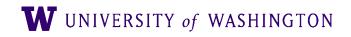

LING572 Advanced Statistical Methods for NLP January 23, 2020

Chi square

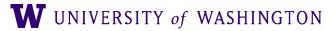

- An example: is having a masters degree a good feature for predicting footwear preference?
 - A: MS (binary)
 - B: footwear preference

- Bivariate tabular analysis:

 - How strong is the relationship?
 - What is the direction of the relationship?

Chi square

• Is there a relationship between two random variables A and B in the data?

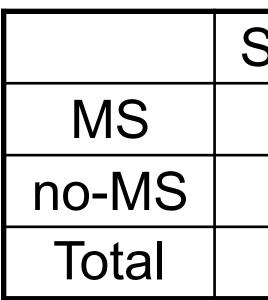


Raw frequencies

	Sandal	Sneaker	Leather shoe	Boots	Others
MS	6	17	13	9	5
no-MS	13	5	7	16	9

Feature: has a masters degree/not

Classes: {Sandal, Sneaker,}



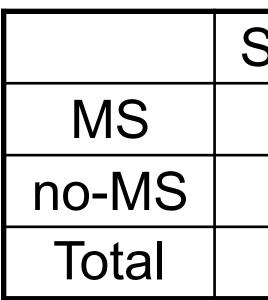
Two distributions

Observed distribution (O):

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
MS						50
no-MS						50
Total	19	22	20	25	14	100

Sandal	Sneaker	Leather	Boot	Others	Total
6	17	13	9	5	50
13	5	7	16	9	50
19	22	20	25	14	100



Two distributions

Observed distribution (O):

Expected distribution (E):

	Sandal	Sneaker	Leather	Boot	Others	Total
MS	9.5	11	10	12.5	7	50
no-MS	9.5	11	10	12.5	7	50
Total	19	22	20	25	14	100

Sandal	Sneaker	Leather	Boot	Others	Total
6	17	13	9	5	50
13	5	7	16	9	50
19	22	20	25	14	100

• Expected value = row total * column total / table total = P(row value) * P(column value) * table total

$$\chi^2 = \sum_{ij} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

• $\chi^2 = (6-9.5)^2/9.5 + (17-11)^2/11 + \dots$ = 14.026

Chi square

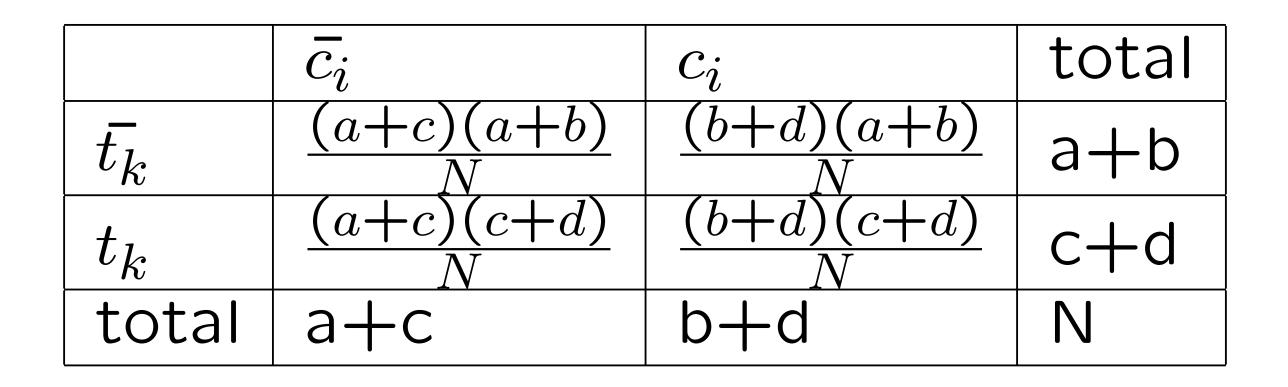
Calculating χ^2

• Fill out a contingency table of the observed values \rightarrow O

Compute the row totals and column totals

• Calculate expected value for each cell assuming no association \rightarrow E

• Compute chi square: $(O - E)^2/E$



When r=2 and c=2

	$\overline{c_i}$	c_i	total
$\overline{t_k}$	а	b	a+b
t_k	С	d	c+d
total	a+c	b+d	N

 $\chi^{2} = \sum_{ij} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \frac{(ad - bc)^{2}N}{(a + b)(a + c)(b + d)(c + d)}$

O =

E =

χ² test

Basic idea

random variables.

assuming the hypothesis is true.

• If the probability is too small, reject the hypothesis.

Null hypothesis (the tested hypothesis): no relation exists between two

• Calculate the probability of having the observation with that χ^2 value,

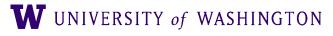
Requirements

• The outcomes of each event must be mutually exclusive.

• At least 5 observations per cell.

