
CKY Parsing & CNF Conversion
LING 571 — Deep Processing Techniques for NLP

October 2, 2019
Shane Steinert-Threlkeld

1

Announcements
● HW #1 due tonight at 11:00pm.

● If you want to use python3.6 on Patas:
● /opt/python-3.6/bin/python3

● nltk is installed.

● [For personal projects, but not 571 HW, you can use the latest of
everything via Anaconda (download with wget).]

2

https://docs.anaconda.com/anaconda/install/

Type Hinting in Python
● Supported in ≥3.6 [tutorial] 
 
from typing import List  
from nltk.grammar import Production  
 
def fix_hybrid_production(hybrid_prod: Production) -> List[Production]:  
 …

● Also available in PyCharm through docstrings and/or comments: 
 
def fix_hybrid_productions(hybrid_prod):  
 “””  
 This function takes a hybrid production and  
 returns a list of new CNF productions  
 :type hybrid_prod: Production  
 :rtype: list[Production]  
 “””

3

https://medium.com/@ageitgey/learn-how-to-use-static-type-checking-in-python-3-6-in-10-minutes-12c86d72677b
https://www.jetbrains.com/help/pycharm/type-hinting-in-product.html

Roadmap
● Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

4

Computational Parsing
● Given a body of (annotated) text, how can we derive the grammar rules of

a language, and employ them in automatic parsing?
● Treebanks & PCFGs

● Given a grammar, how can we derive the analysis of an input sentence?
● Parsing as search
● CKY parsing
● Conversion to CNF

5

What is Parsing?
● CFG parsing is the task of assigning trees to input strings
● For any input A and grammar G
● …assign ≥0 parse trees T that represent its syntactic structure, and…
● Cover all and only the elements of A
● Have, as root, the start symbol S of G
● …do not necessarily pick one single (or correct) analysis

● Subtask: Recognition
● Given input A, G – is A in language defined by G or not?

6

Motivation
● Is this sentence in the language — i.e. is it “grammatical?”
● * I prefer United has the earliest flight.
● FSAs accept regular languages defined by finite-state automata.
● Our parsers accept languages defined by CFG (equiv. pushdown automata).

● What is the syntactic structure of this sentence?
● What airline has the cheapest flight?
● What airport does Southwest fly from near Boston?
● Syntactic parse provides framework for semantic analysis
● What is the subject? Direct object?

7

Parsing as Search
● Syntactic parsing searches through possible trees to find one or more trees

that derive input

● Formally, search problems are defined by:
● Start state S
● Goal state G (with a test)
● Set of actions that transition from one state to another
● “Successor function”
● A path cost function

8

Parsing as Search: One Model
● Start State S: Start Symbol

● Goal test:
● Does the parse tree cover all of, and only, the input?

● Successor function:
● Expand a nonterminal using a production where nonterminal is the LHS of the

production

● Path cost:
● …ignored for now.

9

Parsing as Search: One Model
● Node:
● Partial solution to search problem (partial parse)

● Search start node (initial state):
● Input string
● Start symbol of CFG

● Goal node:
● Full parse tree: covering all of, and only the input, rooted at S

10

Search Algorithms
● Depth First
● Keep expanding nonterminals until they reach words
● If no more expansions available, back up

● Breadth First
● Consider all parses that expand a single nonterminal…
● …then all with two expanded, etc…

● Other alternatives, if have associated path costs.

11

Parse Search Strategies
● Two constraints on parsing:
● Must start with the start symbol
● Must cover exactly the input string

● Correspond to main parsing search strategies
● Top-down search (Goal-directed)
● Bottom-up search (Data-driven search)

12

A Grammar

13

Jurafsky & Martin, Speech and Language Processing, p.390

Grammar Lexicon
S → NP VP Det → that | this | a

S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer

NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through

Nominal → Nominal Noun
Nominal → Nominal PP

VP → Verb
VP → Verb NP

VP → Verb NP PP
VP → Verb PP
VP → VP PP

PP → Preposition NP

Top-down Search
● All valid parse trees must be rooted with start symbol

● Begin search with productions where S is on LHS
● e.g. S → NP VP

● Successively expand nonterminals
● e.g. NP → Det Nominal; VP → V NP

● Terminate when all leaves are terminals

14

Depth-First Search

15

S

S

NP VP

S

NP VPAux

Start State

1 Rule

2 Rules

S

VP

S

VP

S

VP

S

NP VPAux

S

NP VPAux

Det Nom PropN V NP V

S

NP VP

PropN

S

NP VP

Det Nom

Breadth-First Search

16

S

S

NP VP

S

NP VPAux

Start State

1 Rule

2 Rules

S

VP

S

VP

S

VP

S

NP VPAux

S

NP VPAux

Det Nom PropN V NP V

S

NP VP

PropN

S

NP VP

Det Nom

Pros and Cons of Top-down Parsing
● Pros:
● Doesn’t explore trees not rooted at S
● Doesn’t explore subtrees that don’t fit valid trees

