
More λ-Calculus
Lexical Semantics

LING 571 — Deep Processing Techniques for NLP
Shane Steinert-Threlkeld

 1

Happy Halloween!

2

2021:

Happy Halloween!

2

par + sing = parsing

2021:

Happy Halloween!

3

2020:

Happy Halloween!

3

Sea + Man + Ticks = Semantics

2020:

Happy Halloween!

4

2023: ???

Happy Halloween!

4

2023: ???

dock + tor = doctor!

Roadmap
● FOL Semantics

● More Lambdas

● Learning Semantic Parsers

● Lexical Semantics
● Motivation & Definitions

● Word Senses

● Tasks:
● Word sense disambiguation
● Word sense similarity

● Distributional Similarity

5

6

NP → Det.sem(NP.sem)

S|ষ /্)ঽ ষ /্*~
NP|ফ/্)ষ /্*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP

V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
arrived

6

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y)) S|ষ /্)ঽ ষ /্*~

NP|ফ/্)ষ /্*~
Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP

V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
arrived

6

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y))

λQ.∀xλy.Flight(y)(x) ⇒Q(x) S|ষ /্)ঽ ষ /্*~
NP|ফ/্)ষ /্*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP

V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
arrived

6

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y))

λQ.∀xλy.Flight(y)(x) ⇒Q(x)
λQ.∀xFlight(x) ⇒Q(x)

S|ষ /্)ঽ ষ /্*~
NP|ফ/্)ষ /্*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP

V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
arrived

S|ষ /্)ঽ ষ /্*~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP

V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
arrived

6

NP → Det.sem(NP.sem)
λP.λQ.∀xP(x) ⇒Q(x)(λy.Flight(y))

λQ.∀xλy.Flight(y)(x) ⇒Q(x)
λQ.∀xFlight(x) ⇒Q(x)

7

S|ষ /্)ঽ ষ /্*~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

8

S|ষ /্)ঽ ষ /্*~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

9

S|ষ /্)ঽ ষ /্*~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

S|ѭভ ৌৈυ)* ш Ѱন)* Ҕ ন υৎৈ)- *~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

9

S|ѭভ ৌৈυ)* ш Ѱন)* Ҕ ন υৎৈ)- *~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

9

λQ.∀xFlight(x) ⇒Q(x)(λz.∃eArrived(e) ∧ ArrivedThing(e, z))

S|ѭভ ৌৈυ)* ш Ѱন)* Ҕ ন υৎৈ)- *~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

9

λQ.∀xFlight(x) ⇒Q(x)(λz.∃eArrived(e) ∧ ArrivedThing(e, z))

∀xFlight(x) ⇒λz.∃eArrived(e) ∧ ArrivedThing(e, z)(x)

S|ѭভ ৌৈυ)* ш Ѱন)* Ҕ ন υৎৈ)- *~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

9

λQ.∀xFlight(x) ⇒Q(x)(λz.∃eArrived(e) ∧ ArrivedThing(e, z))

∀xFlight(x) ⇒λz.∃eArrived(e) ∧ ArrivedThing(e, z)(x)

∀xFlight(x) ⇒∃eArrived(e) ∧ ArrivedThing(e, x)

10

S|ѭভ ৌৈυ)* ш Ѱন)* Ҕ ন υৎৈ)- *~
NP|ౠস/ѭভ ৌৈυ)* ш স)*~

Det|ౠষ /ౠস/ѭষ)* ш স)*~
Every

Noun|ౠ/ভ ৌৈυ)*~
flight

VP|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~
V|ౠ/Ѱন)* Ҕ ন υৎৈ)- *~

arrived

More λ-Calculus

11

Common Nouns
● Noun -> ‘restaurant’ {λx.Restaurant(x)}
● Somewhat similar to the NNP construction
● λ var.Predicate(var)

12

Common Nouns
● Noun -> ‘restaurant’ {λx.Restaurant(x)}
● Somewhat similar to the NNP construction
● λ var.Predicate(var)

● But common nouns represent properties, rather than constants

● Meaning of the noun encoded in the predicate

● Relate the concept of the noun to a particular instance of variable

12

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

● These are semantically equivalent!

