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Announcements
● HW #1 due tonight at 11:00pm.

● If you want to use python3.6 on Patas:
● /opt/python-3.6/bin/python3

● nltk is installed.

● [For personal projects, but not 571 HW, you can use the latest of 
everything via Anaconda (download with wget).]
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https://docs.anaconda.com/anaconda/install/


Type Hinting in Python
● Supported in ≥3.6 [tutorial] 
 
from typing import List  
from nltk.grammar import Production  
 
def fix_hybrid_production(hybrid_prod: Production) -> List[Production]:  
    …

● Also available in PyCharm through docstrings and/or comments: 
 
def fix_hybrid_productions(hybrid_prod):  
    “””  
    This function takes a hybrid production and  
    returns a list of new CNF productions  
    :type hybrid_prod: Production  
    :rtype: list[Production]  
    “””
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https://medium.com/@ageitgey/learn-how-to-use-static-type-checking-in-python-3-6-in-10-minutes-12c86d72677b
https://www.jetbrains.com/help/pycharm/type-hinting-in-product.html


Roadmap
● Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm
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Computational Parsing
● Given a body of (annotated) text, how can we derive the grammar rules of 

a language, and employ them in automatic parsing?
● Treebanks & PCFGs

● Given a grammar, how can we derive the analysis of an input sentence?
● Parsing as search
● CKY parsing
● Conversion to CNF
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What is Parsing?
● CFG parsing is the task of assigning trees to input strings
● For any input A and grammar G
● …assign ≥0 parse trees T that represent its syntactic structure, and…
● Cover all and only the elements of A
● Have, as root, the start symbol S of G
● …do not necessarily pick one single (or correct) analysis

● Subtask: Recognition
● Given input A, G – is A in language defined by G or not?
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Motivation
● Is this sentence in the language — i.e. is it “grammatical?”
● * I prefer United has the earliest flight.
● FSAs accept regular languages defined by finite-state automata.
● Our parsers accept languages defined by CFG (equiv. pushdown automata).

● What is the syntactic structure of this sentence?
● What airline has the cheapest flight?
● What airport does Southwest fly from near Boston?
● Syntactic parse provides framework for semantic analysis
● What is the subject? Direct object?
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Parsing as Search
● Syntactic parsing searches through possible trees to find one or more trees 

that derive input

● Formally, search problems are defined by:
● Start state S
● Goal state G (with a test)
● Set of actions that transition from one state to another
● “Successor function”
● A path cost function
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Parsing as Search: One Model
● Start State S: Start Symbol

● Goal test:
● Does the parse tree cover all of, and only, the input?

● Successor function:
● Expand a nonterminal using a production where nonterminal is the LHS of the 

production

● Path cost:
● …ignored for now.
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Parsing as Search: One Model
● Node:
● Partial solution to search problem (partial parse)

● Search start node (initial state):
● Input string
● Start symbol of CFG

● Goal node:
● Full parse tree: covering all of, and only the input, rooted at S
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Search Algorithms
● Depth First
● Keep expanding nonterminals until they reach words
● If no more expansions available, back up

● Breadth First
● Consider all parses that expand a single nonterminal…
● …then all with two expanded, etc…

● Other alternatives, if have associated path costs.
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Parse Search Strategies
● Two constraints on parsing:
● Must start with the start symbol
● Must cover exactly the input string

● Correspond to main parsing search strategies
● Top-down search (Goal-directed)
● Bottom-up search (Data-driven search)
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A Grammar
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Jurafsky & Martin, Speech and Language Processing, p.390

Grammar Lexicon
S → NP VP Det → that | this | a

S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer

NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through

Nominal → Nominal Noun
Nominal → Nominal PP

VP → Verb
VP → Verb NP

VP → Verb NP PP
VP → Verb PP
VP → VP PP

PP → Preposition NP



Top-down Search
● All valid parse trees must be rooted with start symbol

● Begin search with productions where S is on LHS
● e.g. S → NP VP

● Successively expand nonterminals
● e.g. NP → Det Nominal; VP → V NP

● Terminate when all leaves are terminals

14



Depth-First Search
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Breadth-First Search
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Pros and Cons of Top-down Parsing
● Pros:
● Doesn’t explore trees not rooted at S
● Doesn’t explore subtrees that don’t fit valid trees

