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Roadmap
● Feature-based parsing

● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy
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Computational Semantics
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Dialogue System
● User:  What do I have on Thursday?
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● Great, but what do I DO now?
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Dialogue System
● User:  What do I have on Thursday?

● Parser:
● Yes! It’s grammatical!
● Here’s the structure! 

● System:
● Great, but what do I DO now?

● Need to associate meaning w/structure
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Syntax vs. Semantics
● Syntax:
● Determine the structure of natural language input
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High-Level Overview
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Speech & Text

“The sky is blue.”
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We Will Focus On:
● Concepts that we believe to be true about the world.
● How to connect strings and those concepts.
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We Won’t Focus On:
1. Building knowledge bases / semantic networks
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Roadmap
● Computational Semantics
● Overview
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy
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Semantics: an Introduction
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Uses for Semantics
● Semantic interpretation required for many tasks
● Answering questions
● Following instructions in a software manual
● Following a recipe

● Requires more than phonology, morphology, syntax

● Must link linguistic elements to world knowledge
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Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted 
by what appeared to be a coordinated group of Mubarak supporters.
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Semantics is Complex
● Sentences have many entailments, presuppositions, implicatures

● Instead, the protests turned bloody, as anti-government crowds were confronted 
by what appeared to be a coordinated group of Mubarak supporters.
● The protests became bloody.
● The protests had been peaceful.
● Crowds oppose the government.
● Some support Mubarak.
● There was a confrontation between two groups.
● Anti-government crowds are not Mubarak supporters
● …etc.

19



Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic 

input?
● e.g.: predicate calculus: 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Challenges in Semantics
● Semantic Representation:
● What is the appropriate formal language to express propositions in linguistic 

input?
● e.g.: predicate calculus: 

● Entailment:
● What are all the conclusions that can be validly drawn from a sentence?
● Lincoln was assassinated ⊨ Lincoln is dead
● ⊨ “semantically entails”: if former is true, the latter must be too

20

∃x (dog (x) ∧ disappear (x))



Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’
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Challenges in Semantics
● Reference
● How do linguistic expressions link to objects/concepts in the real world?
● ‘the dog,’ ‘the evening star,’ ‘The Superbowl’

● Compositionality
● How can we derive the meaning of a unit from its parts?
● How do syntactic structure and semantic composition relate?
● ‘rubber duck’ vs. ‘rubber chicken’ vs. ‘rubber-neck’
● kick the bucket

21



Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.
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Tasks in Computational Semantics
● Extract, interpret, and reason about utterances.

● Define a meaning representation

● Develop techniques for semantic analysis
● …convert strings from natural language to meaning representations

● Develop methods for reasoning about these representations
● …and performing inference
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Tasks in Computational Semantics
● Semantic similarity (words, texts)

● Semantic role labeling

● Semantic analysis / semantic “parsing”

● Recognizing textual entailment (RTE) / natural 
language inference (NLI)

● Sentiment analysis

23



Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

24



Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

24



Complexity of Computational Semantics
● Knowledge of language
● words, syntax, relationships between structure & meaning, composition procedures

● Knowledge of the world:
● what are the objects that we refer to?
● How do they relate?
● What are their properties?

● Reasoning
● Given a representation and world, what new conclusions (bits of meaning) can we 

infer?
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Complexity of Computational Semantics
● Effectively AI-complete
● Needs representation, reasoning, world model, etc.
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Representing Meaning
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“I have a car”
First-Order Logic:

27
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“I have a car”
First-Order Logic:

27

Having

Haver Had-Thing

Speaker Car

Semantic Network:

   Car
    ⇑ POSS-BY 
Speaker

Conceptual 
Dependency:

Frame-Based: Having
   Haver: Speaker
   HadThing: Car

∃e, y (Having (e) ∧ Haver (e, Speaker) ∧ HadThing (e, y) ∧ Car (y))



Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary
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Meaning Representations
● All consist of structures from set of symbols
● Representational vocabulary

● Symbol structures correspond to:
● Objects
● Properties of objects
● Relations among objects

● Can be viewed as:
● Representation of meaning of linguistic input
● Representation of state of world

● Here we focus on literal meaning (“what is said”)

28



Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness
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Representational Requirements
● Verifiability

● Unambiguous representations

● Canonical Form

● Inference and Variables

● Expressiveness

29

● Can compare representation of sentence to KB model (generally: “executable”)

● Semantic representation itself is unambiguous

● Alternate expressions of same meaning map to same representation

● Way to draw valid conclusions from semantics and KB

● Represent any natural language utterance



Meaning Structure of Language
● Human Languages:
● Display basic predicate-argument structure
● Employ variables
● Employ quantifiers
● Exhibit a (partially) compositional semantics

30



Predicate-Argument Structure
● Represent concepts and relationships
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Predicate-Argument Structure
● Represent concepts and relationships