● [IF P, THEN ¬Q] ⇔ ¬[P AND Q]
● ¬∃xP(x) ⇔ ∀x¬P(x)

13

Negation
● “No vegetarian restaurant serves meat.”
● ¬(∃xVegetarianRestaurant(x) ∧ Serves(x,Meat))

● “All vegetarian restaurants do not serve meat.”
● ∀x VegetarianRestaurant(x)⇒¬Serves(x,Meat)

● These are semantically equivalent!

● [IF P, THEN ¬Q] ⇔ ¬[P AND Q]
● ¬∃xP(x) ⇔ ∀x¬P(x)

● For NLTK, use the hyphen/minus character: ‘-‘

13

‘John booked a flight’
● Target representation:

● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

14

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

15

S → NP VP {NP.sem(VP.sem)}

S

NP

NNP

John

VPw

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

16

S → NP VP {NP.sem(VP.sem)}

S\կձӳ֎րֈ	շ ձӳ֎րֈ
^
NP

NNP

John

VPw

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

17

S → NP VP {NP.sem(VP.sem)}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
VP → Verb NP {Verb.sem(NP.sem)}

S\կձӳ֎րֈ	շ ձӳ֎րֈ
^
NP

NNP\ᇊչӳչ	ի֊փ։
^
John

VPw

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

18

S → NP VP {NP.sem(VP.sem)}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
VP → Verb NP {Verb.sem(NP.sem)}

S\ᇊչӳչ	ի֊փ։
	շ ձӳ֎րֈ
^
NP

NNP\w^
John

VPw

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

19

S → NP VP {NP.sem(VP.sem)}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
VP → Verb NP {Verb.sem(NP.sem)}

S\շ ձӳ֎րֈ	ի֊փ։
^
NP

NNP\w^
John

VPw

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

20

NP → Det NN {Det.sem(NN.sem)}

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
Det

a

NN

flight

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

21

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
Det

a

NNᇊ֓ӳէևքւփ֏	֓

flight

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

22

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
Det

a

NNᇊ֓ӳէևքւփ֏	֓

flight

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

23

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^
Det\ᇊձӳᇊղӳૠ֓ձ	֓
 ղ	֓
^
a

NNᇊ֓ӳէևքւփ֏	֓

flight

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

24

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

25

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

26

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^\ᇊղӳૠ֓	ᇊ֓ӳէևքւփ֏	֓

	֓
 ղ	֓
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

27

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^\ᇊղӳૠ֓	ᇊ֓ӳէևքւփ֏	֓

	֓
 ղ	֓
^\ᇊղӳૠ֓էևքւփ֏	֓
 ղ	֓
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

28

NP → Det NN {Det.sem(NN.sem)}
NN → ‘flight’ {λx.Flight(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

NP\եր֏ӳ֎րֈ	կկӳ֎րֈ
^\ᇊձӳᇊղӳૠ֓ձ	֓
 ղ	֓
	ᇊ֓ӳէևքւփ֏	֓

^\ᇊղӳૠ֓	ᇊ֓ӳէևքւփ֏	֓

	֓
 ղ	֓
^\ᇊղӳૠ֓էևքւփ֏	֓
 ղ	֓
^

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

29

VP → Verb NP {Verb.sem(NP.sem)}
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

VP

V

booked

NP

a flight

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

30

VP → Verb NP {Verb.sem(NP.sem)}
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

VP\շ ր֍սӳ֎րֈ	կձӳ֎րֈ
^
V

booked

NP

a flight

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

31

VP → Verb NP {Verb.sem(NP.sem)}
‘a flight’ { λQ.∃x Flight(x) ∧ Q(x) }

VP\շ ր֍սӳ֎րֈ	կձӳ֎րֈ
^
V

booked

NP

a flight

Verb → ‘booked’
{λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))}

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))
λz.∃x Flight(x) ∧ (λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(x)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))
λz.∃x Flight(x) ∧ (λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(x)
λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