● Cons:
● Produces trees that may not match input
● May not terminate in presence of recursive rules
● May re-derive subtrees as part of search

17

Bottom-Up Parsing
● Try to find all trees that span the input
● Start with input string
● Book that flight

● Use all productions with current subtree(s) on RHS
● e.g. N → Book; V → Book

● Stop when spanned by S, or no more rules apply

18

19
Book that flight

20
Book that flight

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

21
Book that flight

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Noun Det Noun

Nominal Nominal

Book that flight

Verb Det Noun

Nominal

22
Book that flight

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Noun Det Noun

Nominal Nominal

Book that flight

Verb Det Noun

Nominal

Book that flight

Noun Det Noun

Nominal Nominal

NP

Book that flight

Verb Det Noun

NominalVP

Book that flight

Verb Det Noun

Nominal

NP

23
Book that flight

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Noun Det Noun

Nominal Nominal

Book that flight

Verb Det Noun

Nominal

Book that flight

Noun Det Noun

Nominal Nominal

NP

Book that flight

Verb Det Noun

NominalVP

Book that flight

Verb Det Noun

Nominal

NP

Book that flight

Verb Det Noun

Nominal

NP

VP

Book that flight

Verb Det Noun

Nominal

NP

VP

Pros and Cons of Bottom-Up Search
● Pros:
● Will not explore trees that don’t match input
● Recursive rules less problematic
● Useful for incremental/fragment parsing

● Cons:
● Explore subtrees that will not fit full input

24

Recap: Parsing as Search

25

S

S

NP VP

S

NP VPAux

S

VP

S

VP

S

VP

S

NP VPAux

S

NP VPAux

Det Nom PropN V NP V

S

NP VP

PropN

S

NP VP

Det Nom

None of these nodes can produce book as first terminal

26
Book that flight

Book that flight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Noun Det Noun

Nominal Nominal

Book that flight

Verb Det Noun

Nominal

Book that flight

Noun Det Noun

Nominal Nominal

NP

Book that flight

Verb Det Noun

NominalVP

Book that flight

Verb Det Noun

Nominal

NP

Book that flight

Verb Det Noun

Nominal

NP

VP

Book that flight

Verb Det Noun

Nominal

NP

VP

None of these nodes lead
lead to a RHS that can be  

combined with S on the LHS.

Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity
● Repeated Substructure
● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

27

Parsing Ambiguity
● Lexical Ambiguity:
● Book/NN → I left a book on the table.
● Book/VB → Book that flight.

● Structural Ambiguity

28

Attachment Ambiguity
“One morning, I shot an elephant in my pajamas.
How he got into my pajamas, I’ll never know.” — Groucho Marx

29

Attachment Ambiguity

30

S

NP

Pronoun

I

VP

Verb

shot

NP

Det

an

Nominal

Nominal

Noun

elephant

PP

in my pajamas

S

NP

Pronoun

I

VP

VP

Verb

shot

NP

Det

an

Nominal

Nominal

Noun

elephant

PP

in my pajamas

“We saw the Eiffel Tower flying to Paris”

31

Coordination Ambiguity:

32

NP

JJ

old

NNS

NNS

men

CONJ

and

NNS

women

NP

NP

JJ

old

NNS

men

CONJ

and

NP

women

[old men] and [women] [old [men and women]]
(Only the men are old) (Both the men and women are old)

“old men and women”

Local vs. Global Ambiguity
● Local ambiguity:
● Ambiguity that cannot contribute to a full, valid parse
● e.g. Book/NN in “Book that flight”

● Global ambiguity
● Multiple valid parses

33

Why is Ambiguity a Problem?
● Local ambiguity:
● increased processing time

● Global ambiguity:
● Would like to yield only “reasonable” parses
● Ideally, the one that was intended*

