Distributional Semantics

LING 571 — Deep Processing Methods in NLP November 4, 2019 Shane Steinert-Threlkeld

Walking the Walk

= Chomsky!

Punny Department

Recap: What is a word?

- Acoustically or orthographically similar \rightarrow can have different meanings!
- Acoustically or orthographically different \rightarrow can have similar meanings!

Recap: What is a word?

- Words can also have relationships that cover:
 - Different *shades* of meaning
 - *Part-Whole* relationships

Recap: What is a word?

- For now, we will set aside homonyms
 - (Specifically, *homographs*)
- Investigate word meaning as we can model it as (dis-)similarity

- "You shall know a word by the company it keeps!" (Firth, 1957)
 - A bottle of *tezgüino* is on the table.
 - Everybody likes tezgüino.
 - *Tezgüino* makes you drunk.
 - We make *tezgüino* from corn.
- Tezquino; corn-based alcoholic beverage. (From Lin, 1998a)

- How can we represent the "company" of a word?
- How can we make similar words have similar representations?

Vectors: A Refresher

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$
- What if we thought of each dimension as "quantity" of a word, rather than an arbitrary dimension?

Vectors: A Refresher

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$
- What if we thought of each dimension as "quantity" of a word, rather than an arbitrary dimension?

W UNIVERSITY of WASHINGTON

11

Vectors: A Refresher

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$
- What if we thought of each dimension as "quantity" of a word, rather than an arbitrary dimension?

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$
- What if we thought of each dimension as "quantity" of a word, rather than an arbitrary dimension?

- A vector is a list of numbers
- Each number can be thought of as representing a "dimension"
 - $\vec{a} = \langle 2, 4 \rangle$
 - $\vec{b} = \langle -4,3 \rangle$
- What if we thought of each dimension as "quantity" of a word, rather than an arbitrary dimension?

Vector Space: Documents

count of a particular word

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	I	I	8	15
soldier	2	2	12	36
fool	37	58		5
clown	5	117	0	0

- We can represent documents as vectors, with each dimension being a
 - Shakespeare Plays x Counts of Words

Vector Space: Documents

count of a particular word

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	I	I	8	Ι5
soldier	2	2	12	36
fool	37	58	I	5
clown	5	117	0	0

- We can represent documents as vectors, with each dimension being a
 - Shakespeare Plays x Counts of Words

Vector Space: Documents

count of a particular word

J&M 3rd ed, 6.3.1 [link]

• We can represent documents as vectors, with each dimension being a

Vector Space: Words

• Find thematic clusters for *words* based on words that occur *around* them.

- representations
 - 'Company' = context
- Word represented by context feature vector
 - Many alternatives for vector
- Initial representation:
 - 'Bag of words' feature vector
 - Feature vector length N, where N is size of vocabulary
 - f_i +=1 if word_i within window size w of word

Represent 'company' of word such that similar words will have similar

The Paulus company was founded in 1938. Since those days the product range has been the subject of constant expansions and is brought up continuously to correspond with the state of the art. We're engineering, manufacturing and commissioning worldwide ready-to-run plants packed with our comprehensive know-how. Our Product Range includes pneumatic conveying systems for carbon, carbide, sand, lime and many others. We use reagent injection in molten metal for the... Industrial Example

Label the First Use of "Plant"

plant: (and: I, of: I)

+2

plant: (and: I, animal: I, kind: I, of: I)

There are more kinds of plants and animals in the rainforests than anywhere else on Earth. Over half of the millions of known species of plants and animals live in the rainforest. Many are found nowhere else. There are even plants and animals in the rainforest that we have not yet discovered.

-3

plant: (and: I, animal: I, in: I, kind: I, more: I, of: I)

There are more kinds of plants and animals in the rainforests than anywhere else on Earth. Over half of the millions of known species of plants and animals live in the rainforest. Many are found nowhere else. There are even plants and animals in the rainforest that we have not yet discovered.

+3

plant: (and: I, animal: I, are: I, in: I, kind: I, more: I, of: I, the: I)

+4

-5

There are more kinds of plants and animals in the rainforests than anywhere else on Earth. Over half of the millions of known species of plants and animals live in the rainforest. Many are found nowhere else. There are even plants and animals in the rainforest that we have not yet discovered.

plant: (and: I, animal: I, are: I, in: I, kind: I, more: I, of: I, rainforest: I, the: I, there: I)

plant: (and: I, animal: 2, are: I, in: I, kind: I, more: I, of: I, rainforest: I, the: I, there: I, species: I)

plant: (and: I, animal: 3, are: 2, in: I, kind: I, more: I, of: I, rainforest: I, the: I, there: I, species: I)

plant: (and: 1, animal: 3, are: 2, in: 1, kind: 1, more: 1, of: 1, rainforest: 2, the: 1, there: 1, species: 1, nowhere: 1)

plant: (and: 1, animal: 3, are: 2, in: 1, kind: 1, more: 1, of: 1, rainforest: 2, the: 1, there: 1, species: 1, nowhere: 1)

Context Feature Vector

	aardvark	•••	computer	data	pinch	result	sugar
apricot	0	•••	0	0	I	0	I
pineapple	0	•••	0	0	I	0	I
digital	0	•••	2	I	0	I	0
information	0	•••		6	0	4	0

Distributional Similarity Questions What is the right neighborhood?

