
Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Rabin’s Tree Theorem and Applications

Shane Steinert-Threlkeld

November 20, 2013

1 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Plan

1 Introduction
Explaining Rabin’s Theorem
A Perspective on Finite Automata

2 Infinite Automata and S1S
The Warm-up: S1S
Infinite Automata
Decidability of S1S

3 Infinite Tree Automata and S2S
Infinite Tree Automata
Closure Under Complement
Decidability of S2S

4 Applications
Decidability of SωS
Decidability of Modal Logics
References

2 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

The Main Idea

In this talk, we will do two main things:

1 Prove Rabin’s Tree Theorem

2 Show how to use this theorem to prove the decidability of
other logics.

To do (1), we will introduce infinite automata both on strings and
on trees.

3 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Explaining Rabin’s Theorem

Rabin’s Tree Theorem

ε

0

00

...
...

01

...
...

1

10

...
...

11

...
...

Theorem 1.1 (Rabin [1969])

The monadic second-order theory of the infinite binary tree is
decidable.

4 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Explaining Rabin’s Theorem

The Infinite Binary Tree

Theorem 1.2 (Rabin [1969])

The monadic second-order theory of the infinite binary tree is
decidable.

The infinite binary tree is the structure

T 2 = ({0, 1}∗ , s0, s1)

of all finite sequences of 0s and 1s where

s0 (w) = w0

s1 (w) = w1

are the two successor functions. We use ε to denote the empty
sequence.

5 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Explaining Rabin’s Theorem

Monadic Second-Order Logic

Theorem 1.3 (Rabin [1969])

The monadic second-order theory of the infinite binary tree is
decidable.

Monadic second-order logic extends first-order logic with variables
for and quantification over monadic predicates. That is, we add
atomic formulas of the form

Xx

and quantified formulas of the form

∃Xϕ

where X will be interpreted as a subset of the domain of discourse.

6 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Explaining Rabin’s Theorem

Monadic Second-Order Theories

Theorem 1.4 (Rabin [1969])

The monadic second-order theory of the infinite binary tree is
decidable.

The monadic second-order theory of a structure A is the set of all
monadic second-order sentences (in the appropriate signature) ϕ
such that A |= ϕ.
So, the monadic second-order theory of the infinite binary tree is
the set of all monadic second-order sentences ϕ such that T2 |= ϕ.
We call this theory S2S.

7 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Explaining Rabin’s Theorem

Decidability

Theorem 1.5 (Rabin [1969])

The monadic second-order theory of the infinite binary tree is
decidable.

The subject of this whole course. Intuitively, there is an algorithm
that, when given a sentence ϕ, answers “yes” or “no” depending
on whether ϕ ∈ S2S or not.
Slightly more formally, let

S2 = {n ∈ N | n = #ϕ and T2 |= ϕ}

Then we have that χS2 is a recursive function.

8 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0 q1 q1

q0start q1

1

1

0 0

/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Example

A = (ω � 5, s):
0 1 2 3 4

word: 1 1 0 1 0

run: q0 q1 q0 q0 q1 q1

q0start q1

1

1

0 0

/∈ F/∈ F

9 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Regular Languages

Recall that finite automata (whether deterministic or
non-deterministic) recognize the regular languages. Given an
alphabet Σ, the regular languages in Σ are the smallest collection
of elements of P (Σ∗) s.t.

∅ is regular

{a} is regular for each a ∈ Σ

A ∪ B, A · B and A∗ are regular if A,B are regular

One can show that the regular languages are also closed under
intersection and complement (from which closure under relative
complement follows). Note that {ε} = ∅∗ is regular.

10 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Lessons

Although I will assume familiarity with the basics of finite
automata theory, I wanted to do the example that way to
emphasize a few points which will make generalizing to infinite
objects and trees easier to understand:

Words are just labelings of a particular structure

Runs of an automaton are labelings of that same structure
with states, subject to

ri+1 ∈ δ (wi , ri )

A run is accepted iff a certain property holds of it; in the finite
automaton case:

rlen(r) ∈ F

11 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Lessons

Although I will assume familiarity with the basics of finite
automata theory, I wanted to do the example that way to
emphasize a few points which will make generalizing to infinite
objects and trees easier to understand:

Words are just labelings of a particular structure

Runs of an automaton are labelings of that same structure
with states, subject to

ri+1 ∈ δ (wi , ri )

A run is accepted iff a certain property holds of it; in the finite
automaton case:

rlen(r) ∈ F

11 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Lessons

Although I will assume familiarity with the basics of finite
automata theory, I wanted to do the example that way to
emphasize a few points which will make generalizing to infinite
objects and trees easier to understand:

Words are just labelings of a particular structure

Runs of an automaton are labelings of that same structure
with states, subject to

ri+1 ∈ δ (wi , ri )

A run is accepted iff a certain property holds of it; in the finite
automaton case:

rlen(r) ∈ F

11 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

A Perspective on Finite Automata

Finite Automaton Lessons

Although I will assume familiarity with the basics of finite
automata theory, I wanted to do the example that way to
emphasize a few points which will make generalizing to infinite
objects and trees easier to understand:

Words are just labelings of a particular structure

Runs of an automaton are labelings of that same structure
with states, subject to

ri+1 ∈ δ (wi , ri )

A run is accepted iff a certain property holds of it; in the finite
automaton case:

rlen(r) ∈ F

11 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Plan

1 Introduction
Explaining Rabin’s Theorem
A Perspective on Finite Automata

2 Infinite Automata and S1S
The Warm-up: S1S
Infinite Automata
Decidability of S1S

3 Infinite Tree Automata and S2S
Infinite Tree Automata
Closure Under Complement
Decidability of S2S

4 Applications
Decidability of SωS
Decidability of Modal Logics
References

12 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

The Warm-up: S1S

Büchi’s Theorem

A = (ω, s):
0 1 2 3 4

· · ·

Let T1 = (ω, s) be the structure of the natural numbers and the
successor function. Denote the monadic second-order theory of
this structure by S1S. As a warm-up to Rabin’s theorem, we will
first prove:

Theorem 2.1 (Büchi [1962])

S1S is decidable.