● Cons:
● Produces trees that may not match input
● May not terminate in presence of recursive rules
● May re-derive subtrees as part of search
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Bottom-Up Parsing
● Try to find all trees that span the input
● Start with input string
● Book that flight

● Use all productions with current subtree(s) on RHS
● e.g. N → Book; V → Book

● Stop when spanned by S, or no more rules apply
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Pros and Cons of Bottom-Up Search
● Pros:
● Will not explore trees that don’t match input
● Recursive rules less problematic
● Useful for incremental/fragment parsing

● Cons:
● Explore subtrees that will not fit full input
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Recap: Parsing as Search
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Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity
● Repeated Substructure
● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Parsing Ambiguity
● Lexical Ambiguity:
● Book/NN → I left a book on the table.
● Book/VB → Book that flight.

● Structural Ambiguity
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Attachment Ambiguity
“One morning, I shot an elephant in my pajamas.
How he got into my pajamas, I’ll never know.” — Groucho Marx
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Attachment Ambiguity
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“We saw the Eiffel Tower flying to Paris”
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Coordination Ambiguity:
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Local vs. Global Ambiguity
● Local ambiguity:
● Ambiguity that cannot contribute to a full, valid parse
● e.g. Book/NN in “Book that flight”

● Global ambiguity
● Multiple valid parses
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Why is Ambiguity a Problem?
● Local ambiguity:
● increased processing time

● Global ambiguity:
● Would like to yield only “reasonable” parses
● Ideally, the one that was intended*
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Solution to Ambiguity?
●Disambiguation!
● Different possible strategies to select correct interpretation:
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● Some prepositional structs more likely to attach high/low
● John was thought to have been seen by Mary
● Mary could be doing the seeing or thinking — seeing more likely

Disambiguation Strategy: 
Statistical
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● Some phrases more likely overall
● [old [men and women]] is a more common construction than [old men] and 

[women]

Disambiguation Strategy: 
Statistical
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Disambiguation Strategy: 
Semantic

● Some interpretations we know to be semantically impossible
● Eiffel tower as subject of fly
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Disambiguation Strategy: 
Pragmatic

● Some interpretations are possible, unlikely given world knowledge
● e.g. elephants and pajamas
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Incremental Parsing and Garden Paths
● Idea: model left-to-right nature of (English) text

● Problem: “garden path” sentences
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https://www.reuters.com/article/us-sport-california-education/california-to-let-college-athletes-be-paid-in-blow-to-ncaa-rules-idUSKBN1WF1SR



Disambiguation Strategy: 

!
● Alternatively, keep all parses
● (Might even be the appropriate action for some jokes)
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Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity
● Repeated Substructure
● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Repeated Work
● Search (top-down/bottom-up) both lead to repeated substructures
● Globally bad parses can construct good subtrees
● …will reconstruct along another branch
● No static backtracking can avoid

● Efficient parsing techniques require storage of partial solutions

● Example: a flight from Indianapolis to Houston on TWA
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Shared Sub-Problems
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Shared Sub-Problems
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Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity
● Repeated Substructure
● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Recursion
● Many grammars have recursive rules
● S → S Conj S

● In search approaches, recursion is problematic
● Can yield infinite searches
● Top-down especially vulnerable
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Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Dynamic Programming
● Challenge:
● Repeated substructure → Repeated Work

● Insight:
● Global parse composed of sub-parses
● Can record these sub-parses and re-use

● Dynamic programming avoids repeated work by recording the 
subproblems
● Here, stores subtrees

51



Parsing with Dynamic Programming
● Avoids repeated work

● Allows implementation of (relatively) efficient parsing algorithms
● Polynomial time in input length
● Typically cubic (n3) or less

● Several different implementations
● Cocke-Kasami-Younger (CKY) algorithm
● Earley algorithm
● Chart parsing
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Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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Grammar Equivalence and Form
● Weak Equivalence
● Accepts same language
● May produce different structures

