LING572 Hw4 (kNN)
Due: 11pm on Feb 6, 2020

The example files are under dropbox/19-20/572/hw4/examples/.

Q1 (40 points): Write a script, build_kINN.sh, that implements the kNN algorithm. It classifies a
test instance x by letting the k nearest neighbors of x vote.

The learner should treat features as real-valued.

Use majority vote; that is, each of the k nearest neighbors has one vote.

The format is: build_kNN.sh training_data test_data k_val similarity_func sys_output > acc_file
training_data and test_data are the vector files in the text format (cf. train.vectors.txt).
k_val is the value of k; i.e., the number of nearest neighbors chosen for classification.

similarity _func is the id of the similarity function. If the variable is 1, use Euclidean distance. If
the value is 2, use Cosine function. Notice that Euclidean distance is a dissimilarity mea-
sure; that is, the longer the distance between two instances is, the more dissimilar
(i.e., the less similar) the instances are.

sys_output and acc_file have the same format as the one specified in Hw3, and they should include
the classification results for both training and test data. When choosing k nearest neighbors for
a training instance x, one of those neighbors is z itself. Notice that since the other k-1 neighbors
could have labels different from that of x, the training accuracy could be lower than 100%.

For each line of sys_output, remember to sort the (¢;, p;) pairs by the value of p; in descending
order.

Please submit output files correspond to k = 5, similarity = cosine.

Run build_kNN.sh with train.vectors.txt as the training data and test.vectors.txt as the test

data.

Fill out Table 1 with different values of k and similarity function.

Table 1: Test accuracy using real-valued features
FEuclidean distance | Cosine function

ot =R

10

Q2 (35 points): Write a script, rank_feat_by_chi_square.sh, that ranks features by x? scores.

e The format for the command line is: cat input_file | rank _feat_by_chi_square.sh > output_file

e input_file is a feature vector file in the text format (e.g., train.vectors.txt).

e The output_file has the format “featName score docFreq”. The score is the chi-square score for
the feature; docFreq is the number of documents that the feature occurs in. The lines are sorted
by x? scores in descending order.

e For x? calculation, treat each feature as binary; that is, suppose the input_file has a; instances
with class label ¢;. Out of these a; instances, b; of them contain the feature fi, then the
corresponding contingency table for feature fj is shown in Table 2.

e Run “cat train.vectors.txt | rank feat_by_chi_square.sh > feat_list” and submit feat_list.

Table 2: A contingency table for feature fi

C1 (&) C3
fe | a1 —b1 | ag—0ba | a3 — b3
Jr | b1 by b3

Submission: Submit the following to Canvas:

e Your note file readme. (tzt | pdf) that includes Table 1 and any notes that you want the TA to
read.

e hw.tar.gz that includes all the files specified in dropbox/18-19/572/hw4 /submit-file-list, plus any
source code (and binary code) used by the shell scripts.

e Make sure that you run check_hw4.sh before submitting your hw.tar.gz.