13 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Preliminary Definitions

Any finite set Σ will be called an alphabet.
By Σω we denote the set of ω-sequences w = w0w1w2 . . . of
elements of Σ, i.e. functions w : ω → Σ.
For U ⊆ Σ∗, Uω is the set of ω-words u = u0u1u2 . . . s.t. ui ∈ U.
An ω-language in Σ is a subset of Σω.
Given an element w ∈ Σω, let

Inf (w) := {σ ∈ Σ | σ occurs infinitely many times in w}

14 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Büchi Automaton

Definition 2.2

A non-deterministic Büchi automaton for alphabet Σ is a tuple
A = (Q,Q0, δ,F ) where

Q is a finite set of states

Q0 ⊆ Q is the set of initial states

F ⊆ Q is the set of final states

δ : Q × Σ→ P(Q) is the transition function

A run of A on an ω-word w is a q ∈ Qω s.t. w0 ∈ Q0 and

qi+1 ∈ δ (qi ,wi )

A accepts w iff there is a run q of A on w s.t.

Inf (q) ∩ F 6= ∅

15 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Some Complexity Results

Given an automaton A,

L(A) = {w ∈ Σω | A accepts w}

I record here a few interesting complexity results; we need only
their decidability. The proofs run through connections with
temporal logics.

Theorem 2.3 (Sistla et al. [1987])

The emptiness problem for Büchi automata – given A, does
L(A) = ∅? – is Nlogspace-complete.

Theorem 2.4 (Vardi and Wolper [1994])

The universality problem for Büchi automata – given A, does
L(A) = Σω? – is Pspace-complete.

16 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

A Key Result

An ω-language L is called ω-regular iff it is of one of the forms:

Uω for a regular language U

UL for regular language A and ω-regular B

L ∪ L′ for L, L′ ω-regular

Theorem 2.5

L is ω-regular iff there is a non-deterministic Büchi automaton A
s.t. L = L(A).

We will soon prove the ⇒ direction as a series of closure lemmas.

17 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Note on Accepting Conditions

An automaton is determinstic if |Q0| = 1 and

|δ (q, σ) | = 1

for every q ∈ Q and σ ∈ Σ.
It’s well-known that deterministic finite automata are as powerful
as non-deterministic automata. This, however, is not true about
Büchi automata: there are non-deterministic Büchi automata
which accept languages not accepted by any deterministic Büchi
automaton.
There are other kinds of infinite automata – Rabin, Streett, Muller
– which differ just based on their acceptance conditions. All of
these also accept the ω-regular languages and, interestingly, have
equally powerful deterministic versions.

18 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Properties

Lemma 2.6

If U ⊆ Σ∗ is regular, then Uω is accepted by a n.d. Büchi
automaton.

Proof.

Because Uω = (U \ {ε})ω and U \ {ε} is regular if U is, we can
assume w.l.o.g. that ε /∈ U.
Let A be a finite automaton recognizing U with no transitions
leading into q0. (Because ε /∈ U, q0 /∈ F .) Now, let B be an
automaton identical to A, except without its final states, with
F = {q0} and all (q1, a, f ) transitions (for f ∈ F (A)) replaced by
(q1, a, q0) transitions.
(Helpful to draw a picture of this.)

19 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Properties (cont.)

Lemma 2.7

If U ⊆ Σ∗ is regular and L ⊆ Σω is ω-regular, then UL is accepted
by a n.d. Büchi automaton.

Proof.

Let A be a finite automaton accepting U and B a non-deterministic
Büchi automaton accepting L (our inductive hypothesis). Let C be
the disjoint union of A and B, with all (q, a, f ) transitions in A
replaced by transitions (q, a, q0) for each q0 ∈ Q0 (B).
(Again, draw a picture.)

20 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Properties (cont.)

Lemma 2.8

If L, L′ are ω-regular, then L ∪ L′ is accepted by a n.d. Büchi
automaton.

Proof.

Let A,A′ be non-deterministic Büchi automata accepting L and L′

repsectively. WLOG, assume Q (A) and Q (A′) are disjoint. Then,
simply take the union of all components to get an automaton
accepting L ∪ L′.

21 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Properties (cont.)

Lemma 2.9

If L, L′ are ω-regular, then L ∩ L′ is accepted by a n.d. Büchi
automaton.

Proof.