● Some words behave like predicates
● Book(John, United); Non-stop(Flight)

● Some words behave like arguments
● Book(John, United); Non-stop(Flight)

● Subcategorization frames indicate:
● Number, Syntactic category, order of args, possibly 

other features of args
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First-Order Logic
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First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness
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First-Order Logic
● Meaning representation:
● Provides sound computational basis for verifiability, inference, expressiveness

● Supports determination of propositional truth

● Supports compositionality of meaning*

● Supports inference

● Supports generalization through variables

33



First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John 
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee
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First-Order Logic Terms
● Constants: specific objects in world;
● A, B, John 
● Refer to exactly one object
● Each object can have multiple constants refer to it
● WAStateGovernor and JayInslee

● Functions: concepts relating objects → objects
● GovernerOf(WA) 
● Refer to objects, avoid using constants

● Variables:
● x, e 
● Refer to any potential object in the world

34



First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’ 
● Serves(United, Chicago)
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First-Order Logic Language
● Predicates
● Relate objects to other objects
● ‘United serves Chicago’ 
● Serves(United, Chicago)

● Logical Connectives
● {∧, ∨, ⇒} = {and, or, implies}
● Allow for compositionality of meaning* [* many subtleties]
● ‘Frontier serves Seattle and is cheap.’ 
● Serves(Frontier, Seattle) ∧ Cheap(Frontier)
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Quantifiers
●  ∃: existential quantifier: “there exists”
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Quantifiers
●  ∃: existential quantifier: “there exists”

● Indefinite NP
● ≥one such object required for truth

● A non-stop flight that serves Pittsburgh:
∃x Flight(x) ∧ Serves(x, Pittsburgh) ∧ Non-stop(x)

36



Quantifiers
●  ∀: universal quantifier: “for all”
● All flights include beverages.
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Quantifiers
●  ∀: universal quantifier: “for all”
● All flights include beverages.

∀x Flight(x) ⇒ Includes(x, beverages)

37



FOL Syntax Summary

38

Formula → AtomicFormula Connective → ∧ | ∨ | ⇒
| Formula Connective Formula Quantifier → ∀ | ∃
| Quantifier Variable, … Formula Constant → VegetarianFood | Maharani | …
| ¬ Formula Variable → x | y | …
| (Formula) Predicate → Serves | Near | …

AtomicFormula → Predicate(Term,…) Function → LocationOf | CuisineOf | …
Term → Function(Term,…)

| Constant
| Variable

J&M p. 556 (3rd ed. 16.3)

https://web.stanford.edu/~jurafsky/slp3/16.pdf#section.16.3


Compositionality
● The meaning of a complex expression is a function of the meaning of its 

parts, and the rules for their combination.
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Compositionality
● The meaning of a complex expression is a function of the meaning of its 

parts, and the rules for their combination.

● Formal languages are compositional.

● Natural language meaning is largely compositional, though not fully.

39



Compositionality
● …how can we derive:
● loves(John, Mary)
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Compositionality
● …how can we derive:
● loves(John, Mary)

● from:
● John 

● loves(x, y) 

● Mary

● Lambda expressions!
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Lambda Expressions
● Lambda (λ) notation (Church, 1940)
● Just like lambda in Python, Scheme, etc
● Allows abstraction over FOL formulae
● Supports compositionality

● Form: (λ) + variable + FOL expression
● λx.P(x)      “Function taking x to P(x)”

● λx.P(x)(A) = P(A) [called beta-reduction]

41

http://www.jstor.org/stable/2266170


λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

42
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λ-Reduction
● λ-reduction: Apply λ-expression to logical term
● Binds formal parameter to term

● Equivalent to function application

42

λx.P(x)
λx.P(x)(A)
P(A)



● Lambda expression as body of another

λx.λy.Near(x, y)

Nested λ-Reduction
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● Lambda expression as body of another
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● Lambda expression as body of another

λx.λy.Near(x, y)
λx.λy.Near(x, y)(Midway)
λy.Near(Midway, y)
λy.Near(Midway, y)(Chicago)
Near(Midway, Chicago)

Nested λ-Reduction

43



Nested λ-Reduction
● If it helps, think of λs as binding sites:

44
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Nested λ-Reduction
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Nested λ-Reduction
● If it helps, think of λs as binding sites:

46

Near(x, y)
Chica

go

Midway



Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of 

parse tree

47

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133


Lambda Expressions
● Currying
● Converting multi-argument predicates to sequence of single argument predicates
● Why?
● Incrementally accumulates multiple arguments spread over different parts of 

parse tree

● …or Schönkfinkelization

47

https://www.wiley.com/en-us/Semantics+in+Generative+Grammar-p-9780631197133


Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements
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Logical Formulae
● FOL terms (objects): denote elements in a domain
● Properties: sets of domain elements
● Relations: sets of tuples of domain elements

