Dependency Grammars and Parser

LING 571 — Deep Processing for NLP
October 20, 2021
Shane Steinert-Threlkeld

Announcements

- Patas is back!
 - HW2 due tonight
 - No homework out today
 - HW3 due next Wednesday

Ambiguity of the Week

Personally feel not enough hospitals are named after sandwiches.

Ambiguity of the Week 2

"What if my pet is not made of chicken and turkey?" —my brother

Roadmap

- Dependency Grammars
 - Definition
 - Motivation:
 - Limitations of Context-Free Grammars
- Dependency Parsing
 - By conversion to CFG
 - By Graph-based models
 - By transition-based parsing
- HW4 + mid-term feedback

Dependency Grammar

- [P]CFGs:
 - Phrase-Structure Grammars
 - Focus on modeling constituent structure

Dependency Grammar

- [P]CFGs:
 - Phrase-Structure Grammars
 - Focus on modeling constituent structure
- Dependency grammars:
 - Syntactic structure described in terms of
 - Words
 - Syntactic/semantic relations between words

Dependency Parse

A Dependency parse is a tree,* where:

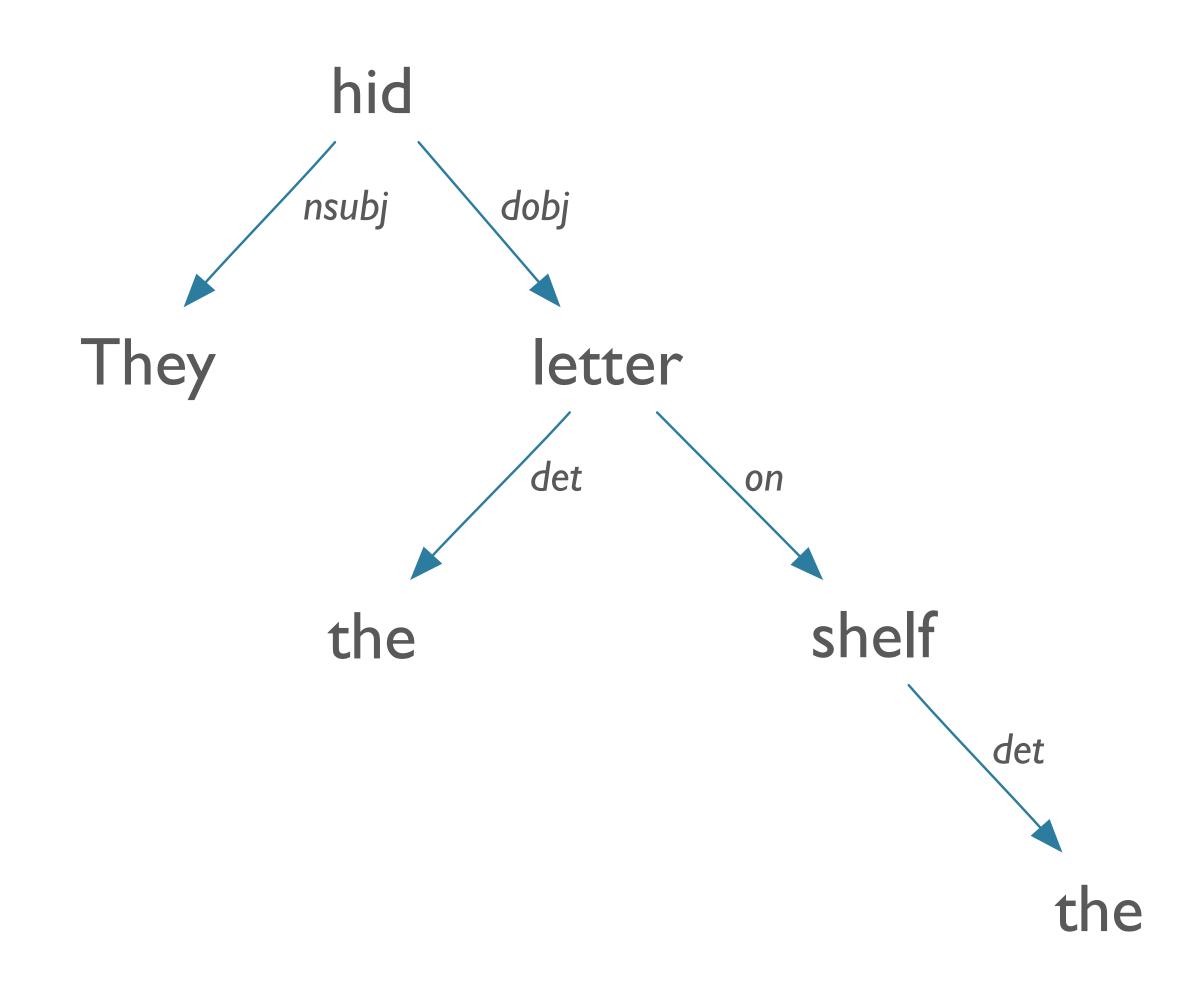
Dependency Parse

- A Dependency parse is a tree,* where:
 - Nodes correspond to words in string

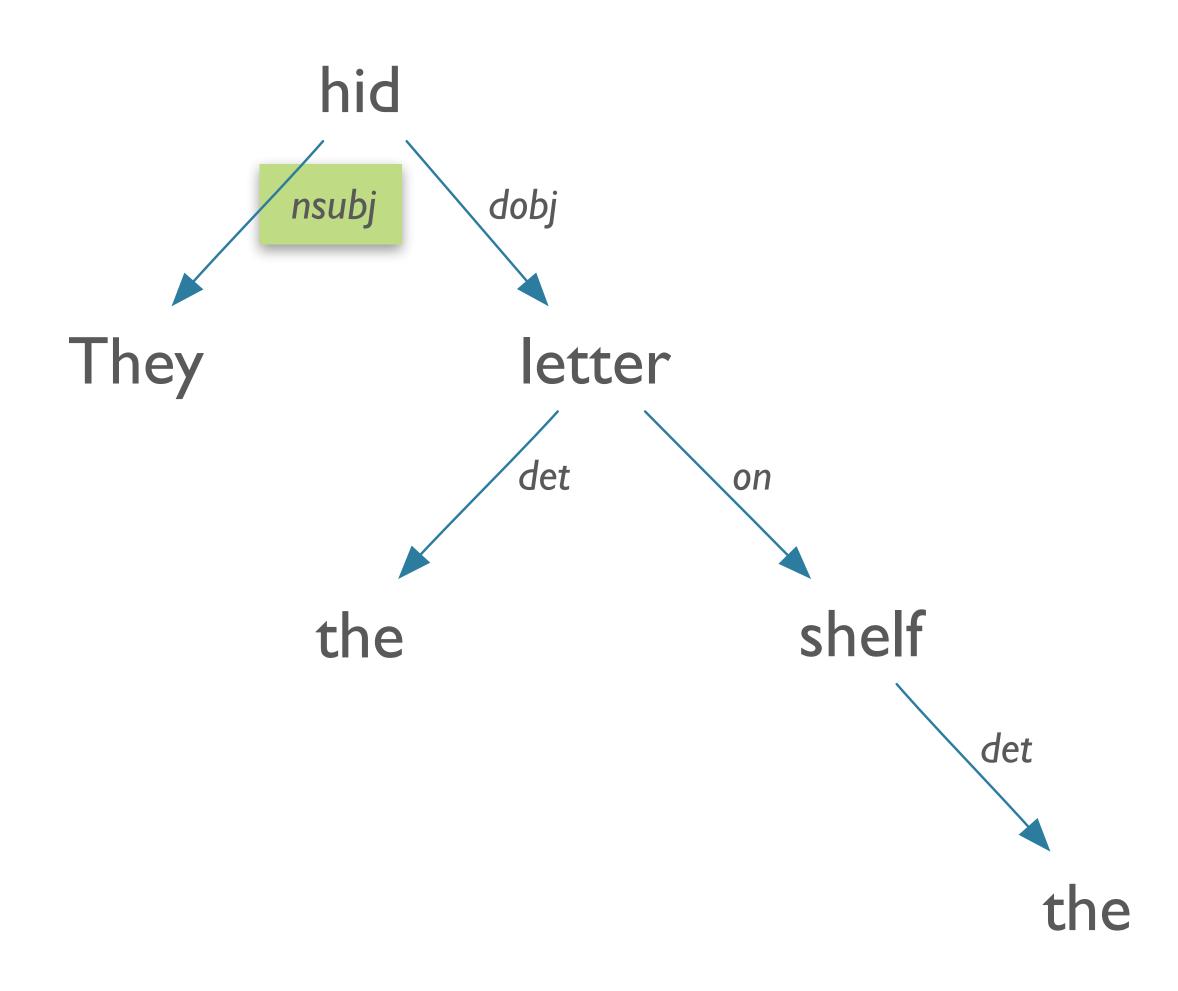
Dependency Parse

- A Dependency parse is a tree,* where:
 - Nodes correspond to words in string
 - Edges between nodes represent dependency relations
 - Relations may or may not be labeled (aka typed)
 - *: in very special cases, can argue for cycles

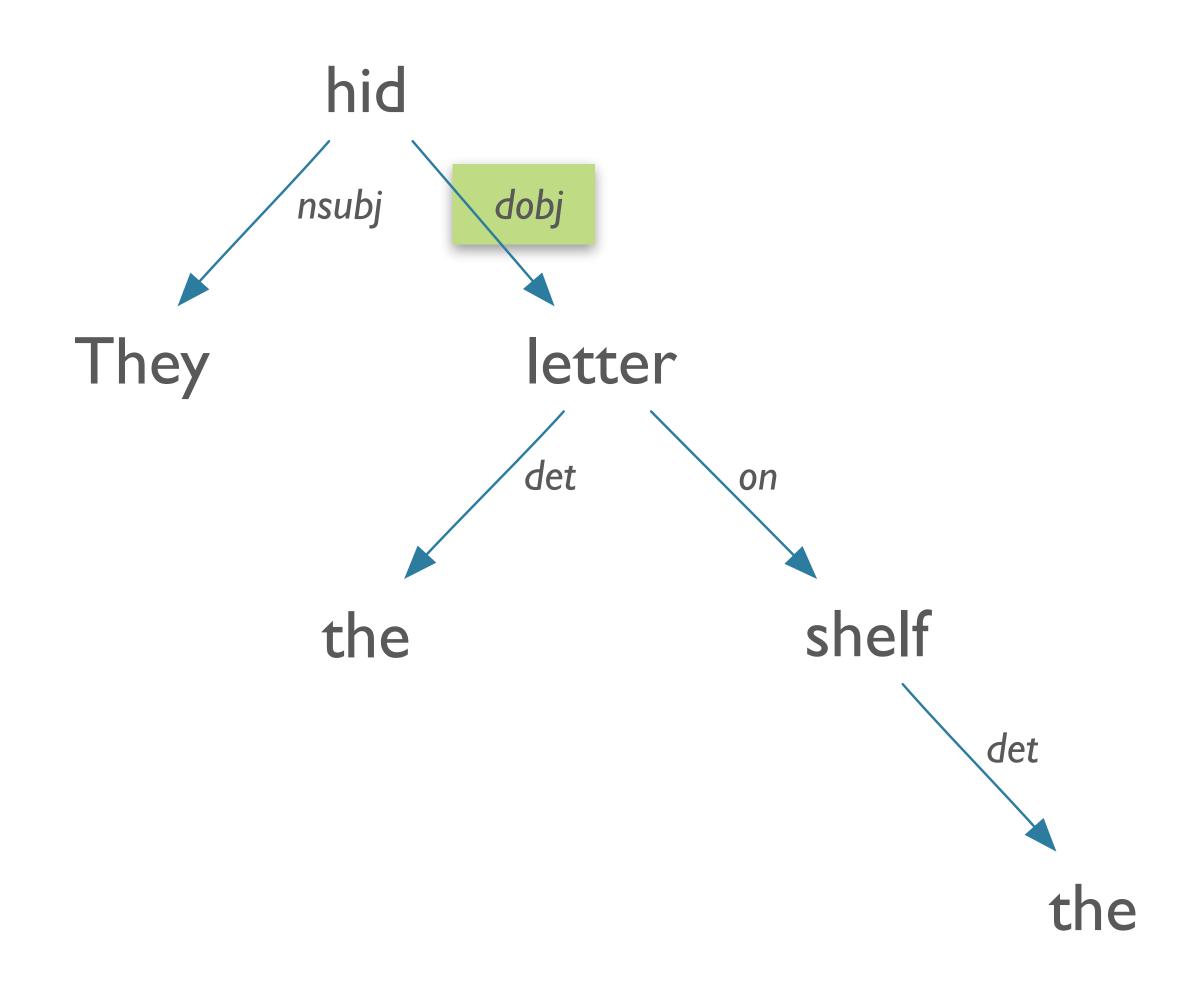
Argument Dependencies				
Abbreviation	Description			
nsubj	nominal subject			
csubj	clausal subject			
dobj	direct object			
iobj	indirect object			
pobj	object of preposition			
Modifier Dependencies				
Abbreviation	Description			
tmod	temporal modifier			
appos	appositional modifier			
appos det	appositional modifier determiner			



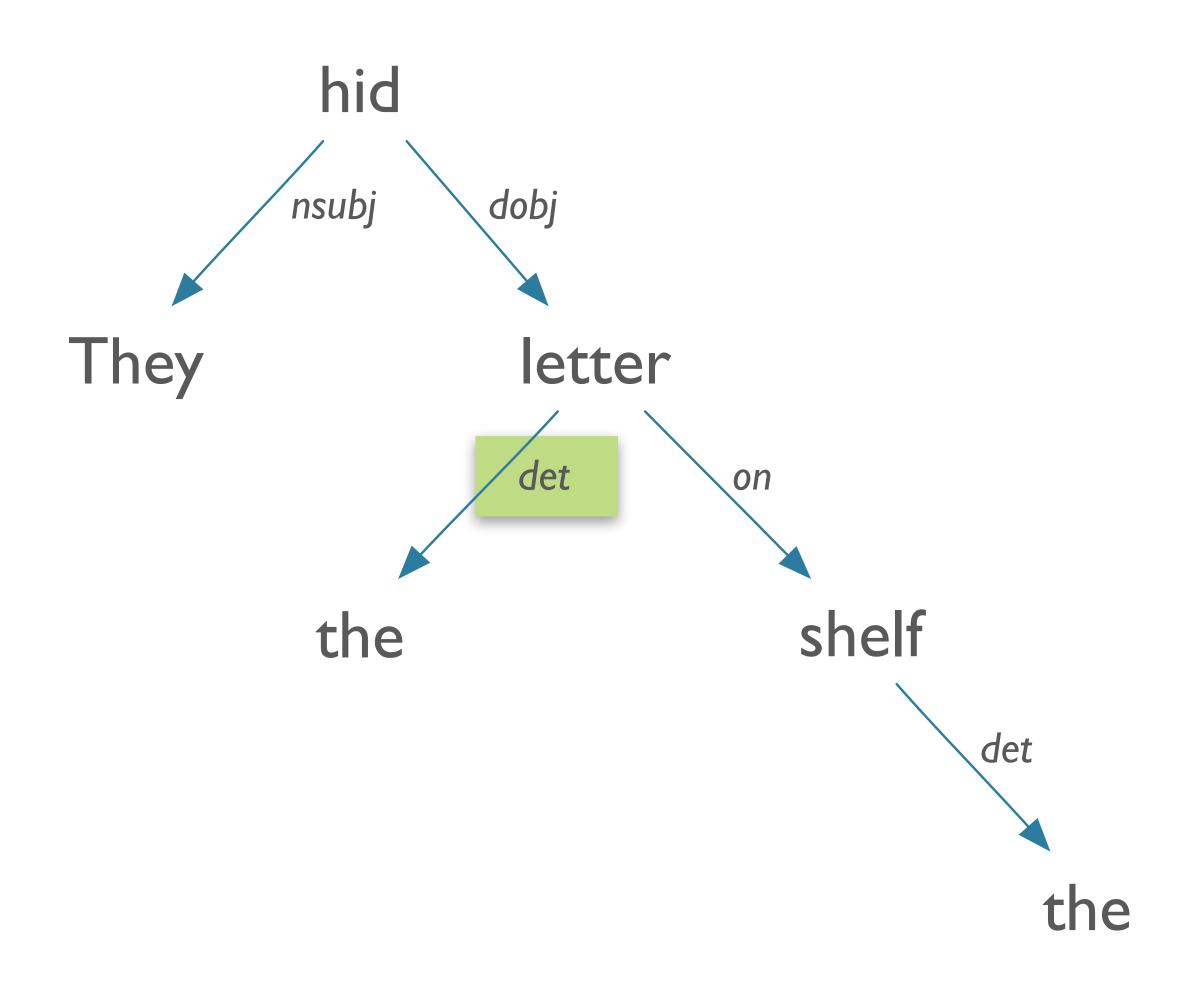
Argument Dependencies					
Abbreviation	Description				
nsubj	nominal subject				
csubj	clausal subject				
dobj	direct object				
iobj	indirect object				
pobj	object of preposition				
Modifier	Modifier Dependencies				
Abbreviation	Description				
tmod	temporal modifier				
appos	appositional modifier				
det	determiner				
prep	prepositional modifier				



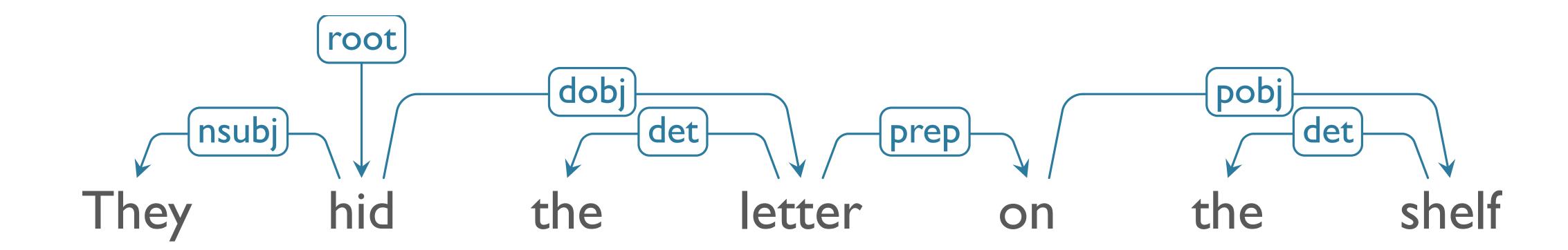
Argument Dependencies				
Abbreviation	Description			
nsubj	nominal subject			
csubj	clausal subject			
dobj	direct object			
iobj	indirect object			
pobj	object of preposition			
Modifier Dependencies				
Abbreviation				
Addreviation	Description			
tmod	Description temporal modifier			
tmod	temporal modifier			



