Support Vector Machines (I): Overview and Linear SVM

LING 572
Advanced Statistical Techniques for NLP
February 13 2020

Why another learning method?

- Based on some "beautifully simple" ideas (Schölkopf, 1998)
 - Maximum margin decision hyperplane

Member of class of kernel models (vs. attribute models)

- Empirically successful:
 - Performs well on many practical applications
 - Robust to noisy data, complex distributions
 - Natural extensions to semi-supervised learning

Kernel methods

- Family of "pattern analysis" algorithms
- Best known member is the Support Vector Machine (SVM)

Maps instances into higher dimensional feature space efficiently

- Applicable to:
 - Classification
 - Regression
 - Clustering
 -

History of SVM

- Linear classifier: 1962
 - Use a hyperplane to separate examples
 - Choose the hyperplane that maximizes the minimal margin

- Non-linear SVMs:
 - Kernel trick: 1992

History of SVM (cont'd)

- Soft margin: 1995
 - To deal with non-separable data or noise

- Semi-supervised variants:
 - Transductive SVM: 1998
 - Laplacian SVMs: 2006

Main ideas

Use a hyperplane to separate the examples.

 Among all the hyperplanes wx+b=0, choose the one with the maximum margin.

 Maximizing the margin is the same as minimizing IIwII subject to some constraints.

Main ideas (cont'd)

 For data sets that are not linearly separable, map the data to a higher dimensional space and separate them there by a hyperplane.

The Kernel trick allows the mapping to be "done" efficiently.

Soft margin deals with noise and/or inseparable data sets.

Papers

- (Manning et al., 2008)
 - Chapter 15

• (Collins and Duffy, 2001): tree kernel

Outline

- Linear SVM
 - Maximizing the margin
 - Soft margin
- Nonlinear SVM
 - Kernel trick

A case study

Handling multi-class problems

Inner product vs. dot product

Dot product

The dot product of two vectors $x=(x_1,...,x_n)$ and $z=(z_1,...,z_n)$

is defined as
$$x \cdot z = \sum_i x_i z_i$$

$$||x|| = \sqrt{\sum_i x_i^2} = \sqrt{x \cdot x}$$

Inner product

An inner product is a generalization of the dot product.

$$||x|| = \sqrt{\langle x, x \rangle}$$

A function that satisfies the following properties:

$$< u + v, w > = < u, w > + < v, w >$$
 $< cu, v > = c < u, v >$
 $< u, v > = < v, u >$
 $< u, u > \ge 0 \text{ and } < u, u > = 0 \text{ iff } u = 0$

Some examples

$$< x, z > = \sum_i c_i x_i z_i$$

$$<(a,b),(c,d)>=(a+b)(c+d)+(a-b)(c-d)$$

$$< f, g > = \int f(x)g(x)dx$$
 where $f, g: [a, b] \rightarrow R$

Linear SVM

The setting

- Input:
 - x is a vector of real-valued feature values
- Output: y in Y, $Y = \{-1, +1\}$
- Training set: $S = \{(x_1, y_1), ..., (x_i, y_i)\}$

- Goal: Find a function y = f(x) that fits the data:
 - $f: X \rightarrow R$
 - Warning: x_i is used in two ways in this lecture.

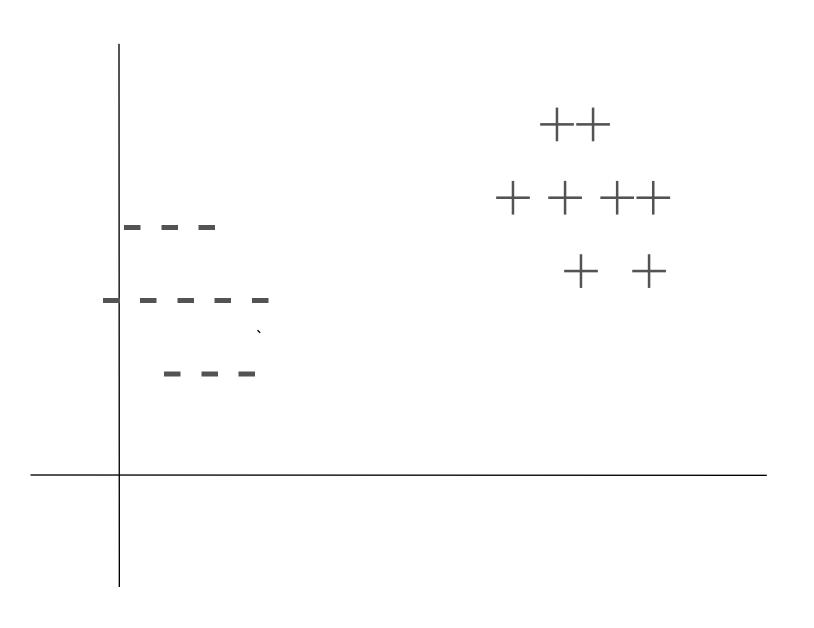
Notation

- x_i has two meanings
- $\vec{x_i}$: It is a vector, representing the i-th training instance.
- x_i : It is the i-th element of a vector \vec{x}

x, w, and z are vectors.

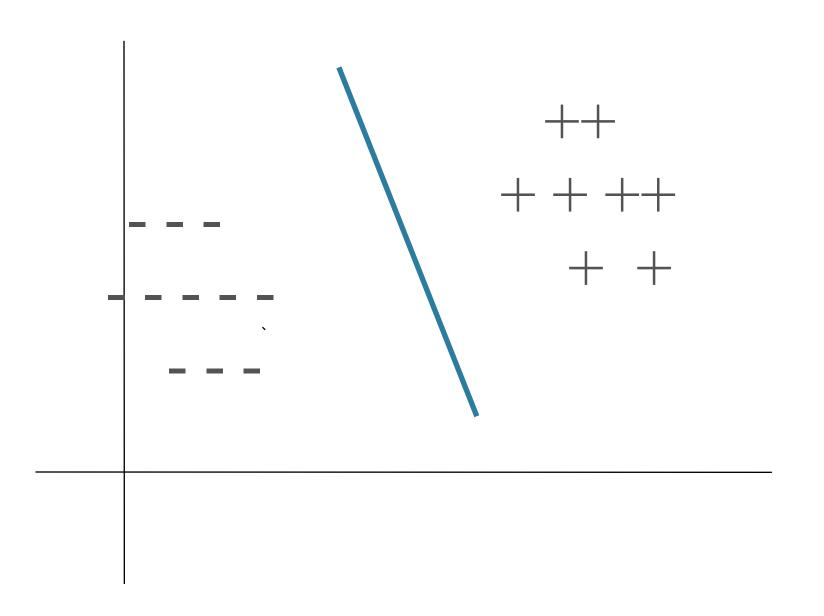
b is a real number

- Consider the 2-D data
- +: Class +1
- -: Class -1
- Can we draw a line that
 separates the two classes?



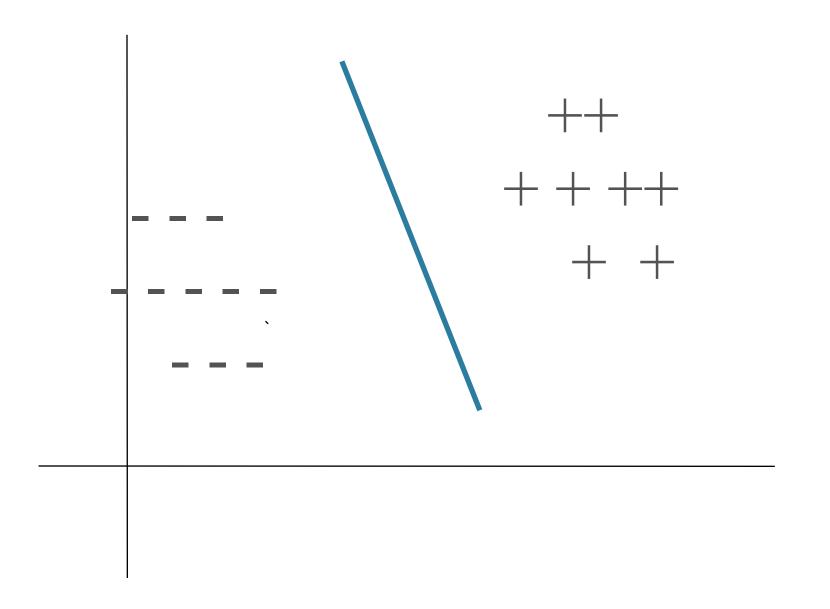
- Consider the 2-D data
- +: Class +1
- -: Class -1
- Can we draw a line that
 separates the two classes?

