Support Vector Machines (II): Non-linear SVMs

LING 572 Advanced Statistical Methods for NLP February 18, 2020

Based on F. Xia '18

- Linear SVM
 - Maximizing the margin
 - Soft margin

- Nonlinear SVM
 - Kernel trick

- A case study
- Handling multi-class problems

Outline

Non-linear SVM

• Problem: Some data are not linearly separable.

• Intuition: Transform the data to a high dimensional space

Input space

Highlights

Example: Two spirals

Separated by a hyperplane in feature space (Gaussian kernels)

Feature space

- Learning a non-linear classifier using SVM:
 - Define φ
 - Calculate $\phi(x)$ for each training example
 - Find a linear SVM in the feature space.
- Problems:
 - Feature space can be high dimensional or even have infinite dimensions. • Calculating $\phi(x)$ is very inefficient and even impossible.

 - Curse of dimensionality

points.

$K: X \times X \to R$

- Choosing K is equivalent to choosing ϕ .
 - → the feature space is implicitly defined by K

Kernels

Kernels are similarity functions that return inner products between the images of data

 $K(\vec{x}, \vec{z}) = \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$

Kernels can often be computed efficiently even for very high dimensional spaces.

An example

Let $\phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2x_1x_2})$ Let $\vec{x} = (1,2) \ \vec{z} = (-2,3)$ $\phi(\vec{x}) = (1, 4, 2\sqrt{2}) \ \phi(\vec{z}) = (4, 9, -6\sqrt{2})$ $K(\vec{x}, \vec{z}) = \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$ $= < (1, 4, 2\sqrt{2}), (4, 9, -6\sqrt{2}) >$ = 1 * 4 + 4 * 9 - 2 * 6 * 2 = 16

 $\langle \vec{x}, \vec{z} \rangle = -2 + 2 * 3 = 4$

An example** Let $\phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ $K(\vec{x}, \vec{z})$ $= \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$ $= \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \rangle$ $= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 z_1 x_2 z_2$ $= (x_1 z_1 + x_2 z_2)^2$ $= \langle \vec{x}, \vec{z} \rangle^2$

Credit: <u>Michael Jordan</u>

Another example**

Let $\phi(\vec{x}) = (x_1^3, x_2^3, \sqrt{3x_1^2x_2}, \sqrt{3x_1x_2^2})$

 $K(\vec{x}, \vec{z})$ $= \langle \phi(\vec{x}), \phi(\vec{z}) \rangle$

 $=\langle \vec{x}, \vec{z} \rangle^3$

 $= x_1^3 z_1^3 + x_2^3 z_2^3 + 3x_1^2 z_1^2 x_2 z_2 + 3x_1 z_1 x_2^2 z_2^2$ $=(x_1z_1+x_2z_2)^3$

$= \langle (x_1^3, x_2^3, \sqrt{3}x_1^2x_2, \sqrt{3}x_1x_2^2), (z_1^3, z_2^3, \sqrt{3}z_1^2z_2, \sqrt{3}z_1z_2^2) \rangle$

The kernel trick

• No need to know what ϕ is and what the feature space is.

• No need to explicitly map the data to the feature space.

function K(x,z) in both training and testing.

• Define a kernel function K, and replace the dot product <x,z> with a kernel

Training (**)

Maximize

 $L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left| \langle \vec{x_{i}}, \vec{x_{j}} \rangle \right|$ $\alpha_i \geq 0 \text{ and } \sum_i \alpha_i y_i = 0$

Non-linear SVM

 $L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\vec{x_{i}}, \vec{x_{j}})$

Linear SVM: (without mapping)

 $f(\vec{x}) = < \vec{w}, \vec{x} > +b$ $= \sum_{i} \alpha_{i} y_{i} \left\{ \langle \vec{x_{i}}, \vec{x} \rangle \right\} + b$

Non-linear SVM:

$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i}$

could be infinite dimensional

$$_{i}\left(\vec{x_{i}},\vec{x}\right)+b$$

Kernel vs. features

- Decoding: $f(\vec{x}) = \sum_{i}$
- Need to calculate K(x, z).