Let A,A′ be non-deterministic Büchi automata accepting L and L′

repsectively. WLOG, assume Q (A) and Q (A′) are disjoint. Let
C = (Q × Q ′ × {0, 1, 2} ,Q0 × Q ′0 × {0} , δ′′,F ′′) where

F ′′ = Q × Q ′ × {2}
δ′′
(
〈q, q′, i〉, a

)
:= δ (q, a)× δ′

(
q′, a

)
× {j} where

j = 1 i = 0 and q ∈ F

j = 2 i = 1 and q′ ∈ F ′

j = 0 i = 2

j = i otherwise

So: we start with the third component of the state being 0. Once
q ∈ F is reached, flipped to 1. Then, once q′ ∈ F ′ reached, flipped
to 2. Then, immediately back to 0. So, a state with third
component 2 (i.e. a state in F ′′ is reached infinitely often iff both
A and A′ reach final states infinitely often.

22 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement

To prove that the ω-regular languages are closed under
complement, we need two theorems:

Theorem 2.10 (Büchi)

L ⊆ Σω is ω-regular iff it can be represented as a finite union of
sets UV ω where U,V ⊆ Σ∗ are regular.

Let [X ]k denote the set of k-element subsets of a given set X .

Theorem 2.11 (Ramsey)

For every finite set M, k ∈ ω, and f : [ω]k → M, there is an
infinite X ⊆ ω s.t. f (x) = f (y) 3 M for all x , y ∈ [X ]k .

NB: k = 1 is the pigeonhole principle. We’ll use k = 2.

23 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement (cont.)

Theorem 2.12

If L is ω-regular, then so too is L := Σω \ L.

Strategy: Given an automaton A over Σ, define a congruence
relation (an equivalence relation compatible with concatenation)
∼A over Σ∗. Show that the equivalence classes are regular
languages. Then, represent L(A) and L(A) as finite unions of sets
UV ω where U and V are ∼A-equivalence classes. Then use the
previous theorem of Büchi.

24 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement (cont.)

Define: q
w ,F→ q′ iff there is a run of A on w from q to q′ s.t. at

least one state of the run is in F .
Now, for u, v ∈ Σ∗, define u ∼A v iff for all states q, q′ of A:

q
u→ q′ ⇔ q

v→ q′ and q
u,F→ q′ ⇔ q

v ,F→ q′

25 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement (cont.)

Lemma 2.13

1 ∼A is a congruence relation with a finite number of
equivalence classes (‘of finite index’)

2 Each ∼A-class is a regular langauge

Proof.

(1): clearly a congruence. Equivalence classes correspond to pairs
of functions w1 : Q → P(Q) and w2 : Q × Q → P(Q) of which
there are finitely many.

(2): define Wqq′ =
{
w ∈ Σ∗ | q w→ q′

}
and similarly for W E

qq′ .

Both are clearly regular. For w ∈ Σ∗, we have that

[w ]∼A
=
⋂{

Wqq′ ,W
E
qq′ ,Wqq′ ,W

E
qq′ | w ∈ each

}
which is regular. 26 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement (cont.)

Say that ∼ an equivalence relation over Σ∗ saturates an
ω-language L if for any pair of equivalence classes U and V ,

UV ω ∩ L 6= ∅ ⇒ UV ω ⊆ L

Note: if ∼ saturates L, it also saturates L.

27 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement (cont.)

Lemma 2.14

Let A be a n.d. Büchi automaton. Then ∼A saturates L(A).

Proof.

Let U,V be ∼A equiv classes and suppose UV ω ∩ L(A) 6= ∅. Then
there is w = uv1v2 · · · ∈ UV ω ∩ L(A) where u ∈ U, vi ∈ V \ {ε}.
Because w ∈ L(A), there is a sequence of states (qi )i∈ω s.t.
q0 ∈ Q0 and

q0
u→ q1

v1→ q2
v2→ q3

v3→ · · ·

and for infinitely many i , qi
vi ,F→ qi+1. Now, take

w ′ = u′v ′1v
′
2 · · · ∈ UV ω. We have u ∼A u′ and vi ∼A v ′i . Thus

q0
u′→ q1

v ′
1→ q2

v ′
2→ q3

v ′
3→ · · · and for infinitely many i , qi

v ′
i ,F→ qi+1.

Hence w ′ ∈ L(A), as required.

28 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement (cont.)

Lemma 2.15

Let ∼ be a congruence relation over Σ∗ of finite index. Then, for
every ω-word w, there are ∼-classes U,V s.t. w ∈ UV ω.

Proof.

Define fw : [ω]2 → Σ∗/ ∼ by fw ({i , j}) = [wi . . .wj−1]∼. Since ∼
is of finite index, by Ramsey’s theorem, there is an infinite set
X ⊆ ω s.t. all words wk . . .wl−1 for k, l ∈ X are ∼-equiv. In
particular, there is an infinite sequence i0 < i1 < · · · ∈ X s.t. all
segments wij . . .wij+1

belong to the same ∼-class. Let V be that
class, and let U be the ∼-class of w0 . . .wi0−1 (= fw ({0, i0})).
Then w ∈ UV ω.

29 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Automata

Closure Under Complement (cont.)

Theorem 2.16

If L is ω-regular, then so too is L := Σω \ L.

Proof.

Given A accepting L, ∼A saturates L(A) and L(A) (two lemmas
previous). By the previous lemma,

L(A) =
⋃
{UV ω | U,V ∼A -classes and UV ω ∩ L(A) = ∅}

Because ∼A has finite index, this is a finite union. By the earlier
(unproved) theorem of Büchi, it follows that L(A) is ω-regular.