We have a linear classifier/separator; >2D→ hyperplane



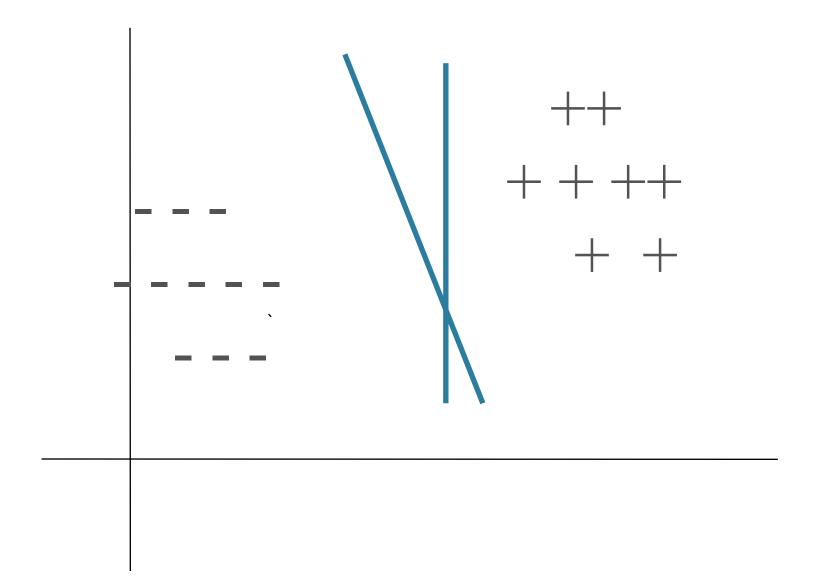
- Consider the 2-D data
- +: Class +1
- -: Class -1
- Can we draw a line that
 separates the two classes?

- We have a linear classifier/separator; >2D→ hyperplane
- Is this the only such separator?



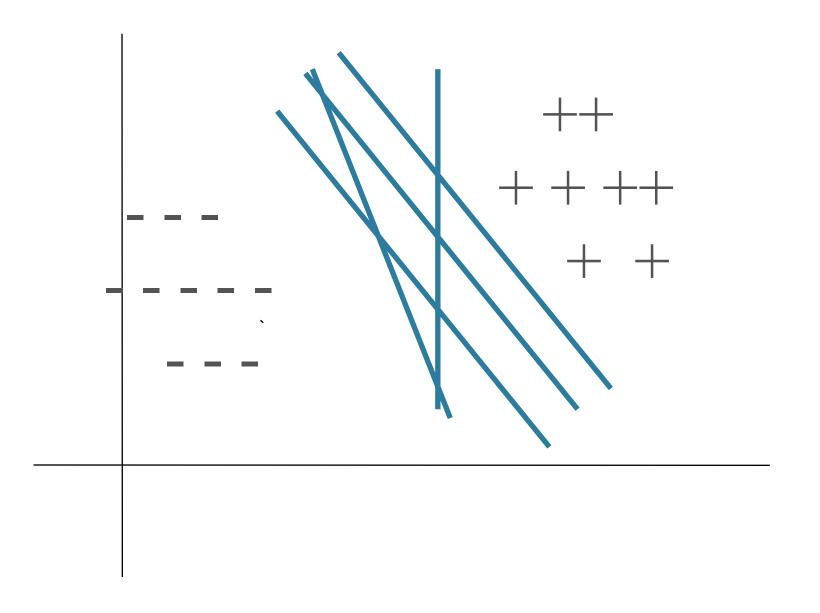
- Consider the 2-D data below
- +: Class +1
- -: Class -1
- Can we draw a line that
 separates the two classes?

- We have a linear classifier/separator; >2D→ hyperplane
- Is this the only such separator?
 - No

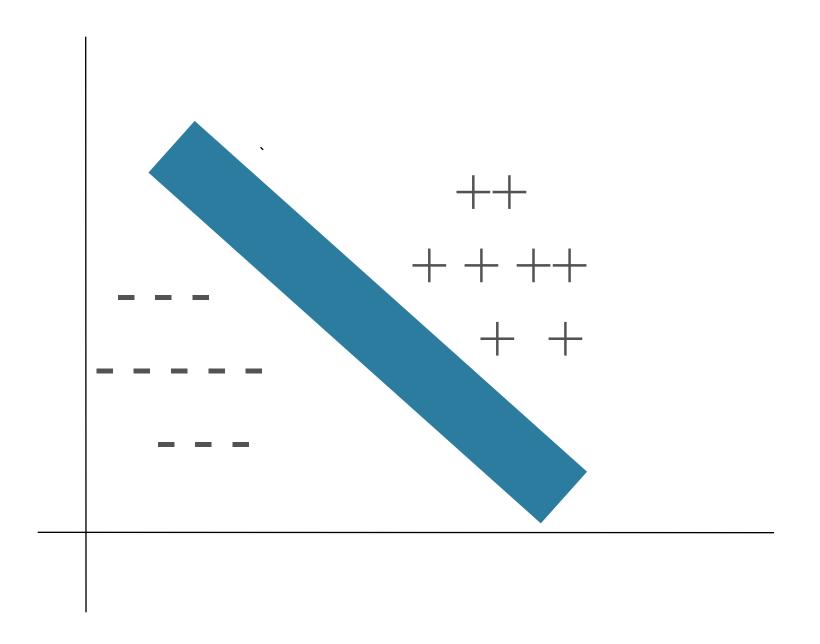


- Consider the 2-D data
- +: Class +1
- -: Class -1
- Can we draw a line that
 separates the two classes?

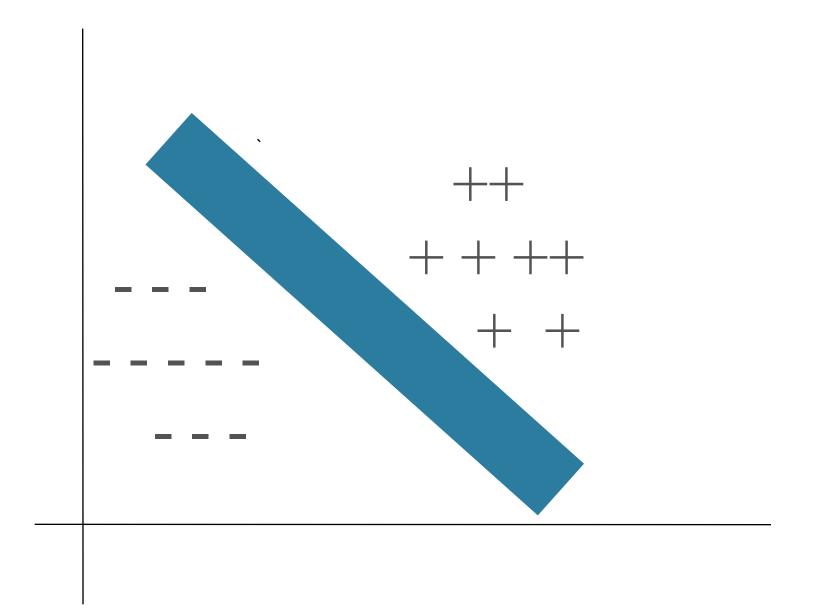
- We have a linear classifier/separator; >2D→ hyperplane
- Is this the only such separator?
 - No
- Which is the best?