Argument Dependencies				
Abbreviation	Description			
nsubj	nominal subject			
csubj	clausal subject			
dobj	direct object			
iobj	indirect object			
pobj	object of preposition			
Modifier Dependencies				
Abbreviation	Description			
tmod	topos and poddifion			
unod	temporal modifier			
appos	appositional modifier			



Alternative Representation



More natural representation for many tasks

- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure

- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement

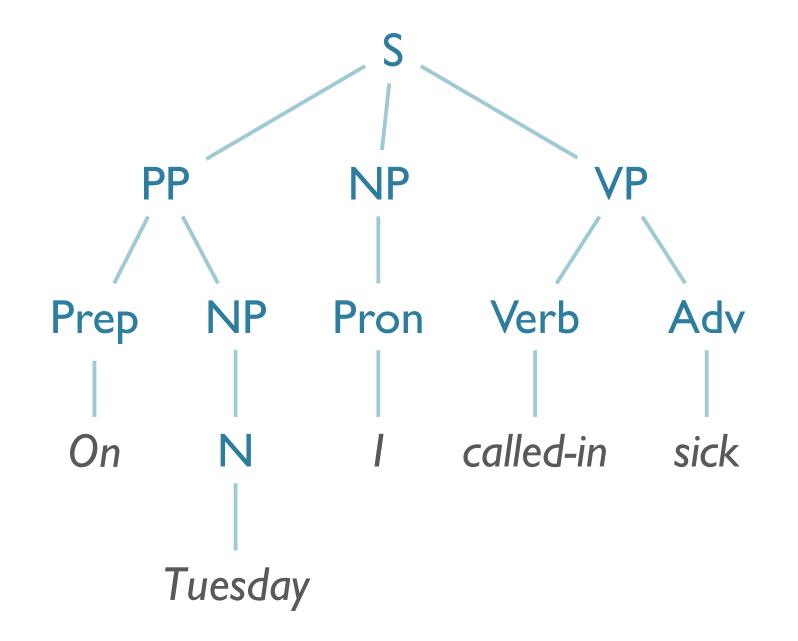
- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement
- Good match for question-answering, relation extraction

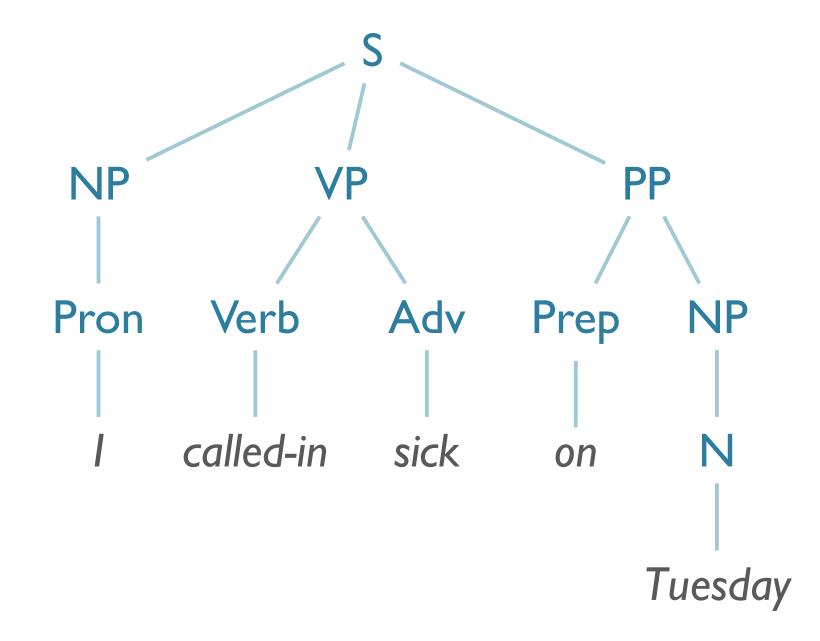
- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement
- Good match for question-answering, relation extraction
 - Who did what to whom?

- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement
- Good match for question-answering, relation extraction
 - Who did what to whom?
 - = (Subject) did (theme) to (patient)

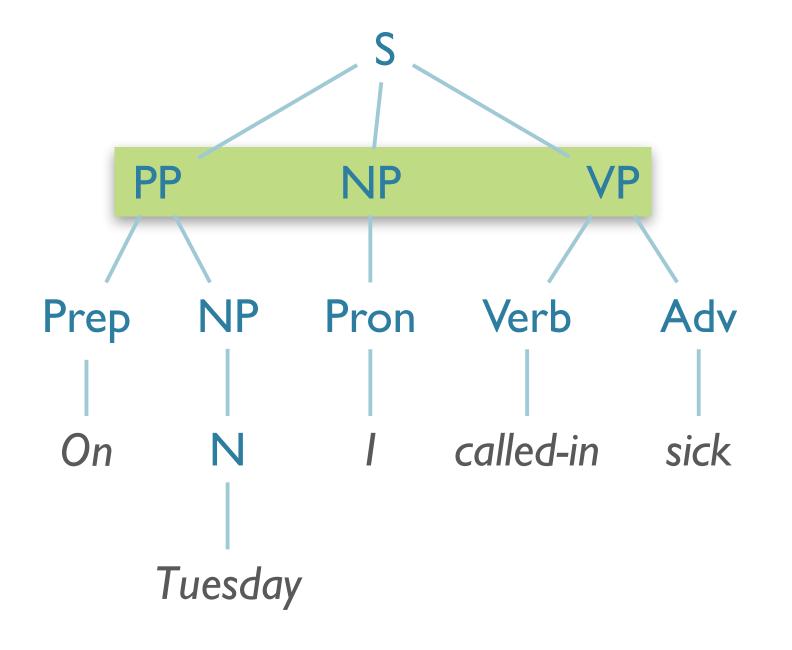
- More natural representation for many tasks
 - Clear encapsulation of predicate-argument structure
 - Phrase structure may obscure, e.g. wh-movement
- Good match for question-answering, relation extraction
 - Who did what to whom?
 - = (Subject) did (theme) to (patient)
 - Helps with parallel relations between roles in questions, and roles in answers

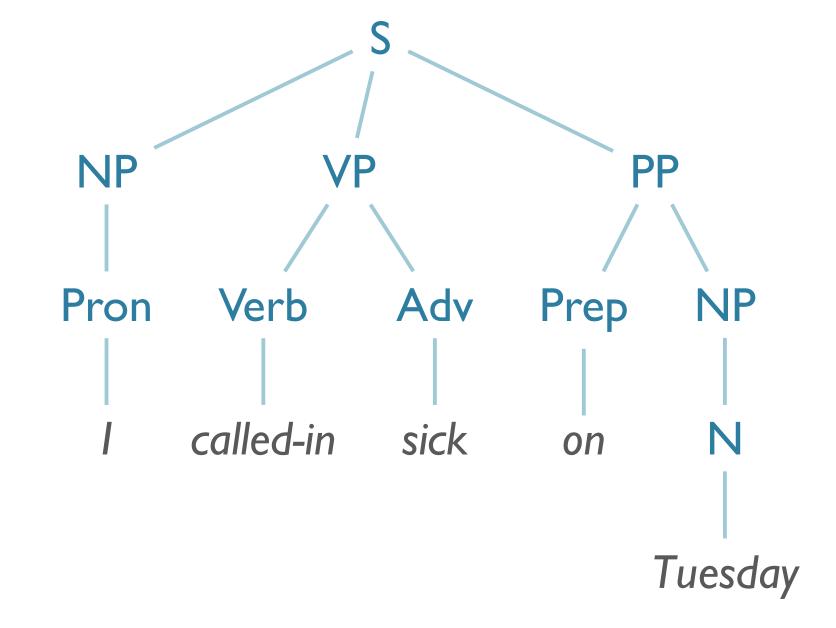
- Easier handling of flexible or free word order
- How does CFG handle variation in word order?



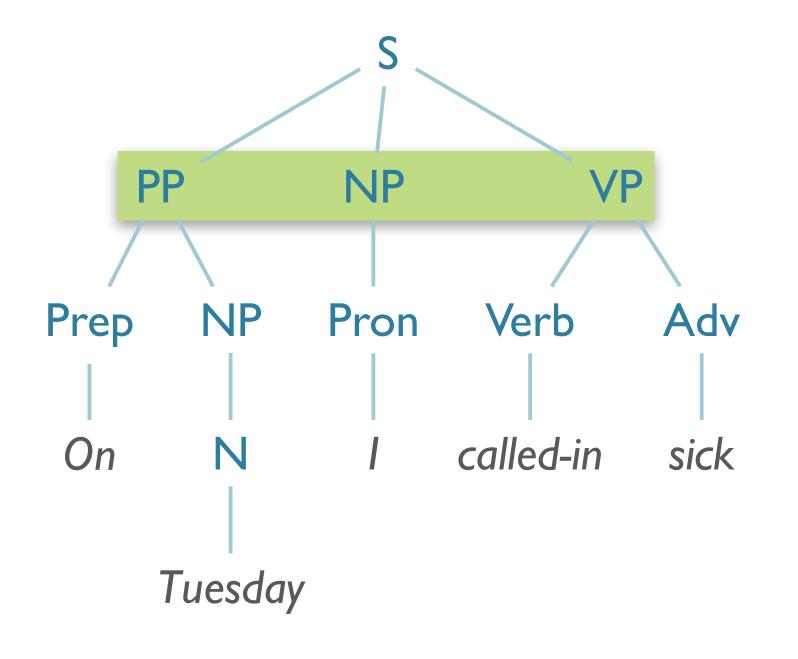


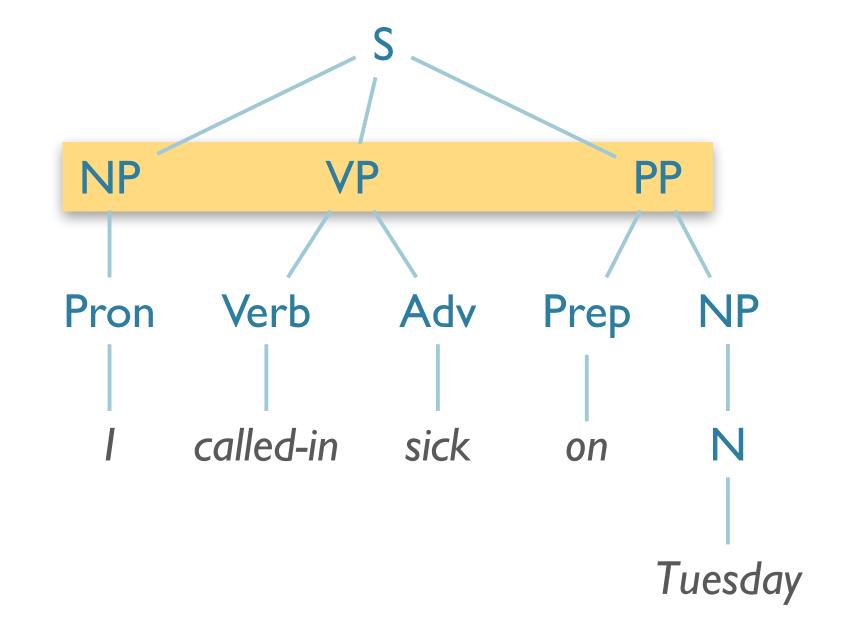
- Easier handling of flexible or free word order
- How does CFG handle variation in word order?





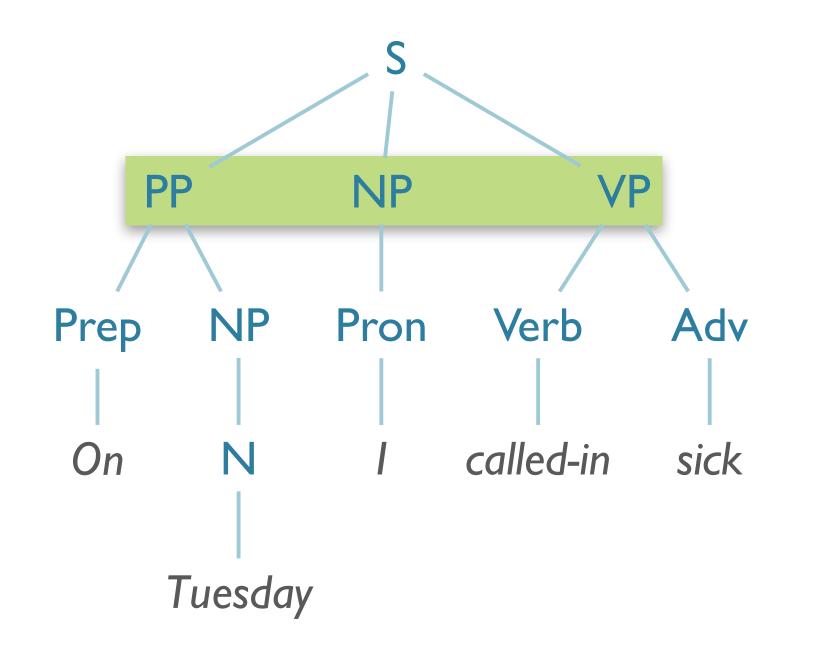
- Easier handling of flexible or free word order
- How does CFG handle variation in word order?

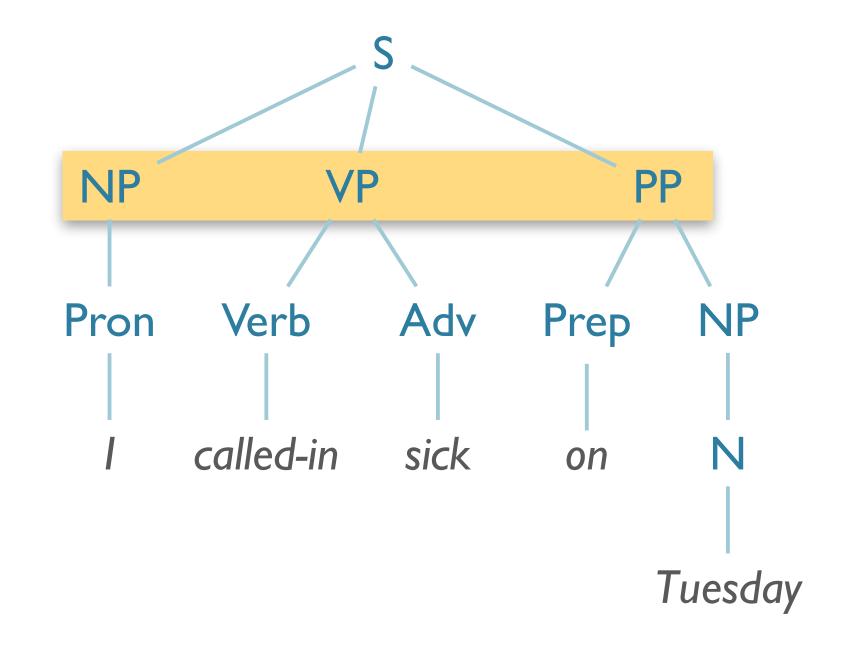




$$S \rightarrow NP VP PP$$

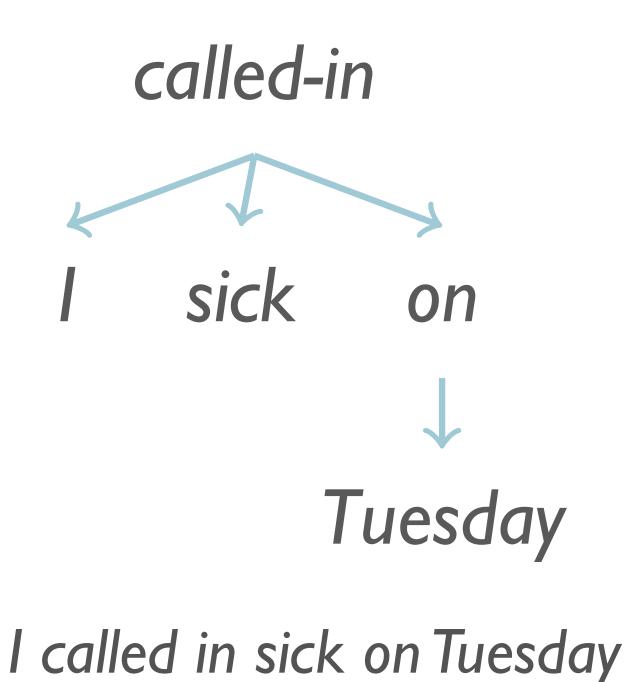
- English has relatively fixed word order
- Big problem for languages with freer word order



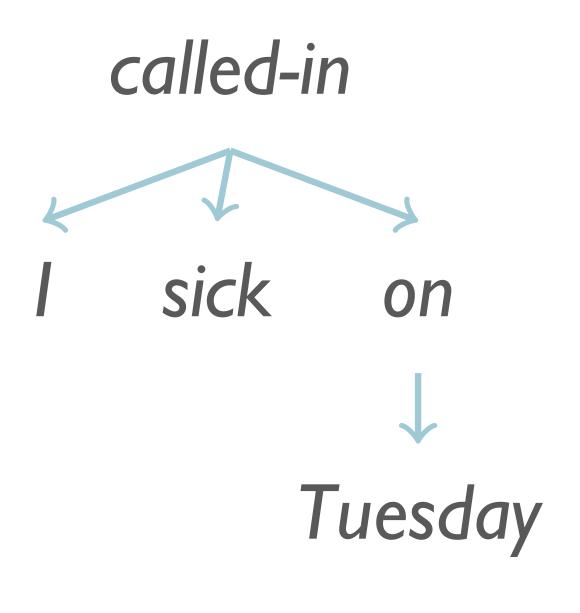


$$S \rightarrow NP VP PP$$

How do dependency structures represent the difference?

