Final review

LING572 Advanced Statistical Methods for NLP March 12, 2020

Topics covered

- Supervised learning: eight algorithms
 - kNN, NB: training and decoding
 - DT: training and decoding (with binary features)
 - MaxEnt: training (GIS) and decoding
 - SVM: decoding, tree kernel
 - CRF: introduction
 - NN and backprop: introduction, training and decoding; RNNs, transformers

Other topics

- From LING570:
 - Introduction to classification tasks
 - Mallet
 - Beam search
- Information theory: entropy, KL divergence, info gain
- Feature selection: e.g., chi-square, feature frequency
- Sequence labeling problems
- Reranking

Assignments

- Hw1: Probability and Info theory
- Hw2: Decision tree
- Hw3: Naïve Bayes
- Hw4: kNN and chi-square
- Hw5: MaxEnt decoder
- Hw6: Beam search
- Hw8: SVM decoder
- Hw9, Hw10: Neural Networks

Main steps for solving a classification task

- Formulate the problem
- Define features
- Prepare training and test data
- Select ML learners
- Implement the learner
- Run the learner
 - Tune hyperparameters on the dev data
 - Error analysis
 - Conclusion

W UNIVERSITY of WASHINGTON

Learning algorithms

Generative vs. discriminative models • Joint (generative) models estimate P(x,y) by maximizing the

- likelihood: $P(X,Y|\mu)$
 - Ex: n-gram models, HMM, Naïve Bayes, PCFG
 - Training is trivial: just use relative frequencies.
- Conditional (discriminative) models estimate P(ylx) by maximizing the conditional likelihood: P(YIX, μ)
 - Ex: MaxEnt, SVM, CRF, etc.
 - Training is harder

Parametric vs. non-parametric models

- Parametric model:
 - The number of parameters do not change w.r.t. the number of training instances
 - Ex: NB, MaxEnt, linear SVM
- Non-parametric model:
 - More examples could potentially mean more complex classifiers.
 - Ex: kNN, non-linear SVM

Feature-based vs. kernel-based

- Feature-based:
 - Representing x as a feature vector
 - Need to define features
 - Ex: DT, NB, MaxEnt, TBL, CRF, ...
- Kernel-based:
 - Calculating similarity between two objects
 - Need to define similarity/kernel function
 - Ex: kNN, SVM

W UNIVERSITY of WASHINGTON

• DT:

- Training: build the tree
- Testing: traverse the tree

• Uses the greedy approach:

• DT chooses the split that maximizes info gain, etc.

DT

NB and **MaxEnt**

- NB:
 - Training: estimate P(c) and P(f l c)
 - Testing: calculate P(y) P(x | y)
- MaxEnt:
 - Training: estimate the weight for each (f, c)
 - Testing: calculate P(y | x)
- Differences:
 - generative vs. discriminative models
 - MaxEnt does not assume features are conditionally independent

kNN and SVM

Both work with data through "similarity" functions between vectors.

• kNN:

- Training: Nothing
- Testing: Find the nearest neighbors

• SVM

- Training: Estimate the weights of training instances \rightarrow
- Testing: Calculating f(x), which uses all the SVs

w and b

MaxEnt and SVM

Both are discriminative models.

- problem by using
- Lagrangian, the dual problem, etc.
- Iterative approach: e.g., GIS
- Quadratic programming
- numerical optimization \rightarrow

• Start with an objective function and find the solution to an optimization

HMM, MaxEnt and CRF

- Linear-chain CRF is like HMM + MaxEnt
 - Training is similar to training for MaxEnt
 - Decoding is similar to Viterbi for HMM decoding
 - Features are similar to the ones for MaxEnt

Comparison of three learners

Naïve Bayes

Maximize $P(X,Y|\theta)$ Modeling

Learn P(c) and P(f|c) Training

Decoding

Calc P(y) P(x | y)

Features

Things to decide

Delta for smoothing

MaxEnt	SVM
Maximize P(Y X, θ)	Maximize the minimal margin
earn λ _i for feature function	Learn a _i for each (x _i , y _i)
Calc P(y x)	Calc f(x)
Features	Kernel function
Regularization	Regularization
Training algorithm	Training algorithm
	C for penalty

• No need to choose features or kernels, choose an architecture instead

- Objective function: e.g., mean squared errors, cross entropy
- Training: learn weights and biases via SGD + backprop

- Testing: one forward pass
- RNNs + Transformers (and transfer learning)

NNS

Questions for each method

• Modeling:

- what is the objective function?
- How does decomposition work?
- What kind of assumptions are made?
- How many model parameters?
- How many hyperparameters?
- How to handle multi-class problem?
- How to handle non-binary features?

W UNIVERSITY of WASHINGTON

Questions for each method (cont'd)

- Training: estimating parameters
- Decoding: finding the "best" solution

- Weaknesses and strengths:
 - parametric?
 - generative/discriminative?
 - performance?
 - robust? (e.g., handling outliners)
 - prone to overfitting?
 - scalable?
 - efficient in training time? Test time?

Implementation Issues

Implementation Issues

• Taking the log:

• Ignoring constants:

$$P(d_i|c) = P(|d_i|)|d_i|!\prod_{k=1}^{|V|} \frac{P(w_k|c)^{N_{ik}}}{N_{ik}!}$$

 Increasing small numbers before dividing $P(c1|x) = \frac{P(x,c1)}{P(x)} = \frac{P(x,c1)}{P(x,c1) + P(x,c2) + \dots}$ $log P(x, c_1)$ is -200, $log P(x, c_2)$ is -201.

 $log P(X_1, ..., X_n) = log \prod_i P(X_i | X_1, ..., X_{i-1})$ $= \sum_{i} log P(X_i | X_1, ..., X_{i-1})$

Implementation Issues (cont'd)

• Reformulating the formulas: e.g., Naïve Bayes

$$P(x,c) = P(c) \prod_{w_k \in d_i} P(w_k|c) \prod_{w_k \notin d_i} (1 - P(w_k|c))$$

= $P(c) \prod_{w_k \in d_i} \frac{P(w_k|c)}{1 - P(w_k|c)} \prod_{w_k} (1 - P(w_k|c))$

• Storing the useful intermediate results $\prod_{w_k} (1 - P)$

$$(w_k|c))$$

W UNIVERSITY of WASHINGTON

An example: calculating model expectation in MaxEnt

for each instance x calculate P(ylx) for every y in Y for each feature t in x for each y in Y model_expect [t] [y] += 1/N * P(y|x)

$E_p f_j = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_i) f_j(x_i, y)$

What's next?

What's next?

• Course evaluations:

- Overall: open until 03/13!!!
- For TA: you should have received an email
- Please fill out both.

• Hw9: Due 11pm on 3/19

What's next (beyond ling572)?

- Supervised learning:
 - Covered algorithms: e.g., L-BFGS for MaxEnt, training for SVM, building a complex NN
 - Other algorithms: e.g., Graphical models, Bayes Nets
- Using algorithms:
 - Formulate the problem
 - Select features, kernels, or architecture
 - Choose/compare ML algorithms

What's next? (cont'd)

- Semi-supervised learning: labeled data and unlabeled data
 - Analysis / interpretation
- Using them for real applications: LING573
- Ling575s:
 - Representation Learning
 - Mathematical Foundations
 - Information Extraction
- Machine learning, AI, etc.
- Next spring: new deep learning for NLP course by yours truly

