Neural Networks: Computation + Gradient Descent

LING572 Advanced Statistical Methods in NLP February 27 2020

Today's Outline

- Computation: the forward pass
 - Functional form / matrix notation
 - Parameters and Hyperparameters
- Gradient Descent
 - Intro
 - Stochastic Gradient Descent + Mini-batches

Notation

- well as scalars, relying on context
- \hat{y} : a "guess" at y
 - e.g.: a model's output
- f(x), when x is a vector/matrix means that f is applied element-wise
- θ : all parameters

• I will generally use plain variables (e.g. x, y, W) for vectors and matrices as

• $\hat{y} = f(x; \theta) = f_{\theta}(x)$: \hat{y} is a (parameterized) function of x with parameters θ

Feed-forward networks aka Multi-layer perceptrons (MLP)

XOR Network

$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + b^{\text{and}} \right)$$
$$= \sigma \left(\left[w_{\text{or}}^{\text{and}} & w_{\text{nand}}^{\text{and}} \right] \left[a_{\text{nand}}^{\text{and}} \right] + b^{\text{and}} \right)$$

XOR Network

$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + w_{\text{or}}^{\text{and}} \right) = \sigma \left(w_{\text{or}}^{\text{and}} w_{\text{nand}}^{\text{and}} \right) \left[a_{\text{or}}^{\text{and}} + b^{\text{and}} \right]$$
$$\rightarrow a_{\text{or}} = \sigma \left(w_{p}^{\text{or}} \cdot a_{p} + w_{q}^{\text{or}} \cdot a_{q} + b^{\text{or}} \right)$$
$$a_{\text{nand}} = \sigma \left(w_{p}^{\text{nand}} \cdot a_{p} + w_{q}^{\text{nand}} \cdot a_{q} + b^{\text{nand}} \right)$$

$$a_{\text{and}} = \sigma \left(w_{\text{or}}^{\text{and}} \cdot a_{\text{or}} + w_{\text{nand}}^{\text{and}} \cdot a_{\text{nand}} + e^{\alpha} \right)$$
$$= \sigma \left(\left[w_{\text{or}}^{\text{and}} & w_{\text{nand}}^{\text{and}} \right] \left[a_{\text{or}}^{\alpha} \right] + e^{\alpha} \right)$$

$$\begin{bmatrix} a_{\text{or}} \\ a_{\text{nand}} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \\ w_p^{\text{nand}} & w_q^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{or}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{nand}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{or}} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{or} \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b_p^{\text{or}} \end{bmatrix} + \begin{bmatrix} b^$$

XOR Network

$$a_{and} = \sigma \left(w_{or}^{and} \cdot a_{or} + w_{nand}^{and} \cdot a_{nand} + \sigma \left(\begin{bmatrix} w_{or}^{and} & w_{nand}^{and} \end{bmatrix} \begin{bmatrix} a_{or} \\ a_{nand} \end{bmatrix} + b^{a_{nand}} \right)$$

$$\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \\ w_p^{\text{nand}} & w_q^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix} + b^{\text{and}}$$

Generalizing

$$a_{\text{and}} = \sigma \left(\begin{bmatrix} w_{\text{or}}^{\text{and}} & w_{\text{nand}}^{\text{and}} \end{bmatrix} \sigma \left(\begin{bmatrix} w_p^{\text{or}} & w_q^{\text{or}} \\ w_p^{\text{nand}} & w_q^{\text{nand}} \end{bmatrix} \begin{bmatrix} a_p \\ a_q \end{bmatrix} + \begin{bmatrix} b^{\text{or}} \\ b^{\text{nand}} \end{bmatrix} \right) + b^{\text{and}} \right)$$
$$\hat{y} = f_2 \left(W^2 f_1 \left(W^1 x + b^1 \right) + b^2 \right)$$
$$\hat{y} = f_n \left(W^n f_{n-1} \left(\cdots f_2 \left(W^2 f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

Some terminology

- - Aka a multi-layer perceptron (MLP)
- Input nodes: 2; output nodes: 1
- Activation function: sigmoid

• Our XOR network is a feed-forward neural network with one hidden layer

input layer

General MLP

Weight to neuron *i* in layer 1 from neuron *j* in layer 0

General MLP

$$\hat{y} = f_n \left(W^n f_{n-1} \left(\cdots f_2 \left(W^2 f_1 \right) \right)^{-1} \right)^{-1} \left(W^1 f_n - 1 \left(\cdots f_2 \left(W^2 f_1 \right)^{-1} \right)^{-1} \right)^{-1} \left(W^1 f_n - W^1 f_n$$

Shape: (n_1, n_0) n_0 : number of neurons in layer 0 (input) n_1 : number of neurons in layer 1

 $(W^1x + b^1) + b^2)\cdots + b^n$ $x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n_0} \end{bmatrix} \qquad b^1 = \begin{bmatrix} b_0^1 \\ b_1^1 \\ \vdots \\ b_{n_1}^1 \end{bmatrix}$ Shape: $(n_1, 1)$ Shape: $(n_0, 1)$