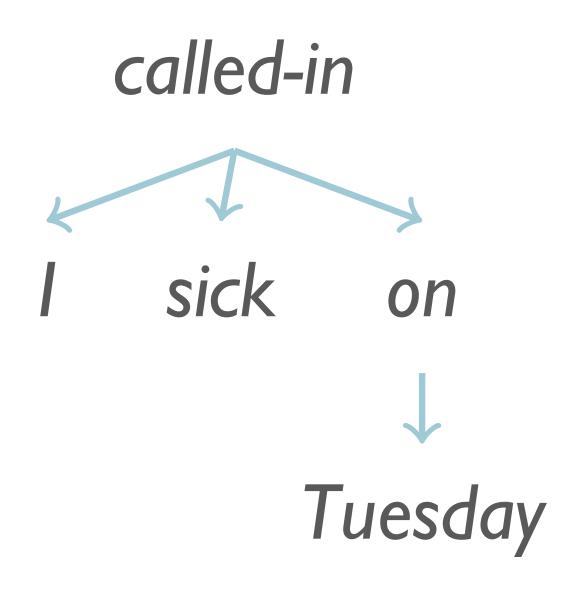


- How do dependency structures represent the difference?
 - Same structure

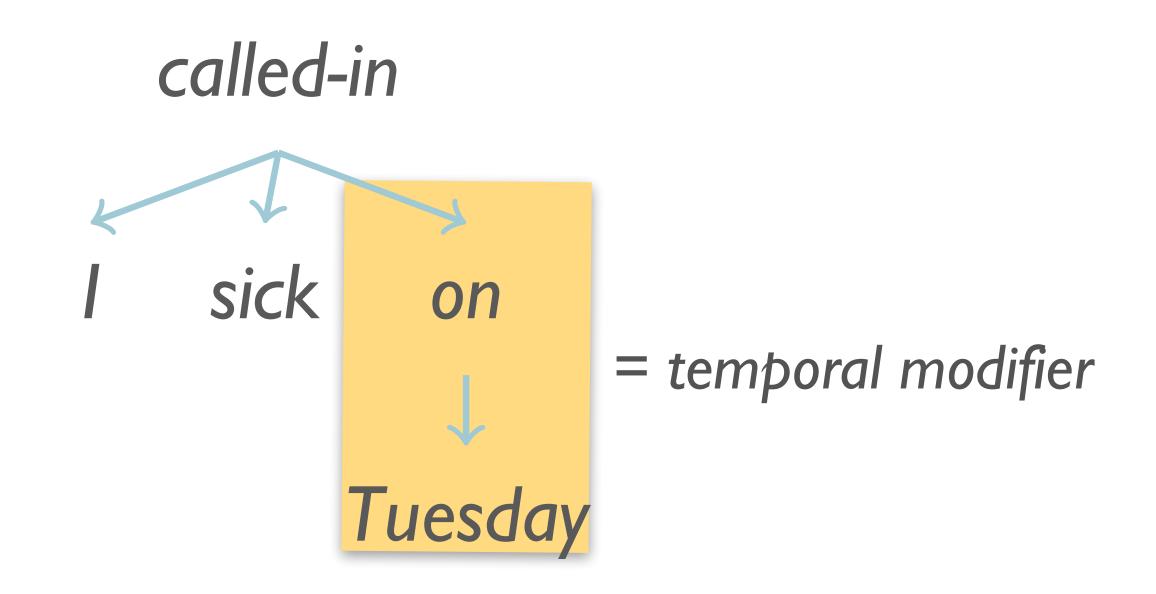


I called in sick on Tuesday

- How do dependency structures represent the difference?
 - Same structure
 - Relationships are between words, order insensitive

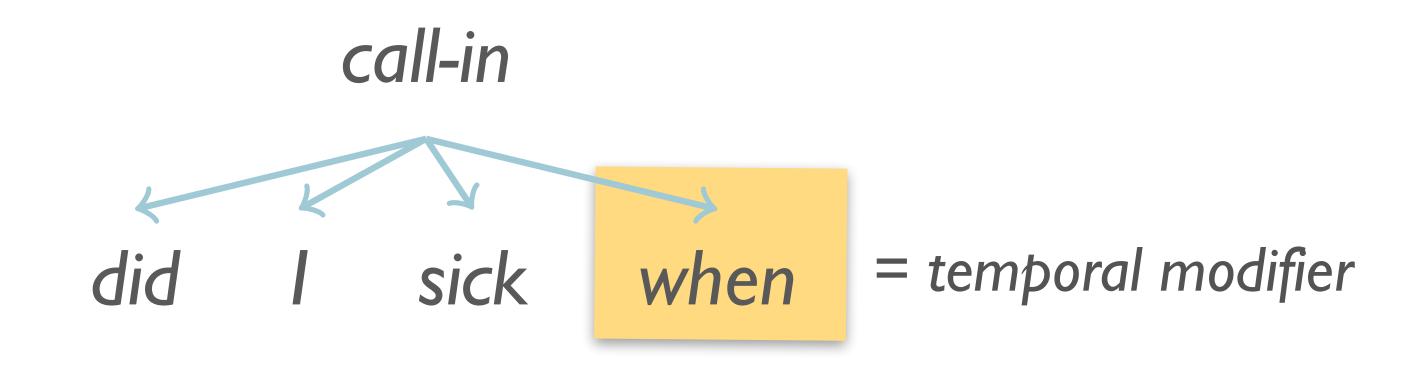


- How do dependency structures represent the difference?
 - Same structure
 - Relationships are between words, order insensitive



I called in sick on Tuesday

- How do dependency structures represent the difference?
 - Same structure
 - Relationships are between words, order insensitive



Natural Efficiencies

- Phrase Structures:
 - Must derive full trees of many non-terminals

Natural Efficiencies

- Phrase Structures:
 - Must derive full trees of many non-terminals
- Dependency Structures:
 - For each word, identify
 - Syntactic head, h
 - Dependency label, d

Natural Efficiencies

- Phrase Structures:
 - Must derive full trees of many non-terminals
- Dependency Structures:
 - For each word, identify
 - Syntactic head, h
 - Dependency label, d
 - Inherently lexicalized
 - Strong constraints hold between pairs of words

Visualization

- Web demos:
 - displaCy: https://explosion.ai/demos/displacy
 - Stanford CoreNLP: http://corenlp.run/
- spaCy and stanza Python packages have good built-in parsers
- LaTeX: tikz-dependency (https://ctan.org/pkg/tikz-dependency)

```
>>> import stanfordnlp
>>> stanfordnlp.download('en')  # This downloads the English models for the neural pipeline
>>> nlp = stanfordnlp.Pipeline() # This sets up a default neural pipeline in English
>>> doc = nlp("Barack Obama was born in Hawaii. He was elected president in 2008.")
>>> doc.sentences[0].print_dependencies()

('Barack', '4', 'nsubj:pass')

('Obama', '1', 'flat')

('was', '4', 'aux:pass')

('born', '0', 'root')

('in', '6', 'case')

('Hawaii', '4', 'obl')

('.', '4', 'punct')
```

Resources

- <u>Universal Dependencies</u>:
 - Consistent annotation scheme (i.e. same POS, dependency labels)
 - Treebanks for >70 languages
 - Sizes: German, Czech, Japanese, Russian, French, Arabic, ...

Upcoming UD Languages

	Assamese	1	-	(1)	IE, Indic
	Bengali	2	_	■3△ W	IE, Indic
•	Bhojpuri	1	_	(3)	IE, Indic
—————	Cusco Quechua	1	_	9	Quechuan
—	Dargwa	1	_	Q	Nakho-Dagestanian
• • •	Georgian	1	_	9	Kartvelian
•	Kannada	1	_	P	Dravidian, Southern
	Komi Permyak	1	_		Uralic, Permic
→	Kyrgyz	1	_	9	Turkic, Northwestern
—	Livvi	1	_	9	Uralic, Finnic
→	Macedonian	1	_	9	IE, Slavic
•	Pnar	1	_	P O	Austro-Asiatic, Khasian
+	Romansh	2	_	9	IE, Romance
	Scottish Gaelic	1	_	9	IE, Celtic
—————————————————————————————————————	Shipibo Konibo	1	_	9	Panoan
C	Sindhi	1	-	1	IE, Indic
*	Somali	1	-		Afro-Asiatic, Cushitic
-	Sorani	1	-	9	IE, Iranian
+	Swiss German	1	-	9	IE, Germanic

Summary

- Dependency grammars balance complexity and expressiveness
 - Sufficiently expressive to capture predicate-argument structure
 - Sufficiently constrained to allow efficient parsing

Summary

- Dependency grammars balance complexity and expressiveness
 - Sufficiently expressive to capture predicate-argument structure
 - Sufficiently constrained to allow efficient parsing

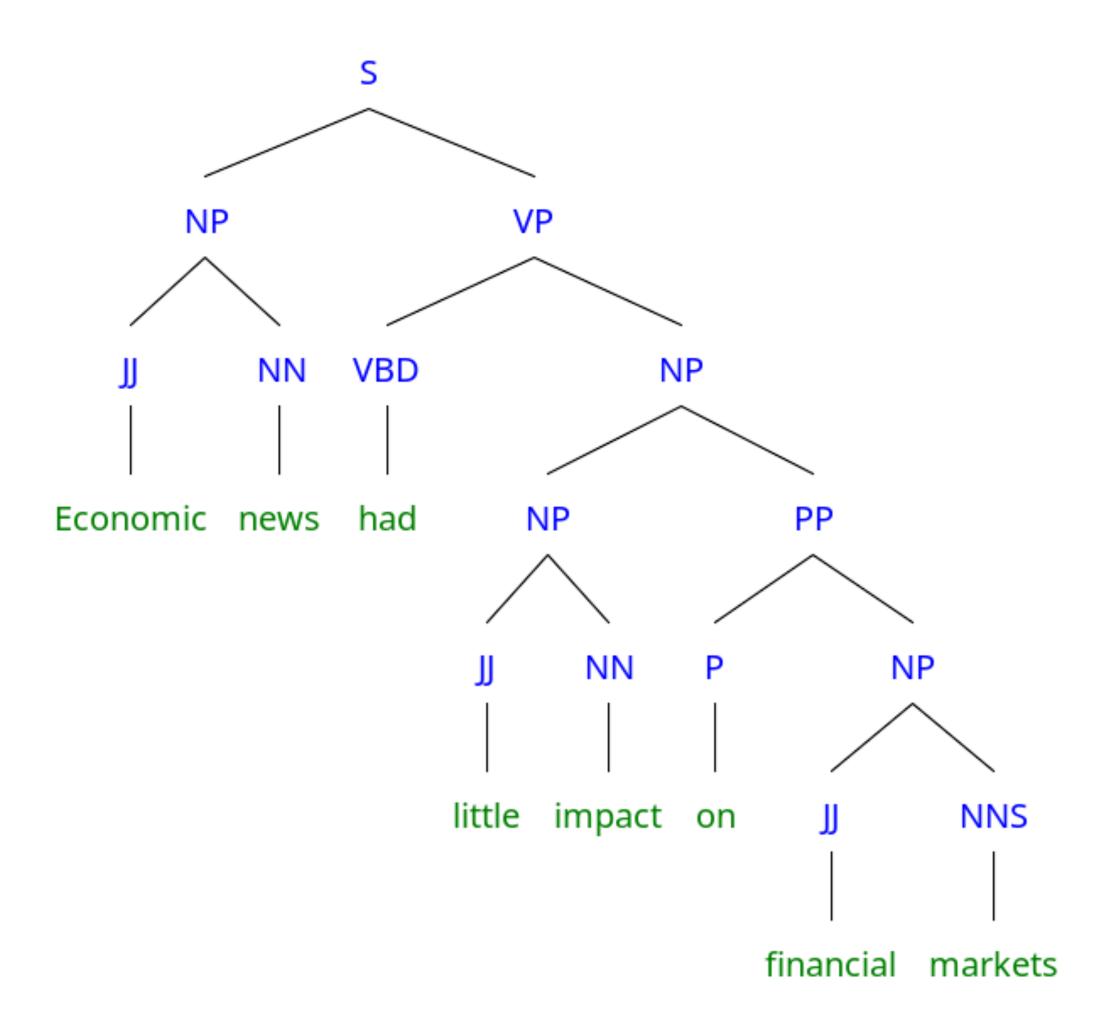
- Still not perfect
 - "On Tuesday I called in sick" vs. "I called in sick on Tuesday"
 - These feel pragmatically different (e.g. topically), might want to represent difference syntactically.

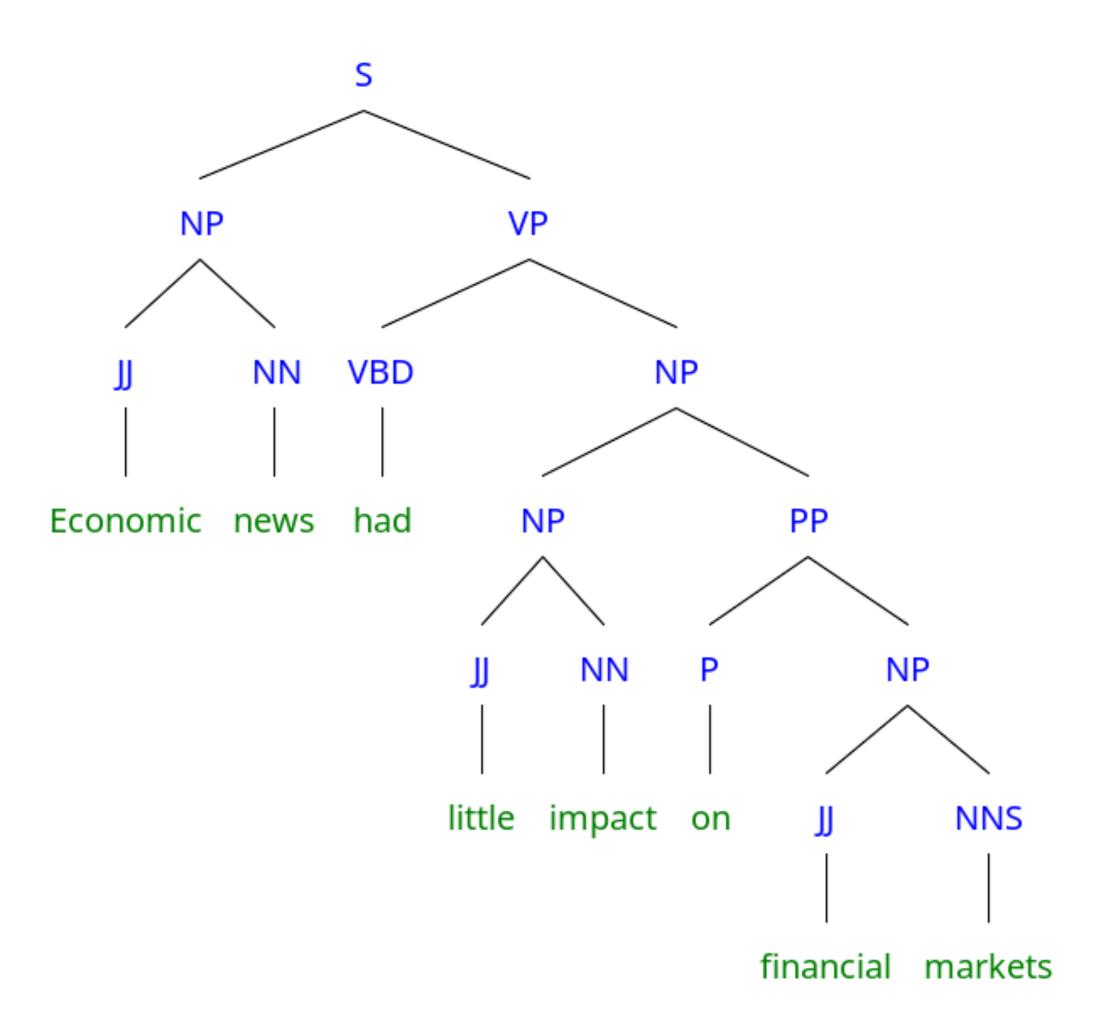
Roadmap

- Dependency Grammars
 - Definition
 - Motivation:
 - Limitations of Context-Free Grammars
- Dependency Parsing
 - By conversion from CFG
 - By Graph-based models
 - By transition-based parsing