30 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S1S

The Main Theorem of This Section

Theorem 2.17 (Büchi [1962])

S1S is decidable.

Strategy: associate every formula ϕ (X1, . . . ,Xn) with a Büchi
automaton Aϕ and an ω-word w (over a fairly complicated
alphabet) s.t. the formula holds in T1 iff Aϕ accepts w .

31 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S1S

The ω-word

Let V1, . . . ,Vn ⊆ ω. We define an ω-word W (V1, . . . ,Vn) over
the alphabet {0, 1}n by

wij = χVj
(i)

for i ∈ ω, j ∈ {1, . . . , n}. As an example: let V1 be the odds and
V2 the evens. We can visualize W (V1,V2) as:

w0 w1 w2 w3 . . .
0 1 0 1 . . .
1 0 1 0 . . .

32 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S1S

The Main Theorem

Theorem 2.18

For every formula ϕ (X1, . . . ,Xn) in the monadic logic of one
successor, one can effectively construct a n.d. Büchi automaton
Aϕ in alphabet {0, 1}n such that for all V1, . . . ,Vn ⊆ ω,

T1 |= ϕ [V1, . . . ,Vn] iff Aϕ accepts W (V1, . . . ,Vn)

The proof will be by induction on formulas. First, we reformulate
the language as a first-order langauge with binary relations ⊆ and
S . Variables range over subsets of ω, ⊆ has its usual interpretation
and S(U,V ) holds iff U = {m} and V = {m + 1} for some m ∈ ω.

33 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S1S

Base Case

Base case 1: ϕ is X ⊆ Y . We need an automaton that accepts all
ω-words over {0, 1}2 that do not contain the letter 10
(corresponding to an element in X but not Y ).

start

a 6= 10

10

all a

34 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S1S

Base Case

Base case 2: ϕ is S(X ,Y ). The automaton is:

start

00

10 01

00

35 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S1S

Inductive Step

The negation, disjunction, and conjunction cases follow from the
closure of the ω-regular languages under complement, union, and
intersection respectively.

Now consider ϕ
(
~Y
)

= ∃Xψ
(
X , ~Y

)
. By the IH, we have

Aψ = (Q,Q0, δ,F ) recognizing W (U, ~V ) whenever

T1 |= ψ
[
U, ~V

]
. Aϕ is just like Aψ except that it has transition

function
δ′ (q, ~a) = δ (q, 0~a) ∪ δ (q, 1~a)

Intuitively, Aϕ guesses a component for U and then runs Aψ.

36 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S1S

The Main Result

Thus, we have proved Theorem 2.18: For every formula
ϕ (X1, . . . ,Xn) in the monadic logic of one successor, one can
effectively construct a n.d. Büchi automaton Aϕ in alphabet
{0, 1}n such that for all V1, . . . ,Vn ⊆ ω,
T1 |= ϕ [V1, . . . ,Vn] iff Aϕ accepts W (V1, . . . ,Vn).

Corollary 2.19

S1S is decidable.

Proof.

A sentence ϕ can be put in prenex form ∃X1 . . .Xnψ. This is true
iff T1 |= ψ [V1, . . . ,Vn] for some assignment of Vi to Xi . By the
above theorem, this holds iff L (Aψ) 6= ∅, which we saw earlier is
decidable.

37 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Plan

1 Introduction
Explaining Rabin’s Theorem
A Perspective on Finite Automata

2 Infinite Automata and S1S
The Warm-up: S1S
Infinite Automata
Decidability of S1S

3 Infinite Tree Automata and S2S
Infinite Tree Automata
Closure Under Complement
Decidability of S2S

4 Applications
Decidability of SωS
Decidability of Modal Logics
References

38 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Rabin’s Theorem

ε

0

00

...
...

01

...
...

1

10

...
...

11

...
...

Theorem 3.1 (Rabin [1969])

S2S is decidable.

39 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Strategy

The strategy for proving Rabin’s Theorem resembles very closely
the strategy for Büchi’s decidability theorem.
First, we define automata which run on infinite trees (though we
won’t do so in full generality). Then, we prove that the emptiness
problem is decidable, various closure properties (again,
complementation will be the difficult one), and a theorem
associating such automata to formulas in the language of S2S.
Note that the method I will use, which runs through a Forgetful
Determinacy Theorem, is not Rabin’s original. This method
originates with Gurevich and Harrington [1982]. I will follow, with
some modifications, Börger et al. [1997].

40 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Tree Automata

A Σ-tree is a labeling T : {0, 1}∗ → Σ.

Definition 3.2

A Σ-tree automaton is a quadruple A = (Q,Q0, δ,F) where:

Q is a finite set of states

Q0 : Σ→ P(Q) is the initial table

δ : Q × Σ× {0, 1} → P (Q) is the transition function

F ⊆ P (Q) is the set of final collections of states

41 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Accepting Condition

To define the acceptance condition, we introduce a game Γ (A,T )
between the Automaton A and a player called Pathfinder P.
Automaton chooses q0 ∈ Q0 (T (ε)). The players alternate. At
odd numbered turns, Pathfinder chooses a direction dn ∈ {0, 1}.
Automaton chooses a state

qn+1 ∈ δ (qn,T (d0 . . . dn) , dn)

Together, these define an infinite sequence q0d0q1d1q2d2 . . . ,
called a play of the game. A finite prefix of a play is called a
position of the game.
Automaton wins a play iff Inf

(
(qi )i∈ω

)
∈ F .

