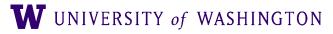
Introduction + Information Theory

LING 572 January 7, 2020 Shane Steinert-Threlkeld

Adapted from F. Xia, '17

- Background
- General course information
- Course contents
- Information Theory

Outline



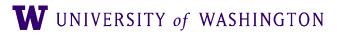
- Early approaches to Natural Language Processing
 - Similar to classic approaches to Artificial Intelligence

- Early approaches to Natural Language Processing
 - Similar to classic approaches to Artificial Intelligence
 - Reasoning, knowledge-intensive approaches

- Early approaches to Natural Language Processing
 - Similar to classic approaches to Artificial Intelligence
 - Reasoning, knowledge-intensive approaches
 - Largely manually constructed rule-based systems

- Early approaches to Natural Language Processing
 - Similar to classic approaches to Artificial Intelligence
 - Reasoning, knowledge-intensive approaches
 - Largely manually constructed rule-based systems
 - Typically focused on specific, narrow domains

• Rule-based systems:



- Rule-based systems:
 - Too narrow and brittle
 - Couldn't handle new domains: out of domain \rightarrow crash

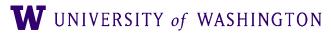
- Rule-based systems:
 - Too narrow and brittle
 - Couldn't handle new domains: out of domain \rightarrow crash
 - Hard to maintain and extend
 - Large manual rule bases incorporate complex interactions
 - Don't scale

- Rule-based systems:
 - Too narrow and brittle
 - Couldn't handle new domains: out of domain \rightarrow crash
 - Hard to maintain and extend
 - Large manual rule bases incorporate complex interactions
 - Don't scale

Reports of the Death of NLP...

• ALPAC Report: 1966

• Automatic Language Processing Advisory Committee



Reports of the Death of NLP...

- ALPAC Report: 1966
 - Automatic Language Processing Advisory Committee
 - Failed systems efforts, esp. MT, lead to defunding

Reports of the Death of NLP...

- ALPAC Report: 1966
 - Automatic Language Processing Advisory Committee
 - Failed systems efforts, esp. MT, lead to defunding
 - Example: (Probably apocryphal)
 - English \rightarrow Russian \rightarrow English MT
 - "The spirit is willing but the flesh is weak." \rightarrow
 - "The vodka is good but the meat is rotten."

... Were Greatly Exaggerated

- Today:
- Alexa, Siri, etc converse and answer questions

Search and translation

• Watson wins Jeopardy!

• Statistical approaches and machine learning

- Statistical approaches and machine learning
 - Hidden Markov Models boosted speech recognition

- Statistical approaches and machine learning
 - Hidden Markov Models boosted speech recognition
 - Noisy channel model gave statistical MT

- Statistical approaches and machine learning
 - Hidden Markov Models boosted speech recognition
 - Noisy channel model gave statistical MT
 - Unsupervised topic modeling
 - Neural network models, esp. end-to-end systems and (now) pre-training

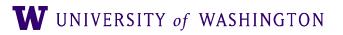
- Many stochastic approaches developed 80s-90s
- Rise of machine learning accelerated 2000-present
- Why?

- Many stochastic approaches developed 80s-90s
- Rise of machine learning accelerated 2000-present
- Why?
 - Large scale data resources
 - Web data (Wikipedia, etc)
 - Training corpora: Treebank, TimeML, Discourse treebank

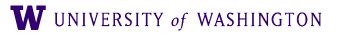
- Many stochastic approaches developed 80s-90s
- Rise of machine learning accelerated 2000-present
- Why?
 - Large scale data resources
 - Web data (Wikipedia, etc)
 - Training corpora: Treebank, TimeML, Discourse treebank
 - Large scale computing resources
 - Processors, storage, memory: local and cloud

- Many stochastic approaches developed 80s-90s
- Rise of machine learning accelerated 2000-present
- Why?
 - Large scale data resources
 - Web data (Wikipedia, etc)
 - Training corpora: Treebank, TimeML, Discourse treebank
 - Large scale computing resources
 - Processors, storage, memory: local and cloud
 - Improved learning algorithms (supervised, [un-/semi-]supervised, structured, ...)