Training: Maximize $L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\vec{x_{i}}, \vec{x_{j}})$

subject to $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$

$$\alpha_i y_i \left(\vec{x_i}, \vec{x} \right) + b$$

For some kernels, no need to represent x as a feature vector.

A tree kernel

Common kernel functions • Linear : $K(\vec{x}, \vec{z}) = <\vec{x}, \vec{z} >$

• Polynomial:

• Radial basis function (RBF):

• Sigmoid: $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

For the tanh function, see https://www.youtube.com/watch?v=er_tQOBgo-l

 $K(\vec{x}, \vec{z}) = (\gamma < \vec{x}, \vec{z} > +c)^d$

 $K(\vec{x}, \vec{z}) = e^{-\gamma(||\vec{x} - \vec{z}||)^2}$

 $K(\vec{x}, \vec{z}) = tanh(\gamma < \vec{x}, \vec{z} > +c)$

 $\left\| \vec{x} - \vec{z} \right\|$ $x = (x_1, x_2, ..., x_n)$ $z = (z_1, z_2, ..., z_n)$ $\vec{x} - \vec{z} = (x_1 - z_1, ..., x_n - z_n)$

 $||\vec{x} - \vec{z}|| = \sqrt{(x_1 - z_1)^2 + ... + (x_n - z_n)^2}$

Polynomial kernel

• Ex: • Original feature: single words • Quadratic kernel: word pairs, e.g., "ethnic" and "cleansing", "Jordan" and "Chicago"

• Allows us to model feature conjunctions (up to the order of the polynomial).

 $\gamma = 0.01$ $\gamma = 1$

 $\gamma = 100$

Source: <u>Chris Albon</u>

W UNIVERSITY of WASHINGTON

Other kernels

- Kernels for
 - trees
 - sequences
 - sets

. . .

- graphs
- general structures

• A tree kernel example in reading #3

The choice of kernel function

• Given a function, we can test whether it is a kernel function by using Mercer's theorem (see "Additional slides").

Different kernel functions could lead to very different results.

Need some prior knowledge in order to choose a good kernel.

Summary so far

- Find the hyperplane that maximizes the margin.
- Introduce soft margin to deal with noisy data
- Implicitly map the data to a higher dimensional space to deal with non-linear problems.
- The kernel trick allows infinite number of features and efficient computation of the dot product in the feature space.
- The choice of the kernel function is important.

MaxEnt vs. SVM

	MaxEnt	SVM
1odeling	Maximize P(Y X,λ)	Maximize the margin
Training	Learn λ_i for each feature function	Learn α_i for each training instance and b
ecoding	Calculate P(y x)	Calculate the sign of f(x). It is not prob
hings to decide	Features Regularization Training algorithm	Kernel Regularization Training algorithm Binarization

- https://en.wikipedia.org/wiki/Kernel_method
- Tutorials: <u>http://www.svms.org/tutorials/</u>
- https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-itimportant-98a98db0961d

More info

Additional slides

Linear kernel

• The map ϕ is linear.

$$\phi(x) = (a_1 x_1, a_2 x_2, \dots, a_n x_n)$$

$$K(x, z) = \langle \phi(x), \phi(z) \rangle$$
$$= a_1^2 x_1 z_1 + a_2^2$$

• The kernel adjusts the weight of the features according to their importance.

The Kernel Matrix (a.k.a. the Gram matrix)

K(I,I)	K(1,2)	K
K(2,I)	K(2,2)	K
• • •		
• • •		

K(m,I) K(m,2) K(m,3) ...

 $K(i,j) \text{ means } K(x_i,x_j)$ Where x_i means the i-th training instance.

Mercer's Theorem • The kernel matrix is symmetric positive definite.

kernel matrix; that is, there exists a ϕ such that K(x, z) = $\langle \phi(x), \phi(z) \rangle$

• Any symmetric, positive definite matrix can be regarded as a

Making kernels

- K₂ are kernels, so are the following:
 - $K_1 + K_2$
 - cK_1 and cK_2 for c > 0
 - $cK_1 + dK_2$ for c > 0 and d > 0
- One can make complicated kernels from simple ones

• The set of kernels is closed under some operations. For instance, if K_1 and

