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Outline
● Word representations and MLPs for NLP tasks

● Recurrent neural networks for sequences

● Fancier RNNs
● Vanishing/exploding gradients
● LSTMs (Long Short-Term Memory)
● Variants

● Seq2seq architecture 
● Attention
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MLPs for text classification
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Word Representations
● Traditionally: words are discrete features
● e.g. curWord=“class”
● As vectors: one-hot encoding
● Each vector is -dimensional, where V is the vocabulary
● Each dimension corresponds to one word of the vocabulary
● A 1 for the current word; 0 everywhere else

|V |
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w1 = [1 0 0 ⋯ 0]
w3 = [0 0 1 ⋯ 0]



Word Embeddings
● Problem 1: every word is equally different from every other.  
● All words are orthogonal to each other.

● Problem 2: very high dimensionality

● Solution: Move words into dense, lower-dimensional space
● Grouping similar words to each other
● These denser representations are called embeddings
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Word Embeddings
● Formally, a d-dimensional embedding is a matrix E with shape (|V|, d)
● Each row is the vector for one word in the vocabulary
● Matrix multiplying by a one-hot vector returns the corresponding row, i.e. the right word 

vector

● Trained on prediction tasks (see LING571 slides)
● Continuous bag of words
● Skip-gram
● …

● Can be trained on specific task, or download pre-trained (e.g. GloVe, fastText)

● Fancier versions now to deal with OOV: sub-word (e.g. BPE), character CNN/LSTM
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Relationships via Offsets
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One More Example
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Mikolov et al 2013c

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality


One More Example
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Caveat Emptor
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Linzen 2016, a.o.

https://www.aclweb.org/anthology/W16-2503/


Example MLP for Language Modeling
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Bengio et al 2003

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Example MLP for Language Modeling
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embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1embeddings + b1)

: one-hot vectorwt
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Example MLP for Language Modeling
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Bengio et al 2003

embeddings = concat(Cwt−1, Cwt−2, …, Cwt−(n+1))

hidden = tanh(W1embeddings + b1)

probabilities = softmax(W2hidden + b2)

: one-hot vectorwt

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Example MLP for sentiment classification
● Issue: texts of different length.
● One solution: average (or sum, or…) all the embeddings, which are of same dim

12
Iyyer et al 2015

Model IMDB 
accuracy

Deep averaging 
network 89.4

NB-SVM 
 (Wang and Manning 

2012)
91.2

https://www.aclweb.org/anthology/P15-1162/
https://www.aclweb.org/anthology/P12-2018/


Recurrent Neural Networks
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RNNs: high-level

14



RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
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RNNs: high-level
● Feed-forward networks: fixed-size input, fixed-size output
● Previous classifier: average embeddings of words
● Other solutions: n-gram assumption (i.e. fixed-size context of word embeddings)

● RNNs process sequences of vectors
● Maintaining “hidden” state
● Applying the same operation at each step

● Different RNNs:
● Different operations at each step
● Operation also called “recurrent cell”
● Other architectural considerations (e.g. depth; bidirectionally)
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RNNs
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https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNNs

15

Steinert-Threlkeld and Szymanik 2019; Olah 2015

ht = f(xt, ht−1)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNNs

15

Steinert-Threlkeld and Szymanik 2019; Olah 2015

ht = f(xt, ht−1)

Simple/“Vanilla” RNN: ht = tanh(Wxxt + Whht−1 + b)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNNs

15

Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

Simple/“Vanilla” RNN: ht = tanh(Wxxt + Whht−1 + b)

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNNs
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Steinert-Threlkeld and Szymanik 2019; Olah 2015

This class … interestinght = f(xt, ht−1)

Simple/“Vanilla” RNN: ht = tanh(Wxxt + Whht−1 + b)

Linear + 
softmax

Linear + 
softmax

Linear + 
softmax

https://semprag.org/article/view/sp.12.4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Using RNNs
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MLP seq2seq (later)

e.g. text classification e.g. POS tagging



Training: BPTT
● “Unroll” the network across time-steps

● Apply backprop to the “wide” network
● Each cell has the same parameters
● When updating parameters using the gradients, take the average across the 

time steps
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Fancier RNNs
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Vanishing/Exploding Gradients Problem
● BPTT with vanilla RNNs faces a major problem:
● The gradients can vanish (approach 0) across time
● This makes it hard/impossible to learn long distance dependencies, which are 

rampant in natural language
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Vanishing Gradients
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source

If these are small (depends on W), the effect from t=4 on t=1 will be very small

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf


Vanishing Gradient Problem
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source

http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture07-fancy-rnn.pdf


Vanishing Gradient Problem
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Graves 2012

https://www.cs.toronto.edu/~graves/preprint.pdf


Vanishing Gradient Problem
● Gradient measures the effect of the past on the future

● If it vanishes between t and t+n, can’t tell if:
● There’s no dependency in fact
● The weights in our network just haven’t yet captured the dependency
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The need for long-distance dependencies
● Language modeling (fill-in-the-blank)
● The keys ____
● The keys on the table ____
● The keys next to the book on top of the table ____
● To get the number on the verb, need to look at the subject, which can be very far 

away
● And number can disagree with linearly-close nouns

● Need models that can capture long-range dependencies like this.  
Vanishing gradients means vanilla RNNs will have difficulty.
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Long Short-Term Memory (LSTM)
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LSTMs
● Long Short-Term Memory (Hochreiter and Schmidhuber 1997)