General course information



- Course page: https://www.shane.st/teaching/572/win20/index.html
- Canvas: https://canvas.uw.edu/courses/1356316
 - Lecture recording
 - Assignment submission / grading
 - **Discussion!**



Communication

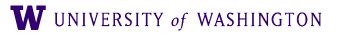
- Contacting teaching staff:
 - If you prefer, you can use your Canvas inbox for all course-related emails:
 - If you do send email, please include LING572 in your subject line of email to us.
 - We will respond within 24 hours, but only during "business hours" during the week.
- If you do not check Canvas often, please remember to set Account: Notifications in Canvas: e.g., "Notify me right away", "send daily summary".
- Canvas discussions:
 - All content and logistics questions
 - If you have the question, someone else does too. Someone else besides the teaching staff might also have the answer.
- We will use Canvas:Announcement for important messages and reminders.

Office hours

- Shane:
 - Email: shanest@uw.edu
 - Office hours:
 - Tuesday 2:30-4:30pm (GUG 418D + Zoom)

TA office hours

- Yuanhe Tian:
 - Email: yhtian@uw.edu
 - Office hours:
 - GUG 417 (the Treehouse)
 - Wed 3-4pm
 - Friday 10-11am



Online Option

- <u>clingzoom</u>
- Please enter meeting room 5 mins before start of class
 - Try to stay online throughout class
 - Please mute your microphone
 - Please use the chat window for questions

• The link to Zoom is on the home page: <u>https://washington.zoom.us/my/</u>

Programming assignments

• Due date: every Thurs at 11pm unless specified otherwise.

• The submission area closes two days after the due date.

- Late penalty:
 - 1% for the 1st hour
 - 10% for the 1st 24 hours
 - 20% for the 1st 48 hours

Programming languages

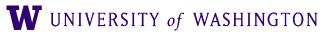
Recommended languages:

- Python, Java, C/C++/C#
- If you want to use a non-default version, use the correct/full path in your script.
- See dropbox/19-20/572/languages

• If you want to choose a language that is NOT on that list:

- You should contact Shane about this ASAP.
- If the language is not currently supported on patas, it may take time to get that installed.
- (s)he is not familiar with.
- Your code must run, and will be tested, on patas.

If your code does not run successfully, it could be hard for the grader to give partial credit for a language that



Homework Submission

- For each assignment, submit two files through Canvas:
 - A note file: readme.txt or readme.pdf
 - A gzipped tar file that includes everything: hw.tar.gz (not hwX.tar.gz) # suppose hwX is your dir that includes all the files cd hwX/ tar -czvf hw.tar.gz *
- Before submitting, run check_hwX.sh to check the tar file: e.g.,

/dropbox/19-20/572/hw2/check_hw2.sh hw.tar.gz

- check_hwX.sh checks only the existence of files, not the format or content of the files.
- For each shell script submitted, you also need to submit the source code and binary code: see 572/hwX/submit-file-list and 572/languages

- Standard portion: 25 points
 - 2 points: hw.tar.gz submitted
 - 2 points: readme.[txtlpdf] submitted

 - 6 points: all files and folders are present in the expected locations • 10 points: program runs to completion
 - 5 points: output of program on patas matches submitted output
- Assignment-specific portion: 75 points

Rubric

Regrading requests

- You can request regrading for:
 - wrong submission or missing files: show the timestamp
 - crashed code that can be easily fixed (e.g., wrong version of compiler)
 - output files that are not produced on patas
- At most two requests for the course.
- 10% penalty for the part that is being regraded.
- For regrading and any other grade-related issues: you must contact the TA within a week after the grade is posted.

Reading assignments

- an upcoming class.
- lines.
- Your answers are due at 11am. Submit to Canvas before class.

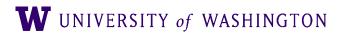
• You will answer some questions about the papers that will be discussed in

• Your answer to each question should be concise and no more than a few

• If you make an effort to answer those questions, you will get full credit.

Summary of assignments

	Assignments (hw)	Reading assignments
Num	9 or 10	4 or 5
Distribution	Web and patas	Web
Discussion	Allowed	
Submission	Canvas	
Due date	11pm every Thurs	11am on Tues or Thurs
Late penalty	1%, 10%, 20%	No late submission accepted
Estimate of hours	10-15 hours	2-4 hours
Grading	Graded according to the rubrics	Checked



Workload

- On average, students will spend around
 - 10-20 hours on each assignment
 - 3 hours on lecture time
 - 2 hours on Discussions
 - 2-3 hours on each reading assignment
 - → 15-25 hours per week; about 20 hrs/week
- amount of time on 572, you should take 572 later when you can.
- discuss what can be done to reduce time.