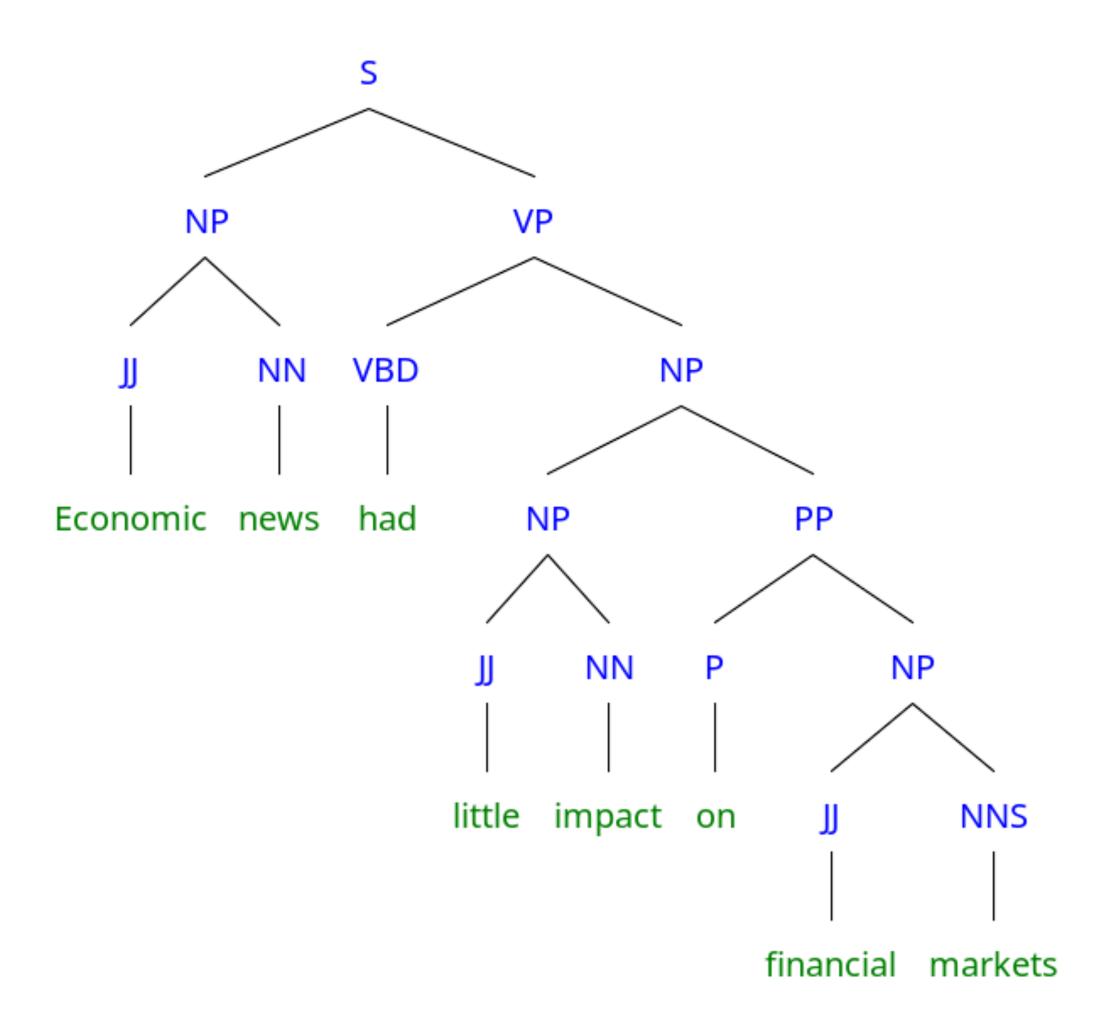
- Can convert Phrase Structure (PS) to Dependency Structure (DS)
 - ...without the dependency labels

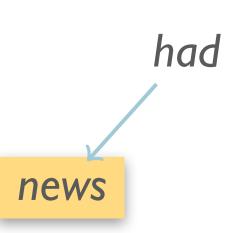
- Can convert Phrase Structure (PS) to Dependency Structure (DS)
 - ...without the dependency labels
- Algorithm:
 - Identify all head children in PS
 - Make head of each non-head-child depend on head of head-child
 - Use a head percolation table to determine headedness