● The gold standard / default RNN
● If someone says “RNN” now, they almost always mean “LSTM”

● Originally: to solve the vanishing/exploding gradient problem for RNNs
● Vanilla: re-writes the entire hidden state at every time-step
● LSTM: separate hidden state and memory
● Read, write to/from memory; can preserve long-term information
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https://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735


LSTMs

27

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)
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LSTMs

27

ft = σ (Wf ⋅ ht−1xt + bf)
it = σ (Wi ⋅ ht−1xt + bi)
̂ct = tanh (Wc ⋅ ht−1xt + bc)

ct = ft ⊙ ct−1 + it ⊙ ̂ct

ot = σ (Wo ⋅ ht−1xt + bo)
ht = ot ⊙ tanh (ct)

🤔🤔🤷🤮

● Key innovation:
●
● : a memory cell

● Reading/writing (smooth) 
controlled by gates
● : forget gate

● : input gate

● : output gate

ct, ht = f(xt, ct−1, ht−1)
ct

ft
it
ot



LSTMs
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LSTMs
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LSTMs
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LSTMs
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Element-wise multiplication: 
0: erase 
1: retain

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct
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LSTMs
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Element-wise multiplication: 
0: erase 
1: retain

: which cells to outputot ∈ [0,1]m

“candidate” / new values

Add new values to memory

= ft ⊙ ct−1 + it ⊙ ̂ct

: which cells to write toit ∈ [0,1]m

: which cells to forgetft ∈ [0,1]m
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LSTMs solve vanishing gradients

29
Graves 2012

https://www.cs.toronto.edu/~graves/preprint.pdf


Gated Recurrent Unit (GRU)
● Cho et al 2014: gated like LSTM, but no separate memory cell
● “Collapses” execution/control and memory

● Fewer gates = fewer parameters, higher speed
● Update gate
● Reset gate

30

ut = σ(Wuht−1 + Uuxt + bu)
rt = σ(Wrht−1 + Urxt + br)
h̃t = tanh(Wh(rt ⊙ ht) + Uhxt + bh)
ht = (1 − ut) ⊙ ht−1 + ut ⊙ h̃t



LSTM vs GRU
● Generally: LSTM a good default 

choice
● GRU can be used if speed and 

fewer parameters are important

● Full differences between them not 
fully understood

● Performance often comparable, 
but: LSTMs can store unboundedly 
large values in memory, and seem 
to e.g. count better
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source

https://arxiv.org/pdf/1805.04908.pdf


Two Extensions
● Deep RNNs:
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Two Extensions
● Deep RNNs:

32

● Bidirectional RNNs:

Source: RNN cheat sheet

Forward RNN

Backward RNN

Concatenate states

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks


“The BiLSTM Hegemony”
● Chris Manning, in 2017:
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source

https://nlp.stanford.edu/~manning/talks/Simons-Institute-Manning-2017.pdf


Seq2Seq + attention
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Sequence to sequence problems
● Many NLP tasks can be construed as sequence-to-sequence problems
● Machine translations: sequence of source lang tokens to sequence of target 

lang tokens
● Parsing: “Shane talks.” —> “(S (NP (N Shane)) (VP V talks))”
● Incl semantic parsing
● Summarization
● …

● NB: not the same as tagging, which assigns a label to each position in a 
given sequence
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seq2seq architecture [e.g. NMT]
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seq2seq architecture [e.g. NMT]

36Sutskever et al 2013

encoder decoder

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks


seq2seq results
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seq2seq architecture: problem

38Sutskever et al 2013

encoder decoder

Decoder can only see info in this one vector 
all info about source must be “crammed” into here

Mooney 2014: “You can't cram the meaning of a 
whole %&!$# sentence into a single $&!#* vector!”

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks


39

source

https://arxiv.org/pdf/1409.0473.pdf


39

source

https://arxiv.org/pdf/1409.0473.pdf


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear + 
softmax

w′ 1

Badhanau et al 2014

https://arxiv.org/abs/1409.0473


Adding Attention

40w1 w2 w3

h1 h2 h3

⟨s⟩

d1

αij = a(hj, di)
(dot product usually)

softmaxeij = softmax(α)j

ci = Σjeijhj
Linear + 
softmax

w′ 1

w′ i

d2

Badhanau et al 2014

https://arxiv.org/abs/1409.0473
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Attention, Generally
● A query  pays attention to some values  based on similarity with 

some keys .
q {vk}

{kv}
● Dot-product attention: 
 
 
 
 
 

● In the previous example: encoder hidden states played both the keys and 
the values roles.

41
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ej = eαj/Σjeαj
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Badhanau et al 2014

Vinyals et al 2015



Next Time
● We will introduce a new type of large neural model: the Transformer
● Hint: “Attention is All You Need” is the original paper

● Introduce the idea of transfer learning and pre-training language models
● Canvas recent developments and trends in that approach
● What we might call “The Transformer Hegemony” or “The Muppet Hegemony”
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