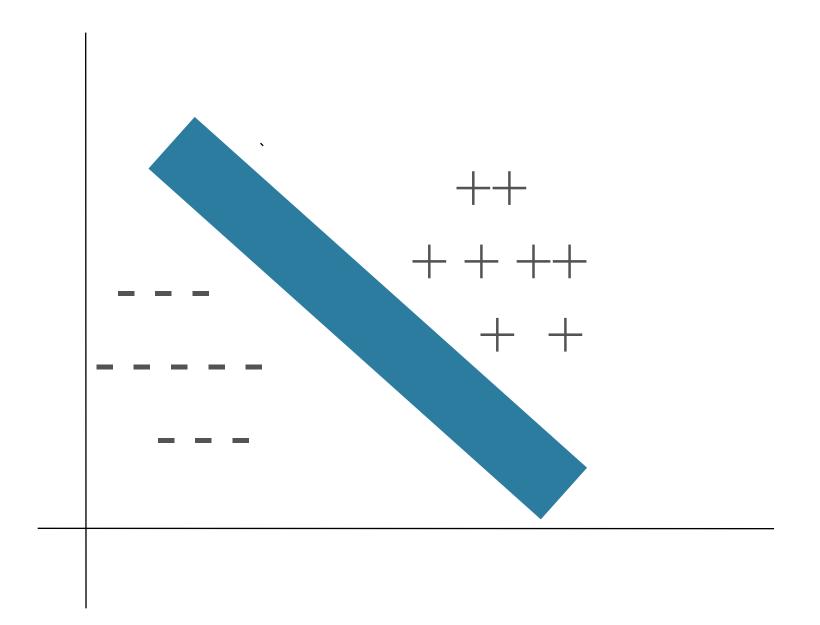
What's best classifier?



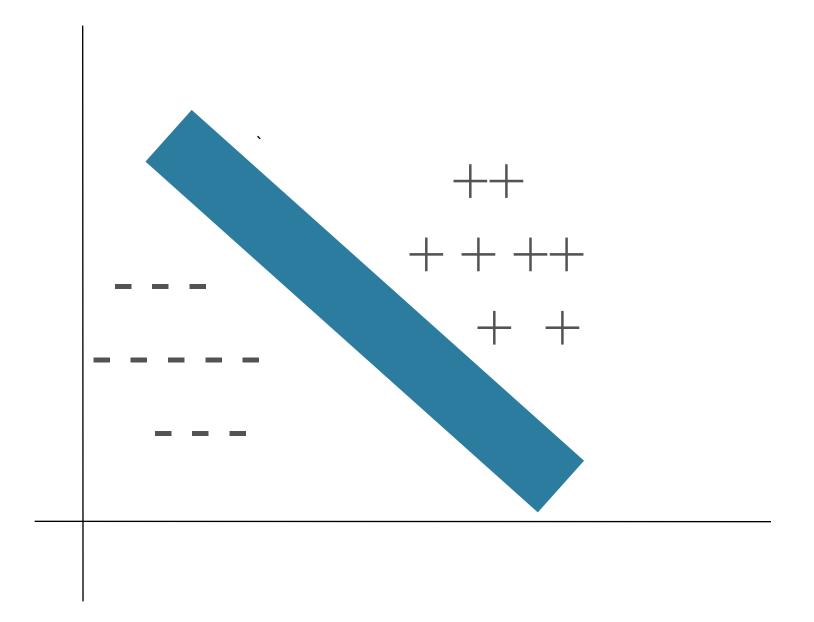
- What's best classifier?
 - Maximum margin
 - Biggest distance between decision boundary and closest examples
- Why is this better?
 - Intuition:



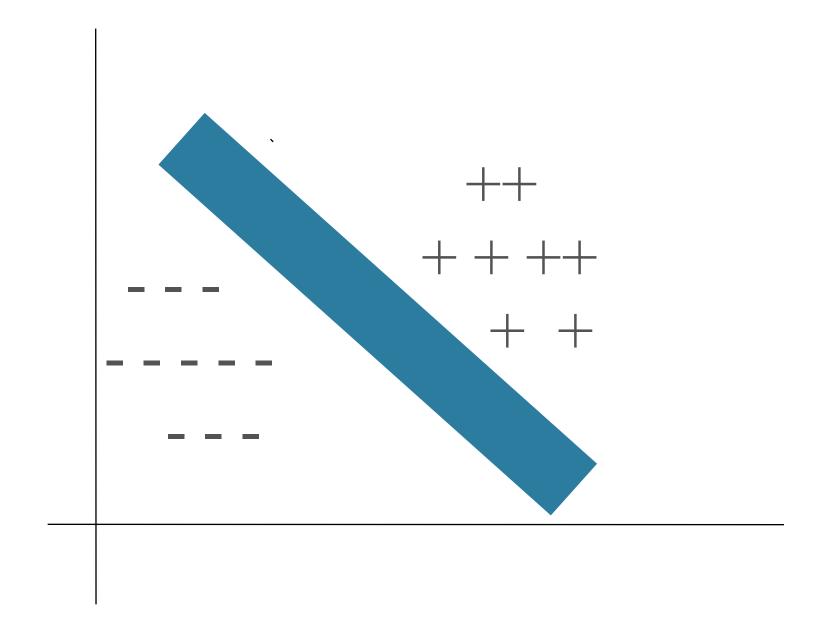
- What's best classifier?
 - Maximum margin
 - Biggest distance between decision boundary and closest examples
- Why is this better?
 - Intuition:
 - Which instances are we most sure of?
 - Furthest from boundary
 - Least sure of?
 - Closest
 - Create boundary with most 'room' for error in attributes



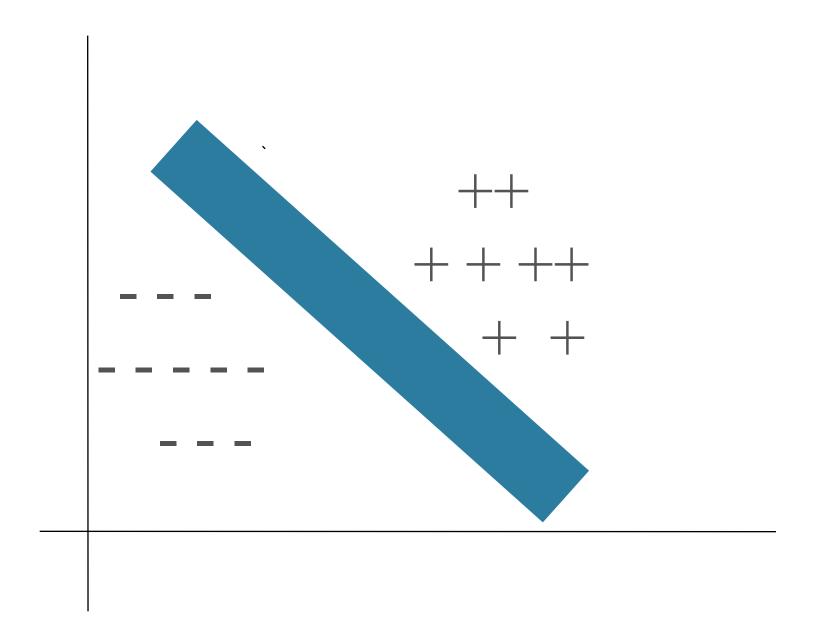
- What's best classifier?
 - Maximum margin
 - Biggest distance between decision boundary and closest examples
- Why is this better?
 - Intuition:
 - Which instances are we most sure of?



- What's best classifier?
 - Maximum margin
 - Biggest distance between decision boundary and closest examples
- Why is this better?
 - Intuition:
 - Which instances are we most sure of?
 - Furthest from boundary
 - Least sure of?