The automaton A accepts T iff Automaton has a winning strategy
for Γ (A,T ).

42 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Preliminary Definitions

The node of a position p is Node(p) := (p2i+1)i≤len(p): the node
of the binary tree that is currently being played.

Given v ∈ {0, 1}∗ and Σ-tree T , the v-residue of T is the Σ-tree
Tv s.t. Tv (w) = T (vw).
Now, we define the latest appearance record LAR(p). LAR(ε) is a
list of all states in some order. Pathfinder does not change LAR:
LAR(pd) = LAR(p) for d ∈ {0, 1} and p a position where
Automaton has just moved. If p = wq for q ∈ Q, then
LAR(p) = rq where r is the result of removing q from LAR(w).
Intuitively: LAR(p) lists the states in p without repetition in order
of their latest appearance.
A strategy for either player in Γ (A,T ) is a function from positions
of that player to legal moves from that position (either states q or
directions d).

43 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Preliminary Definitions

The node of a position p is Node(p) := (p2i+1)i≤len(p): the node
of the binary tree that is currently being played.
Given v ∈ {0, 1}∗ and Σ-tree T , the v-residue of T is the Σ-tree
Tv s.t. Tv (w) = T (vw).

Now, we define the latest appearance record LAR(p). LAR(ε) is a
list of all states in some order. Pathfinder does not change LAR:
LAR(pd) = LAR(p) for d ∈ {0, 1} and p a position where
Automaton has just moved. If p = wq for q ∈ Q, then
LAR(p) = rq where r is the result of removing q from LAR(w).
Intuitively: LAR(p) lists the states in p without repetition in order
of their latest appearance.
A strategy for either player in Γ (A,T ) is a function from positions
of that player to legal moves from that position (either states q or
directions d).

43 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Preliminary Definitions

The node of a position p is Node(p) := (p2i+1)i≤len(p): the node
of the binary tree that is currently being played.
Given v ∈ {0, 1}∗ and Σ-tree T , the v-residue of T is the Σ-tree
Tv s.t. Tv (w) = T (vw).
Now, we define the latest appearance record LAR(p). LAR(ε) is a
list of all states in some order. Pathfinder does not change LAR:
LAR(pd) = LAR(p) for d ∈ {0, 1} and p a position where
Automaton has just moved. If p = wq for q ∈ Q, then
LAR(p) = rq where r is the result of removing q from LAR(w).
Intuitively: LAR(p) lists the states in p without repetition in order
of their latest appearance.

A strategy for either player in Γ (A,T ) is a function from positions
of that player to legal moves from that position (either states q or
directions d).

43 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Preliminary Definitions

The node of a position p is Node(p) := (p2i+1)i≤len(p): the node
of the binary tree that is currently being played.
Given v ∈ {0, 1}∗ and Σ-tree T , the v-residue of T is the Σ-tree
Tv s.t. Tv (w) = T (vw).
Now, we define the latest appearance record LAR(p). LAR(ε) is a
list of all states in some order. Pathfinder does not change LAR:
LAR(pd) = LAR(p) for d ∈ {0, 1} and p a position where
Automaton has just moved. If p = wq for q ∈ Q, then
LAR(p) = rq where r is the result of removing q from LAR(w).
Intuitively: LAR(p) lists the states in p without repetition in order
of their latest appearance.
A strategy for either player in Γ (A,T ) is a function from positions
of that player to legal moves from that position (either states q or
directions d).

43 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Forgetful Determinacy

The key theorem to the approach we take is:

Theorem 3.3 (Gurevich and Harrington [1982])

One of the players has a strategy f for winning Γ (A,T ) s.t. the
following ‘forgetfulness’ condition holds:
If p and q are positions from which the winner moves, such that
LAR(p) = LAR(q) and TNode(p) = TNode(q), then f (p) = f (q).

Proof.

Long and very hard. Börger et al. [1997], pp. 329-337 contains a
proof (of a slightly more general version) which follows Zeitman
[1994] and Yakhnis and Yakhnis [1990]’s improvements of the
original proof.

44 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Emptiness Problem

First, the key decidable problem that we will use later.

Theorem 3.4

Given a Σ-tree automaton A, it is decidable whether L(A) = ∅.

Proof.

Let B be the {0}-tree automaton with the same states and final
collection as A, but with Q ′0 (0) :=

⋃
a∈Σ Q0(a) and

δ′ (q, 0, i) :=
⋃

a∈Σ δ (q, a, i). Clearly, B accepts the unique
{0}-tree T iff A accepts some Σ-tree.
By Forgetful Determinacy, a player has a forgetful winning strategy
for Γ (B,T ). Let f1, . . . , fm be all of the forgetful strategies for
Automaton and g1, . . . , gn those for Pathfinder. (Why only finitely
many?) Plays eventually become periodic, so one can check each
fi against each gj to determine whether B accepts T .

45 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Infinite Tree Automata

Closure Properties

Using constructions very analogous to those for Büchi automata,
one can show that

Theorem 3.5

The class of languages accepted by Σ-tree automata are closed
under union.
Moreover, given a (Σ1 × Σ2)-tree automaton A, there is a Σ1-tree
automaton B that accepts T iff there is a Σ2-tree T ′ s.t. A
accepts (T ,T ′).

These will be the key inductive steps in a later proof, along with
closure under complement.