32

Verb.sem(NP.sem)
λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(λQ.∃x Flight(x) ∧ Q(x))
λz.(λQ.∃x Flight(x) ∧ Q(x))(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))
λz.∃x Flight(x) ∧ (λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))(x)
λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

33

S VP.sem(John)

‘booked a flight' λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧
BookedThing(e,x)

S\շ ձӳ֎րֈ	ի֊փ։
^
NP

NNP\w^
John

VPw

‘John booked a flight’
● ∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x))

34

S VP.sem(John)
‘booked a flight' λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)

λz.∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,x)(John)
∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e,John) ∧ BookedThing(e,x)

‘John booked a flight’

35

Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }
Det → ‘every’ { λP.λQ.∀x P(x) ⇒ Q(x) }
NN → ‘flight’ {λx.Flight(x)}
Verb → ‘booked’ {λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
NP → Det NN {Det.sem(NN.sem)}
S → NP VP {NP.sem(VP.sem)}
VP → Verb NP {Verb.sem(NP.sem)}

‘John booked no flight’
● ¬(∃x Flight(x) ∧ (∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x)))

● ∀xFlight(x) ⇒ ¬(∃eBooked(e) ∧ Booker(e, John) ∧ BookedThing(e, x)

36

‘John booked no flight’

37

Det → ‘no’ { λP.λQ.¬∃x P(x) ∧ Q(x)}
Det → ‘a’ { λP.λQ.∃x P(x) ∧ Q(x) }
Det → ‘every’ { λP.λQ.∀x P(x) ⇒ Q(x) }
NN → ‘flight’ {λx.Flight(x)}
Verb → ‘booked’ {λW.λz.W(λy.∃eBooked(e) ∧ Booker(e,z) ∧ BookedThing(e,y))}
NNP → ‘John’ {λX.X(John)}
NP → NNP {NNP.sem}
NP → Det NN {Det.sem(NN.sem)}
S → NP VP {NP.sem(VP.sem)}
VP → Verb NP {Verb.sem(NP.sem)}

Other Lambda Calculus

38

Adjectives

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:
● “red” = λP λx(red(x) ∧ P(x))

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:
● “red” = λP λx(red(x) ∧ P(x))

● Any issues?

39

Adjectives
● Similar to nouns, but with an extra conjunction and dummy predicate:
● “red” = λP λx(red(x) ∧ P(x))

● Any issues?
● Non-intersective adjectives (e.g. ‘skillful’, ‘alleged’, ‘fake’)

39

Definite Article
● a = λP.λQ.∃x(P(x) ∧ Q(x))

● the = λP.λQ.∃x(P(x) ∧ ∀y(P(y)⇔x=y) ∧ Q(x)))

● Roughly: “The P Q”: there is a unique P, which is also Q
● Unique: x is P, and anything else that is also P is equal to x

40

Definite Article
● the = λP.λQ.∃x(P(x) ∧ ∀y(P(y)⇔x=y) ∧ Q(x)))
● Bertrand Russel, “On Denoting” (1905).

● The definite article isn’t exactly the same as a constant (like “John”)

● Rather, it picks out a set of items from a set (the generic NN), and makes a
strong assertion:
A) The book arrived.
B) A book arrived.
● A ⊨ B, but B ⊭ A

41

https://www.uvm.edu/~lderosse/courses/lang/Russell(1905).pdf

Definite Article + Presupposition
● “The slides for Monday are amazing.”
● ~> there are slides for Monday.

● “The slides for Monday are not amazing.”
● ~> there are slides for Monday.