• You need to be realistic about how much time you have for 572. If you cannot spend that

• If you often spend more than 25 hours per week on 572, please let me know. We can

Extensions and incompletes

- The following are NOT acceptable reasons for extension:
 - My code does not quite work.
 - I have a deadline at work.
 - I have exams / work in my other courses.
 - I am going to be out of town for a few days.

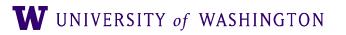
• Extensions and incompletes are given only under extremely unusual circumstances (e.g., health issues, family emergency).

Final grade

• Grade:

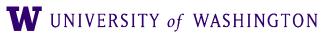
- Assignments: 100% (lowest score is removed)
 - All the reading assignments are treated as one "regular" assignment w.r.t. "the lowest score".
- Bonus for participation: up to 2%
- The percentage is then mapped to final grade.
- No midterm or final exams
- Grades in Canvas:Grades
- TA feedback returned through Canvas:Assignments

Course Content



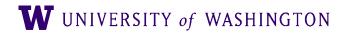
Prerequisites

- CSE 373 (Data Structures) or equivalent:
 - Ex: hash table, array, tree, ...
- Math/Stat 394 (Probability I) or equivalent: Basic concepts in probability and statistics
 - Ex: random variables, chain rule, Bayes' rule
- Programming in C/C++, Java, Python, Perl, or Ruby
- Basic unix/linux commands (e.g., ls, cd, ln, sort, head): tutorials on unix
- LING570
- If you don't meet the prerequisites, you should wait and take ling572 later.



Topics covered in Ling570

- FSA, FST
- LM and smoothing
- HMM and POS tagging
- Classification tasks and Mallet
- Chunking, NE tagging
- Information extraction
- Word embedding and NN basics



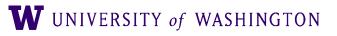
• No single textbook

• Readings are linked from the course website.

- Reference / Background:
 - CL, and Speech Recognition
 - Manning and Schutze, Foundations of Statistical NLP

Textbook

Jurafsky and Martin, Speech and Language Processing: An Introduction to NLP,



Types of ML problems

- Classification problem
- Regression problem
- Clustering
- Discovery

. . .

 \rightarrow A learning method can be applied to one or more types of ML problems. \rightarrow We will focus on the classification problem.

the NLP community

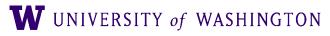
• Focusing on classification and sequence labeling problems

not theoretical proofs.

Course objectives

Covering many statistical methods that are commonly used in

• Some ML algorithms are complex. We will focus on basic ideas,



- Basic classification algorithms (1.5 weeks)
 - kNN
 - Decision trees
 - Naïve Bayes
- Advanced classification algorithms (5-6 weeks)
 - MaxEnt [multinomial logistic regression]
 - CRF
 - SVM
 - Neural networks

Main units

Main units (cont)

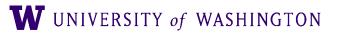
- Misc topics (1-2 weeks)
 - Introduction
 - Feature selection
 - Converting Multi-class to binary classification problem
 - Review and summary

Questions for each ML method

- Learning methods:
 - kNN and SVM
 - DT
 - NB and MaxEnt
 - NN
- Modeling:

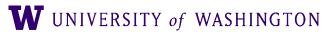
. . .

- What is the model?
- What kind of assumptions are made by the model?
- How many types of model parameters?
- How many "internal" (or non-model) parameters (hyperparameters)?



Questions for each method (cont'd)

- Training: how can we estimate parameters?
- Decoding: how can we find the "best" solution?
- Weaknesses and strengths:
 - Is the algorithm
 - robust? (e.g., handling outliers)
 - scalable?
 - prone to overfitting?
 - efficient in training time? Test time?
 - How much (and what kind of) data is needed?
 - Labeled data
 - Unlabeled data



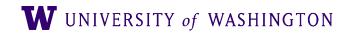
Please go over self-study slides

• All are on the LING 572 website.

- All have been covered in Ling570
 - Probability Theory
 - Overview of Classification Task
 - Using Mallet
 - Patas and Condor [under Course Resources]

W UNIVERSITY of WASHINGTON

Information Theory



Information theory

- Reading: M&S 2.2, Cover and Thomas ch. 2
- The use of probability theory to quantify and measure "information".

