
Neural Networks: Introduction
LING572 Advanced Statistical Methods for NLP

February 25 2020

1

Unit Overview
● Introduction: History; Main Ideas / Basic Computation; Landscape

● Computation in feed-forward networks + Beginning of Learning

● Backpropagation

● Recurrent networks

● Transformers + transfer learning

2

Overview of Today
● Overview / Motivation

● History

● Computation: Simple Example

● Landscape

3

High-level Overview

4

What is a neural network?
● A network of artificial “neurons”
● What’s a neuron?
● How are they connected in a network? Why do that?

● The networks learns representations of its input that are helpful in
predicting desired outputs.

● In many cases, they are universal function approximators. (To be made
precise later.)
● But getting good approximations in practice is non-trivial.

● Dominating applied AI in many areas, including NLP, at the moment.

5

“Biological” Motivation
● Neuron: receives electrical

impulses from others through
its synapses.
● Different connections have

different strengths.

● Integrates these signals in its
cell body.

● “Activates” if threshold passed.
● Sends signal down dendrites to

others that it’s connected to.

6

All-or-none Response
● Neuron: receives electrical

impulses from others through
its synapses.
● Different connections have

different strengths.

● Integrates these signals in its
cell body.

● “Activates” if threshold passed.
● Sends signal down dendrites to

others that it’s connected to.

7

Some stats
● Number of neurons: ~100 billion

● Connections per neuron: ~10,000

● Strength of each connection adapts in the course of learning.

8

Engineering perspective
● MaxEnt (i.e. multinomial logistic regression):

● Feed-forward neural network:

9

y = softmax(w ⋅ f(x, y))

y = softmax(w ⋅ fn(Wn(⋯f2(W2 f1(W1x))⋯))

Engineered feature vector

Learned (and “hierarchical”) feature vector

Why neural networks?
● Distributed representations:
● Earlier NLP systems can be fragile, because of atomic symbol representations
● e.g. “king” is as different from “queen” as from “bookshelf”
● Learned word representations help enormously (cf 570, 571):
● Lower dimensionality: breaks curse of dimensionality, and hopefully represents

similarity structure
● Can use larger contexts, beyond small n-grams
● Beyond words: sentences, documents, …

10

Why neural networks?  
Learning Representations

● Handcrafting / engineering features is time-consuming
● With no guarantee that the features you design will be the “right” ones for

solving your task

● Representation learning: automatically learn good/useful features
● (NB: one of the top ML conferences is ICLR = International Conference on

Learning Representations)

● Deep learning: attempts to learn multiple levels of representation of
increasing complexity/abstraction

● Good intermediate representations can be shared across tasks and
languages (e.g. multi-task learning, transfer learning)

11

History

12

The first artificial neural network: 1943

13

………….

14

Turing Award: 2018

15

Perceptron (1958)

16
source

f(x) = {1 w ⋅ x + b > 0
0 otherwise

“"the embryo of an electronic
computer that [the Navy] expects
will be able to walk, talk, see, write,
reproduce itself and be conscious of
its existence.”
—New York Times

https://en.wikipedia.org/wiki/Perceptron#/media/File:Mark_I_perceptron.jpeg

Perceptrons (1969)

17

● Limitative results on functions computable by the
basic perceptron

● Famous example (we’ll return to it later):

● Exclusive disjunction (XOR) is not computable

● Other examples that are uncomputable assuming
local connectivity

AI Winter
● Reaction to the results:
● The approach of learning perceptrons for data cannot deliver on the promises
● Funding from e.g. government agencies dried up significantly
● Community lost interest in the approach

● Very unfortunate:
● Already known from McCulloch and Pitts that any boolean function can be

computed by “deeper” networks of perceptrons
● Negative consequences of the results were significantly over-blown

18

Deeper Backpropagation (1986)
● Multi-layer networks, trained by backpropagation, applied to

cognitive tasks

● “Efficient applications of the chain rule based on dynamic
programming began to appear in the 1960s and 1970s, mostly
for control applications (Kelley, 1960; Bryson and Denham,
1961; Dreyfus, 1962; Bryson and Ho, 1969; Dreyfus, 1973) ….
The idea was finally developed in practice after being
independently rediscovered in different ways (LeCun, 1985;
Parker, 1985; Rumelhart et al., 1986a). The book Parallel
Distributed Processing presented the results of some of the
first successful experiments with back-propagation in a
chapter (Rumelhart et al., 1986b) that contributed greatly to
the popularization of back-propagation and initiated a very
active period of research in multilayer neural networks.”