● Strong Equivalence
● Accepts same language
● Produces same structures

54



Grammar Equivalence and Form
● Reason?
● We can create a weakly-equivalent grammar that allows for greater efficiency
● This is required by the CKY algorithm
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Chomsky Normal Form (CNF)
● Required by CKY Algorithm

● All productions are of the form:
● A → B C
● A → a

● Most of our grammars are not of this form:
● S → Wh-NP Aux NP VP

● Need a general conversion procedure
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CNF Conversion
1) Hybrid productions:

INF-VP → to VP

2) Unit productions:
A → B

3) Long productions:
A → B C D …
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CNF Conversion: 
Hybrid Productions

● Hybrid production:
● Replace all terminals with dummy non-terminal
● INF-VP → to VP
● INF-VP → TO VP
● TO → to
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CNF Conversion: 
Unit Productions

● Unit productions:
● Rewrite RHS with RHS of all derivable, non-unit productions
● If A ⇒⃰ B and B → w, add A → w
● [A ⇒⃰ B: B is reachable from A by a sequence of unit productions]

● Nominal → Noun, Noun → dog
● Nominal → dog
● Noun → dog

59



CNF Conversion: Long Productions
● Long productions

● Introduce unique nonterminals, and spread over rules 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S → Aux NP VP
S → X1 VP X1 → Aux NP



CNF Conversion
1) Convert terminals in hybrid rules to dummy non-terminals

2) Convert unit productions

3) Binarize long production rules
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ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
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ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
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ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP



Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm 
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CKY Parsing
● (Relatively) efficient parsing algorithm

● Based on tabulating substring parses to avoid repeat work

● Approach:
● Use CNF Grammar
● Build an (n + 1) × (n + 1) matrix to store subtrees
● Upper triangular portion
● Incrementally build parse spanning whole input string
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CKY Matrix
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CKY Matrix
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CKY Matrix
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CKY Matrix
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Dynamic Programming in CKY
● Key idea:
● for i < k < j
● …and a parse spanning substring [ i, j ]
● There is a k such that there are parses spanning [ i, k ] and [ k, j ]
● We can construct parses for whole sentences by building from these partial 

parses

● So to have a rule A → B C in [ i, j ]
● Must have B in [ i, k ] and C in [ k, j ] for some i < k < j
● CNF forces this for all j > i + 1
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HW #2
LING 571

Deep Processing Techniques for NLP
October 2, 2019
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Goals
● Begin development of CKY parser

● First stage: Conversion to CNF
● Develop Representation for CFG
● Manipulate/Transform Grammars
● Investigate weakly equivalent grammars
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Task
● Conversion:
● Read in grammar rules from arbitrary CFG
● Convert to CNF
● Write out new grammar

● Validation:
● Parse test sentences with original CFG
● Parse test sentences with CFG in CNF
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Approach
● May use any programming language
● In keeping with course policies

● May use existing models/packages to represent rules
● Need RULE, RHS, LHS, etc
● NLTK, Stanford

● Conversion code must be your own
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http://depts.washington.edu/uwcl/clms/course-policy.pdf


Data
● ATIS (Air Travel Information System) data
● Grammar provided in nltk-data
● Terminals in double-quotes
● the → “the”
● All required files on patas dropbox

● NOTE:
● Grammar is fairly large (~193K Productions)
● Grammar is fairly ambiguous (Test sentences may have 100 parses)
● You will likely want to develop against a smaller grammar
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NLTK Grammars
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>>> gr1 = nltk.data.load('grammars/large_grammars/
atis.cfg')

>>> gr1.productions()[0]  
ABBCL_NP -> QUANP_DTI QUANP_DTI QUANP_CD AJP_JJ NOUN_NP 
PRPRTCL_VBG

>>> gr1.productions()[0].lhs()  
ABBCL_NP

>>> gr1.productions(lhs=gr1.productions()[1].lhs())  
[ADJ_ABL -> only, ADJ_ABL->such]