- Basic concepts:
 - Entropy
 - Cross entropy and relative entropy
 - Joint entropy and conditional entropy
 - Entropy of a language and perplexity
 - Mutual information

Entropy

- Intuitively: how 'surprising' a distribution is
 - high entropy = uniform; low entropy = peaked
- Can be used as a measure of
 - Match of model to data
 - How predictive an n-gram model is of next word
 - Comparison between two models
 - Difficulty of a speech recognition task

W UNIVERSITY of WASHINGTON

Entropy

- Information theoretic measure
- Measures information in model
- Conceptually, lower bound on # bits to encode



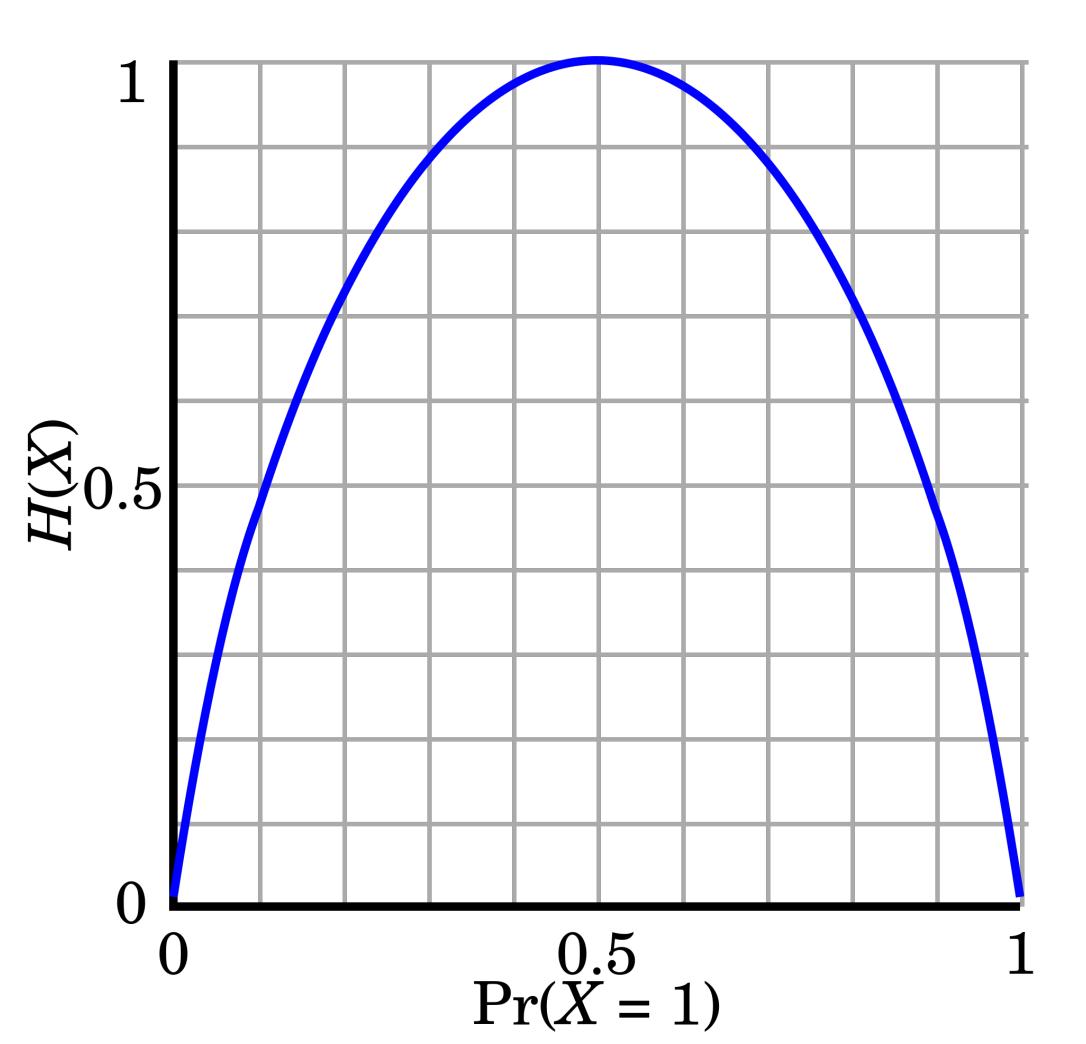
Entropy

Entropy is a measure of the uncertainty associated with a distribution. H(X) = -

Here, X is a random variable, x is a possible outcome of X.