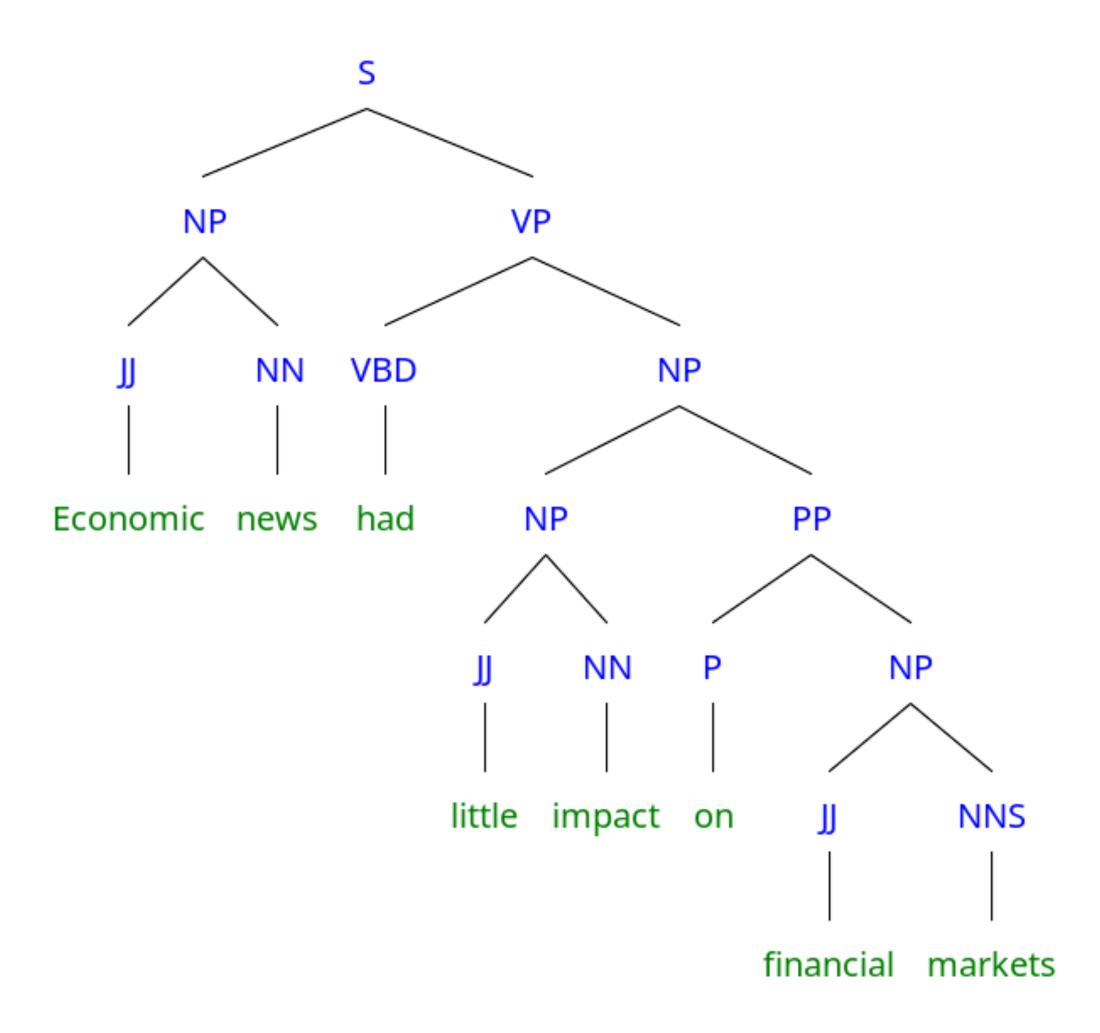


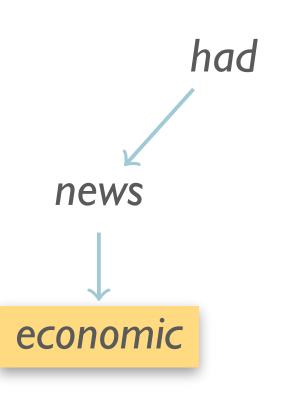


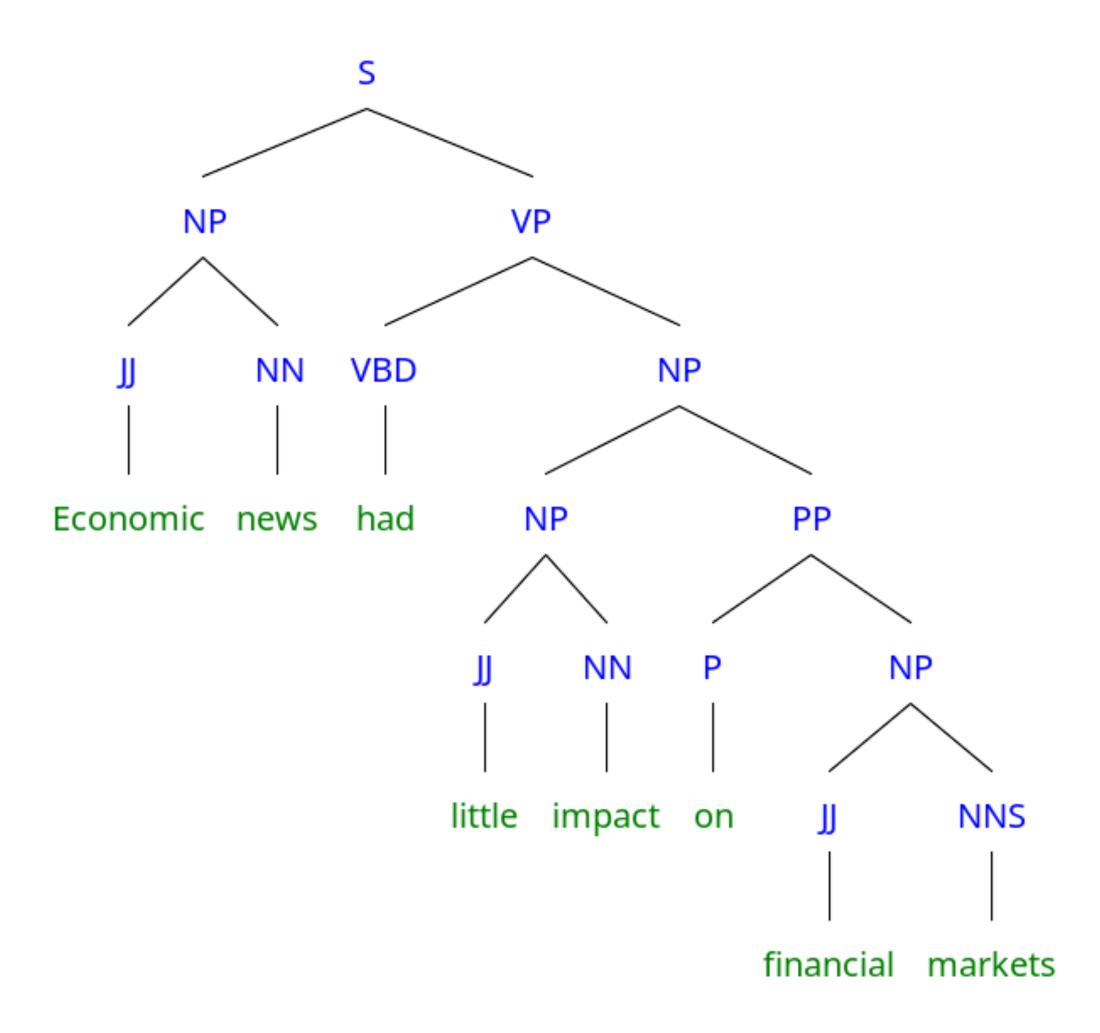
had

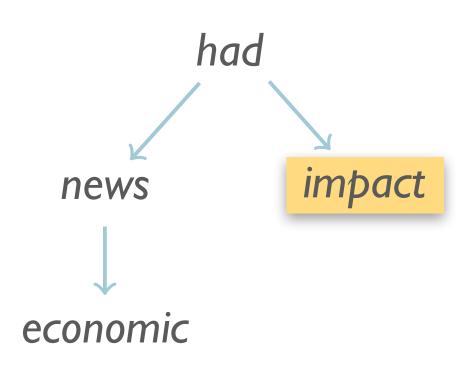


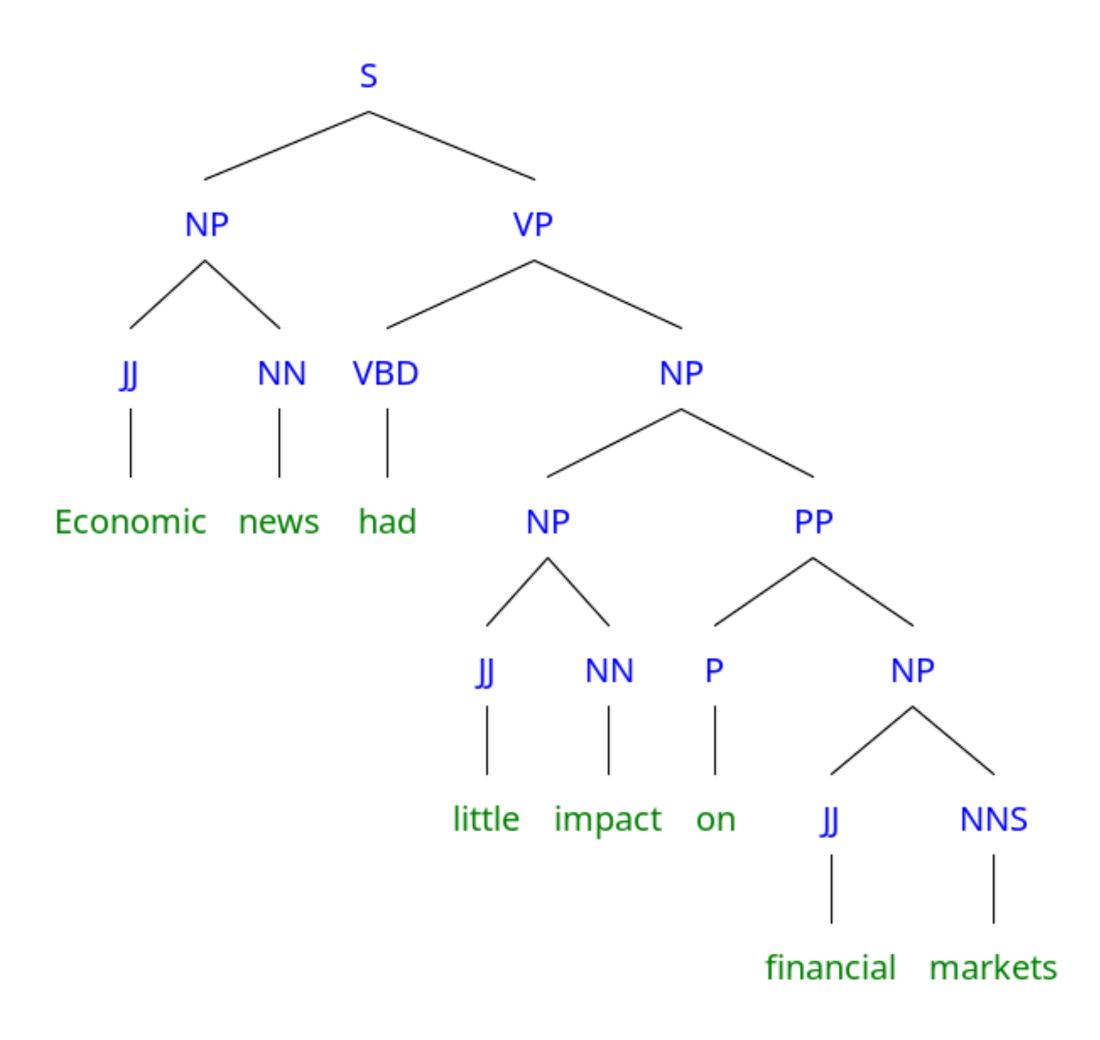


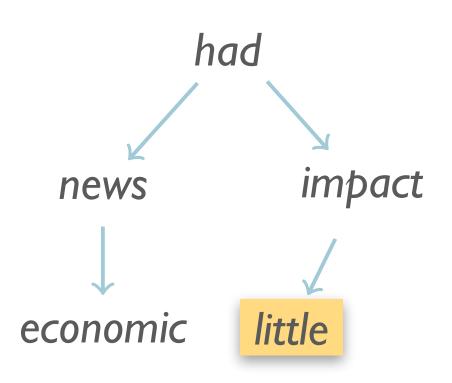


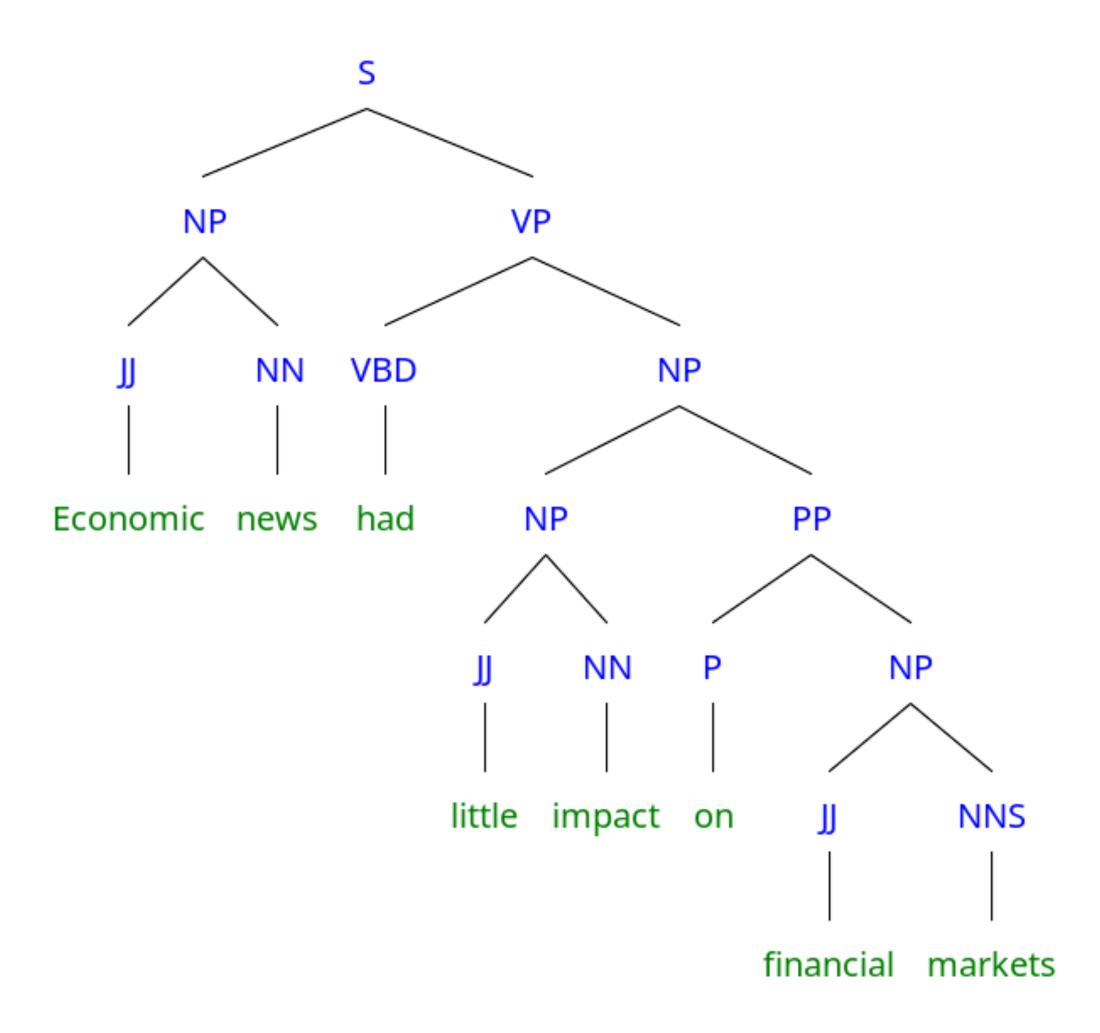


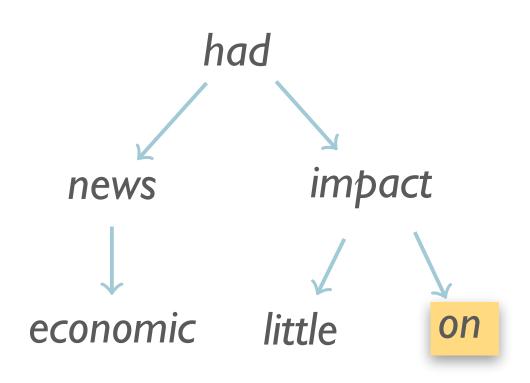


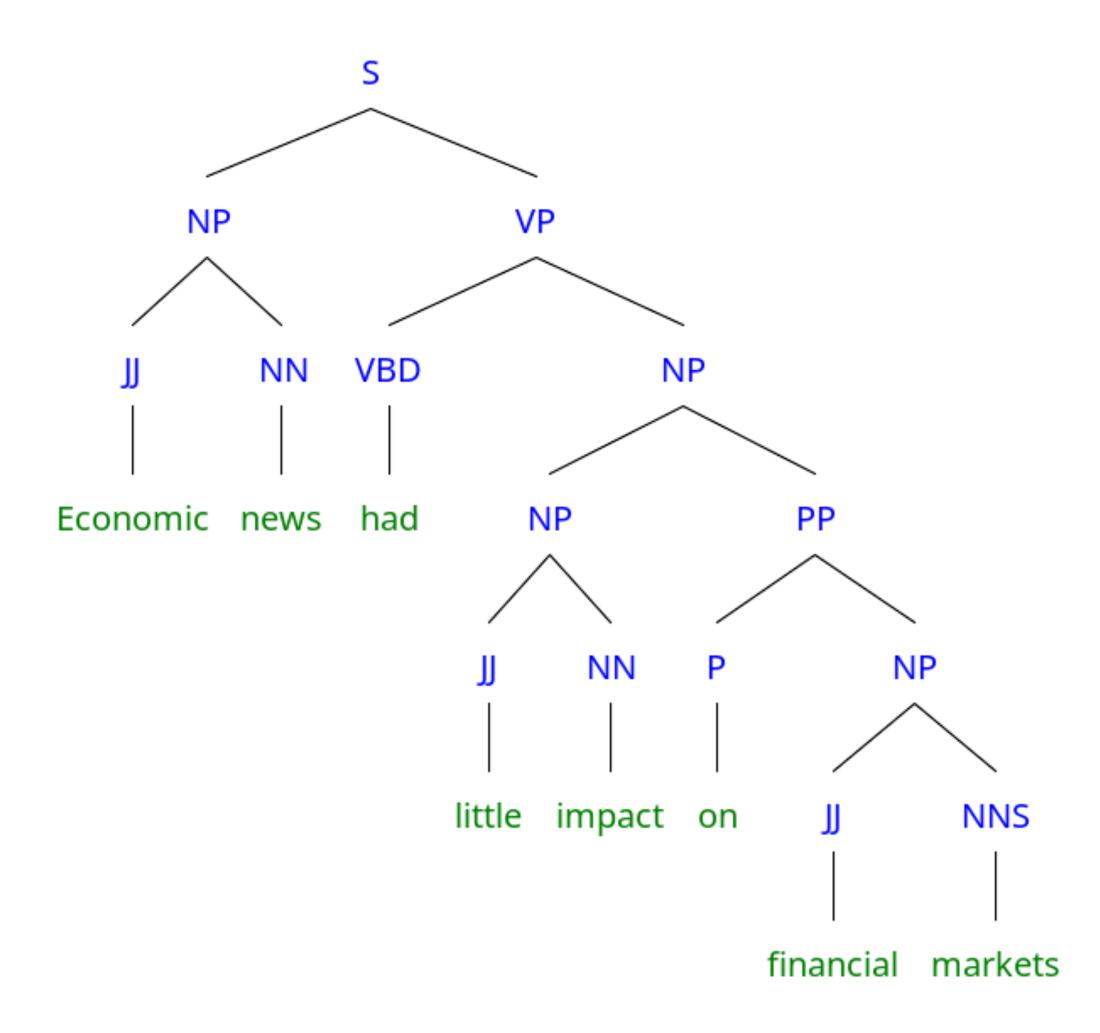


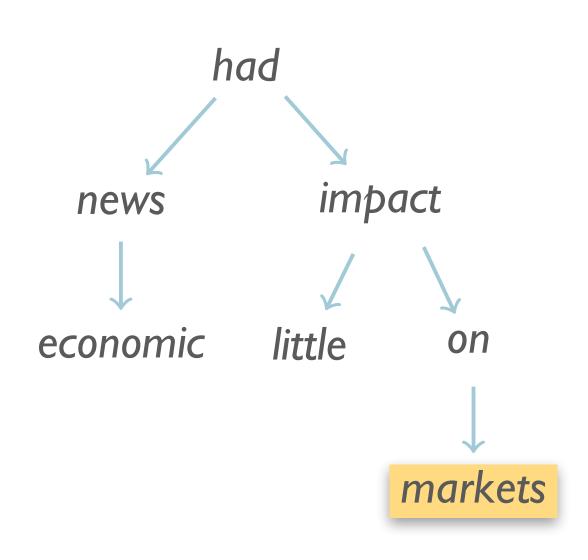


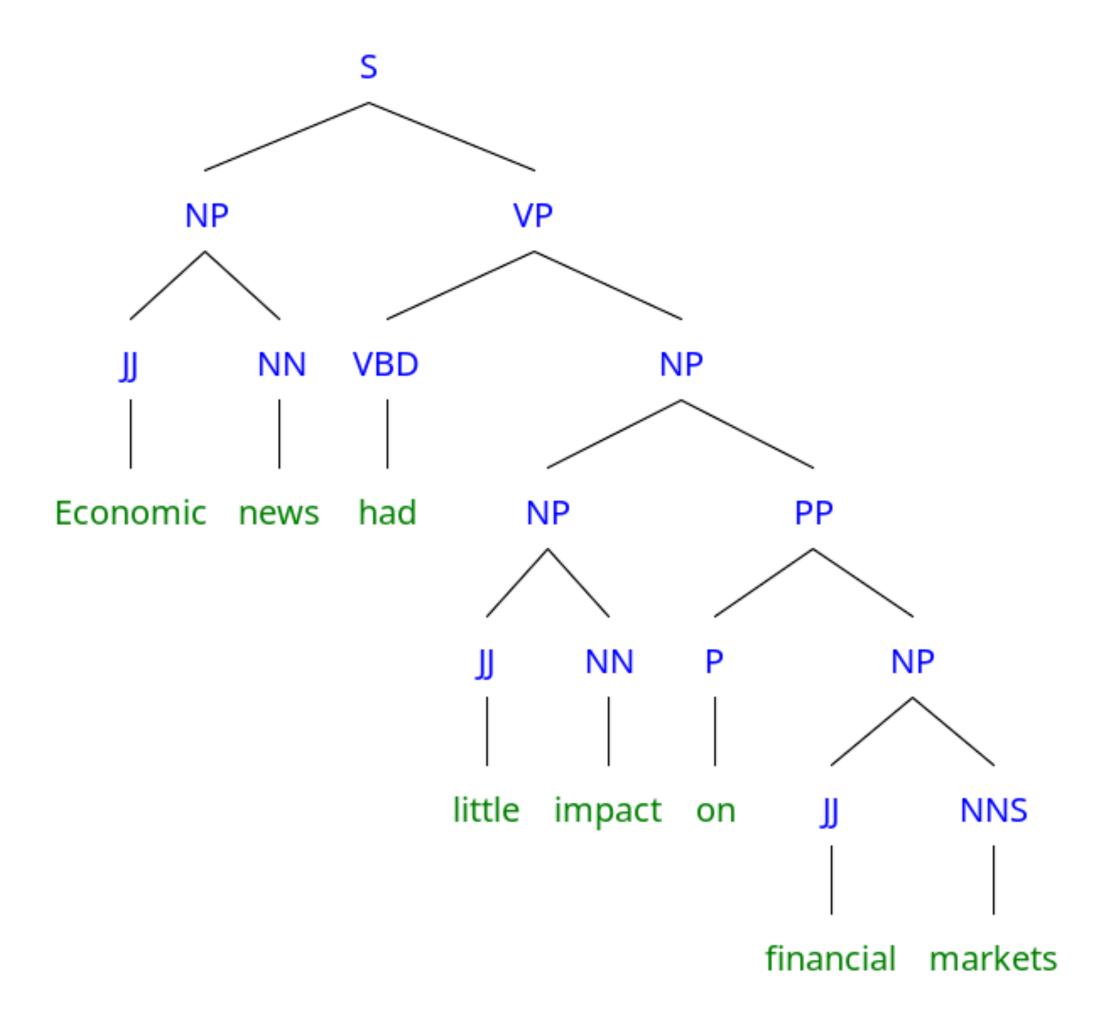


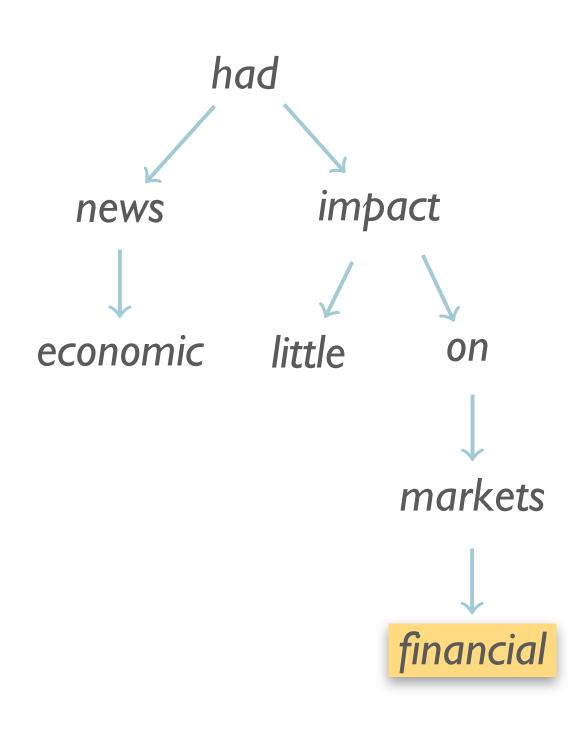










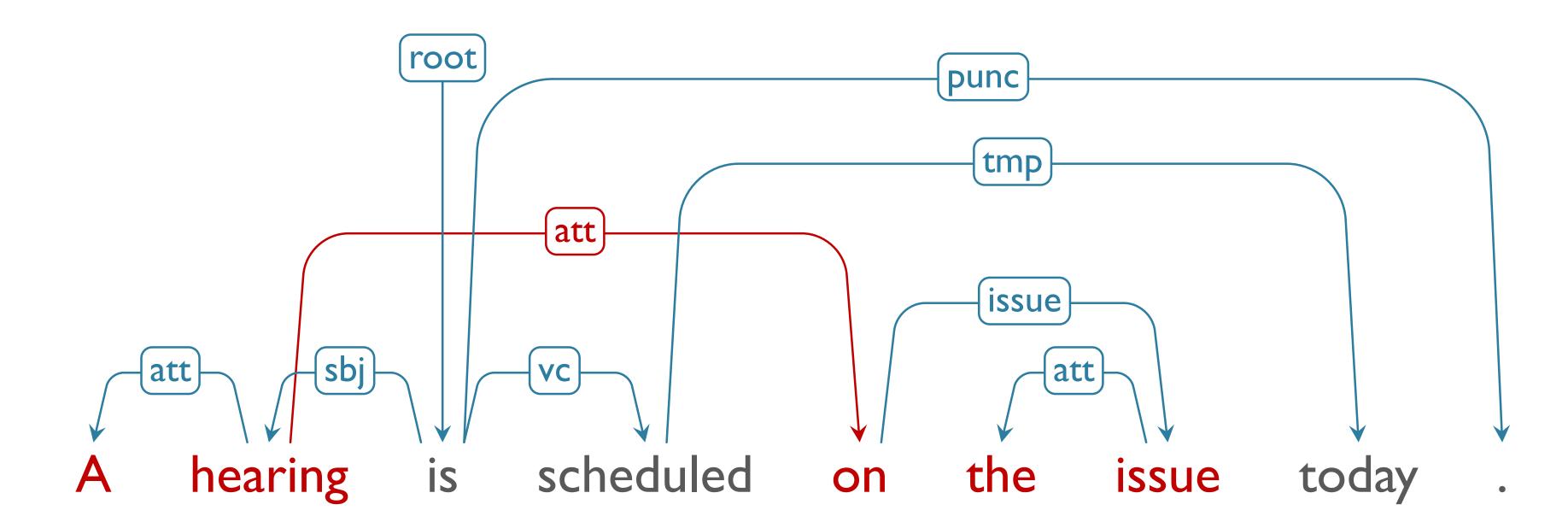


Head Percolation Table

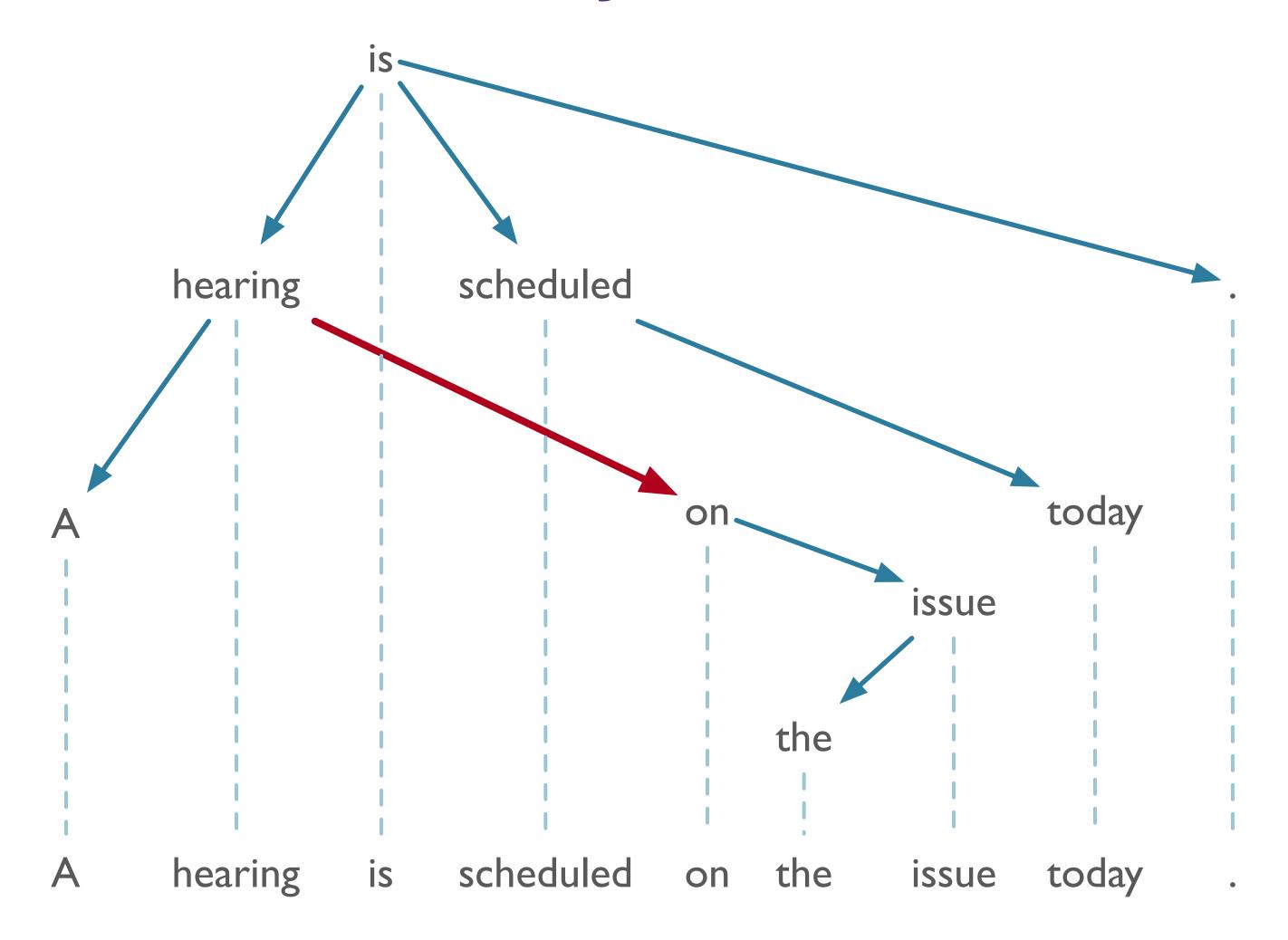
- Finding the head of an NP:
 - If the rightmost word is preterminal, return
 - …else search Right→Left for first child which is NN, NNP, NNPS…
 - …else search Left→Right for first child which is NP
 - …else search Right→Left for first child which is \$, ADJP, PRN
 - ...else search Right→Left for first child which is CD
 - …else search Right→Left for first child which is JJ, JJS, RB or QP
 - ...else return rightmost word.