● The P Q: presupposes that there is a unique P, does not assert it
[Strawson 1950, …]
● If there is no P, “The P Q” is neither true nor false

42

Learning Semantic Parsers

43

44Zettlemoyer and Collins 2005

Supervised learning:
● Sentences labeled with logical forms
● Induce grammar
● Plus semantic attachments
● Score analyses of ambiguous

sentences with log-linear model

https://homes.cs.washington.edu/~lsz/papers/zc-uai05.pdf

Learning from Denotations

45

Learn semantic representations as
latent variables for downstream
task (QA, conversation, …)

Liang et al 2011

https://www.aclweb.org/anthology/J13-2005/

Resources
● Datasets
● General:
● Abstract Meaning Representations: LDC2017T10
● Minimal Recursion Semantics: DeepBank

● SQL:
● Spider: https://yale-lily.github.io/spider
● SParC: https://yale-lily.github.io/sparc

46

https://catalog.ldc.upenn.edu/LDC2017T10
http://moin.delph-in.net/DeepBank
https://yale-lily.github.io/spider
https://yale-lily.github.io/sparc

Resources: Knowledge Graphs
● R.I.P. Freebase
● Used by Google Knowledge Graph, then bought and killed

● [they have an API with 100,000 queries/day for free]

● BUT: data moved to Wikidata

47

https://developers.google.com/knowledge-graph/
https://www.wikidata.org/wiki/Wikidata:Main_Page

Lexical Semantics

48

49

Compositional vs Lexical Semantics

50

Carlson 1980

https://semanticsarchive.net/Archive/jk3NzRlY/carlson.diss.pdf

Lexical Semantics
● Thus far: POS → Word {sem}
● Can compose larger semantic formulae bottom-up this way

● …but we haven’t really discussed what a “word” is, semantically.

51

Lexical Semantics
● Thus far: POS → Word {sem}
● Can compose larger semantic formulae bottom-up this way

● …but we haven’t really discussed what a “word” is, semantically.

● Lexical semantics:
● How do we formally discuss what a “word” is?

● How do we relate words to one another?

● How do we differentiate/relate linked senses?

51

What is a Plant?

52

What is a Plant?
● There are more kinds of plants and animals in the rainforests than

anywhere else on Earth. Over half of the millions of known species of
plants and animals live in the rainforest. Many are found nowhere
else. There are even plants and animals in the rainforest that we have
not yet discovered.

52

What is a Plant?
● There are more kinds of plants and animals in the rainforests than

anywhere else on Earth. Over half of the millions of known species of
plants and animals live in the rainforest. Many are found nowhere
else. There are even plants and animals in the rainforest that we have
not yet discovered.

● The Paulus company was founded in 1938. Since those days the
product range has been the subject of constant expansions and is
brought up continuously to correspond with the state of the art. We’re
engineering, manufacturing, and commissioning world-wide ready-to-
run plants packed with our comprehensive know-how.

52

Lexical Semantics

53

…by way of dad-joke Halloween costumes. 🎃

Lexical Semantics

53

…by way of dad-joke Halloween costumes. 🎃

Lexical Semantics

53

A Ceiling Fan Snakes on a Plane

…by way of dad-joke Halloween costumes. 🎃

Lexical Semantics

53

A Ceiling Fan Snakes on a Plane
(Painful) Examples of Homonymy

Sources of Confusion
Homonymy

54

Sources of Confusion
Homonymy
Polysemy

54

Sources of Confusion
Homonymy
Polysemy
Synonymy

54

Sources of Confusion
Homonymy
Polysemy
Synonymy
Antonymy

54

Sources of Confusion
Homonymy
Polysemy
Synonymy
Antonymy
[Hypo/Hyper]-nymy

54

Sources of Confusion:
Homonymy

● Words have same form but different meanings
● Generally same POS, but unrelated meaning
● bank1 (side of river)
● bank2 (financial institution)

55

Sources of Confusion:
Homonymy

● Different types of Homonymy:
● Homophones: same phonology, different orthographic form
● two
● to
● too

● Homographs: Same orthography, different phonology:
● “lead” (metal)
● “lead” (take somewhere)

56

Sources of Confusion:
Homonymy

● Different types of Homonymy:
● Homophones: same phonology, different orthographic form
● two
● to
● too

● Homographs: Same orthography, different phonology:
● “lead” (metal)
● “lead” (take somewhere)