46 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Complementation Theorem

We now prove the very important

Theorem 3.6

Given a Σ-tree automaton A, one can effectively constructe
another one A s.t. A accepts T iff A rejects T . In other words,
L(A) = L(A).

47 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Preliminary Definitions

First, some prelminary definitions, then two lemmas.
Let T be a Σ-tree, and g any forgetful strategy for Pathfinder.
WLOG, assume g is determinstic (i.e. |g(p)| = 1 for all positions).
Let R be set of all a priori possible LARs for A, i.e. lists of states
containing each state at most once. Then, g can be viewed as
g : {0, 1}∗ × R → {0, 1} since Pathfinder only moves on nodes.

Call ∆ be the set of all functions h : R → {0, 1}. View g as a
∆-tree G where

G (w) = λr .g (w , r)

If we combine the labels of tree T and G , we have a (Σ×∆)-tree
denoted (T ,G ).

48 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Preliminary Definitions

First, some prelminary definitions, then two lemmas.
Let T be a Σ-tree, and g any forgetful strategy for Pathfinder.
WLOG, assume g is determinstic (i.e. |g(p)| = 1 for all positions).
Let R be set of all a priori possible LARs for A, i.e. lists of states
containing each state at most once. Then, g can be viewed as
g : {0, 1}∗ × R → {0, 1} since Pathfinder only moves on nodes.
Call ∆ be the set of all functions h : R → {0, 1}. View g as a
∆-tree G where

G (w) = λr .g (w , r)

If we combine the labels of tree T and G , we have a (Σ×∆)-tree
denoted (T ,G ).

48 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

First Lemma

Lemma 3.7

Given A, one can effectively construct a (Σ×∆)-tree automaton
B s.t. Pathfinder wins Γ (A,T ) via the forgetful strategy g iff
Automaton wins all plays of the game Γ (B, (T ,G )).

For non-empty r ∈ R, let last(r) := rlen(r) and let u(r , q) be the
LAR obtained from r by removing q and appending it to the end
(so last(u(r , q)) = q).

49 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Proof of Lemma 3.7

The construction: B = (R ∪ {win} ,Q ′0, δ′,F ′) where:

Q ′0(ah) = Q0(a)

R0 ∈ F ′ iff either win ∈ R0 or {last(r) | r ∈ R0} /∈ F
Transitions:

δ′ (win, ah, d) := win all a, h, d

δ′ (r , ah, d) :=

{
{win} h(r) 6= d

{u (r , q) | q ∈ δ (last(r), a, d)} h(r) = d

So: if Pathfinder ever deviates from strategy G – when h(r) 6= d ,
this automaton goes to state win and never leaves. As long as
Pathfinder plays strategy G , B simulares the old automaton A.

50 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Proof of Lemma 3.7 (cont.)

We show Pathfinder wins Γ (A,T ) with g iff Automaton always
wins Γ (B, (T ,G )).
⇒: If Pathfinder ever deviates from G , Automaton clearly wins. If
Pathfinder sticks to G , Automaton wins because the sequence of
states corresponds to a sequence of LARs of a winning play in A
for Pathfinder; these are exactly what is in F ′.
⇐: suppose Automaton A wins Γ (A,T ) with f against g . If
Automaton B plays f in Γ (B, (T ,G )), Pathfinder wins since the
sequence of states played here will have final components
corresponding to a winning collection in A.

51 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Second Lemma

Lemma 3.8

For every Σ-tree automaton A, one can effectively construct
another B which accepts a tree T iff Automaton wins all plays of
Γ (A,T ).

That Automaton wins all plays of Γ (A,T ) means that each path
(di ) ∈ {0, 1}ω satisfies:

(*) For all sequences (qi ) ∈ Qω s.t. q0 ∈ Q0 (T (ε)) and
qn+1 ∈ δ (qn,T (d0 . . . dn) , dn), Inf (qi ) ∈ F .

But (*) is expressible by an S1S-formula ϕ
(
X , ~Y

)
where X

encodes (di ) and ~Y encodes the sequence of labels (note: there
will be one Yi for each a ∈ Σ).

52 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Second Lemma

Lemma 3.8

For every Σ-tree automaton A, one can effectively construct
another B which accepts a tree T iff Automaton wins all plays of
Γ (A,T ).

That Automaton wins all plays of Γ (A,T ) means that each path
(di ) ∈ {0, 1}ω satisfies:

(*) For all sequences (qi ) ∈ Qω s.t. q0 ∈ Q0 (T (ε)) and
qn+1 ∈ δ (qn,T (d0 . . . dn) , dn), Inf (qi ) ∈ F .

But (*) is expressible by an S1S-formula ϕ
(
X , ~Y

)
where X

encodes (di ) and ~Y encodes the sequence of labels (note: there
will be one Yi for each a ∈ Σ).

52 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Second Lemma

Lemma 3.8

For every Σ-tree automaton A, one can effectively construct
another B which accepts a tree T iff Automaton wins all plays of
Γ (A,T ).

That Automaton wins all plays of Γ (A,T ) means that each path
(di ) ∈ {0, 1}ω satisfies:

(*) For all sequences (qi ) ∈ Qω s.t. q0 ∈ Q0 (T (ε)) and
qn+1 ∈ δ (qn,T (d0 . . . dn) , dn), Inf (qi ) ∈ F .