● Atomic formulae: P(x), R(x,y), etc

● Formulae based on logical operators:

48

P Q ¬P P ∧Q P ∨Q P ⇒Q
F F T F F T
F T T F T T
T F F F T F
T T F T T T



Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

49



Logical Formulae: Finer Points
● ∨ is not exclusive:
● Your choice is pepperoni or sausage
● …use ⊻ or ⨁

● ⇒ is the logical form
● Does not mean the same as natural language “if”, just 

that if LHS=T, then RHS=T

49



Inference
1. α
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Inference
1. α
2. α ⇒ β

3. ∴ β

50

1. ∀x α(x)
2. ∴ α(t)



Inference
1. VegetarianRestaurant(Leaf )
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Inference
1. VegetarianRestaurant(Leaf )

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood )
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Inference
1. VegetarianRestaurant(Leaf )

2. ∀x VegetarianRestaurant(x)⇒Serves(x,VegetarianFood )

3. ∴ Serves(Leaf, VegetarianFood )

51



Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…
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Inference
● Standard AI-type logical inference procedures
● Modus Ponens
● Forward-chaining, Backward Chaining
● Abduction
● Resolution
● Etc…

● We’ll assume we have a theorem prover.
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Roadmap
● Computational Semantics
● Introduction
● Semantics
● Representing Meaning
● First-Order Logic
● Events

● HW#5
● Feature grammars in NLTK
● Practice with animacy
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Events
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Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston) 
● Assume # of args = # of elements in subcategorization frame
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Representing Events
● Initially, single predicate with some arguments
● Serves(United, Houston) 
● Assume # of args = # of elements in subcategorization frame

● Example:
● The flight arrived
● The flight arrived in Seattle
● The flight arrived in Seattle on Saturday.
● The flight arrived on Saturday.
● The flight arrived in Seattle from SFO.
● The flight arrived in Seattle from SFO on Saturday.

● Variable number of arguments; many entailment relations here.
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Representing Events
● Arity:
● How do we deal with different numbers of arguments?
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Representing Events
● Arity:
● How do we deal with different numbers of arguments?

● The flight arrived in Seattle from SFO on Saturday.
● Davidsonian (Davidson 1967):
● ∃e Arrival(e, Flight, Seattle, SFO) ∧ Time(e, Saturday) 
● Neo-Davidsonian (Parsons 1990):

● ∃e Arrival(e) ∧ Arrived(e, Flight) ∧ Destination(e, Seattle) ∧ Origin(e, SFO)  
∧ Time(e, Saturday)
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Why events?
● “Adverbial modification is thus seen to be logically on a par with adjectival 

modification: what adverbial clauses modify is not verbs but the events that 
certain verbs introduce.” —Davidson
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Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication
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Neo-Davidsonian Events
● Neo-Davidsonian representation:
● Distill event to single argument for event itself
● Everything else is additional predication

● Pros
● No fixed argument structure
● Dynamically add predicates as necessary
● No unused roles
● Logical connections can be derived
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Meaning Representation for 
Computational Semantics

● Requirements
● Verifiability
● Unambiguous representation
● Canonical Form
● Inference
● Variables
● Expressiveness

● Solution:
● First-Order Logic
● Structure
● Semantics
● Event Representation
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Summary
● FOL can be used as a meaning representation language for natural 

language

● Principle of compositionality:
● The meaning of a complex expression is a function of the meaning of its parts

● λ-expressions can be used to compute meaning representations from 
syntactic trees based on the principle of compositionality

● In next classes, we will look at syntax-driven approach to semantic 
analysis in more detail
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HW #4
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Probabilistic Parsing
● Goals:
● Learn about PCFGs
● Implement PCKY
● Analyze Parsing Evaluation
● Assess improvements to PCFG Parsing
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Tasks
1. Train a PCFG

1. Estimate rule probabilities from treebank
2. Treebank is already in CNF
3. More ATIS data from Penn Treebank

2. Build CKY Parser
1. Modify (your) existing CKY implementation
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Tasks
3. Evaluation

1. Evaluate your parser using standard metric
2. We will provide evalb program and gold standard

4. Improvement
1. Improve your parser in some way:

1. Coverage
2. Accuracy
3. Speed

2. Evaluate new parser
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Improvement Possibilities
● Coverage:
● Some test sentences won’t parse as is!
● Lexical gaps (aka out-of-vocabulary [OOV] tokens)
● …remember to model the probabilities, too

● Better context modeling
● e.g. — Parent Annotation

● Better Efficiency
● e.g. — Heuristic Filtering, Beam Search

● No “cheating” improvements:
● improvement can’t change training by looking at test data
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evalb
● evalb available in  
dropbox/21-22/571/hw4/tools

● evalb […] <gold-file> <test-file> 

● evalb --help for more info

● NB: specify full/absolute path to evalb when 
invoking in your scripts
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