
Neural Networks: 
Computation + Gradient Descent

LING572 Advanced Statistical Methods in NLP
February 27 2020

1

Today’s Outline
● Computation: the forward pass
● Functional form / matrix notation
● Parameters and Hyperparameters

● Gradient Descent
● Intro
● Stochastic Gradient Descent + Mini-batches

2

Notation
● I will generally use plain variables (e.g.) for vectors and matrices as

well as scalars, relying on context

● : a “guess” at
● e.g.: a model’s output

● , when is a vector/matrix means that is applied element-wise

● : all parameters

● : is a (parameterized) function of with parameters

x, y, W

̂y y

f(x) x f
θ
̂y = f(x; θ) = fθ(x) ̂y x θ

3

Feed-forward networks 
aka Multi-layer perceptrons (MLP)

4

XOR Network

5

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)
= σ ([wand

or wand
nand] [aor

anand] + band)

XOR Network

6

aor = σ (wor
p ⋅ ap + wor

q ⋅ aq + bor)

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)
= σ ([wand

or wand
nand] [aor

anand] + band)

anand = σ (wnand
p ⋅ ap + wnand

q ⋅ aq + bnand)

XOR Network

7

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)
= σ ([wand

or wand
nand] [aor

anand] + band)

[aor
anand] = σ

wor
p wor

q

wnand
p wnand

q
[ap

aq] + [bor

bnand]

XOR Network

8

aand = σ (wand
or ⋅ aor + wand

nand ⋅ anand + band)
= σ ([wand

or wand
nand] [aor

anand] + band)

aand = σ [wand
or wand

nand] σ
wor

p wor
q

wnand
p wnand

q
[ap

aq] + [bor

bnand] + band

Generalizing

9

aand = σ [wand
or wand

nand] σ
wor

p wor
q

wnand
p wnand

q
[ap

aq] + [bor

bnand] + band

̂y = f2 (W2f1 (W1x + b1) + b2)
̂y = fn (Wnfn−1 (⋯f2 (W2f1 (W1x + b1) + b2)⋯) + bn)

Some terminology
● Our XOR network is a feed-forward neural network with one hidden layer
● Aka a multi-layer perceptron (MLP)

● Input nodes: 2; output nodes: 1

● Activation function: sigmoid

10

General MLP

11

source

W1
w1

ij
Weight to neuron in layer 1  

from neuron in layer 0
i

j

http://neuralnetworksanddeeplearning.com/chap1.html

General MLP

12

̂y = fn (Wnfn−1 (⋯f2 (W2f1 (W1x + b1) + b2)⋯) + bn)

W1 =

w1
00 w1

01 ⋯ w1
0n0

w1
10 w1

11 ⋯ w1
1n0

⋮ ⋮ ⋱ ⋮
w1

n10 w1
n11 ⋯ w1

n1n0

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n1, n0)
n0
n1

x =

x0
x1
⋮
xn0

Shape: (n0,1)

b1 =

b1
0

b1
1

⋮
b1

n1

Shape: (n1,1)

Parameters of an MLP
● Weights and biases
● For each layer :

● weights; biases

● With n hidden layers (considering the output as a hidden layer):

l nl(nl−1 + 1)
nlnl−1 nl

13

n

∑
i=1

ni(ni−1 + 1)

Hyper-parameters of an MLP
● Input size, output size
● Usually fixed by your problem / dataset
● Input: image size, vocab size; number of “raw” features in general
● Output: 1 for binary classification or simple regression, number of labels for classification, …

● Number of hidden layers

● For each hidden layer:

● Size

● Activation function

● Others: initialization, regularization (and associated values), learning rate / training, …

14

The Deep in Deep Learning
● The Universal Approximation Theorem says that one hidden layer suffices

for arbitrarily-closely approximating a given function

● Empirical drawbacks: Super-exponentially many neurons; hard to discover

● “Deep and narrow” >> “Shallow and wide”
● In principle allows hierarchical features to be learned
● More well-behaved w/r/t optimization

15

source

https://distill.pub/2017/feature-visualization/

Activation Functions
● Note: non-linear activation functions are essential

● MLP: linear transformation, followed by a point-wise non-linearity, repeated
several times over

● Without the non-linearity, would just have several linear transformations
● Composition of linear transformations is also linear!