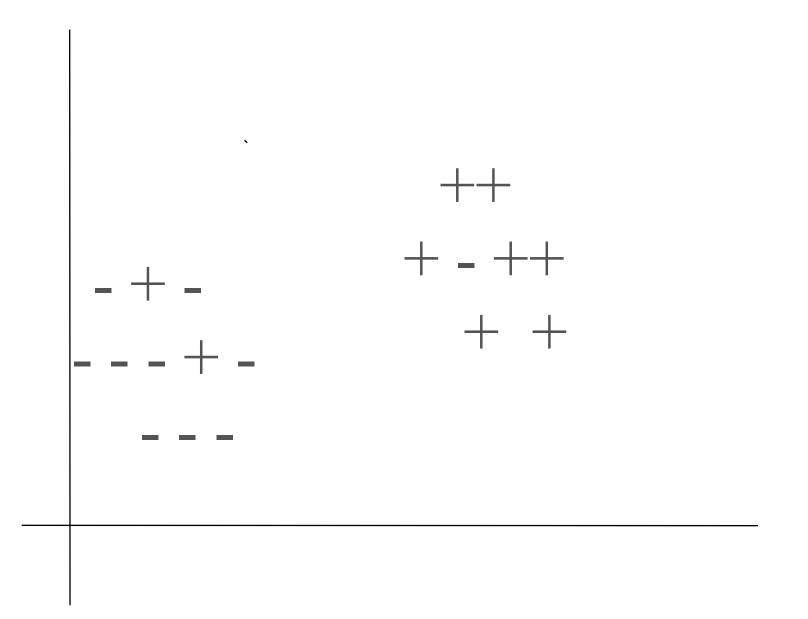


- What's best classifier?
 - Maximum margin
 - Biggest distance between decision boundary and closest examples
- Why is this better?
 - Intuition:
 - Which instances are we most sure of?
 - Furthest from boundary
 - Least sure of?
 - Closest
 - Create boundary with most 'room' for error in attributes



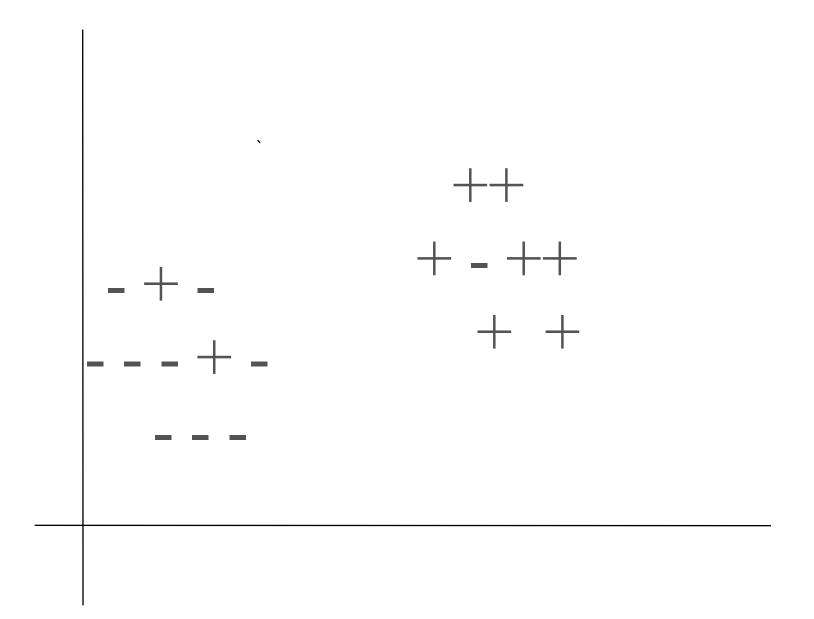
Complicating Classification

- Consider the new 2-D data:
- +: Class +1; -: Class -1
- Can we draw a line that separates the two classes?



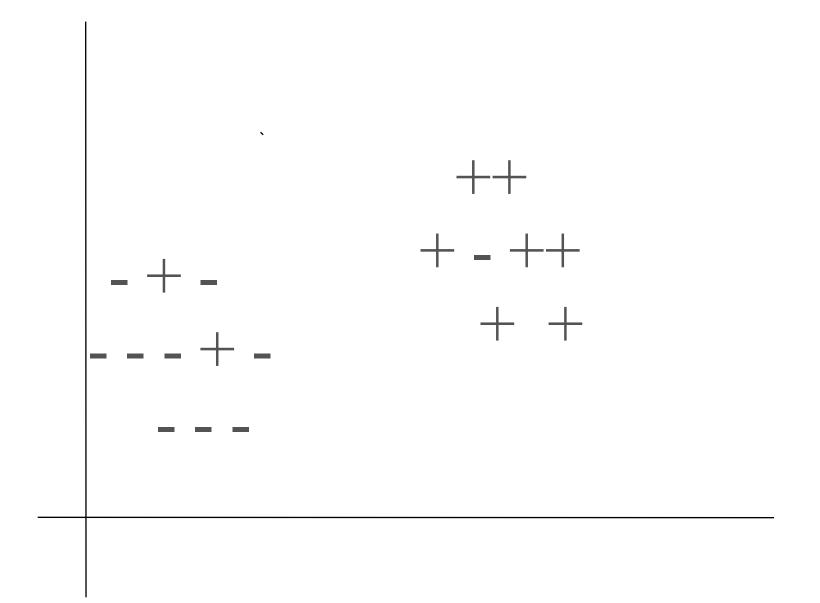
Complicating Classification

- Consider the new 2-D data
- +: Class +1; -: Class -1
- Can we draw a line that separates the two classes?
 - No.
- What do we do?
 - Give up and try another classifier? No.



Noisy/Nonlinear Classification

- Consider the new 2-D data
- +: Class +1; -: Class -1
- Two basic approaches:
 - Use a linear classifier, but allow some (penalized) errors
 - soft margin, slack variables
 - Project data into higher dimensional space
 - Do linear classification there
 - Kernel functions



Multiclass Classification

- SVMs create linear decision boundaries
 - At basis binary classifiers

- How can we do multiclass classification?
 - One-vs-all
 - All-pairs
 - ECOC
 - •

SVM Implementations

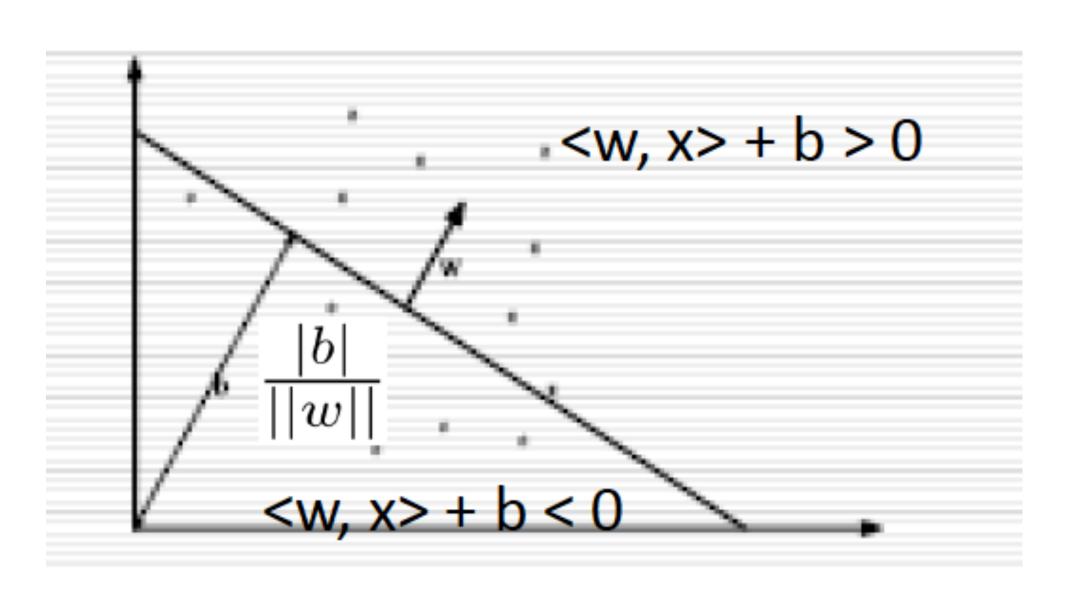
- Many implementations of SVMs:
 - SVM-Light: Thorsten Joachims
 - http://svmlight.joachims.org
 - LibSVM: C-C. Chang and C-J. Lin
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - Scikit-learn wrapper: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC
 - Weka's SMO
 - ...

