
Feature-based Parsing
+ 

Computational Semantics
LING 571 — Deep Processing for NLP

October 27, 2021
Shane Steinert-Threlkeld

1

Happy (early) Halloween!

2

Happy (early) Halloween!

2

2019: Chomp + Ski = Chomsky

Punny Department

3

Happy (early) Halloween!

4

Happy (early) Halloween!

4

2020: Sea + Man + Ticks = Semantics

Happy (early) Halloween!

5

Happy (early) Halloween!

5

2021: ???

6

Roadmap
● Feature-based parsing

● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy

7

Computational Semantics

8

Dialogue System
● User: What do I have on Thursday?

9

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!

9

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

9

S

Q-WH-Obj

Whwd

What

Aux

do

NP

Pron

I

VP/NP

V

have

NP/NP

t

PP

Prep

on

NP

N

Thursday

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

● System:
● Great, but what do I DO now?

9

S

Q-WH-Obj

Whwd

What

Aux

do

NP

Pron

I

VP/NP

V

have

NP/NP

t

PP

Prep

on

NP

N

Thursday

Dialogue System
● User: What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure!

● System:
● Great, but what do I DO now?

● Need to associate meaning w/structure

9

S

Q-WH-Obj

Whwd

What

Aux

do

NP

Pron

I

VP/NP

V

have

NP/NP

t

PP

Prep

on

NP

N

Thursday

Date=Thursday

S

Q-WH-Obj

Whwd

What

Aux

do

NP

Pron

I

VP/NP

V

have

NP/NP

t

PP

Prep

on

NP

N

Thursday

Dialogue System

10

Date=Thursday

Cal=User

S

Q-WH-Obj

Whwd

What

Aux

do

NP

Pron

I

VP/NP

V

have

NP/NP

t

PP

Prep

on

NP

N

Thursday

Dialogue System

10

Date=Thursday

Cal=User

Action:  
 check(Cal=USER,  
 Date=Thursday) S

Q-WH-Obj

Whwd

What

Aux

do

NP

Pron

I

VP/NP

V

have

NP/NP

t

PP

Prep

on

NP

N

Thursday

Dialogue System

10

Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input

11

Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input

● Semantics:
● Determine the meaning of natural language input

11

High-Level Overview
● Semantics = meaning

12

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

12

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

12

High-Level Overview
● Semantics = meaning
● …but what does “meaning” mean?

12

13

Speech & Text

“The sky is blue.”

13

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

13Psychology

Orange

Green
Blue

Red

Clouds

Sky

Earth

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

13Psychology

Orange

Green
Blue

Red

Clouds

Sky

Earth

Epistemology

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

13Psychology

Orange

Green
Blue

Red

Clouds

Sky

Earth

Epistemology

Logic
∃x Sky(x) ∧ Blue(x)

Speech & Text

“The sky is blue.”

We Will Focus On:
● Concepts that we believe to be true about the world.
● How to connect strings and those concepts.

14

We Won’t Focus On:
1. Building knowledge bases / semantic networks

15

Street

Car

Truck

Fire
Engine

House

Fire

Red
Orange

Yellow

Green

Apples

Cherries
Pears

Sunsets

Sunrises Clouds
Violets

Roses

Flowers

Violet

Ambulance

Bus

Vehicle

Roadmap
● Computational Semantics
● Overview
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy

16

Semantics: an Introduction

17

Uses for Semantics
● Semantic interpretation required for many tasks
● Answering questions
● Following instructions in a software manual
● Following a recipe

● Requires more than phonology, morphology, syntax

● Must link linguistic elements to world knowledge

18

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.

19

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.

19

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.

19

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.

19

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.

19

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.

19

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters

19

Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters
● …etc.

19

Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic

input?
● e.g.: predicate calculus: 

20

∃x (dog (x) ∧ disappear (x))

Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic

input?
● e.g.: predicate calculus: 

● Entailment:
● What are all the conclusions that can be validly drawn from a sentence?
● Lincoln was assassinated ⊨ Lincoln is dead
● ⊨ “semantically entails”: if former is true, the latter must be too

20

∃x (dog (x) ∧ disappear (x))

Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

21

Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

● Compositionality
● How can we derive the meaning of a unit from its parts?
● How do syntactic structure and semantic composition relate?
● ‘rubber duck’ vs. ‘rubber chicken’ vs. ‘rubber-neck’
● kick the bucket

21

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

22

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

22

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

22

Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

● Develop methods for reasoning about these representations
● …and performing inference

22

Tasks in Computational Semantics
● Semantic similarity (words, texts)

● Semantic role labeling

● Semantic analysis / semantic “parsing”

● Recognizing textual entailment (RTE) / natural
language inference (NLI)

● Sentiment analysis

23

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

24

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

24

Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

● Reasoning
● Given a representation and world, what new conclusions (bits of meaning) can we

infer?