- The lower bound on the number of bits that it takes to transmit messages.
- Length of the average message of an optimal coding scheme

$$\sum_{x} p(x) \log p(x)$$



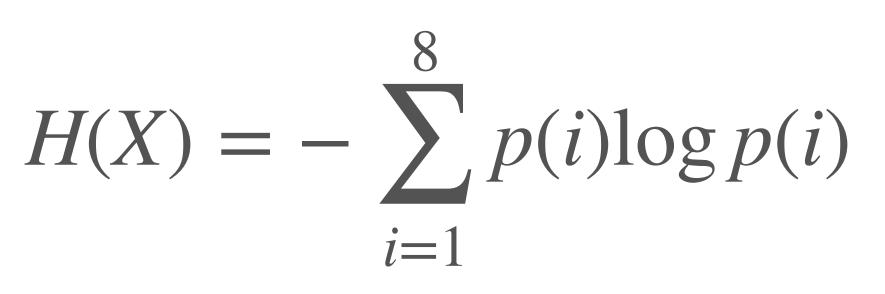
Example 1: a coin-flip

W UNIVERSITY of WASHINGTON

- Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i)

- Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i) = 1/8

- Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i) = 1/8



- Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i) = 1/8

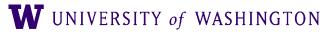
 $H(X) = -\sum_{k=1}^{8} \frac{1}{8} \log \frac{1}{8}$ i=1

- Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i) = 1/8

$H(X) = -\sum_{n=1}^{\infty} \frac{1}{8} \log \frac{1}{8} = -\log \frac{1}{8}$ i=1

- Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i) = 1/8

$H(X) = -\sum_{n=1}^{\infty} \frac{1}{8} \log \frac{1}{8} = -\log \frac{1}{8} = 3$ bits i=1



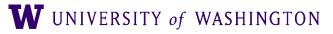
- Computing Entropy Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i) = 1/8

H(X) = -

- Some horses more likely:
 - 1: ¹/₂; 2: ¹/₄; 3: 1/8; 4: 1/16; 5-8: 1/64

$$H(X) = -\sum_{i=1}^{8} p(i)\log p(i)$$

$$\sum_{i=1}^{8} \frac{1}{8} \log \frac{1}{8} = -\log \frac{1}{8} = 3$$
 bits



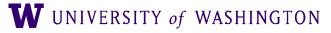
- Computing Entropy • Picking horses (Cover and Thomas) Send message: identify horse - 1 of 8
- - If all horses equally likely, p(i) = 1/8

H(X) = -

- Some horses more likely:
 - 1: ¹/₂; 2: ¹/₄; 3: 1/8; 4: 1/16; 5-8: 1/64 i=1

$$\sum_{i=1}^{8} \frac{1}{8} \log \frac{1}{8} = -\log \frac{1}{8} = 3$$
 bits

 $H(X) = -\sum_{i} p(i)\log p(i) = \frac{1}{2}\log \frac{1}{2} + \frac{1}{4}\log \frac{1}{4} + \frac{1}{8}\log \frac{1}{8} + \frac{1}{16}\log \frac{1}{16} + \frac{4}{64}\log \frac{1}{64}\log \frac{1}{64}$



- Computing Entropy • Picking horses (Cover and Thomas)
- Send message: identify horse 1 of 8
 - If all horses equally likely, p(i) = 1/8

H(X) = -

- Some horses more likely:
 - 1: ¹/₂; 2: ¹/₄; 3: 1/8; 4: 1/16; 5-8: 1/64

H(X) = -

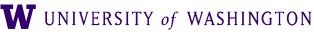
• 0, 10, 110, 1110, 111100, 111101, 111110, and 111111

 \rightarrow

$$\sum_{i=1}^{8} \frac{1}{8} \log \frac{1}{8} = -\log \frac{1}{8} = 3$$
 bits

$$\sum_{i=1}^{8} p(i) \log p(i) = 2 \text{ bits}$$
11110 and 111111

Uniform distribution has a higher entropy. → MaxEnt: make the distribution as "uniform" as possible. **w** UNIVERSITY of WASHINGTON



$H(X) = -\sum_{p \in X} p(x) \log p(x) = \mathbb{E}_p - \log p(X)$ \boldsymbol{X}

Entropy = Expected Surprisal

Cross Entropy $H(X) = -\sum p(x)\log p(x)$ $\boldsymbol{\chi}$

• Cross Entropy: Here, p(x) is the true probability; q(x) is our estimate of p(x).