From J&M Page 411, via Collins (1999)

- Can map any projective dependency tree to PS tree
- Projective:
 - Does not contain "crossing" dependencies w.r.t. word order

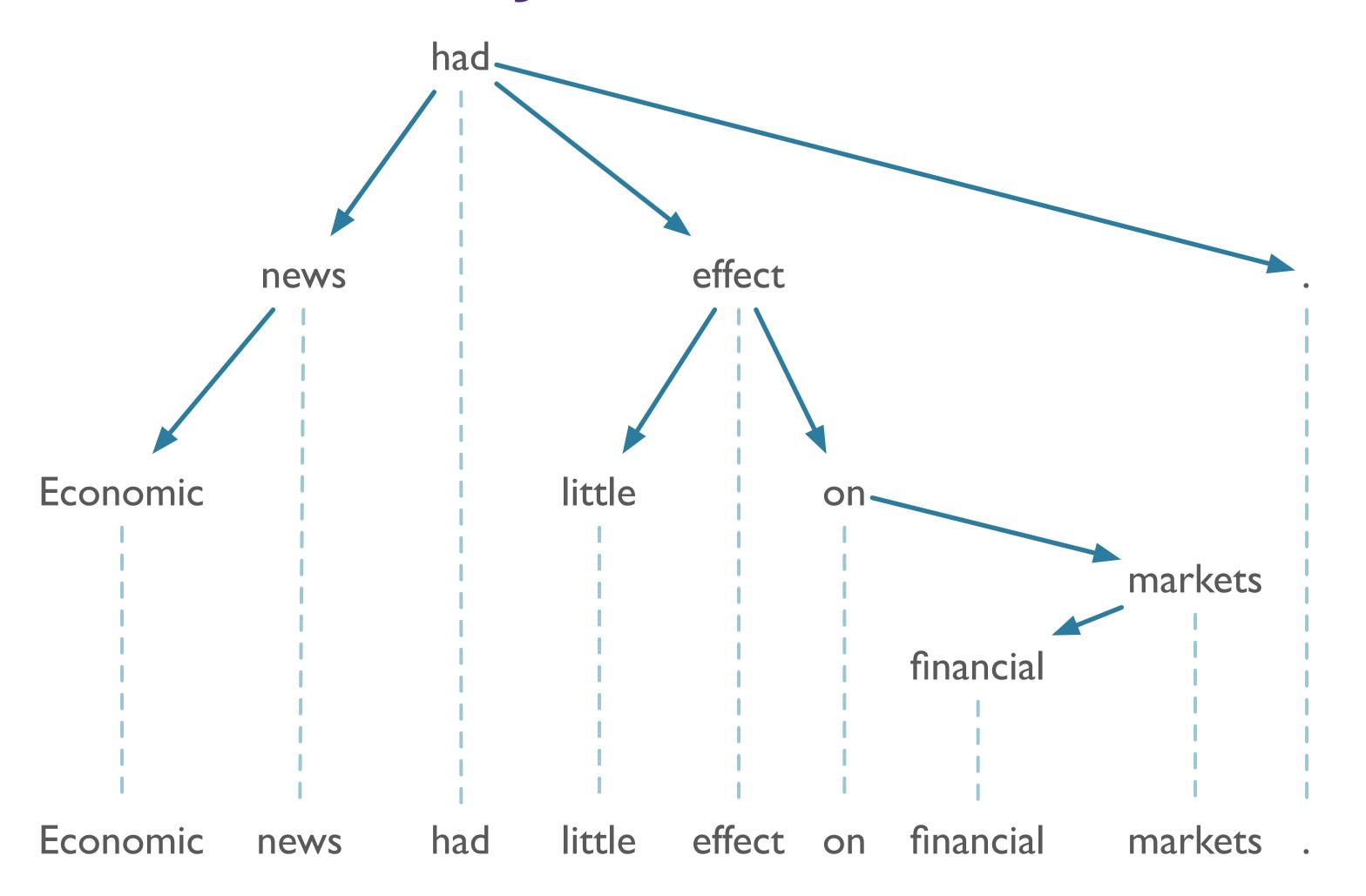


Non-Projective DS



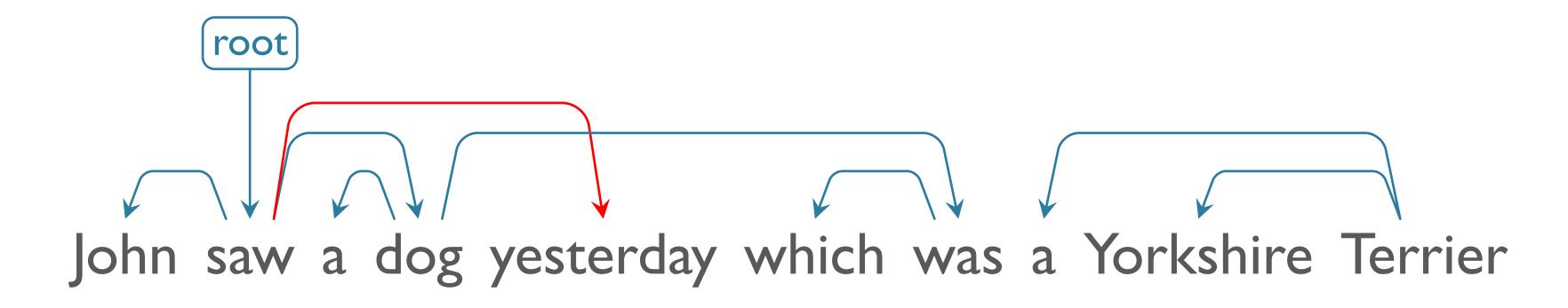
= Projection

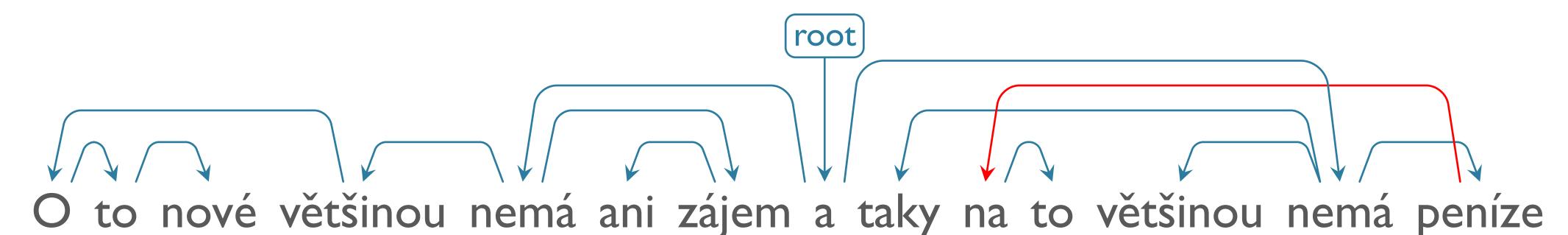
Projective DS



= Projection

More Non-Projective Parses

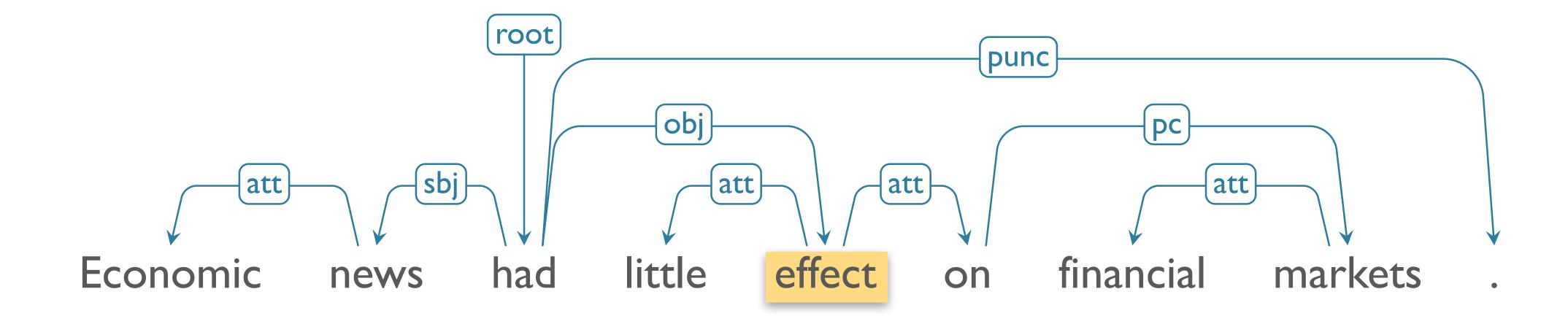


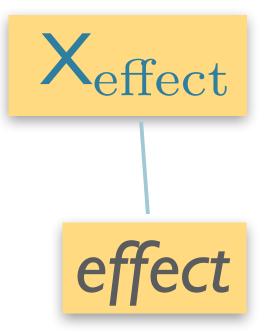


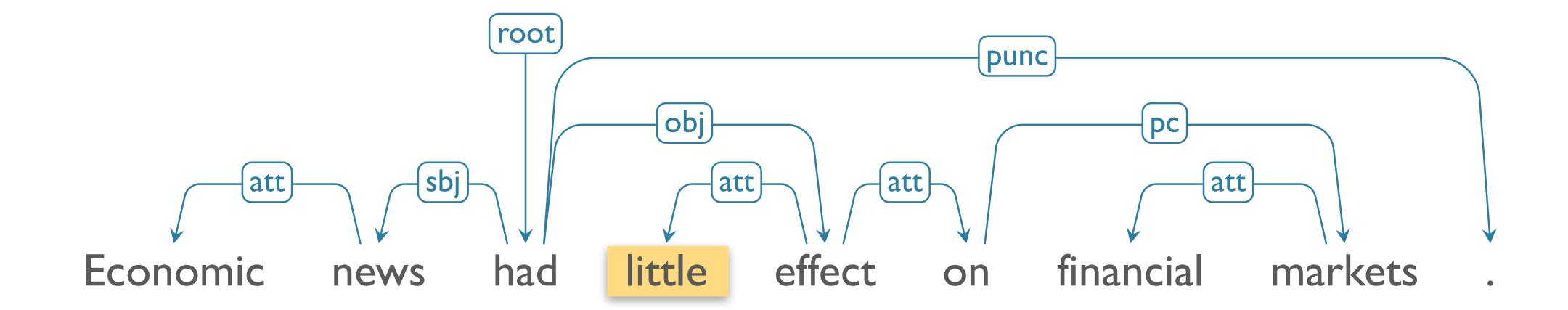
He is mostly not even interested in the new things and in most cases, he has no money for it either.

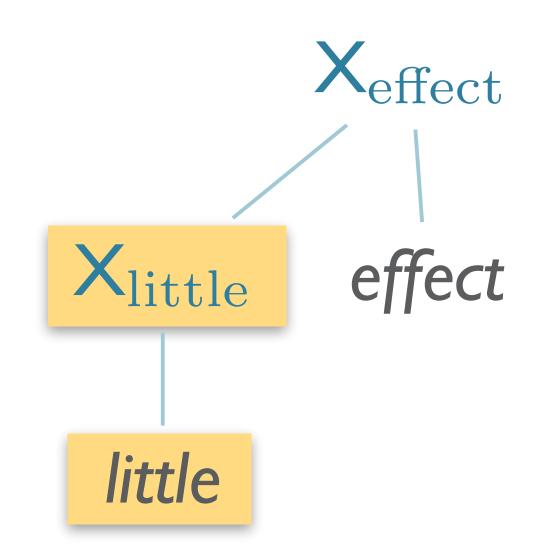
From McDonald et. al, 2005

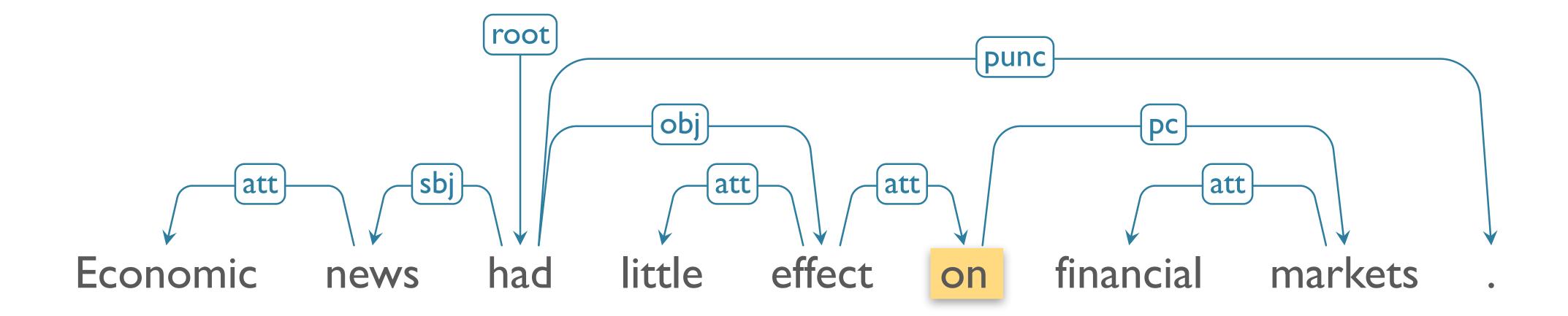
- For each node w with outgoing arcs...
 - ...convert the subtree w and its dependents $t_1,...,t_n$ to a new subtree:
 - Nonterminal: X_w
 - Child: w
 - Subtrees $t_1,...,t_n$ in original sentence order

