reading material

- The authors assume that you know the algorithm already:
 - Little background info
 - Page limit
 - Style
- The notation problem
- It could take a long time to understand everything \rightarrow

Some tips

- Look at several papers and slides at the same time
 - Skim through the papers first to get the main idea
 - Go to class and understand the slides
 - Then go back to the papers (if you have time)
- details in the paper.

• Focus on the main ideas. It's ok if you don't understand all the

Math formulas

- Understand ML algorithms
 - The core of the algorithms
 - Implementation: e.g., efficiency issues
- Learn how to use the algorithms:
 - Reformulate a task into a learning problem
 - Select features
 - Write pre- and post-processing modules

The goal of LING572

W UNIVERSITY of WASHINGTON

Understanding ML methods

- 1: never heard about it
- 2: know very little
- 3: know the basics
- 4: understand the algorithm (modeling, training, testing)
- 5: have implemented the algorithm
- 6: know how to modify/extend the algorithm

Our goal: kNN, DT, NB: 5 \rightarrow

MaxEnt, CRF, SVM, NN: 3-4

Math is important for 4-6, especially for 6.

Why are math formulas hard?

- Notation, notation, notation.
 - Same meaning, different notation: f_k, w_k, t_k
- Calculus, probability, statistics, optimization theory, linear programming, ...
- People often have typos in their formulas.
- A lot of formulas to digest in a short period of time.

Some tips

- No need to memorize the formulas
- Determine which part of the formulas matters
 - $P(d_i \mid c) = P($
 - $classify(d_i) = arg$
 - $classify(d_i) = arg$
- It's normal if you do not understand it the 1st/2nd time around.

$$|d_{i}|) |d_{i}|! \prod_{k=1}^{|V|} \frac{P(w_{k}|c)^{N_{ik}}}{N_{ik}!}$$

$$\sum_{c} max_{c} P(c) P(d_{i}|c)$$

$$\sum_{c} p(c) \prod_{k=1}^{|V|} P(w_{k}|c)^{N_{ik}}$$

Understanding a formula

 $P(w_t \mid c_j) = \frac{1}{\mid V \mid +}$

$$+ \sum_{i=1}^{|D|} N_{it} P(c_j | d_i) + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} P(c_j | d_i)$$

$$\sum_{i=1}^{|D|} N_{it} P(c_j | d_i)$$

$$\sum_{i=1}^{|D|} N_{is} P(c_j | d_i)$$

$$Z(c_j)$$

$$D(c_j) N_{ii}$$

• On to MaxEnt! Don't forget: reading assignment due Tuesday at 11AM!

Next Week