SVMs: More Formally

- A hyperplane: $\langle w, x \rangle + b = 0$
- w: normal vector (aka weight vector), which is perpendicular to the hyperplane
- b: intercept term

- | W |:
 - Euclidean norm of w

$$\frac{|b|}{\|w\|} = \text{offset from origin}$$



Inner product example

Inner product between two vectors

$$<\vec{x},\vec{z}>=\sum_i x_i z_i$$

$$\vec{x} = (1, 2)$$

$$\vec{z} = (-2, 3)$$

$$\langle \vec{x}, \vec{z} \rangle = 1^*(-2) + 2^*3$$

= -2 + 6 = 4

Inner product (cont'd)

$$<\vec{x},\vec{z}>=\sum_i x_i z_i$$

$$cos(\vec{x}, \vec{z})$$

$$= \frac{\sum_{i} x_{i} z_{i}}{||x|| * ||z||}$$

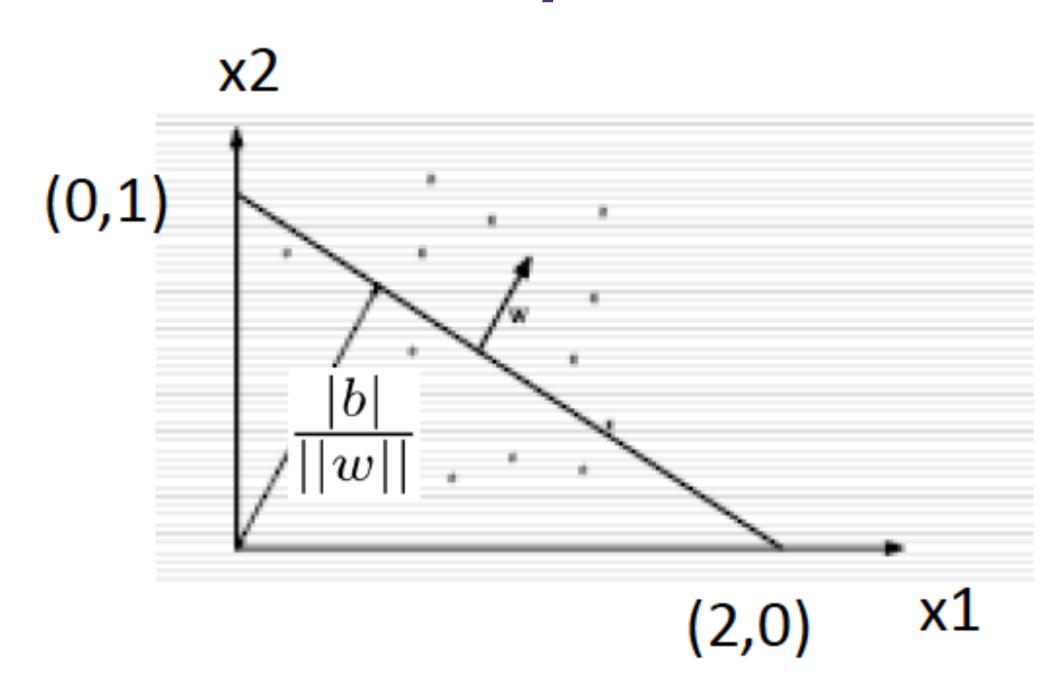
$$= \frac{\langle x, z \rangle}{||x|||x||}$$

where
$$||x|| = \sqrt{\sum_i x_i^2}$$

cosine similarity = scaled inner product Inner product is a similarity function.

Hyperplane Example

- < w, x > +b = 0
- How many (w,b)s?
- Infinitely many!
 - Just scaling



$$x_1 + 2x_2 - 2 = 0$$

$$10x_1 + 20x_2 - 20 = 0$$

$$w=(1,2)$$
 b=-2

$$w=(10,20)$$
 b=-20

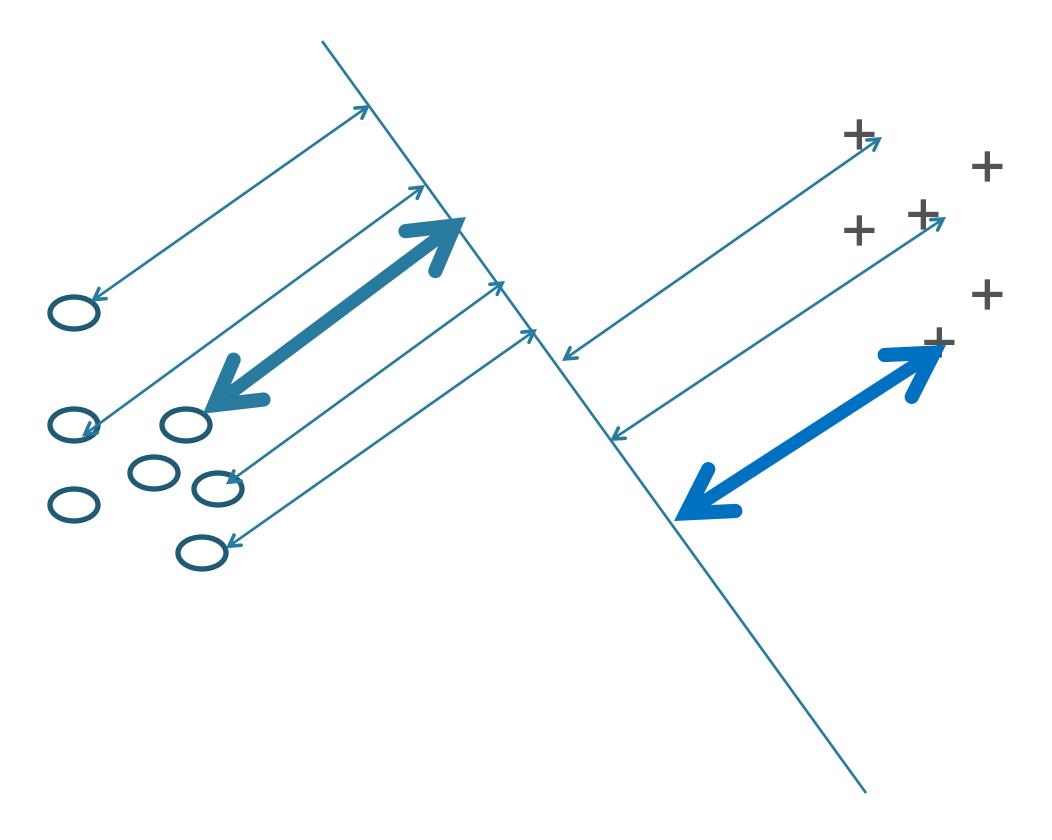
Finding a hyperplane

• Given the training instances, we want to find a hyperplane that separates them.

• If there is more than one hyperplane, SVM chooses the one with the maximum margin.

$$\max_{\vec{w},b} \min_{\vec{x_i} \in S} \{ ||\vec{x} - \vec{x_i}|| \mid \vec{x} \in R^N, <\vec{w}, \vec{x} > +b = 0 \}$$