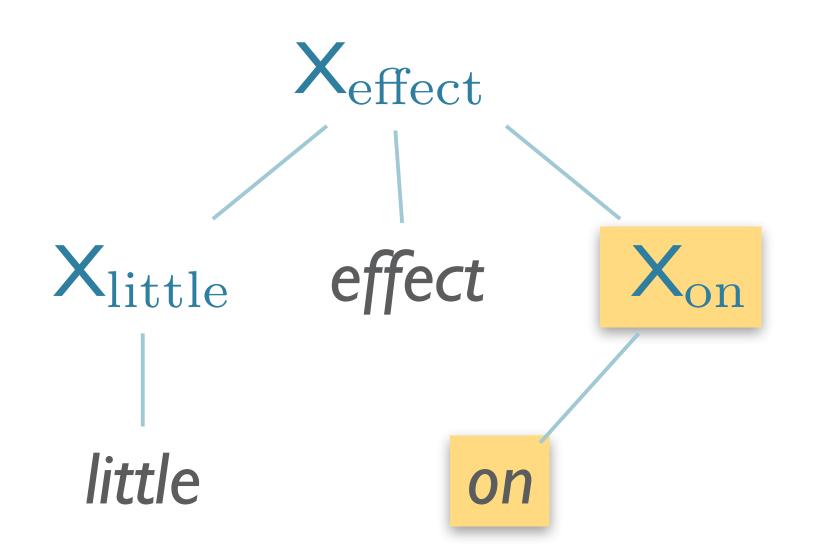


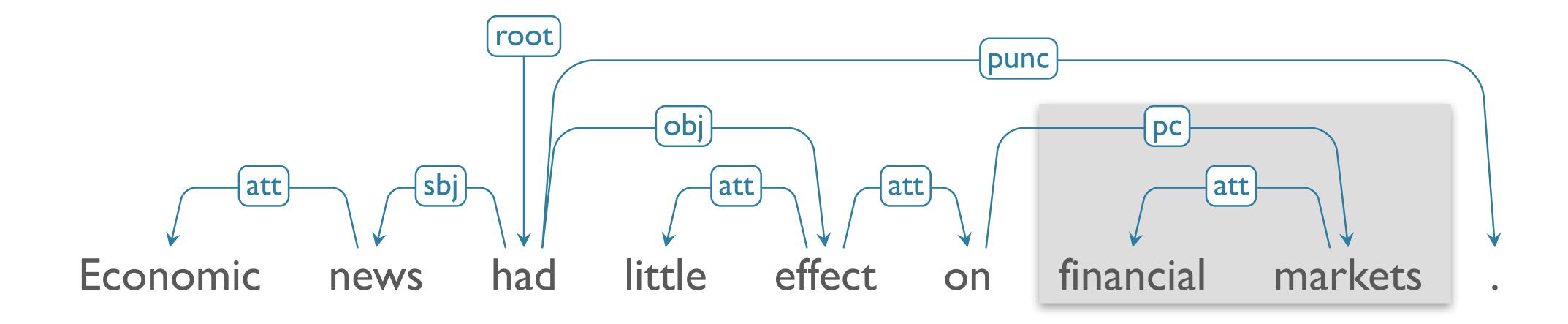


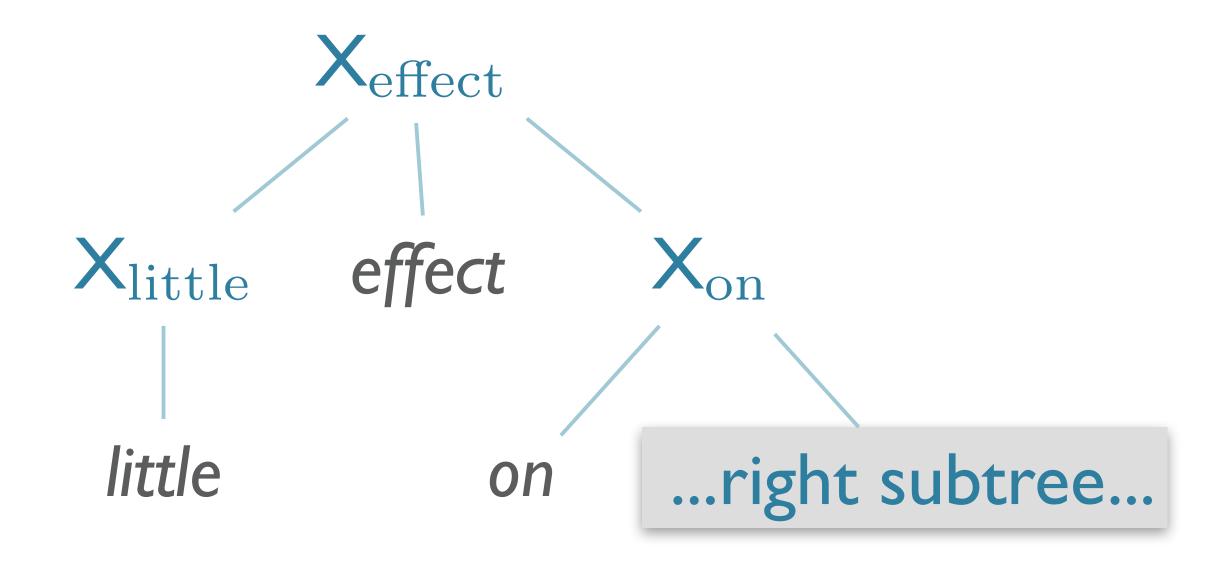




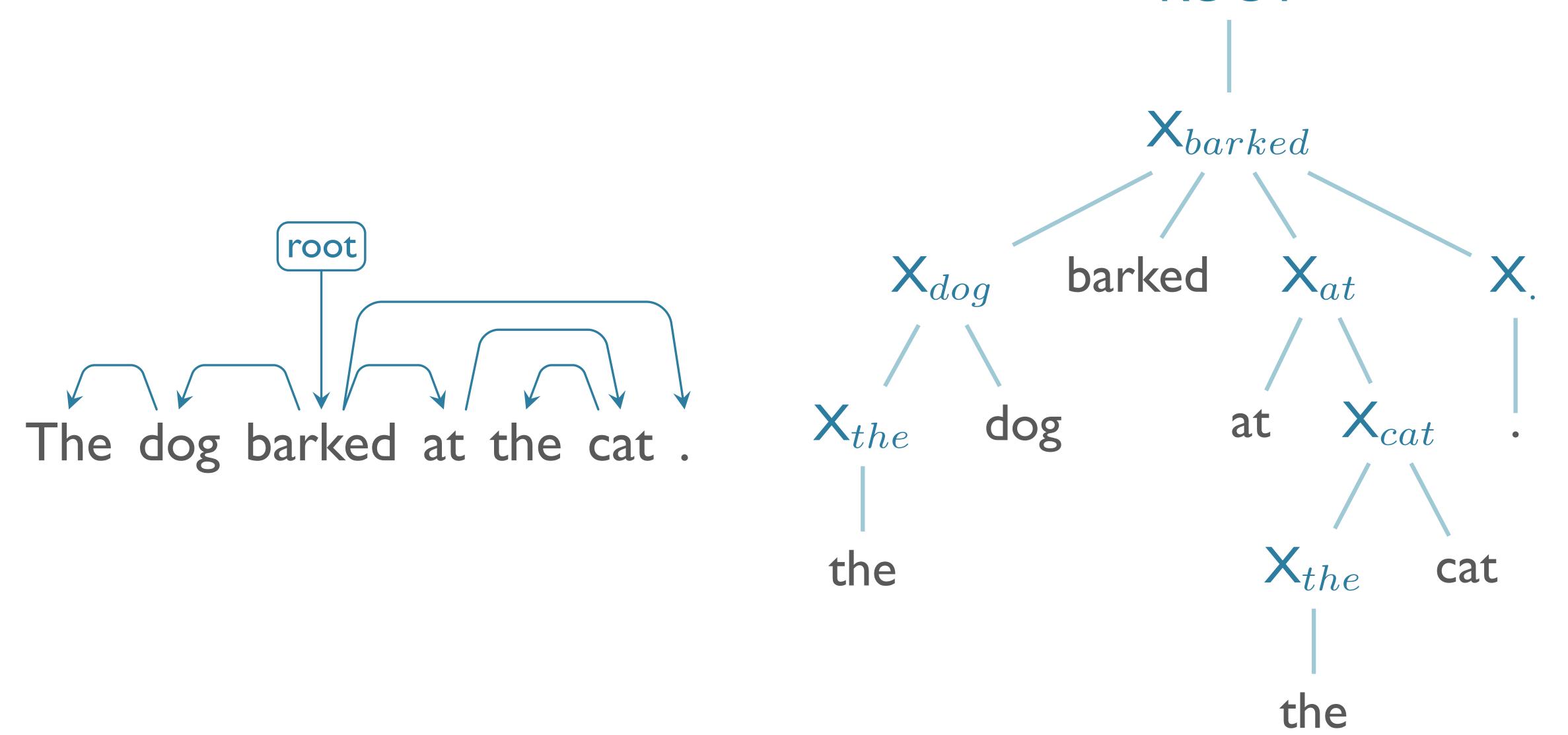








- What about labeled dependencies?
 - Can attach labels to nonterminals associated with non-heads
 - e.g. $X_{little} \rightarrow X_{little:nmod}$
- Doesn't create typical PS trees
 - Does create fully lexicalized, labeled, context-free trees
- Can be parsed with any standard CFG parser



Roadmap

- Dependency Grammars
 - Definition
 - Motivation:
 - Limitations of Context-Free Grammars
- Dependency Parsing
 - By conversion to CFG
 - By Graph-based models
 - By transition-based parsing

Graph-based Dependency Parsing

- ullet Goal: Find the highest scoring dependency tree $\hat{m{T}}$ for sentence S
 - ullet If S is unambiguous, T is the correct parse
 - ullet If S is ambiguous, T is the highest scoring parse
- Where do scores come from?
 - Weights on dependency edges by learning algorithm
 - Learned from dependency treebank
- Where are the grammar rules?
 - ...there aren't any! All data-driven.

Graph-based Dependency Parsing

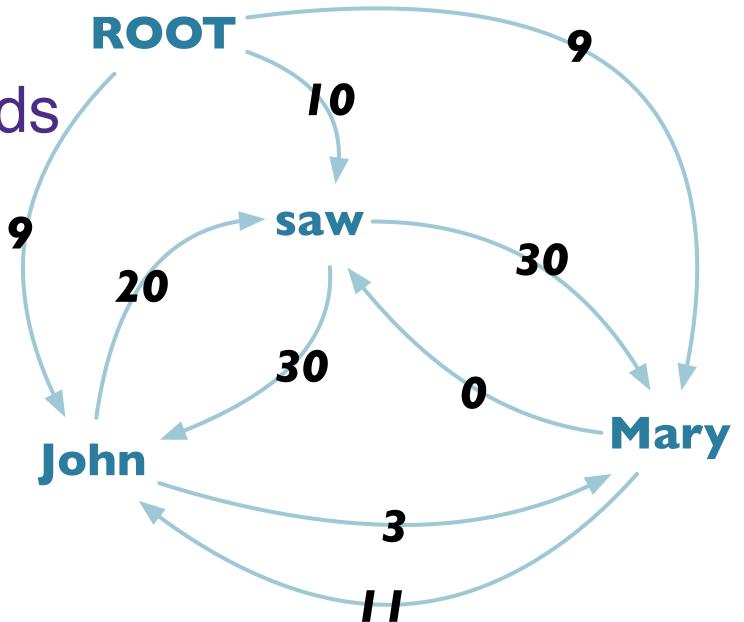
- Map dependency parsing to Maximum Spanning Tree (MST)
- Build fully connected initial graph:
 - Nodes: words in sentence to parse
 - Edges: directed edges between all words
 - + Edges from ROOT to all words
- Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight

Graph-based Dependency Parsing

- Arc-factored model:
 - Weights depend on end nodes & link
 - Weight of tree is sum of participating arcs

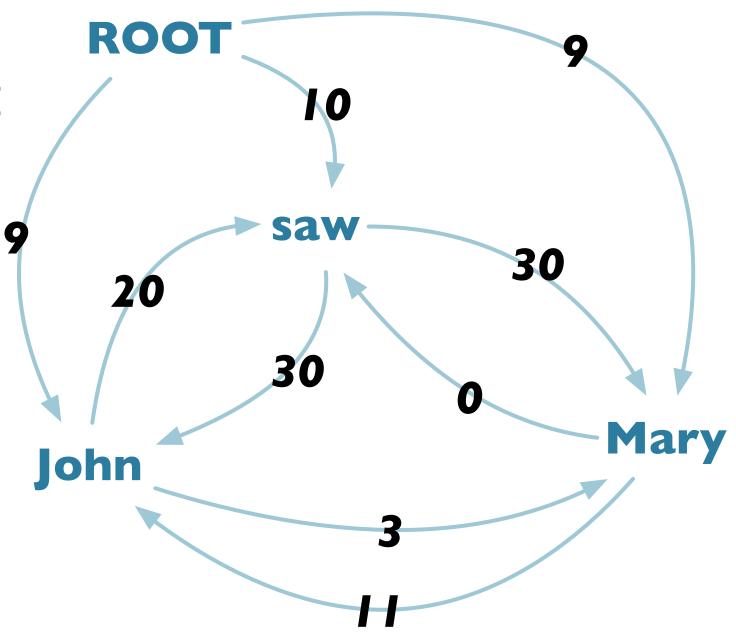
Initial Graph: (McDonald et al, 2005b)

- John saw Mary
 - All words connected: ROOT only has outgoing arcs
- Goal: Remove arcs to create a tree covering all words
 - Resulting tree is parse

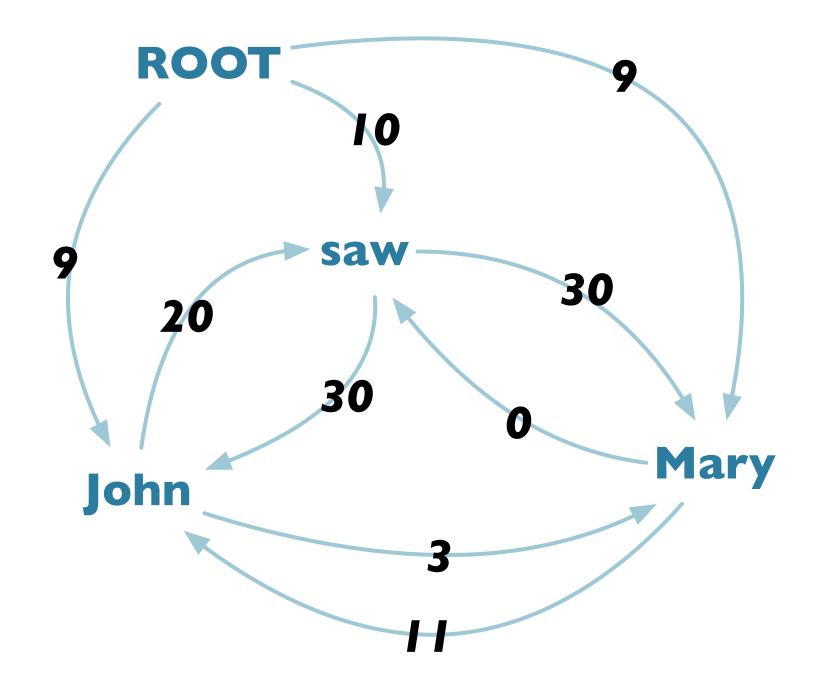


Maximum Spanning Tree

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max weight
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph
- Running time: naïve: $O(n^3)$; Tarjan: $O(n^2)$
 - Applicable to non-projective graphs

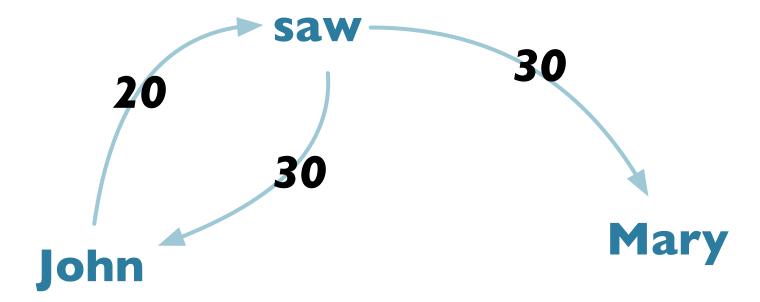


• Find, for each word, the highest scoring incoming edge.



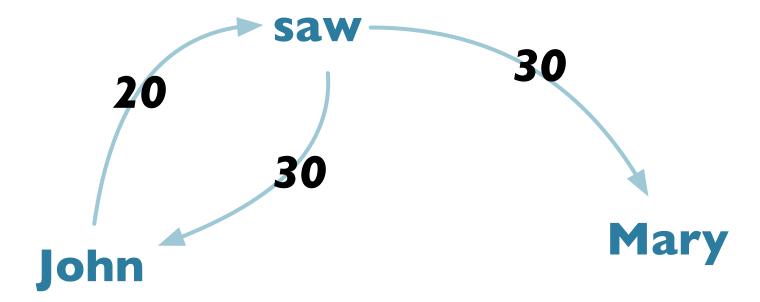
• Find, for each word, the highest scoring incoming edge.

ROOT



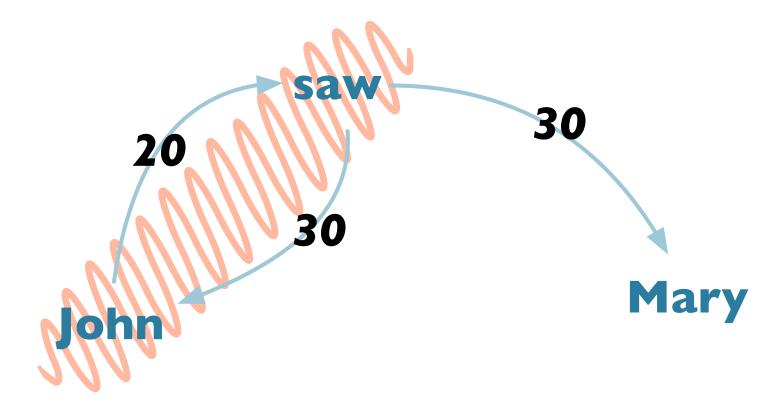
- Find, for each word, the highest scoring incoming edge.
- Is it a tree?

ROOT



- Find, for each word, the highest scoring incoming edge.
- Is it a tree?
 - No, there's a cycle.

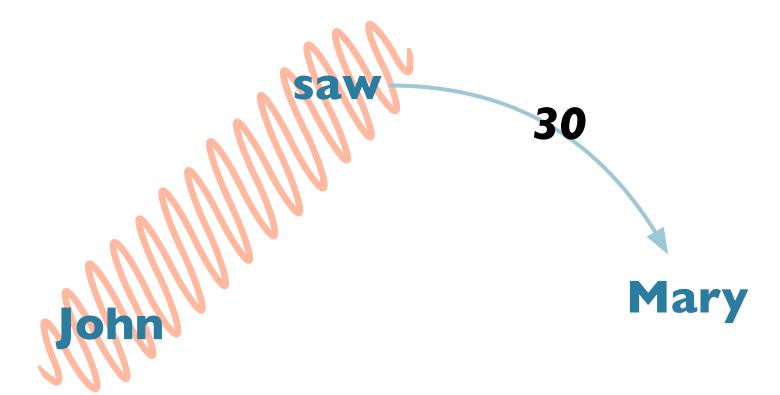
ROOT



Step 1 & 2

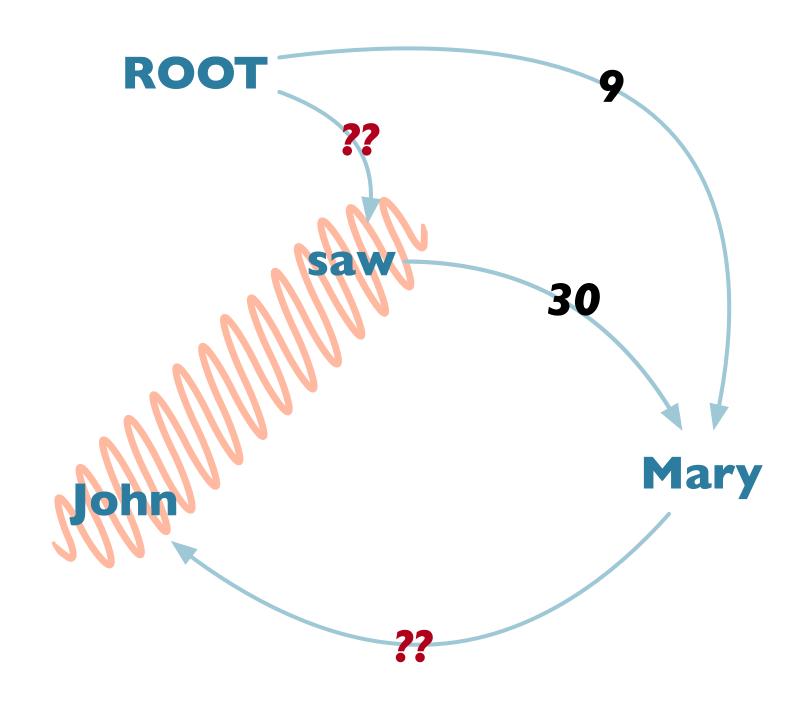
- Find, for each word, the highest scoring incoming edge.
- Is it a tree?
 - No, there's a cycle.
- Collapse the cycle