Parameters of an MLP

- Weights and biases
 - For each layer $l: n_l(n_{l-1} + 1)$
 - $n_l n_{l-1}$ weights; n_l biases
- With *n* hidden layers (considering the output as a hidden layer):

 $\sum n_i(n_{i-1} + 1)$

Hyper-parameters of an MLP

- Input size, output size
 - Usually fixed by your problem / dataset
 - Input: image size, vocab size; number of "raw" features in general
- *Number* of hidden layers
- For each hidden layer:
 - Size
 - Activation function

• Output: 1 for binary classification or simple regression, number of labels for classification, ...

• Others: initialization, regularization (and associated values), learning rate / training, ...

The Deep in Deep Learning

- The Universal Approximation Theorem says that one hidden layer suffices for arbitrarily-closely approximating a given function
- Empirical drawbacks: Super-exponentially many neurons; hard to discover
- "Deep and narrow" >> "Shallow and wide"
 - In principle allows hierarchical features to be learned
 - More well-behaved w/r/t optimization

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

source

Activation Functions

- Note: *non-linear* activation functions are essential
- MLP: linear transformation, followed by a point-wise non-linearity, repeated several times over
- Without the non-linearity, would just have several linear transformations • Composition of linear transformations is *also* linear!

$$\hat{y} = f_n \left(W^n f_{n-1} \left(\cdots f_2 \left(W^2 f_1 \left(W^1 x + b^1 \right) + b^2 \right) \cdots \right) + b^n \right)$$

Problem: derivative "saturates" (nearly 0) everywhere except near origin

$$\frac{-e^{-x}}{+e^{-x}} = 2\sigma(2x) - 1$$

- Use ReLU by default
- Generalizations:
 - Leaky
 - ELU

• ...

• Softplus

Activation Functions: Output Layer

- Depends on the task!
- Regression (continuous output(s)): none!
 - Just use final linear transformation
- Binary classification: sigmoid
 - Also for *multi-label* classification
- Multi-class classification: softmax
 - Terminology: the inputs to a softmax are called *logits*
 - [there are sometimes other uses of the term, so beware]

$\operatorname{softmax}(x)_i = \frac{e^{x_i}}{\sum_i e^{x_j}}$

Learning: (Stochastic) Gradient Descent

Gradient Descent: Basic Idea

- Treat NN training as an optimization problem
 - $\mathscr{E}(\hat{y}, y): \text{loss function ("objective function"); } \mathscr{L}(\hat{Y}, Y) = \frac{1}{|Y|} \sum_{i} \mathscr{E}(\hat{y}(x_i), y_i)$
 - How "close" is the model's output to the true output
 - Local loss, averaged over training instances
 - More later: depends on the particular task, among other things
- View the loss as a function of the model's parameters
- The gradient of the loss w/r/t parameters tells which direction in parameter space to "walk" to make the loss smaller (i.e. to improve model outputs)
- Guaranteed to work in linear case; can get stuck in local minima for NNs

Gradient Descent: Basic Idea

Derivatives

- output changes with respect to a change in the input variable
 - $\frac{df}{dx} = 2x + 35$
 - $f(x) = e^x$ $\frac{df}{dx} = e^x$

• The derivative of a function of one real variable measures how much the

$f(x) = x^2 + 35x + 12$

Partial Derivatives

• A partial derivative of a function of several variables measures its derivative with respect one of those variables, with the others held constant.

$$f(x) = 10x^{3}y^{2} + 5xy^{3} + 4x + y$$
$$\frac{\partial f}{\partial x} = 30x^{2}y^{2} + 5y^{3} + 4$$
$$\frac{\partial f}{\partial y} = 20x^{3}y + 15xy^{2} + 1$$

• The gradient of a function $f(x_1, x_2, \dots, x_n)$ is a vector function, returning all of the partial derivatives

- $f(x) = 4x^2$ $\nabla f = \langle 8x,$
- The gradient is perpendicular to the *level curve* at a point
- The gradient points in the direction of greatest rate of increase of f

Gradient

$$\frac{\partial f}{\partial x_{2}}, \dots, \frac{\partial f}{\partial x_{n}}, \dots, \frac{\partial$$

Gradient Descent and Level Curves

Gradient Descent Algorithm

- Initialize θ_0
- Repeat until convergence:

$$\theta_{n+1} = \theta_n - \theta_n -$$

- High learning rate: big steps, may bounce and "overshoot" the target
- Low learning rate: small steps, smoother minimization of loss, but can be slow

$-\alpha \nabla \mathscr{L}(\hat{Y}(\theta_n), Y)$ Learning rate

Gradient Descent: Minimal Example

- Task: predict a target/true value y = 2
- "Model": $\hat{y}(\theta) = \theta$
 - A single parameter: the actual guess
- Loss: Euclidean distance