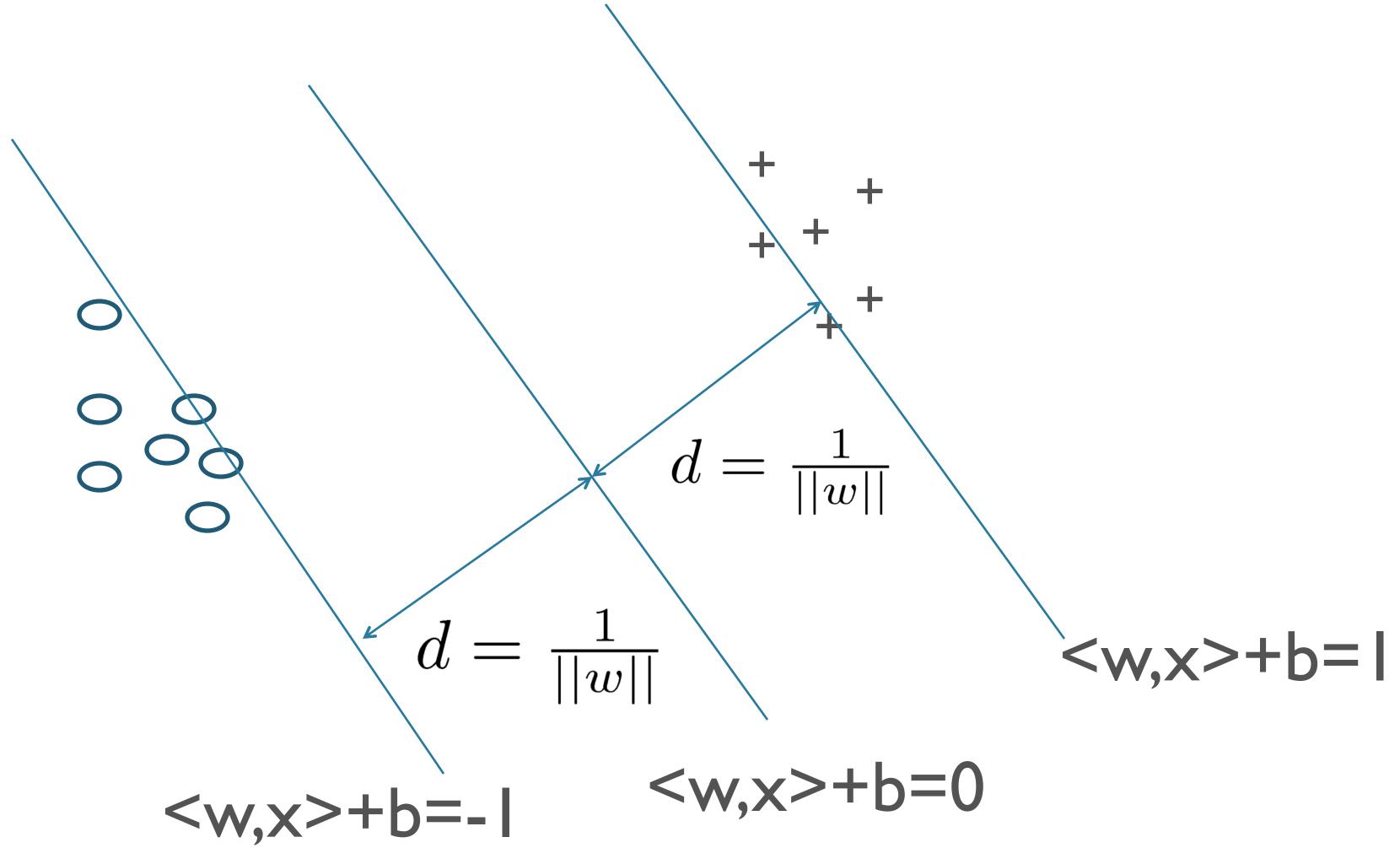
Maximizing the margin



Training: to find w and b.

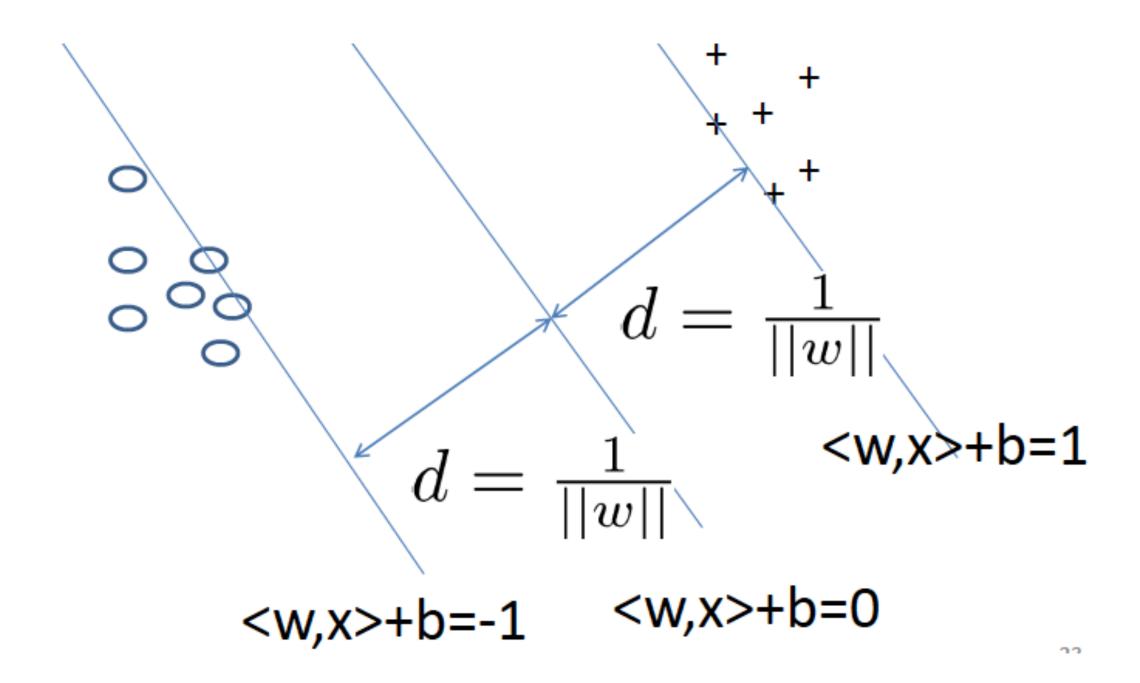
$$< w, x > + b = 0$$

Support vectors



Margins & Support Vectors

- Closest instances to hyperplane:
 - "Support Vectors"
 - Both pos/neg examples
- Add Hyperplanes through
 - Support vectors
- d= 1/||w||

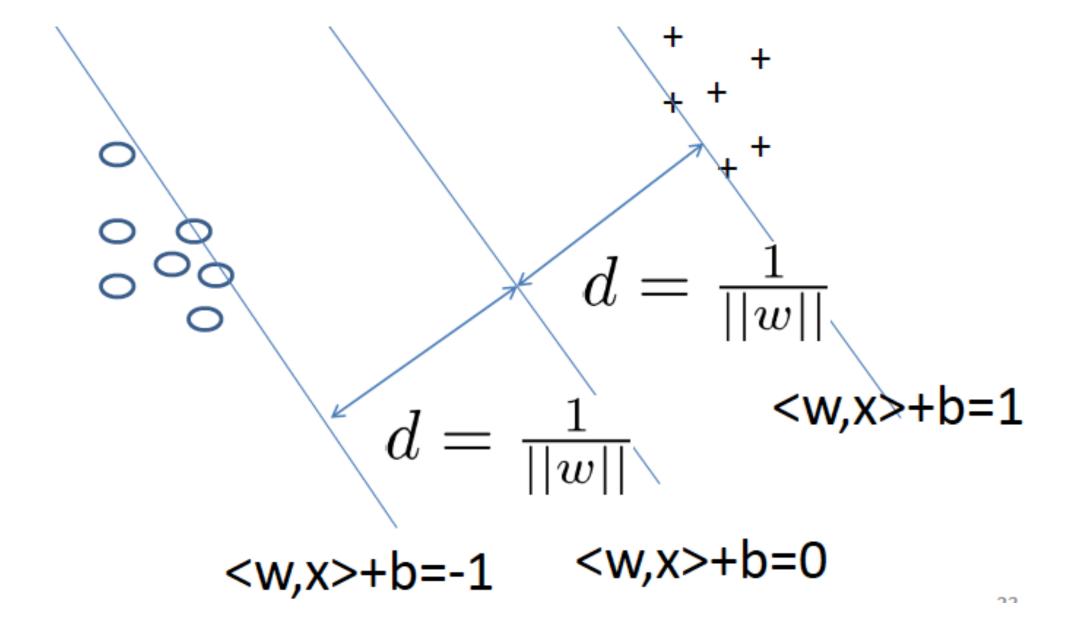


- How do we pick support vectors? Training
- How many are there? Depends on data set

SVM Training

- Goal: Maximum margin, consistent w/training data
 - Margin = 1 /llwll
- How can we maximize?
 - Max d → Min IIwII