34

Solution to Ambiguity?
●Disambiguation!
● Different possible strategies to select correct interpretation:

35

● Some prepositional structs more likely to attach high/low
● John was thought to have been seen by Mary
● Mary could be doing the seeing or thinking — seeing more likely

Disambiguation Strategy: 
Statistical

36

VP

... V

thought

VP

to have been seen

PP

by Mary

VP

... V

thought

VP

IP

to have been

VP

V

seen

PP

by Mary

● Some phrases more likely overall
● [old [men and women]] is a more common construction than [old men] and

[women]

Disambiguation Strategy: 
Statistical

37

NP

JJ

old

NNS

NNS

men

CONJ

and

NNS

women

NP

NP

JJ

old

NNS

men

CONJ

and

NP

women
>

Disambiguation Strategy: 
Semantic

● Some interpretations we know to be semantically impossible
● Eiffel tower as subject of fly

38

Disambiguation Strategy: 
Pragmatic

● Some interpretations are possible, unlikely given world knowledge
● e.g. elephants and pajamas

39

Incremental Parsing and Garden Paths
● Idea: model left-to-right nature of (English) text

● Problem: “garden path” sentences

40

https://www.reuters.com/article/us-sport-california-education/california-to-let-college-athletes-be-paid-in-blow-to-ncaa-rules-idUSKBN1WF1SR

Disambiguation Strategy: 

!
● Alternatively, keep all parses
● (Might even be the appropriate action for some jokes)

41

Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity
● Repeated Substructure
● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

42

Repeated Work
● Search (top-down/bottom-up) both lead to repeated substructures
● Globally bad parses can construct good subtrees
● …will reconstruct along another branch
● No static backtracking can avoid

● Efficient parsing techniques require storage of partial solutions

● Example: a flight from Indianapolis to Houston on TWA

43

Shared Sub-Problems

44

NP

Det

a

Nominal

Noun

flight…

Shared Sub-Problems

45

NP

Det

a

Nominal

Nominal

Noun

flight

PP

from Indianapolis…

NP

Det

a

Nominal

Nominal

Nominal

Noun

flight

PP

from Indianapolis

PP

to Houston…

Shared Sub-Problems

46

Shared Sub-Problems

47

NP

Det

a

Nominal

Nominal

Nominal

Nominal

Noun

flight

PP

from Indianapolis

PP

to Houston

PP

on TWA

Parsing Challenges
● Recap: Parsing-as-Search

● Parsing Challenges
● Ambiguity
● Repeated Substructure
● Recursion

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

48

Recursion
● Many grammars have recursive rules
● S → S Conj S

● In search approaches, recursion is problematic
● Can yield infinite searches
● Top-down especially vulnerable

49

Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

50

Dynamic Programming
● Challenge:
● Repeated substructure → Repeated Work

● Insight:
● Global parse composed of sub-parses
● Can record these sub-parses and re-use

● Dynamic programming avoids repeated work by recording the
subproblems
● Here, stores subtrees

51

Parsing with Dynamic Programming
● Avoids repeated work

● Allows implementation of (relatively) efficient parsing algorithms
● Polynomial time in input length
● Typically cubic (n3) or less

● Several different implementations
● Cocke-Kasami-Younger (CKY) algorithm
● Earley algorithm
● Chart parsing

52

Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

53

Grammar Equivalence and Form
● Weak Equivalence
● Accepts same language
● May produce different structures

● Strong Equivalence
● Accepts same language
● Produces same structures

54

Grammar Equivalence and Form
● Reason?
● We can create a weakly-equivalent grammar that allows for greater efficiency
● This is required by the CKY algorithm

55

Chomsky Normal Form (CNF)
● Required by CKY Algorithm

● All productions are of the form:
● A → B C
● A → a

● Most of our grammars are not of this form:
● S → Wh-NP Aux NP VP

● Need a general conversion procedure

56

CNF Conversion
1) Hybrid productions:

INF-VP → to VP

2) Unit productions:
A → B

3) Long productions:
A → B C D …

57

CNF Conversion: 
Hybrid Productions

● Hybrid production:
● Replace all terminals with dummy non-terminal
● INF-VP → to VP
● INF-VP → TO VP
● TO → to

58

CNF Conversion: 
Unit Productions

● Unit productions:
● Rewrite RHS with RHS of all derivable, non-unit productions
● If A ⇒⃰ B and B → w, add A → w
● [A ⇒⃰ B: B is reachable from A by a sequence of unit productions]