How should we weight the features?

How can we compute the similarity between vectors?

Similarity "Neighborhood"

- 1. Fixed window
 - How many words in the neighborhood?
 - +/- 500 words: 'topical context'
 - +/- 1 or 2 words: collocations, predicate-argument

- 2. Only words in some grammatical relation (Hindle, 1990)
 - Parse text (dependency)
 - Include *subj-verb*; *verb-obj*; *adj-mod*
 - $N \times R$ vector: word \times relation

Similarity "Neighborhood": Fixed Window

- Same corpus, different windows
 - British National Corpus (BNC)
 - Nearest neighbors of "dog"
- 2-word window:
 - Cat, horse, fox, pet, rabbit, pig, animal, mongrel, sheep, pigeon
- 30-word window:
 - Kennel, puppy, pet, terrier, Rottweiler, canine, cat, to bark, Alsatian

Similarity "Neighborhood": **Grammatical Relations**

- Build a vector from dependency triples: (Lin, 1998)
 - $(w_1 \text{ dep}_rel w_2)$

Dependency vector for "cell," counts from 64M word corpus.

"Neighborhood": Window vs. Grammatical Relations

- Grammatical relations:
 - Richer representation
 - Much more POS information
- Window:
 - Only need text!
 - Scales very, very well. (Maybe too well.)
 - Adding explicit supervision from parsers often doesn't help dramatically

Distributional Similarity Questions

What is the right neighborhood?

How should we weight the features?

How can we compute the similarity between vectors?

Weighting Features: Binary vs. Nonbinary?

- Binary?
 - Minimally informative
- Frequency
 - Or rather, probability: $assoc_{prob}(w, f) = P(f|w)$
 - ...but how do we know which words are informative?
 - the, it, they not likely to help differentiate target word

• Can't capture intuition that frequent features more indicative of relationship.

• PMI is measure of how often two events x and y occur, vs. expected frequency if they were independent (Fano, 1961)

 $PMI(x, y) = \log_2 \frac{P(x, y)}{P(x) \cdot P(y)}$

- We can formulate for word/feature occurrence: $assoc_{PMI}(w,f) = \log_2 \frac{P(w,f)}{P(w) \cdot P(f)}$
- Generally only use positive values
 - Negatives inaccurate unless corpus huge
- Can also rescale/smooth context values

Weighting Features: (Positive) Pointwise Mutual Information

 $assoc_{PMI}(w,f)$

probability of feature f relating *i* to *j*

probability of feature f relating *i* to anything

 $PPMI_{ij} = \max$

$$) = \log_2 \frac{P(w, f)}{P(w) \cdot P(f)}$$

$$\frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i}}$$

probability of feature f relating anything to j

$$\alpha(\log_2\frac{p_{ij}}{p_{i*}\cdot p_{*j}},0)$$

Get (non-negative) ratio

Weighting Features: (Positive) Pointwise Mutual Information

• For pure word co-occurrence, feature f is the colocated word.

• Total words (sum of whole table) = **19**

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0	l	0	l
pineapple	0	0	0	I	0	I
digital	0	2		0	I	0
information	0		6	0	4	0

- Total words (sum of whole table) = 19
 - P(w), where w is information = 11/19 = .579

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0		0	I
pineapple	0	0	0	I	0	I
digital	0	2		0		0
information	0		6	0	4	0

- Total words (sum of whole table) = 19
 - P(w), where w is information = 11/19 = .579
 - P(f), where f is data = 7/19 = .368

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0	I	0	I
pineapple	0	0	0	I	0	I
digital	0	2	I	0	I	0
information	0	Ι	6	0	4	0

- Total words (sum of whole table) = 19
 - P(w), where w is information = 11/19 = .579
 - P(f), where f is data = 7/19 = .368
 - P(w,f), where (w,f) is (information, data) = 6/19 = .316

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0		0	I
pineapple	0	0	0	I	0	I
digital	0	2		0	Ι	0
information	0		6	0	4	0

Weighting Features: **Pointwise Mutual Information** $PPMI_{assoc} = \log_2 \frac{P(w, f)}{P(w) \cdot P(f)}$ $= \log_2 \frac{0.316}{0.579 \cdot 0.368}$ = 0.568

- Total words (sum of whole table) = 19
 - P(w), where w is information = 11/19 = .579
 - P(f), where f is data = 7/19 = .368
 - P(w,f), where (w,f) is (information, data) = 6/19 = .316