19

Successful Engineering Application (1989)
● Convolutional networks (“LeNet”, after Yann

LeCun) applied to recognizing hand-written
digits

● MNIST dataset

● Still useful for setting up pipelines, testing
simple baselines, etc.

● Deployed for automatic reading of mailing
addresses, check amounts, etc.

20

original website

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/lenet/

ImageNet (ILSVRC) results (2012)

21source

What happened in 2012?

https://en.wikipedia.org/wiki/ImageNet#/media/File:ImageNet_error_rate_history_(just_systems).svg

ILSVRC 2012: runner-up

22
source

http://image-net.org/challenges/LSVRC/2012/isi.pdf

ILSVRC 2012: winner

23

NeurIPS 2012 paper

“AlexNet”

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

2012-now
● Widespread adoption of deep neural networks across a range of domains /

tasks
● Image processing of various kinds
● Reinforcement learning (e.g. AlphaGo/AlphaZero, …)
● NLP!

● What happened?
● Better learning algorithms / training regimes
● Larger and larger, standardized datasets
● Compute! GPUs, now dedicated hardware (TPUs)

24

Compute in Deep Learning

25source

log-scale!!

https://openai.com/blog/ai-and-compute/

Caveat Emptor
● Some areas are an ‘arms

race’ between e.g.
Google, Facebook,
OpenAI, MS, Baidu, …

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access

26

https://www.aclweb.org/anthology/P19-1355/
https://arxiv.org/pdf/1907.10597.pdf

Computation: Basic Example

27

Artificial Neuron

28
https://github.com/shanest/nn-tutorial

https://github.com/shanest/nn-tutorial

Activation Function: Sigmoid

29

σ(x) =
1

1 + e−x
=

ex

ex + 1

(more on this next time)

Computing a Boolean function

30

p q a

1 1 1

1 0 0

0 1 0

0 0 0

Computing ‘and’

31

The XOR problem

32XOR is not linearly separable

Computing XOR

33

Exercise: show that
NAND behaves as described.

Computing XOR

34

Key Ideas
● Hidden layers compute high-level / abstract features of the input
● Via training, will learn which features are helpful for a given task
● Caveat: doesn’t always learn much more than shallow features

● Doing so increases the expressive power of a neural network
● Strictly more functions can be computed with hidden layers than without

35

Expressive Power
● Neural networks with one hidden layer are universal function approximators

● Let be continuous and . Then there is a one-hidden-
layer neural network with sigmoid activation such that
for all .

● Generalizations (diff activation functions, less bounded, etc.) exist.

● But:
● Size of the hidden layer is exponential in m
● How does one find/learn such a good approximation?

● Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html

f : [0,1]m → ℝ ϵ > 0
g | f(x) − g(x) | < ϵ

x ∈ [0,1]m

36

http://neuralnetworksanddeeplearning.com/chap4.html

Landscape

37

Next steps
● More detail about computation, how to build and implement networks

● Where do the weights and biases come from?
● (Stochastic) gradient descent
● Backpropagation for gradients

● Various hyper-parameters around both of those

● NLP “specific” topics:
● Sequence models
● Pre-training

38

Broad architecture types
● Feed-forward (multi-layer

perceptron)
● Today and next time

● Convolutional (mainly for
images, but also text
applications)

● Recurrent (sequences; LSTM
the most common)

● Transformers

39

Resources
● 3blue1brown videos: useful introduction, well animated

● Neural Networks and Deep Learning free e-book
● A bit heavy on the notation, but useful

● Deep Learning book (free online): very solid, presupposes some
mathematical maturity

● Various other course materials (e.g. CS231n and CS224n from Stanford)

● Blog posts
● NB: hit or miss! Some are amazing, some are….not

40

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
http://neuralnetworksanddeeplearning.com
https://www.deeplearningbook.org/
http://cs231n.stanford.edu/
http://web.stanford.edu/class/cs224n/

Libraries
● General libraries:
● PyTorch
● TensorFlow

● Received wisdom: PyTorch the best for research; TF slightly better for
deployment.
● But, both are converging on the same API, just from different ends
● I have a strong preference for PyTorch; it’s also a more consistent API

● NLP specific: AllenNLP, fairseq, HuggingFace Transformers

41

https://pytorch.org/
https://www.tensorflow.org/
https://allennlp.org/
https://fairseq.readthedocs.io/en/latest/
https://huggingface.co/transformers/