● Why do we care?
● Problem for applications: TTS, ASR transcription, IR

56

Sources of Confusion:
Polysemy

● Multiple RELATED senses
● e.g. bank: money, organ, blood

57

Sources of Confusion:
Polysemy

● Multiple RELATED senses
● e.g. bank: money, organ, blood

● Big issue in lexicography
● Number of senses

● Relations between senses

● Differentiation

57

Sources of Confusion:
Polysemy

● Example: [[serve]]
● serve breakfast

● serve Philadelphia

● serve time

58

Sources of Confusion:
Synonymy

● (near) identical meaning

● Substitutability
● Maintains propositional meaning

59

Sources of Confusion:
Synonymy

● Issues:
● Also has polysemy!
● Shades of meaning - other associations
● price vs. fare
● big vs. large
● water vs. H20

● Collocational constraints
● e.g. babbling brook vs. *babbling river

● Register:
● social factors: e.g. politeness, formality

60

Sources of Confusion:
Antonymy

● Opposition

● Typically ends of a scale
● fast vs. slow

● big vs. little

● Can be hard to distinguish automatically from synonyms

61

Sources of Confusion:
Hyponomy

● instanceOf(x, y) relations:

● More General (hypernym) vs. more specific (hyponym)
● dog vs. golden retriever

● fruit vs. mango

● Organize as ontology/taxonomy

62

Word Sense Disambiguation
● Application of lexical semantics

● Goal: given a word in context, identify the appropriate sense
● e.g. plants and animals in the rainforest

● Crucial for real syntactic & semantic analysis
● Correct sense can determine
● Available syntactic structure
● Available thematic roles, correct meaning…

63

Robust Disambiguation
● More to semantics than predicate-argument structure
● Select sense where predicates underconstrain

● Learning approaches
● Supervised, bootstrapped, unsupervised

● Knowledge-based approaches
● Dictionaries, taxonomies

● Contexts for sense selection

64

65

There are more kinds of plants and animals in the rainforests than anywhere else on
Earth. Over half of the millions of known species of plants and animals live in the
rainforest. Many are found nowhere else. There are even plants and animals in the

rainforest that we have not yet discovered.
Biological Example

The Paulus company was founded in 1938. Since those days the product range has been
the subject of constant expansions and is brought up continuously to correspond with

the state of the art. We’re engineering, manufacturing and commissioning world-
wide ready-to-run plants packed with our comprehensive know-how. Our Product
Range includes pneumatic conveying systems for carbon, carbide, sand, lime and many

others. We use reagent injection in molten metal for the…
Industrial Example

Label the First Use of “Plant”

Roadmap
● Lexical Semantics
● Motivation & Definitions

● Word Senses

● Tasks:
● Word sense disambiguation
● Word sense similarity

● Distributional Similarity

66

Disambiguation: Features
● Part of Speech
● Of word and neighbors

67

Disambiguation: Features
● Part of Speech
● Of word and neighbors

● Morphologically simplified form

67

Disambiguation: Features
● Part of Speech
● Of word and neighbors

● Morphologically simplified form

● Words in neighborhood
● How big is “neighborhood?”

● Is there a single optimal size? Why?

67

Disambiguation: Features
● (Possibly shallow) Syntactic analysis
● predicate-argument relations

● modification (complements)

● phrases

68

Disambiguation: Features
● (Possibly shallow) Syntactic analysis
● predicate-argument relations

● modification (complements)

● phrases

● Collocation
● words in specific relation
● Predicate-Argument, or (+/–)1 word index

68

Disambiguation: Features
● (Possibly shallow) Syntactic analysis
● predicate-argument relations

● modification (complements)

● phrases

● Collocation
● words in specific relation
● Predicate-Argument, or (+/–)1 word index

● Co-occurrence
● bag of words

68

Disambiguation: Evaluation
● Ideally, end-to-end evaluation with WSD component
● Demonstrate real impact of technique in system

● Difficult, expensive, still application specific

69

Disambiguation: Evaluation
● Ideally, end-to-end evaluation with WSD component
● Demonstrate real impact of technique in system

