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Unit Overview
● Introduction: History; Main Ideas / Basic Computation; Landscape

● Computation in feed-forward networks + Beginning of Learning

● Backpropagation

● Recurrent networks

● Transformers + transfer learning
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Overview of Today
● Overview / Motivation

● History

● Computation: Simple Example

● Landscape
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High-level Overview
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What is a neural network?
● A network of artificial “neurons”
● What’s a neuron?
● How are they connected in a network?  Why do that?

● The networks learns representations of its input that are helpful in 
predicting desired outputs.

● In many cases, they are universal function approximators.  (To be made 
precise later.)
● But getting good approximations in practice is non-trivial.

● Dominating applied AI in many areas, including NLP, at the moment.
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“Biological” Motivation
● Neuron: receives electrical 

impulses from others through 
its synapses.
● Different connections have 

different strengths.

● Integrates these signals in its 
cell body.

● “Activates” if threshold passed.
● Sends signal down dendrites to 

others that it’s connected to.
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All-or-none Response
● Neuron: receives electrical 

impulses from others through 
its synapses.
● Different connections have 

different strengths.

● Integrates these signals in its 
cell body.

● “Activates” if threshold passed.
● Sends signal down dendrites to 

others that it’s connected to.
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Some stats
● Number of neurons: ~100 billion

● Connections per neuron: ~10,000

● Strength of each connection adapts in the course of learning.
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Engineering perspective
● MaxEnt (i.e. multinomial logistic regression):

● Feed-forward neural network:
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y = softmax(w ⋅ f(x, y))

y = softmax(w ⋅ fn(Wn(⋯f2(W2 f1(W1x))⋯))

Engineered feature vector

Learned (and “hierarchical”) feature vector



Why neural networks?
● Distributed representations:
● Earlier NLP systems can be fragile, because of atomic symbol representations
● e.g. “king” is as different from “queen” as from “bookshelf”
● Learned word representations help enormously (cf 570, 571):
● Lower dimensionality: breaks curse of dimensionality, and hopefully represents 

similarity structure
● Can use larger contexts, beyond small n-grams
● Beyond words: sentences, documents, …
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Why neural networks?  
Learning Representations

● Handcrafting / engineering features is time-consuming
● With no guarantee that the features you design will be the “right” ones for 

solving your task

● Representation learning: automatically learn good/useful features
● (NB: one of the top ML conferences is ICLR = International Conference on 

Learning Representations)

● Deep learning: attempts to learn multiple levels of representation of 
increasing complexity/abstraction

● Good intermediate representations can be shared across tasks and 
languages (e.g. multi-task learning, transfer learning)
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History
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The first artificial neural network: 1943
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………….
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Turing Award: 2018
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Perceptron (1958)
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f(x) = {1 w ⋅ x + b > 0
0 otherwise

“"the embryo of an electronic 
computer that [the Navy] expects 
will be able to walk, talk, see, write, 
reproduce itself and be conscious of 
its existence.” 
—New York Times

https://en.wikipedia.org/wiki/Perceptron#/media/File:Mark_I_perceptron.jpeg


Perceptrons (1969)
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● Limitative results on functions computable by the 
basic perceptron

● Famous example (we’ll return to it later):

● Exclusive disjunction (XOR) is not computable

● Other examples that are uncomputable assuming 
local connectivity



AI Winter
● Reaction to the results:
● The approach of learning perceptrons for data cannot deliver on the promises
● Funding from e.g. government agencies dried up significantly
● Community lost interest in the approach

● Very unfortunate:
● Already known from McCulloch and Pitts that any boolean function can be 

computed by “deeper” networks of perceptrons
● Negative consequences of the results were significantly over-blown
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Deeper Backpropagation (1986)
● Multi-layer networks, trained by backpropagation, applied to 

cognitive tasks

● “Efficient applications of the chain rule based on dynamic 
programming began to appear in the 1960s and 1970s, mostly 
for control applications (Kelley, 1960; Bryson and Denham, 
1961; Dreyfus, 1962; Bryson and Ho, 1969; Dreyfus, 1973) …. 
The idea was finally developed in practice after being 
independently rediscovered in different ways (LeCun, 1985; 
Parker, 1985; Rumelhart et al., 1986a). The book Parallel 
Distributed Processing presented the results of some of the 
first successful experiments with back-propagation in a 
chapter (Rumelhart et al., 1986b) that contributed greatly to 
the popularization of back-propagation and initiated a very 
active period of research in multilayer neural networks.”
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Successful Engineering Application (1989)
● Convolutional networks (“LeNet”, after Yann 

LeCun) applied to recognizing hand-written 
digits

● MNIST dataset

● Still useful for setting up pipelines, testing 
simple baselines, etc.