- So we are:
 - Minimizing IIwII² subject to $y_i(< w, x_i> +b)>= 1$
- Quadratic Programming (QP) problem
 - Can use standard QP solvers



$$y_i(\langle \vec{w}, \vec{x_i} \rangle + b) \geq 1$$

Let
$$w=(w1, w2, w3, w4, w5)$$

We are trying to choose w and b for the hyperplane wx +b=0

$$|*(2w| + 3.5w3 - w4) > = |$$

 $(-1)*(-w2 + 2w3) > = |$
 $|*(5w| + 2w4 + 3.1w5) > = |$

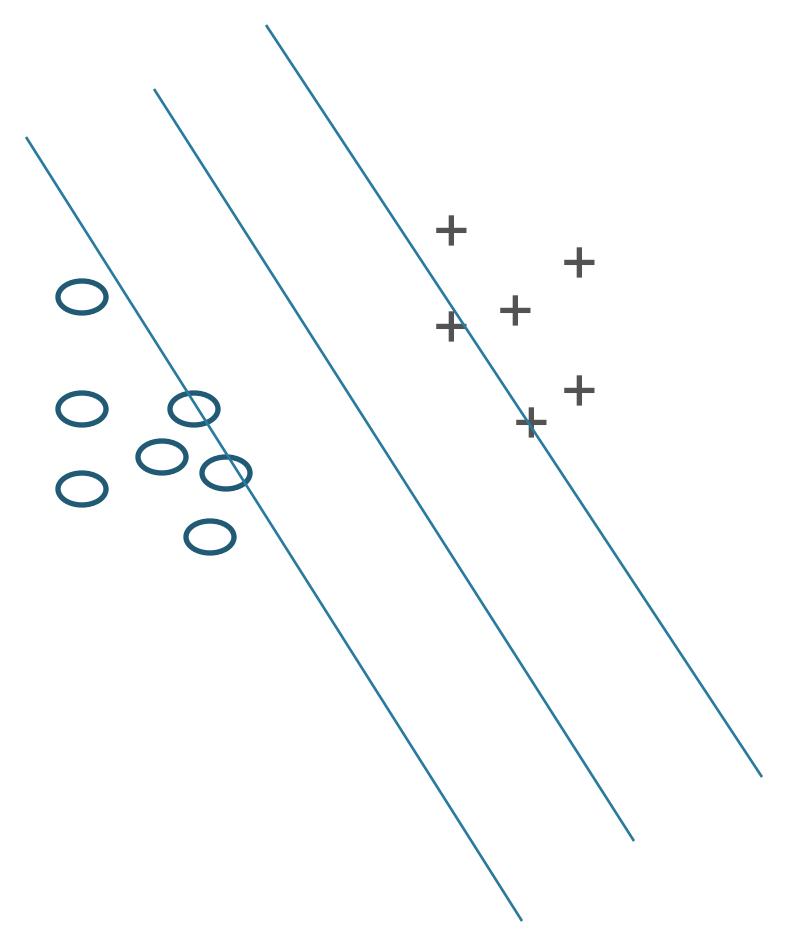
$$2w1 + 3.5w3 - w4 >= 1$$

$$-w2 + 2w3 <= 1$$

$$5w1 + 2w4 + 3.1w5 >= 1$$

With those constraints, we want to minimize $w_1^2+w_2^2+w_3^2+w_4^2+w_5^2$

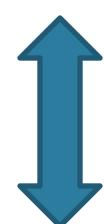
Training (cont'd)



Minimize $||w||^2$

subject to the constraint

$$y_i(\langle \vec{w}, \vec{x_i} \rangle + b) \geq 1$$



$$y_i(<\vec{w},\vec{x_i}>+b)-1\geq 0$$

Lagrangian**

For each training instance $(\vec{x_i}, y_i)$, introduce $\alpha_i \geq 0$.

Let
$$\alpha = (\alpha_1, \alpha_2,, \alpha_N)$$

$$L(\vec{w}, b, \alpha) = \frac{1}{2} ||\vec{w}||^2 - \sum_i \alpha_i (y_i (< \vec{w}, \vec{x_i} > +b) - 1)$$

minimize L w.r.t. \vec{w} and b

$$\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \vec{x_i} \text{ and } \sum_{i=1}^{N} \alpha_i y_i = 0$$

The dual problem **

• Find $\alpha 1, \ldots, \alpha N$ such that the following is maximized

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} < \vec{x_{i}}, \vec{x_{j}} >$$

Subject to

$$\alpha_i \ge 0 \text{ and } \sum_i \alpha_i y_i = 0$$

The solution has the form

$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}}$$

$$b = y_k - \langle \vec{w}, \vec{x}_k \rangle$$
 for any x_k whose weight is non-zero

An example

$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}}$$

$$x_1 = (1,0,3), y_1 = 1, \alpha_1 = 2$$

$$x_2 = (-1,2,0), y_2 = -1, \alpha_2 = 3$$

$$x_3 = (0, -4, 1), y_3 = 1, \alpha_3 = 0$$

An example

$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}}$$

$$\times_{1} = (1,0,3), y_{1} = 1, \alpha_{1} = 2$$

$$\times_{2} = (-1,2,0), y_{2} = -1, \alpha_{2} = 3$$

$$\times_{3} = (0,-4,1), y_{3} = 1, \alpha_{3} = 0$$

$$w = (1*1*2+(-1)*(-1)*3+0*1*0, 0+2*(-1)*3+0, 3*1*2+0+0)$$

$$= (5,-6,6)$$

For support vectors, $\alpha_i > 0$

For other training examples, $\alpha_i = 0$

Removing them will not change the model.

Finding w is equivalent to finding support vectors and their weights.

Finding the solution

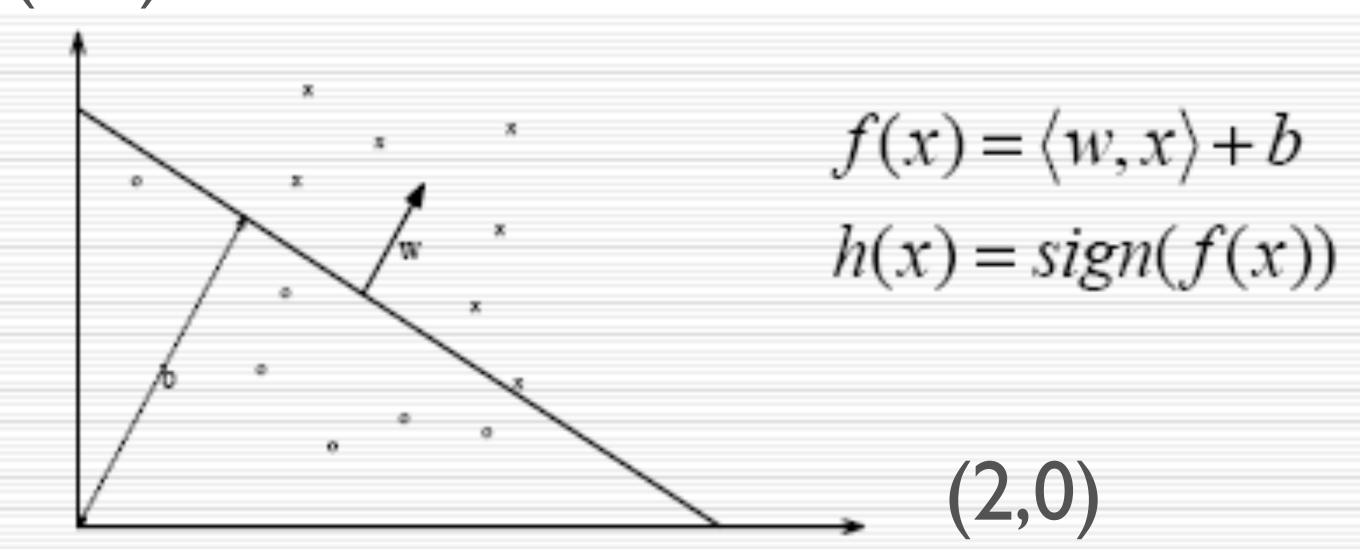
• This is a Quadratic Programming (QP) problem.

The function is convex and there are no local minima.

Solvable in polynomial time.

