
LING572 HW9: Neural Networks

Due: 11pm on March 19, 2020

This assignment explores text classification using a version of the Deep Averaging Network from
Iyyer et al 2015, as discussed in the first half of the Recurrent Neural Network lectures on applying
MLPs to text classification. Through the assignment, you will:

• Get familiar with the basics of doing text classification in PyTorch. We will “pseudo-reproduce”
a result from Iyyer et al by training a Deep Averaging Network on the IMDb Reviews dataset
for sentiment classification. Its a pseudo-reproduction for a few reasons:

– We are using a slightly different dataset split (17.5k train instead of 25k)

– Our model will have 2 hidden layers instead of 3, just for compute efficiency

• Implement a linear layer, the basic building block of neural networks.

• Implement L2 regularization, and see how it impacts performance and runtime.

• Implement early stopping.

We have provided the bulk of the necessary code. You will have to fill in some blank spots for each of
the implementation questions, described in more detail below.

In the directory /dropbox/19-20/572/hw9/ you will find the following:

• env: the environment; no need to touch this

• data: the IMDB dataset

• model.py: defines a linear layer and a Deep Averaging Network

• main.py: the main script for building and training a model

NB: at the bottom of the file, you will see many command-line arguments. python main.py will
run with the defaults, but you can also set these. For example, to train for 10 epochs, you can
use python main.py --num epochs 10.

• run hw9.sh: an example executable to modify / submit via condor. Note: you will want to
change the ‘cd ...’ line to point to your directory. Note that this file shows you how to
activate the supplied conda environment.

Q0 (10 points): Install Anaconda. This is a necessary component for running the code for this
assignment. I have setup a conda environment for the assignment, but you will need to install anaconda
in order to use that environment. These are “free points”. From your home directory, please execute
the following steps:

1. wget https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86 64.sh

2. sh Anaconda3-2019.10-Linux-x86 64.sh

1



The first two lines of run hw9.sh show how to now activate the environment that we have supplied
with all of the necessary libraries.

Q1 (20 points): Implement the forward pass of a LinearLayer and train a model.

• Find the ‘# TODO:’ comment in /dropbox/19-20/572/hw9/model.py. Implement the .forward
method there, following the instructions in the comment and the docstring.

• Run python main.py --num epochs 6 > q1.out. Please fill out the information below:

Epoch num Train loss Dev loss

0
1
2
3
4
5

Test set accuracy of best model:

Total runtime:

Q2 (20 points): L2 regularization prevents over-fitting by penalizing large weight values. In partic-
ular, if L(θ) is our loss function, L2 regularization replaces that loss with

L′(θ) = L(θ) + λ‖θ‖22

where ‖θ‖22 is the squared L2 norm (i.e. the sum of the squares of all parameters in θ). You will:

• Add L2 regularization in main.py. Search for ‘# TODO:’ and find the one right above the line
L2 = 0.0. Replace this with the squared L2 norm of the model’s parameters.

Hint: model.parameters() returns an iterator over the parameters, which are each a torch.tensor.

Note: you should use the --L2 flag (stored in args.L2) to only compute the regularization term
when requested from the command-line.

• Run python main.py --num epochs 6 --L2 > q2.out, training for 6 epochs with L2 regular-
ization. Please fill out the information below:

Epoch num Train loss Dev loss

0
1
2
3
4
5

Test set accuracy of best model:

Total runtime:

2



Q3 (20 points): Another method for preventing over-fitting is early stopping. On this approach,
we define a hyper-parameter patience (p), which is an integer. We then train for a large number of
epochs, but if loss on the dev set is worse at epoch t than at epoch t−p for any epoch, we stop training
immediately.

• Implement early stopping. The final ‘# TODO:’ in main.py occurs instructs you to implement
this early stopping protocol in the main training loop.

Note: you may need to edit code outside the immediate ‘if’ statement that the comment appears
in.

• Run python main.py --num epochs 12 --patience 3 --L2 > q3.out and fill out the infor-
mation below (if early stopping stops your model before 12 epochs, you will have empty rows in
this table, which is acceptable):

Epoch num Train loss Dev loss

0
1
2
3
4
5
6
7
8
9
10
11

Test set accuracy of best model:

Total runtime:

Q4 (5 points): We will issue 5 total points based on the runtimes reported in Q1-3. They should be
approximately no more than 10 minutes when running on patas. No need to submit anything for this
question.

Submission: Submit the following to Canvas:

• Your note file readme.(txt | pdf) that includes the tables and additional information above, and
any notes that you want the TA to read.

• hw.tar.gz that includes all the files specified in dropbox/19-20/572/hw9/submit-file-list, plus any
source code (and binary code) used by the shell scripts.

• Make sure that you run check hw9.sh before submitting your hw.tar.gz.

3