But (*) is expressible by an S1S-formula ϕ
(
X , ~Y

)
where X

encodes (di ) and ~Y encodes the sequence of labels (note: there
will be one Yi for each a ∈ Σ).

52 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Proof of Lemma 3.8

By Theorem 2.18, there is a n.d. Büchi automaton C in alphabet
{0, 1} × Σ that accepts the pair of d0d1d2 . . . and
T (ε)T (d0)T (d0d1) . . . iff they satisfy (*).

Now define the Σ-tree automaton B:

QB := QC

QB0(a) :=
⋃

q∈QC0

⋃
i∈{0,1} δC (q, ia)

δB (q, a, d) := δC (q, da)

FB := {X ⊆ QB | X ∩ FC 6= ∅}
Now, Automaton wins Γ (B,T ) iff for every (di ) chosen by
Pathfinder, T (ε) , d0T (d0) , d1T (d0d1) , . . . is accepted by C , iff
A wins all plays of Γ (A,T ).

53 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Proof of Lemma 3.8

By Theorem 2.18, there is a n.d. Büchi automaton C in alphabet
{0, 1} × Σ that accepts the pair of d0d1d2 . . . and
T (ε)T (d0)T (d0d1) . . . iff they satisfy (*).
Now define the Σ-tree automaton B:

QB := QC

QB0(a) :=
⋃

q∈QC0

⋃
i∈{0,1} δC (q, ia)

δB (q, a, d) := δC (q, da)

FB := {X ⊆ QB | X ∩ FC 6= ∅}

Now, Automaton wins Γ (B,T ) iff for every (di ) chosen by
Pathfinder, T (ε) , d0T (d0) , d1T (d0d1) , . . . is accepted by C , iff
A wins all plays of Γ (A,T ).

53 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Proof of Lemma 3.8

By Theorem 2.18, there is a n.d. Büchi automaton C in alphabet
{0, 1} × Σ that accepts the pair of d0d1d2 . . . and
T (ε)T (d0)T (d0d1) . . . iff they satisfy (*).
Now define the Σ-tree automaton B:

QB := QC

QB0(a) :=
⋃

q∈QC0

⋃
i∈{0,1} δC (q, ia)

δB (q, a, d) := δC (q, da)

FB := {X ⊆ QB | X ∩ FC 6= ∅}
Now, Automaton wins Γ (B,T ) iff for every (di ) chosen by
Pathfinder, T (ε) , d0T (d0) , d1T (d0d1) , . . . is accepted by C , iff
A wins all plays of Γ (A,T ).

53 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Closure Under Complement

Finishing Proof of Complementation

Now, we finish the proof of the Complimentation Theorem 3.6.
Given A, use Lemmas 3.7 and 3.8 to construct a
(Σ×∆)-automaton C that accepts (T ,G ) iff Pathfinder wins
Γ (A,T ) by strategy g .
Where C = (Q,Q0, δ,F), let D = (Q,Q ′0, δ

′,F) be the Σ-tree
automaton with

Q ′0 :=
⋃
b∈∆

Q0 (ab)

δ′ (q, a, d) :=
⋃
b∈∆

δ (q, ab, d)

D accepts a Σ-tree T iff there is a ∆-tree G s.t. C accepts (T ,G )
iff A rejects T .

54 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S2S

Proving Decidability

The strategy will be identical to the Büchi case. We start by
proving the analog of Theorem 2.18.
We reformulate S2S in a first-order langauge with binary predicates
⊆, S1, and S2 where variables range over subsets of {0, 1}∗. The
interpretation of ⊆ is standard, while Si (X ,Y ) iff X = {w} and
Y = {wi}.
Let Σ = {0, 1}. For every tuple V1, . . . ,Vn of subsets of {0, 1}∗,
we define a Σn-tree T (V1, . . . ,Vn) by

T (V1, . . . ,Vn) (w) := (χV1 (w) , . . . , χVn (w))

55 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S2S

Proof of Theorem 3.9

Our main theorem is:

Theorem 3.9

For every S2S-formula ϕ (X1, . . . ,Xn), one can effectively construct
a Σn-tree automaton Aϕ such that for all V1, . . .Vn ⊆ {0, 1}∗,

T2 |= ϕ [V1, . . . ,Vn] iff Aϕ accepts T (V1, . . . , vn)

This is proved, as before, by induction on ϕ.
Base case 1: ϕ is X ⊆ Y . Take the same construction as in
Theorem 2.18, where all transitions take place for both d ∈ {0, 1}.

56 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S2S

Proof of Theorem 3.9

Base case 2: ϕ is Si (X ,Y ). The automaton is a very slight
modification of the Büchi one:

start

00, both d

10, both d 01, i

00, both d

57 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S2S

Proof of Theorem 3.9

Inductive step: negation is given by the Complementation
Theorem 3.6. Disjunction and existential quantification were
asserted in Theorem 3.5. We here provide a construction for the
latter.
Consider ϕ = ∃Xψ

(
X , ~Y

)
. By the IH, we have a {0, 1}n+1-tree

automaton Aψ = (Q,Q0, δ,F) recognizing T
(
U, ~V

)
whenever

T2 |= ψ
[
U, ~V

]
. Aϕ is just like Aψ except that it has transition

function
δ′ (q, ~a, d) := δ (q, 0~a, d) ∪ δ (q, 1~a, d)

which intuitively ‘guesses’ a component U and runs Aψ.

58 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of S2S

The Main Result

Corollary 3.10 (Rabin’s Theorem)

S2S is decidable.