16

̂y = fn (Wnfn−1 (⋯f2 (W2f1 (W1x + b1) + b2)⋯) + bn)

Activation Functions: Hidden Layer

17

σ(x) =
1

1 + e−x
=

ex

ex + 1

sigmoid tanh

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x) − 1

Problem: derivative “saturates” (nearly 0)
everywhere except near origin

● Use ReLU by default

● Generalizations:
● Leaky
● ELU
● Softplus
● …

Activation Functions: Output Layer
● Depends on the task!

● Regression (continuous output(s)): none!
● Just use final linear transformation

● Binary classification: sigmoid
● Also for multi-label classification

● Multi-class classification: softmax
● Terminology: the inputs to a softmax are called logits
● [there are sometimes other uses of the term, so beware]

18

softmax(x)i =
exi

∑j exj

Learning: (Stochastic) Gradient Descent

19

Gradient Descent: Basic Idea
● Treat NN training as an optimization problem

● : loss function (“objective function”);
● How “close” is the model’s output to the true output
● Local loss, averaged over training instances
● More later: depends on the particular task, among other things

● View the loss as a function of the model’s parameters

● The gradient of the loss w/r/t parameters tells which direction in parameter
space to “walk” to make the loss smaller (i.e. to improve model outputs)

● Guaranteed to work in linear case; can get stuck in local minima for NNs

ℓ(̂y, y) ℒ(̂Y, Y) =
1

|Y | ∑
i

ℓ(̂y(xi), yi)

20

Gradient Descent: Basic Idea

21source

https://nikcheerla.github.io/deeplearningschool/

Derivatives
● The derivative of a function of one real variable measures how much the

output changes with respect to a change in the input variable

22

f(x) = x2 + 35x + 12
df
dx

= 2x + 35

f(x) = ex

df
dx

= ex

Partial Derivatives
● A partial derivative of a function of several variables measures its

derivative with respect one of those variables, with the others held
constant.

23

f(x) = 10x3y2 + 5xy3 + 4x + y

∂f
∂x

= 30x2y2 + 5y3 + 4

∂f
∂y

= 20x3y + 15xy2 + 1

Gradient
● The gradient of a function is a vector function, returning all

of the partial derivatives 
 
 
 
 
 
 

● The gradient is perpendicular to the level curve at a point

● The gradient points in the direction of greatest rate of increase of

f(x1, x2, . . . xn)

f

24

∇f = ⟨ ∂f
∂x1

,
∂f
∂x2

, …,
∂f
∂xn ⟩

f(x) = 4x2 + y2

∇f = ⟨8x,2y⟩

Gradient and Level Curves

25

f(x) = 4x2 + y2

∇f = ⟨8x,2y⟩

Level curves: f(x) = c
(1.25,0)

(1,1)

(0, 5)

Q: what are the actual gradients 
at those points?

Gradient Descent and Level Curves

26

source

https://en.wikipedia.org/wiki/Gradient_descent#/media/File:Gradient_descent.svg

Gradient Descent Algorithm
● Initialize

● Repeat until convergence:

θ0

27

θn+1 = θn − α∇ℒ(̂Y(θn), Y)

Learning rate

● High learning rate: big steps, may bounce and “overshoot” the target

● Low learning rate: small steps, smoother minimization of loss, but can be slow

Gradient Descent: Minimal Example
● Task: predict a target/true value

● “Model”:
● A single parameter: the actual guess

● Loss: Euclidean distance

y = 2
̂y(θ) = θ

28

ℒ(̂y(θ), y) = (̂y − y)2 = (θ − y)2

Gradient Descent: Minimal Example

29

Stochastic Gradient Descent
● The above is called “batch” gradient descent
● Updates once per pass through the dataset
● Expensive, and slow; does not scale well

● Stochastic gradient descent:

● Break the data into “mini-batches”: small chunks of the data

● Compute gradients and update parameters for each batch

● Mini-batch of size 1 = single example

● A noisy estimate of the true gradient, but works well in practice; more parameter updates