● Difficult, expensive, still application specific

● Typically intrinsic, sense-based
● Accuracy, precision, recall

● SENSEVAL/SEMEVAL: all words, lexical sample

69

WSD Evaluation
● Baseline:
● Most frequent sense

70

WSD Evaluation
● Baseline:
● Most frequent sense

● Ceiling:
● Human inter-rater agreement
● 75-80% fine
● 90% coarse

70

Roadmap
● Lexical Semantics
● Motivation & Definitions

● Word Senses

● Tasks:
● Word sense disambiguation
● Word sense similarity

● Distributional Similarity

71

Word Sense Similarity

72

Word Sense Similarity
● Synonymy:
● True propositional substitutability is rare, slippery

72

Word Sense Similarity
● Synonymy:
● True propositional substitutability is rare, slippery

● Word similarity (semantic distance)
● Looser notion, more flexible

72

Word Sense Similarity
● Appropriate to applications:
● IR, summarization, MT, essay scoring
● Don’t need binary +/– synonym decision
● Want terms/documents that have high similarity

73

Word Sense Similarity
● Appropriate to applications:
● IR, summarization, MT, essay scoring
● Don’t need binary +/– synonym decision
● Want terms/documents that have high similarity

● Approaches:
● Distributional

● Thesaurus-based

73

Similarity vs. Relatedness

74

Similarity vs. Relatedness
● Similarity:
● car, bicycle

● nickel < coin < currency

74

Similarity vs. Relatedness
● Similarity:
● car, bicycle

● nickel < coin < currency

● Related:
● car, gasoline

● coin, budget

74

Thesaurus-Based:
● Build ontology of senses
● e.g. WordNet

● Use distance to infer similarity/relatedness:

75

standard

medium of exchange

currency

coinage

coin

nickel dime

money

fund

budget

scale

Richter scale

https://wordnet.princeton.edu/

Thesaurus-Based:
● Build ontology of senses
● e.g. WordNet

● Use distance to infer similarity/relatedness:

75

standard

medium of exchange

currency

coinage

coin

nickel dime

money

fund

budget

scale

Richter scale

https://wordnet.princeton.edu/

Thesaurus-Based:
● Build ontology of senses
● e.g. WordNet

● Use distance to infer similarity/relatedness:

75

standard

medium of exchange

currency

coinage

coin

nickel dime

money

fund

budget

scale

Richter scale

https://wordnet.princeton.edu/

Roadmap
● Lexical Semantics
● Motivation & Definitions

● Word Senses

● Tasks:
● Word sense disambiguation
● Word sense similarity

● Distributional Similarity

76

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

77

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.

77

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.

● Everybody likes tezgüino.

77

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.

● Everybody likes tezgüino.

● Tezgüino makes you drunk.

77

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.

● Everybody likes tezgüino.

● Tezgüino makes you drunk.

● We make tezgüino from corn.

77

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● “You shall know a word by the company it keeps!” (Firth, 1957)

● A bottle of tezgüino is on the table.

● Everybody likes tezgüino.

● Tezgüino makes you drunk.

● We make tezgüino from corn.

● Tezguino: corn-based alcoholic beverage. (From Lin, 1998a)

77

https://alliance-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_mla1957000004&context=PC&vid=UW&search_scope=all&tab=default_tab&lang=en_US
https://www.aclweb.org/anthology/C98-2122/

Distributional Similarity
● Represent ‘company’ of word such that similar words will have similar

representations
● ‘Company’ = context

78

Distributional Similarity
● Represent ‘company’ of word such that similar words will have similar

representations
● ‘Company’ = context

● Word represented by context feature vector
● Many alternatives for vector

78

Distributional Similarity
● Represent ‘company’ of word such that similar words will have similar

representations
● ‘Company’ = context

● Word represented by context feature vector
● Many alternatives for vector

● Initial representation:
● ‘Bag of words’ binary feature vector

● Feature vector length N, where N is size of vocabulary
● fi=1 if wordi within window size w of word0

78

Context Feature Vector

79

arts boil data function large sugar summarized water

Apricot 0 1 0 0 1 1 0 1

Pineapple 0 1 0 0 1 1 0 1

Digital 0 0 1 1 1 0 1 0

Information 0 0 1 1 1 0 1 0

Distributional Similarity Questions
● What is the right neighborhood?
● What is the context?

● How should we weight the features?

● How can we compute similarity between vectors?

80