 $H_c(X) = -\sum p(x)\log q(x)$ \boldsymbol{X}

$H_{\mathcal{C}}(X) \geq H(X)$

Relative Entropy

• Also called Kullback-Leibler divergence:

$$KL(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = H_c(X) - H(X)$$

and q(x) are, the smaller the relative entropy is.

• KL divergence is asymmetric, so it is not a proper distance metric:

• A "distance" measure between probability functions p and q; the closer p(x)

- $KL(p||q) \neq KL(q||p)$

Joint and conditional entropy

• Joint entropy:

• Conditional entropy:

$H(Y|X) = \sum p(x)H(Y|X = x) = H(X, Y) - H(X)$ X

 $H(X, Y) = -\sum p(x, y)\log p(x, y)$ x y

Entropy of a language (per-word entropy)

• The cross entropy of a language L by model m:

$$H(L,m) = -\lim_{n \to \infty} \frac{\sum_{x_{1n}} p(x_{1n}) \log m(x_{1n})}{n}$$

• If we make certain assumptions that the language is "nice", then the entropy can be calculated as: (Shannon-Breiman-Mcmillan Theorem)

$$H(L,m) = -\lim_{n \to \infty} \frac{\log m(x_{1n})}{n} \approx -\frac{\log m(x_{1n})}{n}$$

Per-word entropy (cont'd)

• $m(x_{1n})$ often specified by a language model

• Ex: unigram model

$$m(x_{1n}) = \prod_{i} m(x_{i})$$
$$\log m(x_{1n}) = \sum_{i} \log x_{i}$$

 $m(x_i)$

Perplexity • Perplexity: $PP(x_{1n}) = 2^{H(L,m)} = m(x_{1n})^{-\frac{1}{N}}$

variable has to make.

perplexity is preferred.

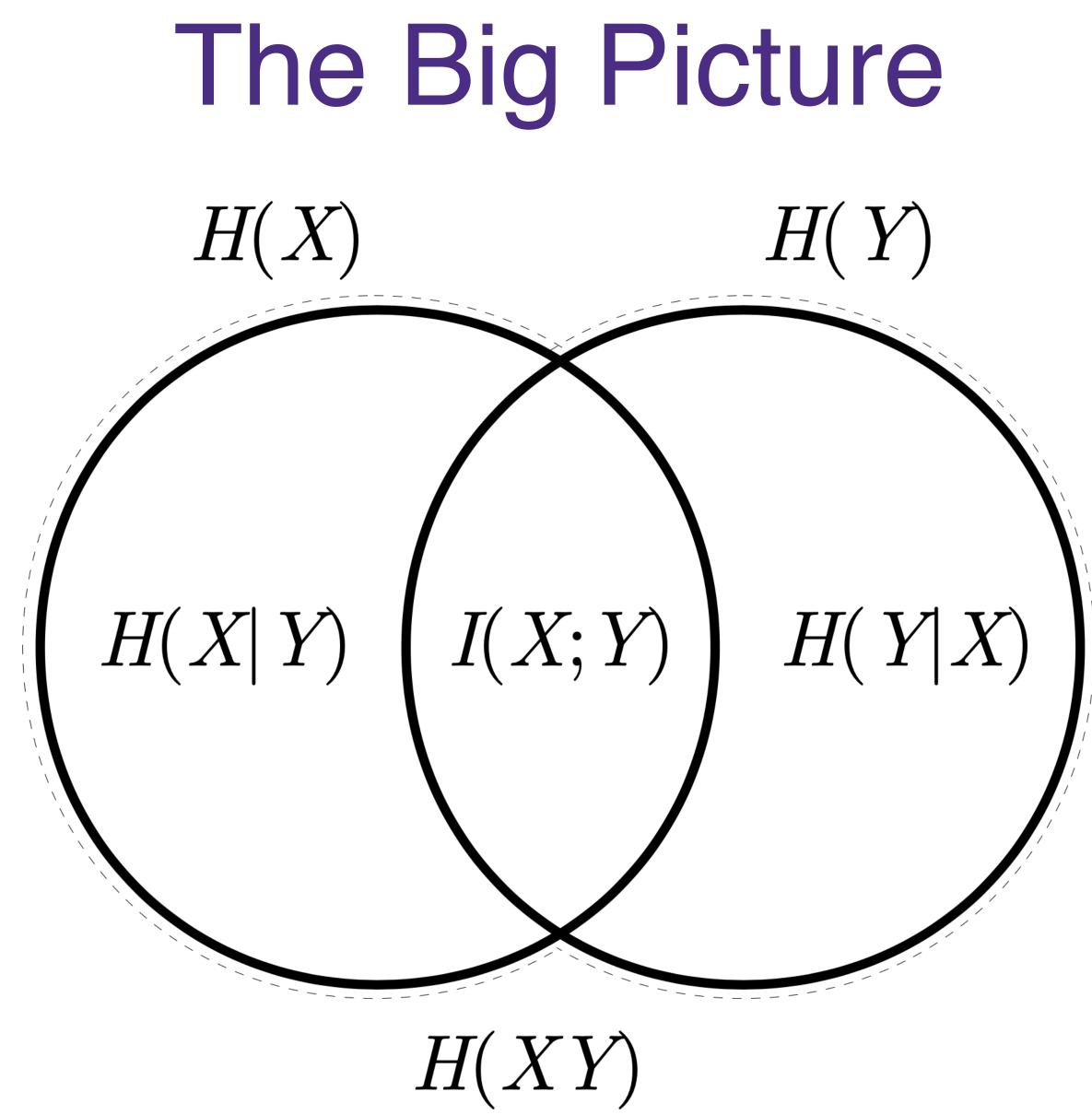
• Perplexity is the weighted average number of choices a random