ROOT

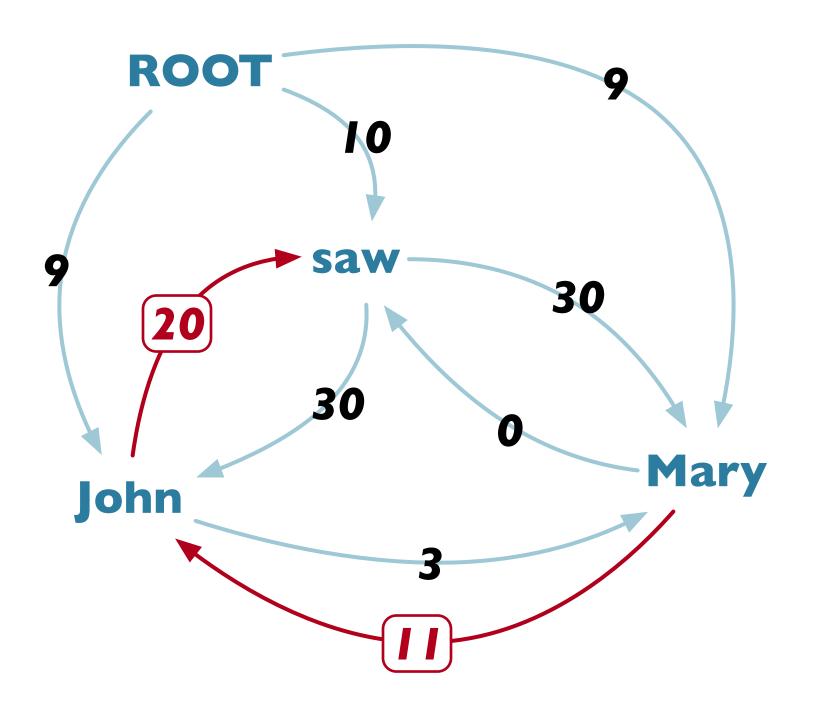


Step 1 & 2

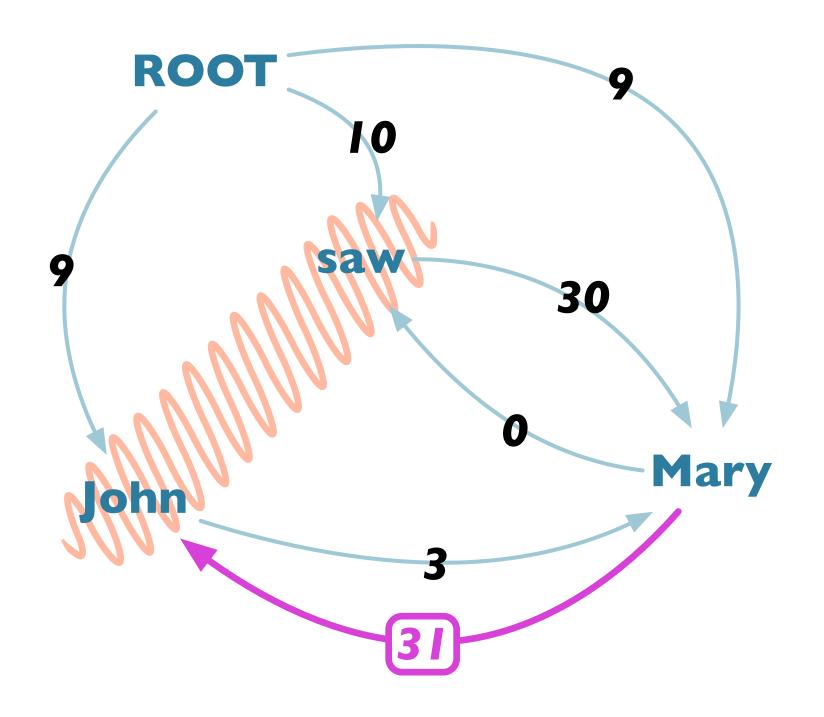
- Find, for each word, the highest scoring incoming edge.
- Is it a tree?
 - No, there's a cycle.
- Collapse the cycle
- And re-examine the edges again



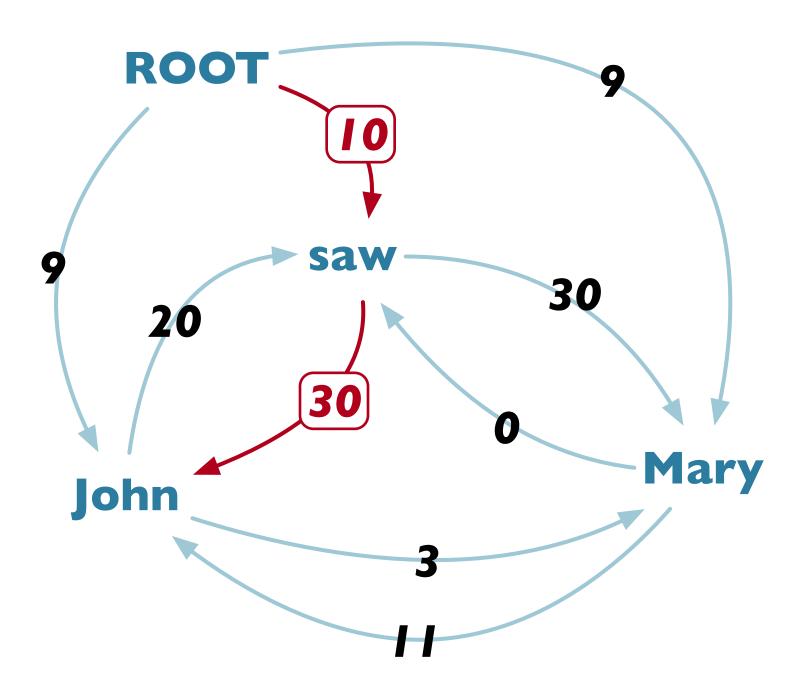
s(Mary,
$$C$$
) 11 + 20 = 31



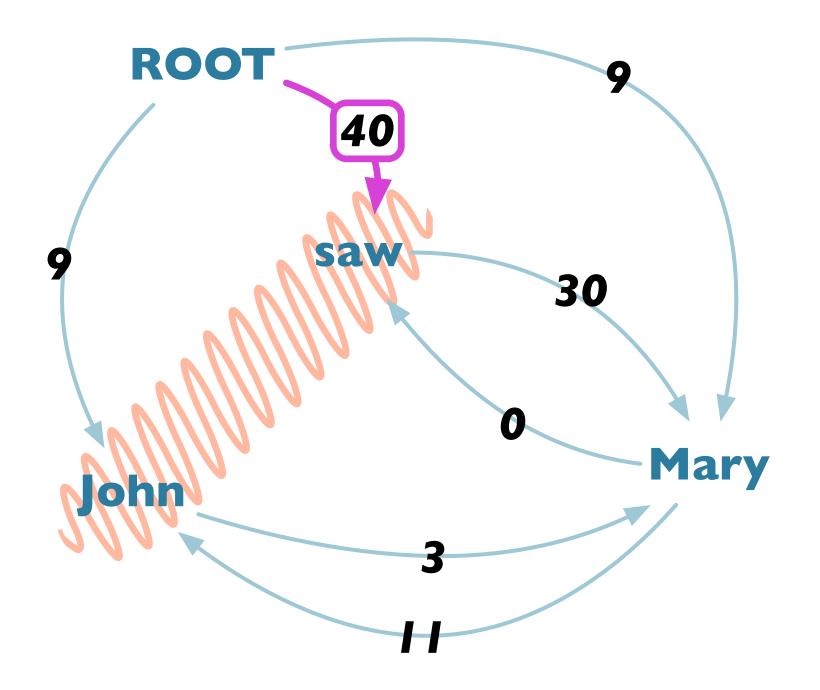
$$s(Mary, C) 11 + 20 = 31$$



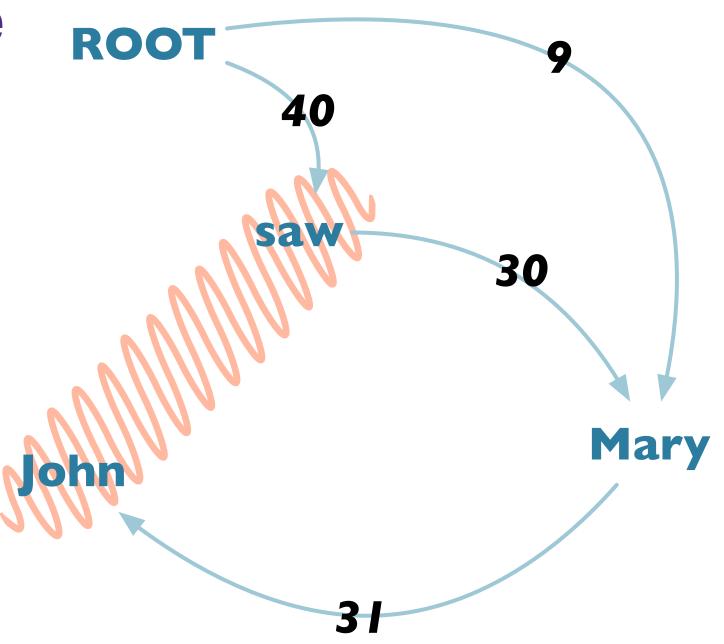
$$s(ROOT, C) 10 + 30 = 40$$



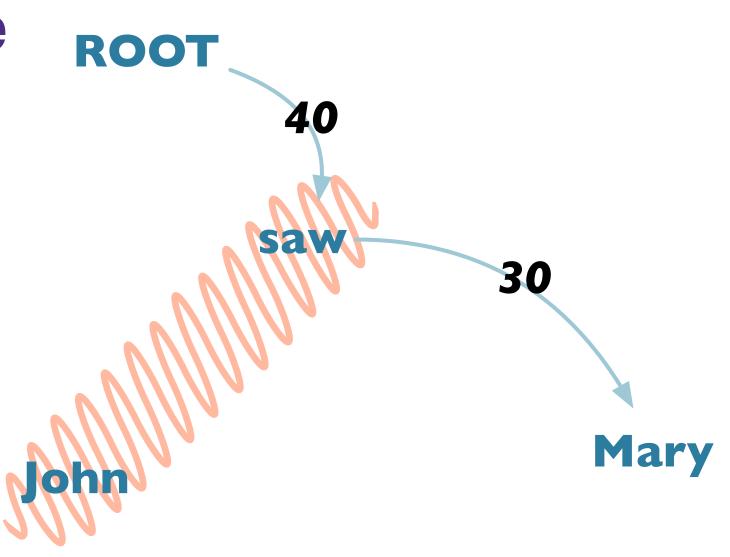
$$s(ROOT, C) 10 + 30 = 40$$



- With cycle collapsed, recurse on step 1:
- Keep highest weighted incoming edge for each edge

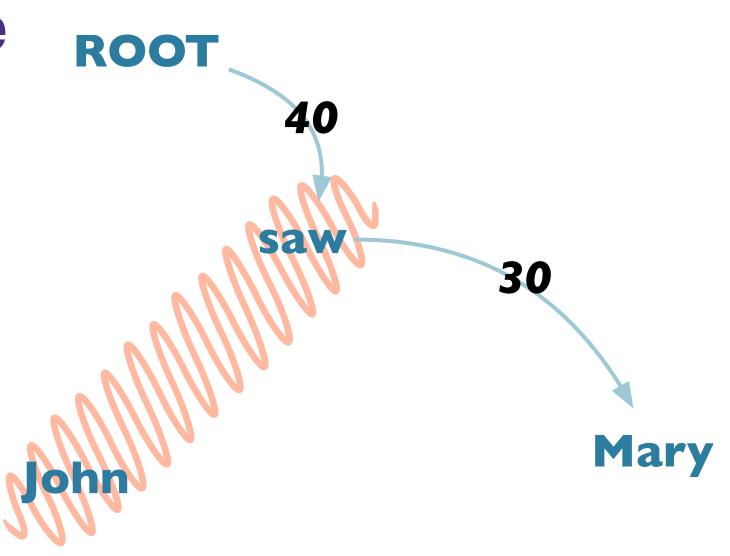


- With cycle collapsed, recurse on step 1:
- Keep highest weighted incoming edge for each edge

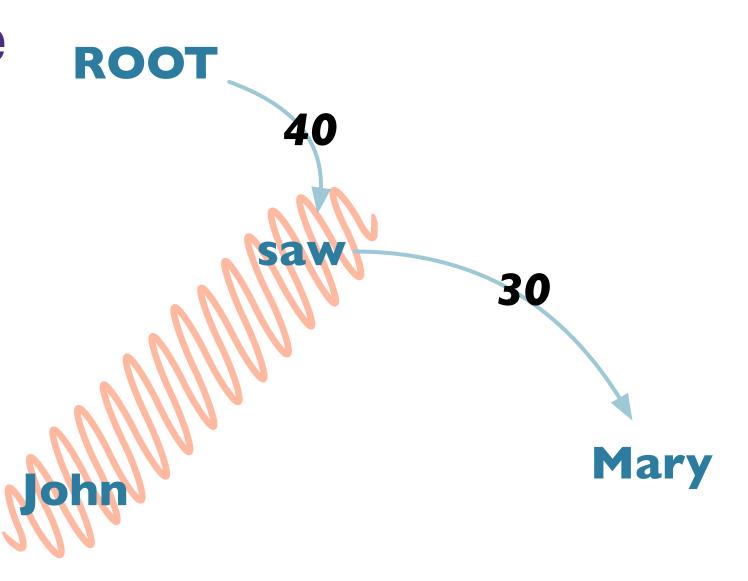


- With cycle collapsed, recurse on step 1:
- Keep highest weighted incoming edge for each edge

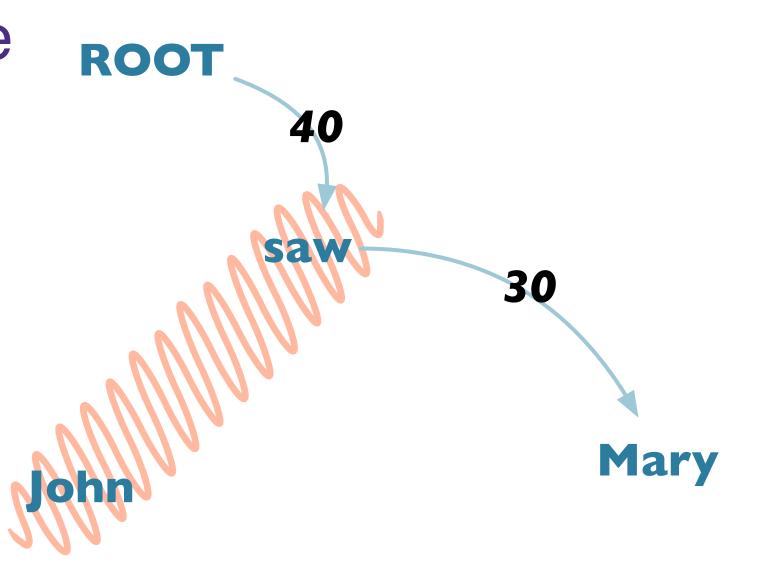
• Is it a tree?



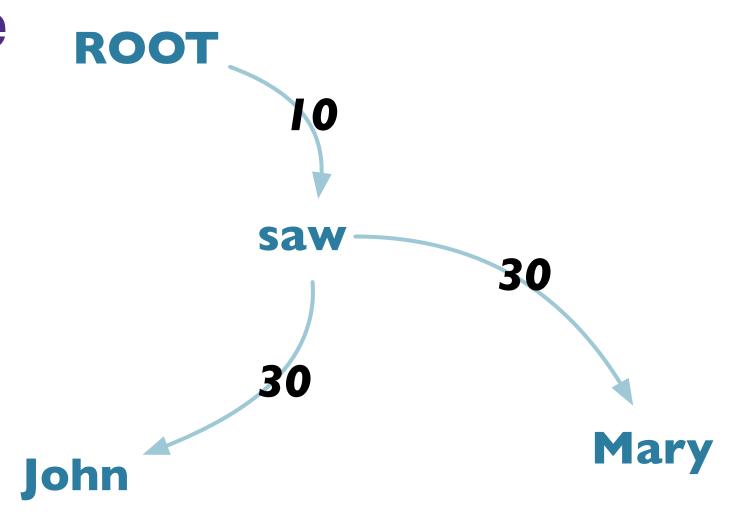
- With cycle collapsed, recurse on step 1:
- Keep highest weighted incoming edge for each edge
- Is it a tree?
 - Yes!



- With cycle collapsed, recurse on step 1:
- Keep highest weighted incoming edge for each edge
- Is it a tree?
 - Yes!
 - ...but must recover collapsed portions.



- With cycle collapsed, recurse on step 1:
- Keep highest weighted incoming edge for each edge
- Is it a tree?
 - Yes!
 - ...but must recover collapsed portions.



MST Algorithm

```
function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree
    F\leftarrow[]
    T' \leftarrow []
    score' \leftarrow []
    for each v \in V do
      bestInEdge \leftarrow argmax_{e=(u,v)\in E} score[e]
      F \leftarrow F \cup bestInEdge
      for each e=(u,v) \in E do
          score'[e] \leftarrow score[e] - score[bestInEdge]
      if T=(V,F) is a spanning tree then return it
      else
         C \leftarrow a cycle in F
         G' \leftarrow \text{CONTRACT}(G, C)
         T' \leftarrow \text{MAXSPANNINGTREE}(G', root, score')
         T \leftarrow EXPAND(T', C)
         return T
function Contracted graph
function EXPAND(T, C) returns expanded graph
```

Figure 15.13 The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a weighted directed graph.

Learning Weights

- Weights for arc-factored model learned from dependency treebank
 - ullet Weights learned for tuple (w_i , w_j , l)
- McDonald et al, 2005a employed discriminative ML
 - MIRA (Crammer and Singer, 2003)
- Operates on vector of local features

Features for Learning Weights

- Simple categorical features for (w_i, L, w_j) including:
 - Identity of w_i (or char 5-gram prefix), POS of w_i
 - Identity of w_j (or char 5-gram prefix), POS of w_j
 - Label of L, direction of L
 - ullet Number of words between $w_i,\ w_j$
 - ullet POS tag of $w_{i ext{-}1}$, POS tag of $w_{i ext{+}1}$
 - ullet POS tag of w_{j-1} , POS tag of w_{j+1}
- Features conjoined with direction of attachment and distance between words

Dependency Parsing

- Dependency Grammars:
 - Compactly represent predicate—argument structure
 - Lexicalized, localized
 - Natural handling of flexible word order
- Dependency parsing:
 - Conversion to phrase structure trees
 - Graph-based parsing (MST), efficient non-proj $O(n^2)$
 - Next time: Transition-based parsing

Further Reading

- Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online Large-Margin Training of Dependency
 Parsers. In *Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics*, pages 91–98.
 May. [link]
- Ryan McDonald, Fernando Pereira, K. Ribarov, and Jan Hajič. 2005b. Non-projective dependency parsing using spanning tree algorithms. In *Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing*, pages 523–530. Association for Computational Linguistics. [link]
- Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan & Claypool. [link]
- Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In *Proceedings of the 16th Conference on Computational Linguistics*, pages 340–345. Association for Computational Linguistics. [link]
- Michael Collins. 1999. Head-Driven Statistical Models For Natural Language Parsing. [link]

59