(0,1)

Decoding with w and b



Hyperplane: w=(1,2), b=-2

$$f(x) = x_1 + 2 x_2 - 2$$

$$x=(3,1)$$
 $f(x) = 3+2-2 = 3 > 0$

$$x=(0,0)$$
 $f(x) = 0+0-2 = -2 < 0$

Decoding with ai

$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}}$$

Decoding:

$$f(\vec{x}) = <\vec{w}, \vec{x} > +b$$

$$f(\vec{x}) = <\sum_{i} \alpha_{i} y_{i} \vec{x_{i}}, \vec{x} > +b$$

$$= \sum_{i} <\alpha_{i} y_{i} \times_{i}, x > +b$$

$$= \sum_{i} \alpha_{i} y_{i} <\vec{x_{i}}, \vec{x} > +b$$

$$< u + v, w > = < u, w > + < v, w >$$

 $< cu, v > = c < u, v >$

kNN vs. SVM

Majority voting:

$$c^* = arg max_c g(c)$$

Weighted voting: weighting is on each neighbor

$$c^* = arg max_c \sum_i w_i \delta(c, f_i(x))$$

Weighted voting allows us to use more training examples:

e.g.,
$$w_i$$
 = 1/dist(x, x_i) $f(\vec{x}) = \sum_i w_i y_i$ (weighted kNN, 2-class)

→ We can use all the training examples.

$$f(\vec{x}) = \sum_{i} \alpha_{i} y_{i} < \vec{x_{i}}, \vec{x} > +b$$

$$= \sum_{i} \alpha_{i} < \vec{x_{i}}, \vec{x} > y_{i} + b \quad \text{(SVM)}$$

Summary of linear SVM

Main ideas:

Choose a hyperplane to separate instances:

$$< w, x > + b = 0$$

- Among all the allowed hyperplanes, choose the one with the max margin
- Maximizing margin is the same as minimizing IIwII
- Choosing w is the same as choosing α_i

The problem

Training: Choose \vec{w} and b

Mimimizes $||w||^2$ subject to the constraints $y_i(\langle \vec{w}, \vec{x_i} \rangle + b) \geq 1$ for every $(\vec{x_i}, y_i)$

Decoding: Calculate $f(x) = \langle w, x \rangle + b$

The dual problem **

Training: Calculate α_i for each $(\vec{x_i}, y_i)$

Maximize
$$L(\alpha) = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j < \vec{x_i}, \vec{x_j} >$$

subject to
$$\alpha_i \geq 0$$
 and $\sum_i \alpha_i y_i = 0$

Decoding:
$$f(\vec{x}) = \sum_i \alpha_i y_i < \vec{x_i}, \vec{x} > +b$$

Remaining issues

- Linear classifier: what if the data is not separable?
 - The data would be linearly separable without noise
 - soft margin
 - The data is not linearly separable
 - map the data to a higher-dimension space

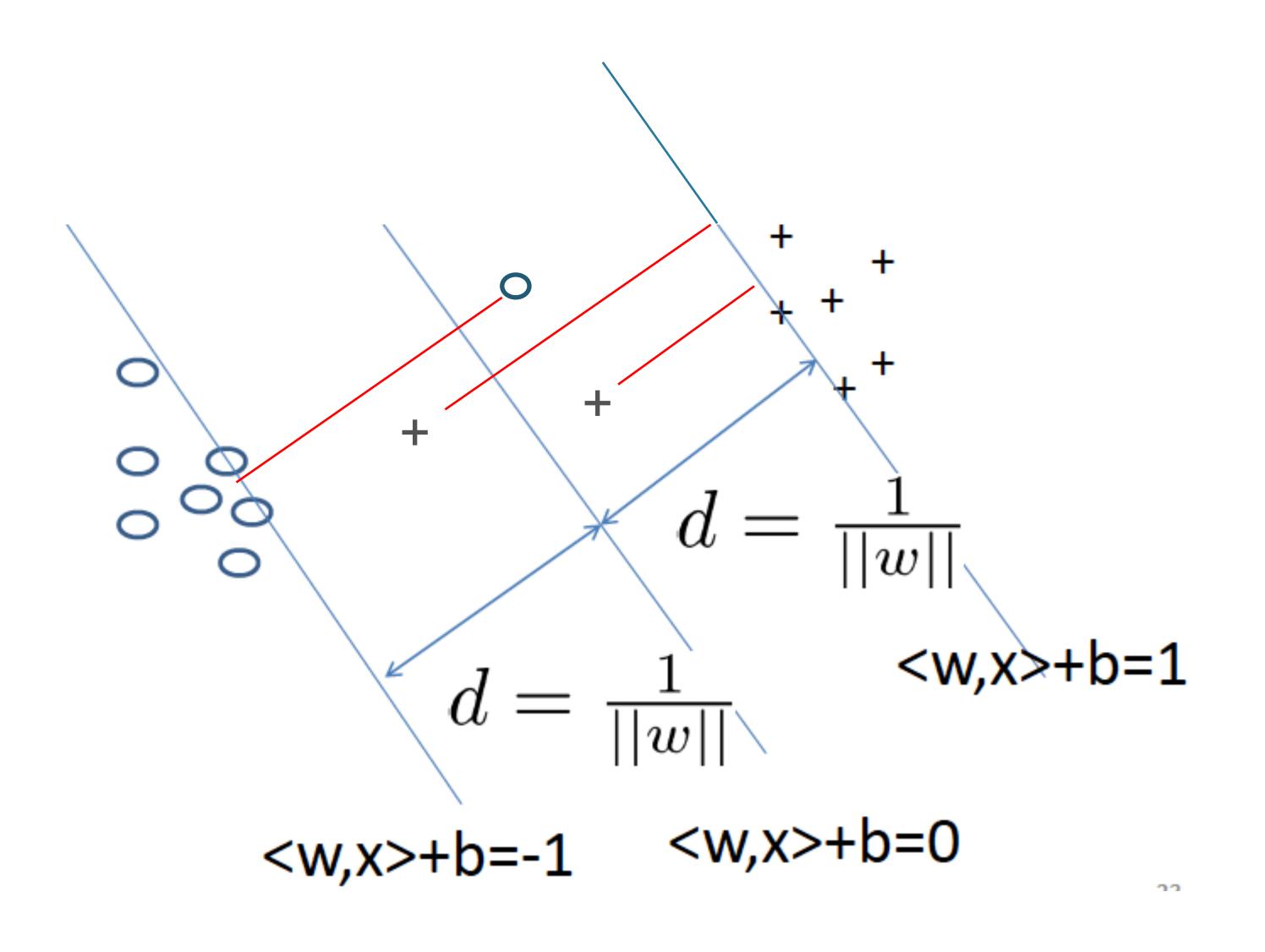
Soft margin

Highlights

 Problem: Some data set is not separable or there are mislabeled examples.

 Idea: split the data as cleanly as possible, while maximizing the distance to the nearest cleanly split examples.

Mathematically, introduce "slack variables"



Objective Function

• For each training instance x_i , introduce a slack variable ξ_i

- Minimizing
- such that

$$\frac{1}{2} ||w||^2 + C(\sum_i \xi_i)^k$$

$$y_i (< \vec{w}, \vec{x_i} > +b) \ge 1 - \xi_i$$
where $\xi_i \ge 0$

- C is a regularization term (for controlling overfitting),
- k = 1 or 2

Objective Function

• For each training instance x_i , introduce a slack variable ξ_i

- Minimizing
- such that

$$\frac{1}{2}||w||^2 + C(\sum_i \xi_i)^k$$

$$y_i(\langle \vec{w}, \vec{x_i} \rangle + b) \ge 1 - \xi_i$$
where $\xi_i \ge 0$

- C is a regularization term (for controlling overfitting),
- k = 1 or 2

The dual problem**

Maximize

$$L(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} < \vec{x_{i}}, \vec{x_{j}} >$$

Subject to

$$C \ge \alpha_i \ge 0 \text{ and } \sum_i \alpha_i y_i = 0$$

The solution has the form

$$\vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}}$$

$$b = y_{k} (1 - \xi_{k}) - \langle w, x_{k} \rangle \text{ for } k = \operatorname{argmax}_{k} \alpha_{k}$$

 X_i with non-zero α_i is called a support vector Every data point which is misclassified or within the margin will have a non-zero α_i

Decoding: Calculate
$$f(x) = \langle w, x \rangle + b$$