• Perplexity is often used to evaluate a language model; lower



Mutual information

• Measures how much is in common between X and Y: $I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$ = H(X) + H(Y) - H(X,Y)=I(Y;X)= H(X) - H(X | Y) $= H(Y) - H(Y \mid X)$ • I(X; Y) = KL(p(x, y) || p(x)p(y))• If X and Y are independent, I(X;Y) is 0.



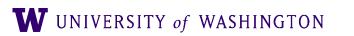
Dulek and Schaffner 2017 See also Cover+Thomas Fig 2.2; MS Fig 2.6

W UNIVERSITY of WASHINGTON

Summary of Information Theory

- Reading: M&S 2.2 + Cover and Thomas ch 2
- The use of probability theory to quantify and measure "information".
- Basic concepts:
 - Entropy
 - Cross entropy and relative entropy
 - Joint entropy and conditional entropy
 - Entropy of the language and perplexity
 - Mutual information

Additional slides



Conditional entropy

$$H(Y | X)$$

$$= \sum_{x} p(x)H(Y | X = x)$$

$$= -\sum_{x} p(x) \sum_{y} p(y | x) \log p(y | x)$$

$$= -\sum_{x} \sum_{y} p(x, y) \log p(y | x)$$

$$= -\sum_{x} \sum_{y} p(x, y) \log p(x, y) / p(x)$$

$$= -\sum_{x} \sum_{y} p(x, y) (\log p(x, y) - \log p(x))$$

$$= -\sum_{x} \sum_{y} p(x, y) \log p(x, y) + \sum_{x} \sum_{y} p(x, y) \log p(x)$$

$$= \sum_{x} \sum_{y} p(x, y) \log p(x, y) + \sum_{x} p(x) \log p(x)$$

$$= H(X, Y) - H(X)$$

Mutual information

$$\begin{split} I(X;Y) &= \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \\ &= \sum_{x} \sum_{y} p(x,y) \log p(x,y) - \sum_{x} \sum_{y} p(x,y) \log p(x) - \sum_{y} \sum_{x} p(x,y) \log p(y) \\ &= H(X,Y) - \sum_{x} \log p(x) \sum_{y} p(x,y) - \sum_{y} \log p(y) \sum_{x} p(x,y) \\ &= H(X,Y) - \sum_{x} (\log p(x))p(x) - \sum_{y} (\log p(y))p(y) \\ &= H(X) + H(Y) - H(X,Y) \\ &= I(Y;X) \end{split}$$