● Epoch: one pass through the whole training data

30

Stochastic Gradient Descent

31

initialize parameters / build model

for each epoch:

data = shuffle(data)
batches = make_batches(data)

for each batch in batches:

outputs = model(batch)
loss = loss_fn(outputs, true_outputs)
compute gradients // e.g. loss.backward()
update parameters

Computing with Mini-batches
● Bad idea:

32

for each batch in batches:
for each datum in batch:
outputs = model(datum)
loss = loss_fn(outputs, true_outputs)
compute gradients // e.g. loss.backward()
update parameters

Computing with a Single Input

33

̂y = fn (Wnfn−1 (⋯f2 (W2f1 (W1x + b1) + b2)⋯) + bn)

W1 =

w1
00 w1

01 ⋯ w1
0n0

w1
10 w1

11 ⋯ w1
1n0

⋮ ⋮ ⋱ ⋮
w1

n10 w1
n11 ⋯ w1

n1n0

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n1, n0)
n0
n1

x =

x0
x1
⋮
xn0

Shape: (n0,1)

b1 =

b1
0

b1
1

⋮
b1

n1

Shape: (n1,1)

Computing with a Batch of Inputs

34

̂y = fn (fn−1 (⋯f2 (f1 (xW1 + b1) W2 + b2)⋯) Wn + bn)

W1 =

w1
00 w1

01 ⋯ w1
0n1

w1
10 w1

11 ⋯ w1
1n1

⋮ ⋮ ⋱ ⋮
w1

n00 w1
n01 ⋯ w1

n0n1

Shape:
: number of neurons in layer 0 (input) 
: number of neurons in layer 1

(n0, n1)
n0
n1

x =

x0
0 x0

1 … x0
n0

x0
1 x1

1 … x1
n0

⋮ ⋮ ⋱ ⋮
xn

1 xn
1 … xn

n0

Shape:
: batch_size

(n, n0)
n

b1 = [b1
0 b1

1 … b1
n1]

Shape:
Added to each row of

(1,n1)
xW1

Note on mini-batches and shape
● Most modern neural net libraries (e.g. PyTorch) expect the first dimension of

matrices/tensors to be a batch size
● Produce a sequence of representations, for each item in the batch
● e.g. (batch_size, input_size) —> (batch_size, hidden_size) —> (batch_size, output_size)

● In principle, can be higher than 2-dimensional
● Images: (batch_size, width, height, 3)
● Sequences: (batch_size, seq_len, representation_size)

● Two comments:
● In your code, annotate every tensor with a comment saying intended shape
● When debugging, look at shapes early on!!

35

Regularization
● NNs are often overparameterized,

so regularization helps

● L1/L2:

● Dropout (2012):
● During training, randomly turn off X%

of neurons in each layer
● (Don’t do this during testing/predicting)
● Batch Normalization (2015)

36

ℒ′ (θ, y) = ℒ(θ, y) + λ∥θ∥2

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1502.03167.pdf

Hyper-parameters
● In addition to the model architecture ones mentioned earlier

● Optimizer: SGD, Adam, Adagrad, RMSProp, ….
● Optimizer-specific hyper-parameters: learning rate, alpha, beta, …
● NB: backprop computes gradients; optimizer uses them to update parameters

● Regularization: L1/L2, Dropout, BN, …
● regularizer-specific ones: e.g. dropout rate

● Batch size

● Number of epochs to train for
● Early stopping criterion (e.g. number of epochs, “patience”)

37

Early stopping
● One: Pick # of epochs, hope for no overfitting

● Better: pick max # of epochs, and “patience”
● Halt when validation error does not improve over patience-many epochs

38

source

https://towardsdatascience.com/simple-reference-guide-for-tuning-deep-neural-nets-e2d37d6fa933

A note on hyper-parameter tuning
● Grid search: specify range of values for each hyper-parameter, try all

possible combinations thereof

● Random search: specify possible values for all parameters, randomly
sample values for each, stop when some criterion is met

39

Bergstra and Bengio 2012

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Next time
● Today: how to train an NN by SGD
● Compute gradients of loss w/r/t parameters
● Update parameters (weights) in the opposite direction, to minimize loss

● Next time:
● How do we compute gradients???
● Backpropagation

40