24

Complexity of Computational Semantics
● Effectively AI-complete
● Needs representation, reasoning, world model, etc.

25

Representing Meaning

26

“I have a car”
First-Order Logic:

27

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

“I have a car”
First-Order Logic:

27

Having

Haver Had-Thing

Speaker Car

Semantic Network:

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

“I have a car”
First-Order Logic:

27

Having

Haver Had-Thing

Speaker Car

Semantic Network:

 Car
 ⇑ POSS-BY
Speaker

Conceptual
Dependency:

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

“I have a car”
First-Order Logic:

27

Having

Haver Had-Thing

Speaker Car

Semantic Network:

 Car
 ⇑ POSS-BY
Speaker

Conceptual
Dependency:

Frame-Based: Having
 Haver: Speaker
 HadThing: Car

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

28

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

28

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

28

Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

● Here we focus on literal meaning (“what is said”)

28

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

29

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

29

● Can compare representation of sentence to KB model (generally: “executable”)

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

29

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

29

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

29

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

29

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

● Represent any natural language utterance

Meaning Structure of Language
● Human Languages:
● Display basic predicate-argument structure
● Employ variables
● Employ quantifiers
● Exhibit a (partially) compositional semantics

30

Predicate-Argument Structure
● Represent concepts and relationships

31

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

31

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

31

Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

● Subcategorization frames indicate:
● Number, Syntactic category, order of args, possibly

other features of args

31

First-Order Logic

32

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

33

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

33

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

33

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

33

First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

● Supports generalization through variables

33

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

34

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA)
● Refer to objects, avoid using constants

34

First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA)
● Refer to objects, avoid using constants

● Variables:
● x, e
● Refer to any potential object in the world

34

First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’
● Serves(United, Chicago)

35

First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’
● Serves(United, Chicago)

● Logical Connectives
● {∧, ∨, ⇒} = {and, or, implies}
● Allow for compositionality of meaning* [* many subtleties]
● ‘Frontier serves Seattle and is cheap.’
● Serves(Frontier, Seattle) ∧ Cheap(Frontier)

35

Quantifiers
● ∃: existential quantifier: “there exists”

36

Quantifiers
● ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

36

Quantifiers
● ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

● A non-stop flight that serves Pittsburgh:
∃x Flight(x) ∧ Serves(x, Pittsburgh) ∧ Non-stop(x)

36

Quantifiers
● ∀: universal quantifier: “for all”
● All flights include beverages.

37

Quantifiers
● ∀: universal quantifier: “for all”
● All flights include beverages.

∀x Flight(x) ⇒ Includes(x, beverages)

37

FOL Syntax Summary

38

Formula → AtomicFormula Connective → ∧ | ∨ | ⇒
| Formula Connective Formula Quantifier → ∀ | ∃
| Quantifier Variable, … Formula Constant → VegetarianFood | Maharani | …
| ¬ Formula Variable → x | y | …
| (Formula) Predicate → Serves | Near | …

AtomicFormula → Predicate(Term,…) Function → LocationOf | CuisineOf | …
Term → Function(Term,…)

| Constant
| Variable

J&M p. 556 (3rd ed. 16.3)

https://web.stanford.edu/~jurafsky/slp3/16.pdf#section.16.3

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

39

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

● Formal languages are compositional.

39

Compositionality
● The meaning of a complex expression is a function of the meaning of its

parts, and the rules for their combination.

● Formal languages are compositional.

● Natural language meaning is largely compositional, though not fully.

39

Compositionality
● …how can we derive:
● loves(John, Mary)

40

Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John

● loves(x, y)

● Mary

40

Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John

● loves(x, y)

● Mary

● Lambda expressions!

