
LING572 Hw4 (kNN)

Due: 11pm on Feb 6, 2020

The example files are under dropbox/19-20/572/hw4/examples/.

Q1 (40 points): Write a script, build kNN.sh, that implements the kNN algorithm. It classifies a
test instance x by letting the k nearest neighbors of x vote.

• The learner should treat features as real-valued.

• Use majority vote; that is, each of the k nearest neighbors has one vote.

• The format is: build kNN.sh training data test data k val similarity func sys output > acc file

• training data and test data are the vector files in the text format (cf. train.vectors.txt).

• k val is the value of k; i.e., the number of nearest neighbors chosen for classification.

• similarity func is the id of the similarity function. If the variable is 1, use Euclidean distance. If
the value is 2, use Cosine function. Notice that Euclidean distance is a dissimilarity mea-
sure; that is, the longer the distance between two instances is, the more dissimilar
(i.e., the less similar) the instances are.

• sys output and acc file have the same format as the one specified in Hw3, and they should include
the classification results for both training and test data. When choosing k nearest neighbors for
a training instance x, one of those neighbors is x itself. Notice that since the other k-1 neighbors
could have labels different from that of x, the training accuracy could be lower than 100%.

• For each line of sys output, remember to sort the (ci, pi) pairs by the value of pi in descending
order.

• Please submit output files correspond to k = 5, similarity = cosine.

Run build kNN.sh with train.vectors.txt as the training data and test.vectors.txt as the test
data. Fill out Table 1 with different values of k and similarity function.

Table 1: Test accuracy using real-valued features
k Euclidean distance Cosine function

1

5

10

Q2 (35 points): Write a script, rank feat by chi square.sh, that ranks features by χ2 scores.

• The format for the command line is: cat input file | rank feat by chi square.sh > output file

• input file is a feature vector file in the text format (e.g., train.vectors.txt).

1



• The output file has the format “featName score docFreq”. The score is the chi-square score for
the feature; docFreq is the number of documents that the feature occurs in. The lines are sorted
by χ2 scores in descending order.

• For χ2 calculation, treat each feature as binary; that is, suppose the input file has ai instances
with class label ci. Out of these ai instances, bi of them contain the feature fk, then the
corresponding contingency table for feature fk is shown in Table 2.

• Run “cat train.vectors.txt | rank feat by chi square.sh > feat list” and submit feat list.

Table 2: A contingency table for feature fk
c1 c2 c3

f̄k a1 − b1 a2 − b2 a3 − b3
fk b1 b2 b3

Submission: Submit the following to Canvas:

• Your note file readme.(txt | pdf) that includes Table 1 and any notes that you want the TA to
read.

• hw.tar.gz that includes all the files specified in dropbox/18-19/572/hw4/submit-file-list, plus any
source code (and binary code) used by the shell scripts.

• Make sure that you run check hw4.sh before submitting your hw.tar.gz.

2