 $\mathscr{L}(\hat{y}(\theta), y) = (\hat{y} - y)^2 = (\theta - y)^2$

Gradient Descent: Minimal Example

$$\frac{\partial}{\partial \theta} \mathcal{L}(\theta, y) = 2(\theta - y)$$

 $\theta_{t+1} =$

θ

 $\mathcal{L}(\theta, 2)$

$$heta_t - lpha \cdot rac{\partial}{\partial heta} \mathcal{L}(heta, y)$$

Stochastic Gradient Descent

- The above is called "batch" gradient descent
 - Updates once per pass through the dataset
 - Expensive, and slow; does not scale well
- *Stochastic* gradient descent:
 - Break the data into "mini-batches": small chunks of the data
 - Compute gradients and update parameters for each batch
 - Mini-batch of size 1 = single example
- Epoch: one pass through the whole training data

A *noisy estimate* of the true gradient, but works well in practice; more parameter updates

Stochastic Gradient Descent

initialize parameters / build model

for each epoch:

data = shuffle(data) batches = make batches(data)

for each batch in batches:

outputs = model(batch) loss = loss fn(outputs, true outputs) update parameters

- compute gradients // e.g. loss.backward()

Computing with Mini-batches

• Bad idea:

for each batch in batches: for each datum in batch: outputs = model(datum) loss = loss fn(outputs, true outputs) update parameters

- compute gradients // e.g. loss.backward()

$$\hat{y} = f_n \left(W^n f_{n-1} \left(\cdots f_2 \left(W^2 f_1 \right) \right)^{-1} W^1 = \begin{bmatrix} w_{00}^1 & w_{01}^1 & \cdots & w_{0n_0}^1 \\ w_{10}^1 & w_{11}^1 & \cdots & w_{1n_0}^1 \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_10}^1 & w_{n_11}^1 & \cdots & w_{n_1n_0}^1 \end{bmatrix}$$

Shape: (n_1, n_0) n_0 : number of neurons in layer 0 (input) n_1 : number of neurons in layer 1

 $\hat{y} = f_n \left(f_{n-1} \left(\cdots f_2 \left(f_1 \left(x W^1 + \cdots f_2 \left(f_1 \left(x W^1 \right) \right) \right) \right) \right) \right) \right)$

n: batch_size

Shape: (n_0, n_1)

Computing with a Batch of Inputs

$$(+b^1)W^2 + b^2)\cdots W^n + b^n$$

$$b^{1} = \begin{bmatrix} b_{0}^{1} & b_{1}^{1} & \dots \end{bmatrix}$$

Shape: (1,*n*₁)
Added to each row of *x*

n_0 : number of neurons in layer 0 (input) n_1 : number of neurons in layer 1

Note on mini-batches and shape

- Most modern neural net libraries (e.g. PyTorch) expect the first dimension of matrices/tensors to be a batch size
 - Produce a sequence of representations, *for each item* in the batch
 - e.g. (batch_size, input_size) \rightarrow (batch_size, hidden_size) \rightarrow (batch_size, output_size)
- In principle, can be higher than 2-dimensional
 - Images: (batch_size, width, height, 3)
 - Sequences: (batch_size, seq_len, representation_size)
- Two comments:

 - In your code, annotate every tensor with a comment saying intended shape • When debugging, look at shapes early on!!

Regularization

- NNs are often *overparameterized*, so regularization helps
- L1/L2: $\mathscr{L}'(\theta, y) = \mathscr{L}(\theta, y) + \lambda \|\theta\|^2$
- <u>Dropout</u> (2012):
 - *During training*, randomly turn off X% of neurons in each layer
 - (Don't do this during testing/predicting)
- **Batch Normalization** (2015)

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Hyper-parameters

- In addition to the model architecture ones mentioned earlier
- Optimizer: SGD, Adam, Adagrad, RMSProp,
 - Optimizer-specific hyper-parameters: learning rate, alpha, beta, ...
 - NB: backprop computes gradients; optimizer uses them to update parameters
- Regularization: L1/L2, Dropout, BN, ...
 - regularizer-specific ones: e.g. dropout rate
- Batch size
- Number of epochs to train for
 - Early stopping criterion (e.g. number of epochs, "patience")

- One: Pick # of epochs, hope for no overfitting
- Better: pick max # of epochs, and "patience"
 - Halt when validation error does not improve over patience-many epochs

Early stopping

source

A note on hyper-parameter tuning

- Grid search: specify range of values for each hyper-parameter, try all possible combinations thereof
- Random search: specify possible values for all parameters, randomly sample values for each, stop when some criterion is met

Important parameter

Bergstra and Bengio 2012

Next time

- Today: how to train an NN by SGD
 - Compute gradients of loss w/r/t parameters
 - Update parameters (weights) in the opposite direction, to minimize loss
- Next time:
 - How do we compute gradients???
 - Backpropagation