• Collect raw frequencies, not percentages

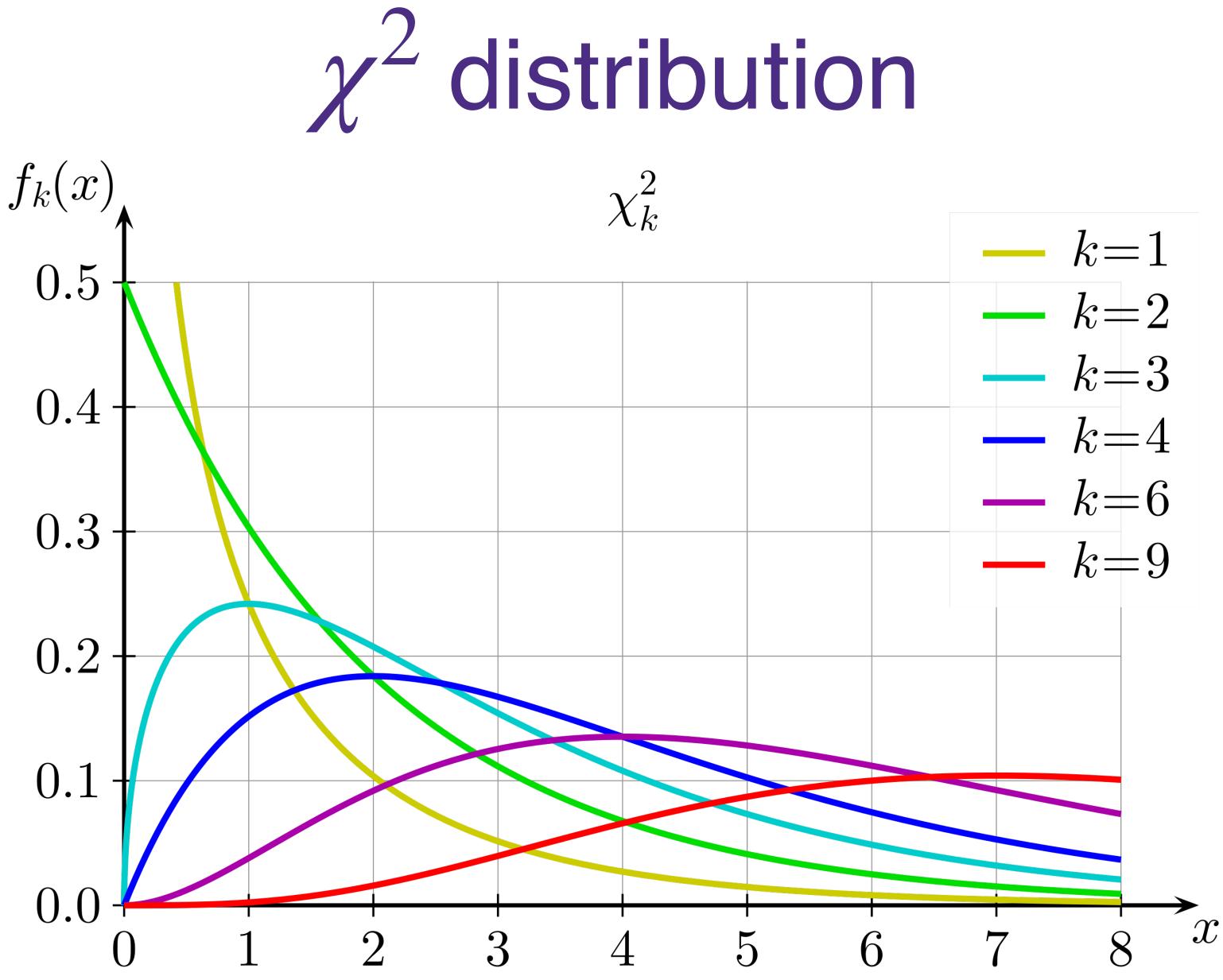
• The events are assumed to be independent and have the same distribution.



- Degree of freedom df = (r 1) (c 1)
 - r: # of rows c: # of columns

• In this ex: df = (2-1)(5-1) = 4

Degree of freedom


χ^2 distribution table

	0.10	0.05	0.025	0.01	0.001
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458

df=4 and 14.026 > 13.277 p<0.01 \rightarrow →there is a significant relation

W UNIVERSITY of WASHINGTON

http://vassarstats.net/newcs.html

scipy.stats.chi2_contingency

χ^2 to P Calculator

- Select significance level p₀
- Calculate χ^2
- Compute the degrees of freedom df = (r-1)(c-1)
- Calculate p given χ^2 value (or get the χ^2_0 for p_0)
- if $p < p_0$ (or if $\chi^2 > \chi^2_0$)

then reject the null hypothesis.

Steps of χ^2 test

W UNIVERSITY of WASHINGTON

Summary of χ^2 test

independent

- Many good tutorials online
 - Ex: <u>http://en.wikipedia.org/wiki/Chi-square_distribution</u>
 - tests-two-way-tables/v/chi-square-test-homogeneity

• A very common method for determining whether two random variables are

• <u>https://www.khanacademy.org/math/ap-statistics/chi-square-tests/chi-square-</u>

Applying to Text Classification

- Exercise: is 'bad' a good feature for predicting sentiment?
 - Is sentiment *independent* from 'bad' or not?
 - What are counts in this table?
 - Number of documents

	bad=1	bad=0	Total
positive	13	185	
negative	212	28	
Total			

Additional slides

χ^2 example

- Shared Task Evaluation:
 - Topic Detection and Tracking (aka TDT)
- Sub-task: Topic Tracking Task
 - Given a small number of exemplar documents (1-4)
 - Define a topic
 - Create a model that allows tracking of the topic
 - I.e. find all subsequent documents on this topic
 - Exemplars: 1-4 newswire articles
 - 300-600 words each

Challenges

- Many news articles look alike
 - Create a profile (feature representation)
 - Find terms that are strongly associated with current topic

- Not all documents are labeled
 - Only a small subset belong to topics of interest
 - Differentiate from other topics AND 'background'

Approach

- X² feature selection:
 - Assume terms have binary representation
 - Positive class term occurrences from exemplar docs
 - Negative class term occurrences from
 - other class exemplars, 'earlier' uncategorized docs
 - Compute X² for terms
 - Retain terms with highest X² scores
 - Keep top N terms
- Create one feature set per topic to be tracked

Tracking Approach

- Build vector space model
 - Feature weighting: tf*idf
 - Distance measure: Cosine similarity
- Select documents scoring above threshold
- Result: Improved retrieval