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0	I	0	I
pineapple	0	0	0	I	0	I
digital	0	2	I	0	I	0
information	0	Ι	6	0	4	0

PPMI re-scaling

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context) 4997	5673	473	512	61	11716
Figure 6.9	Co-occurrence cou	ints for fou	r words in	5 contex	ts in the Wi	kipedia corpus,
together with words/contexts	the marginals, pr matter.	etending fo	r the purp	ose of th	is calculatio	n that no other

J&M 3rd ed. <u>sec. 6.7</u>

PPMI re-scaling

	computer	data	result	pie	sugar	
cherry	0	0	0	4.38	3.30	
strawberry	0	0	0	4.10	5.51	
digital	0.18	0.01	0	0	0	
information	0.02	0.09	0.28	0	0	

Figure 6.11 negative values by zero.

I&M 3rd ed. <u>sec. 6.7</u>

The PPMI matrix showing the association between words and context words, computed from the counts in Fig. 6.10. Note that most of the 0 PPMI values are ones that had a negative PMI; for example PMI(*cherry*, *computer*) = -6.7, meaning that *cherry* and *computer* co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace

- Downside:
 - PPMI favors rare events
- Solutions:
 - Change the P(f) to be raised to the power of α
 - Increases the probability assigned to rare contexts
 - Laplace smoothing (add-n)

Distributional Similarity Questions

What is the right neighborhood?

How should we weight the features?

How can we compute the similarity between vectors?

Vector Distances: Manhattan & Euclidean λΤ

• Manhattan Distance

- (Distance as cumulative horizontal + vertical moves)
- Euclidean Distance

$$dist_{euclidean} = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

• Too sensitive to extreme values

$$dist_{manhattan} = (\vec{x}, \vec{y}) = \sum_{i=1}^{N} |x_i - y_i|$$

- vertical moves)

Vector Similarity: Dot Product

• Produces real number scalar from product of vectors' components

• Biased toward *longer* (larger magnitude) vectors • In our case, vectors with fewer zero counts

$$sim_{dot-product}(\vec{v},\vec{w}) = \vec{v}\cdot\vec{w} = \sum_{i=1}^N v_i\times w_i$$

Vector Similarity: Cosine

- If you normalize the dot product for vector magnitude...
- ...result is same as cosine of angle between the vectors.

Sample Results

- Based on Lin dependency model

 - Hope (N): optimism, chance, expectation, prospect, dream, desire, fear • Hope (V): would like, wish, plan, say, believe, think

 - Brief (N): legal brief, affidavit, filing, petition, document, argument, letter • **Brief (A)**: lengthy, hour-long, short, extended, frequent, recent, short-lived, prolonged, week-long

- We can build feature vectors to represent context of a word
- These features could be: 1. Occurs before *drunk* 2. Occurs after *bottle* 3. Is direct object of *likes* 4. Is direct object of *make*

	1
tezgüino	I -
tequila	I
apricots	0
pizza	0

Recap

- A. A bottle of *tezgüino* is on the table.
- B. Everybody likes *tezgüino*.
- C. Tezgüino makes you drunk.
- D. We make *tezgüino* from corn.

2	3	4
	I	I
	I	I
0	I	0
0	I	I

Recap

- These feature vectors can be as simple as co-occurrence
- ... for vocabulary V
 - ... for each element i
 - is word v_i within window w of target?

Context matrix for *tezgüino* with w=3

- Intuition:
 - similarities

	arts	boil	data	function	large	sugar	summarized	water
Apricot	0	I	0	0	I	I	0	I
Pineapple	0	I	0	0	I	I	0	I
Digital	0	0	I	Ι	Ι	0	l	0
Information	0	0	I	Ι	Ι	0	I	0

Recap

• These co-occurrence vectors should be able to tell us something about words'

Problem: Sparse Vectors!

- Big problem:
 - The vast majority of word pairs will be zero!
 - This leads to very sparse vectors.
- In the exercise:
 - (*election*, *primary*) is 2
 - (*election, midterm*) is 0
- ...how can we generalize better?

Problem: Sparse Vectors!

• Term x document:

	cl	c2	c3	c4	c5	ml	m2	m3	m4
human	I	0	0		0	0	0	0	0
interface	I	0		0	0	0	0	0	0
computer			0	0	0	0	0	0	0
user	0			0		0	0	0	0
system	0	I		2	0	0	0	0	0
response	0	I	0	0	I	0	0	0	0
time	0	I	0	0	I	0	0	0	0
EPS	0	0	I	I	0	0	0	0	0
survey	0	I	0	0	0	0	0	0	I
trees	0	0	0	0	0	I	I	I	0
graph	0	0	0	0	0	0	I	I	I
minors	0	0	0	0	0	0	0	I	I