40

Lambda Expressions
● Lambda (λ) notation (Church, 1940)
● Just like lambda in Python, Scheme, etc
● Allows abstraction over FOL formulae
● Supports compositionality

● Form: (λ) + variable + FOL expression
● λx.P(x) “Function taking x to P(x)”

● λx.P(x)(A) = P(A) [called beta-reduction]

41

http://www.jstor.org/stable/2266170

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

42

λx.P(x)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

42

λx.P(x)
λx.P(x)(A)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

42

λx.P(x)
λx.P(x)(A)
P(A)

λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

● Equivalent to function application

42

λx.P(x)
λx.P(x)(A)
P(A)

● Lambda expression as body of another

λx.λy.Near(x, y)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)

Nested λ-Reduction

43

● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)
Near(Midway, Chicago)

Nested λ-Reduction

43

Nested λ-Reduction
● If it helps, think of λs as binding sites:

44

λx.λy.Near(x, y)
=Mi

dw
ay

Chicago

Nested λ-Reduction
● If it helps, think of λs as binding sites:

45

λy.Near(x, y)
Chica

go

=
Midway

Nested λ-Reduction
● If it helps, think of λs as binding sites:

46

Near(x, y)
Chica

go

Midway

Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of

parse tree

47

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133

Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of

parse tree

● …or Schönkfinkelization

47

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

48

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Atomic formulae: P(x), R(x,y), etc

48

Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Atomic formulae: P(x), R(x,y), etc

● Formulae based on logical operators:

48

P Q ¬P P ∧Q P ∨Q P ⇒Q
F F T F F T
F T T F T T
T F F F T F
T T F T T T

Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

49

Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

● ⇒ is the logical form
● Does not mean the same as natural language “if”, just

that if LHS=T, then RHS=T

49

Inference
1. α

50

1. ∀x α(x)

Inference
1. α
2. α ⇒ β

50

1. ∀x α(x)

Inference
1. α
2. α ⇒ β

3. ∴ β

50

1. ∀x α(x)

Inference
1. α
2. α ⇒ β

3. ∴ β

50

1. ∀x α(x)
2. ∴ α(t)

Inference
1. VegetarianRestaurant(Leaf)

51

Inference
1. VegetarianRestaurant(Leaf)

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood)

51

Inference
1. VegetarianRestaurant(Leaf)

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood)

3. ∴ Serves(Leaf, VegetarianFood)

51

Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

52

Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

● We’ll assume we have a theorem prover.

52

Roadmap
● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy

53

Events

54

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

55

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.

55

Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston)
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.

● Variable number of arguments; many entailment relations here.

55

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

56

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.

56

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday)

56

Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday)
● Neo-Davidsonian (Parsons 1990):

● ∃e Arrival(e) ∧ Arrived(e, Flight) ∧ Destination(e, Seattle) ∧ Origin(e, SFO)  
∧ Time(e, Saturday)

56

Why events?
● “Adverbial modification is thus seen to be logically on a par with adjectival

modification: what adverbial clauses modify is not verbs but the events that
certain verbs introduce.” —Davidson

57

Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication

58

Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication

● Pros
● No fixed argument structure
● Dynamically add predicates as necessary
● No unused roles
● Logical connections can be derived

58

Meaning Representation for 
Computational Semantics

● Requirements
● Verifiability
● Unambiguous representation
● Canonical Form
● Inference
● Variables
● Expressiveness

● Solution:
● First-Order Logic
● Structure
● Semantics
● Event Representation

59

Summary
● FOL can be used as a meaning representation language for natural

language

● Principle of compositionality:
● The meaning of a complex expression is a function of the meaning of its parts

● λ-expressions can be used to compute meaning representations from
syntactic trees based on the principle of compositionality

● In next classes, we will look at syntax-driven approach to semantic
analysis in more detail

60

HW #4

61

Probabilistic Parsing
● Goals:
● Learn about PCFGs
● Implement PCKY
● Analyze Parsing Evaluation
● Assess improvements to PCFG Parsing

62

Tasks
1. Train a PCFG

1. Estimate rule probabilities from treebank
2. Treebank is already in CNF
3. More ATIS data from Penn Treebank

2. Build CKY Parser
1. Modify (your) existing CKY implementation

63

Tasks
3. Evaluation

1. Evaluate your parser using standard metric
2. We will provide evalb program and gold standard

4. Improvement
1. Improve your parser in some way:

1. Coverage
2. Accuracy
3. Speed

2. Evaluate new parser

64

Improvement Possibilities
● Coverage:
● Some test sentences won’t parse as is!
● Lexical gaps (aka out-of-vocabulary [OOV] tokens)
● …remember to model the probabilities, too

● Better context modeling
● e.g. — Parent Annotation

● Better Efficiency
● e.g. — Heuristic Filtering, Beam Search

● No “cheating” improvements:
● improvement can’t change training by looking at test data

65

evalb
● evalb available in  
dropbox/21-22/571/hw4/tools

● evalb […] <gold-file> <test-file>

● evalb --help for more info

● NB: specify full/absolute path to evalb when
invoking in your scripts

66