● Deployed for automatic reading of mailing 
addresses, check amounts, etc.
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original website

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/lenet/


ImageNet (ILSVRC) results (2012)
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What happened in 2012?

https://en.wikipedia.org/wiki/ImageNet#/media/File:ImageNet_error_rate_history_(just_systems).svg


ILSVRC 2012: runner-up
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http://image-net.org/challenges/LSVRC/2012/isi.pdf


ILSVRC 2012: winner
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NeurIPS 2012 paper

“AlexNet”

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


2012-now
● Widespread adoption of deep neural networks across a range of domains / 

tasks
● Image processing of various kinds
● Reinforcement learning (e.g. AlphaGo/AlphaZero, …)
● NLP!

● What happened?
● Better learning algorithms / training regimes
● Larger and larger, standardized datasets
● Compute! GPUs, now dedicated hardware (TPUs)
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Compute in Deep Learning
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log-scale!!

https://openai.com/blog/ai-and-compute/


Caveat Emptor
● Some areas are an ‘arms 

race’ between e.g. 
Google, Facebook, 
OpenAI, MS, Baidu, …

● Hugely expensive
● Carbon emissions
● Monetarily
● Inequitable access
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https://www.aclweb.org/anthology/P19-1355/
https://arxiv.org/pdf/1907.10597.pdf


Computation: Basic Example
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Artificial Neuron
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https://github.com/shanest/nn-tutorial 

https://github.com/shanest/nn-tutorial


Activation Function: Sigmoid
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σ(x) =
1

1 + e−x
=

ex

ex + 1

(more on this next time)



Computing a Boolean function
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p q a

1 1 1

1 0 0

0 1 0

0 0 0



Computing ‘and’
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The XOR problem

32XOR is not linearly separable



Computing XOR
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Exercise: show that  
NAND behaves as described.



Computing XOR
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Key Ideas
● Hidden layers compute high-level / abstract features of the input
● Via training, will learn which features are helpful for a given task
● Caveat: doesn’t always learn much more than shallow features

● Doing so increases the expressive power of a neural network
● Strictly more functions can be computed with hidden layers than without
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Expressive Power
● Neural networks with one hidden layer are universal function approximators

● Let  be continuous and .  Then there is a one-hidden-
layer neural network  with sigmoid activation such that  
for all .

● Generalizations (diff activation functions, less bounded, etc.) exist.

● But:
● Size of the hidden layer is exponential in m
● How does one find/learn such a good approximation?

● Nice walkthrough: http://neuralnetworksanddeeplearning.com/chap4.html 

f : [0,1]m → ℝ ϵ > 0
g | f(x) − g(x) | < ϵ

x ∈ [0,1]m
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http://neuralnetworksanddeeplearning.com/chap4.html


Landscape
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Next steps
● More detail about computation, how to build and implement networks

● Where do the weights and biases come from?
● (Stochastic) gradient descent
● Backpropagation for gradients

● Various hyper-parameters around both of those

● NLP “specific” topics:
● Sequence models
● Pre-training
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Broad architecture types
● Feed-forward (multi-layer 

perceptron)
● Today and next time

● Convolutional (mainly for 
images, but also text 
applications)

● Recurrent (sequences; LSTM 
the most common)

● Transformers
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Resources
● 3blue1brown videos: useful introduction, well animated

● Neural Networks and Deep Learning free e-book
● A bit heavy on the notation, but useful

● Deep Learning book (free online): very solid, presupposes some 
mathematical maturity

● Various other course materials (e.g. CS231n and CS224n from Stanford)

● Blog posts
● NB: hit or miss! Some are amazing, some are….not
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https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
http://neuralnetworksanddeeplearning.com
https://www.deeplearningbook.org/
http://cs231n.stanford.edu/
http://web.stanford.edu/class/cs224n/


Libraries
● General libraries: 
● PyTorch
● TensorFlow

● Received wisdom: PyTorch the best for research; TF slightly better for 
deployment.
● But, both are converging on the same API, just from different ends
● I have a strong preference for PyTorch; it’s also a more consistent API

● NLP specific: AllenNLP, fairseq, HuggingFace Transformers
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https://pytorch.org/
https://www.tensorflow.org/
https://allennlp.org/
https://fairseq.readthedocs.io/en/latest/
https://huggingface.co/transformers/