● Nominal → Noun, Noun → dog
● Nominal → dog
● Noun → dog

59

CNF Conversion: Long Productions
● Long productions

● Introduce unique nonterminals, and spread over rules 
 
 

60

S → Aux NP VP
S → X1 VP X1 → Aux NP

CNF Conversion
1) Convert terminals in hybrid rules to dummy non-terminals

2) Convert unit productions

3) Binarize long production rules

61

62

ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

63

ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

64

ℒ1 Grammar ℒ1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Roadmap
● Recap: Parsing-as-Search

● Parsing Challenges

● Strategy: Dynamic Programming

● Grammar Equivalence

● CKY parsing algorithm

65

CKY Parsing
● (Relatively) efficient parsing algorithm

● Based on tabulating substring parses to avoid repeat work

● Approach:
● Use CNF Grammar
● Build an (n + 1) × (n + 1) matrix to store subtrees
● Upper triangular portion
● Incrementally build parse spanning whole input string

66

CKY Matrix

67

[3,4] [3,5]

[0,5][0,2] [0,3]

[1,4]

[0,1] [0,4]

[2,5]

[1,3]

[2,3]

[4,5]

[2,4]

[1,5][1,2]

Book the flight through Houston

CKY Matrix

68

[3
,4]

[3
,5]

[0
,5]

[0
,2]

[0
,3]

[1
,4]

[0
,1]

[0
,4]

[2
,5]

[1
,3]

[2
,3]

[4
,5]

[2
,4]

[1
,5]

[1
,2]

Book the flight through Houston

CKY Matrix

69

Book the flight through Houston
[3
,4]

[3
,5]

[0
,5]

[0
,2]

[0
,3]

[1
,4]

[0
,1]

[0
,4]

[2
,5]

[1
,3]

[2
,3]

[4
,5]

[2
,4]

[1
,5]

[1
,2]

0 1 2 3 4 5

CKY Matrix

70

Book the flight through Houston
[3
,4]

[3
,5]

[0
,5]

[0
,2]

[0
,3]

[1
,4]

[0
,1]

[0
,4]

[2
,5]

[1
,3]

[2
,3]

[4
,5]

[2
,4]

[1
,5]

[1
,2]

0 1 2 3 4 5

Dynamic Programming in CKY
● Key idea:
● for i < k < j
● …and a parse spanning substring [i, j]
● There is a k such that there are parses spanning [i, k] and [k, j]
● We can construct parses for whole sentences by building from these partial

parses

● So to have a rule A → B C in [i, j]
● Must have B in [i, k] and C in [k, j] for some i < k < j
● CNF forces this for all j > i + 1

71

HW #2
LING 571

Deep Processing Techniques for NLP
October 2, 2019

72

Goals
● Begin development of CKY parser

● First stage: Conversion to CNF
● Develop Representation for CFG
● Manipulate/Transform Grammars
● Investigate weakly equivalent grammars

73

Task
● Conversion:
● Read in grammar rules from arbitrary CFG
● Convert to CNF
● Write out new grammar

● Validation:
● Parse test sentences with original CFG
● Parse test sentences with CFG in CNF

74

Approach
● May use any programming language
● In keeping with course policies

● May use existing models/packages to represent rules
● Need RULE, RHS, LHS, etc
● NLTK, Stanford

● Conversion code must be your own

75

http://depts.washington.edu/uwcl/clms/course-policy.pdf

Data
● ATIS (Air Travel Information System) data
● Grammar provided in nltk-data
● Terminals in double-quotes
● the → “the”
● All required files on patas dropbox

● NOTE:
● Grammar is fairly large (~193K Productions)
● Grammar is fairly ambiguous (Test sentences may have 100 parses)
● You will likely want to develop against a smaller grammar

76

NLTK Grammars

77

>>> gr1 = nltk.data.load('grammars/large_grammars/
atis.cfg')

>>> gr1.productions()[0]  
ABBCL_NP -> QUANP_DTI QUANP_DTI QUANP_CD AJP_JJ NOUN_NP
PRPRTCL_VBG

>>> gr1.productions()[0].lhs()  
ABBCL_NP

>>> gr1.productions(lhs=gr1.productions()[1].lhs())  
[ADJ_ABL -> only, ADJ_ABL->such]