Proof.

A sentence in the language of S2S has a prenex form
ϕ := ∃X1 . . .Xnψ. This is true iff T2 |= ψ [V1, . . . ,Vn] for some
assignment of Vi to Xi . By the previous Theorem, this holds iff
L (Aψ) 6= ∅. We can check this since the emptiness problem for
tree automata is decidable (Theorem 3.4).

59 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Plan

1 Introduction
Explaining Rabin’s Theorem
A Perspective on Finite Automata

2 Infinite Automata and S1S
The Warm-up: S1S
Infinite Automata
Decidability of S1S

3 Infinite Tree Automata and S2S
Infinite Tree Automata
Closure Under Complement
Decidability of S2S

4 Applications
Decidability of SωS
Decidability of Modal Logics
References

60 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Using Rabin’s Theorem

In this section, we show how to use Rabin’s Theorem to prove that
other theories are decidable. The basic strategy is to take models
of the other theory (whether a single model or a class of models),
embed them in T2 in a way that is definable and then define a
satisfaction-preserving translation.
We will look at:

1 SωS: the monadic second-order theory of ω-successors

2 S4: the modal logic of reflexive and transitive Kripke frames
We will also mention that Rabin’s Theorem can be used to
prove modal logics decidable when more traditional methods
(i.e. the finite model property) do not work.

I will conclude by mentioning some other decidability applications.

61 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

The Theory SωS

ε

0

00

...
...

01

...
...

. . .

1

10

...
...

. . .

2

20

...
...

. . .

. . .

Theorem 4.1 (Rabin [1969])

The monadic second-order theory of Tω is decidable.
62 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

The Idea of the Proof

In Rabin’s original paper, but more detailed presentation in chapter
6 of Khoussainov and Nerode [2001]. We are interested in the
structure

Tω =
(
ω∗, (si )i∈ω ,≤,�

)
where the si are the usual successor functions, ≤ is the prefix
ordering on the tree, and � is the lexicographic ordering. Note
that these two are definable in S2S, but are not definable here in
terms of just the successor functions, so we must include them.
The idea:

1 Construct definable D ⊆ T2, fi on D, and relations ≤1, �1 on
D s.t.

2 Tω ∼=
(
D, (fi )i∈ω ,≤1,�1

)
3 Define a satisfiability-preserving translation between SωS and

S2S
63 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

The Sub-structure of T2

The relevant sub-structure of T2, denoted D is:

D = {ε} ∪ {1n101n20 . . . 1nk 0 | 1 ≤ k, 1 ≤ i ≤ k , 1 ≤ ni}
fi = w 7→ w1i+10

≤1 =≤� D
�1 =�� D

Theorem 4.2

Tω ∼= D

Proof.

The mapping is n1n2 . . . nk 7→ 1n1+101n2+10 . . . 1nk+10. It’s easy to
check that this is an isomorphism.

64 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

Definability of D

Lemma 4.3

D is definable

Proof.

x ∈ D iff x = ε or s1(ε) ≤ x and there is a proper prefix y of x s.t.
s0(x) = y (i.e. y ends in 0) and for every proper prefix y1 of x , if
s0(x1) < y , then s1(s0(x1)) < y (i.e. non-terminal 0s are followed
by 1s). Thus, D is defined by:

ϕ(x) := x = ε ∨ [s1 (ε) ≤ x ∧ ∃y (y < x ∧ s0 (y) = x)∧
∀y1 (s0 (y1) < x → s1 (s0 (y1) < x))]

But ε, <, ≤ are all definable in S2S.

Clearly, ≤1 and �1 are therefore definable.
65 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

Definability of D (cont.)

To prove that the fi are definable, we introduce a preliminary
definition. If w ∈ D, call the nodes w1n0 for n ≥ 1 the
D-immediate successors of w . We then have:

Lemma 4.4

1 The D-immediate successors of w are in D

2 The set of D-immediate successors of w is definable.

3 w10 �1 w110 �1 w1110 �1 · · ·

Proof.

(2) is the only non-obvious one. But y is a D-immediate successor
of x is defined by:

ϕ (x , y) := x <1 y ∧ ∀z ∈ D (x ≤1 z ∧ z ≤1 y → z = x ∨ z = y)

66 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

Definability of D (cont.)

Recall the definition:

fi := w 7→ w1i+10

We convert this into an inductive definition which will be definable.

f0(x) = y iff x , y ∈ D and y is the smallest (w/r/t �1)
D-immediate successor of x s.t. x �1 y .

fi+1(x) = y iff x , y ∈ D and y is the smallest (w/r/t �1)
D-immediate successor of x s.t. y 6= fk(x) for all k ≤ i .

Because f0 is clearly definable and fi+1 is if all the fk for k ≤ i are,
it follows that all fi are by induction on i .

67 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

Proving Decidability

We can now prove Theorem 4.1 from Rabin [1969]: The monadic
second-order theory of Tω is decidable.
We will take any sentence ϕ in the language of the structure Tω
and define a translation ϕt s.t. Tω |= ϕ iff T2 |= ϕt . This will
reduce the decidabillity of SωS to the decidability of S2S.

(Xt)t = Xtt

(t1 = t2)t = tt1 = tt2

(x ≤ y)t = x ≤1 y

(x � y)t = x �1 y

and (·)t commutes with the connectives as expected.

68 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

Proving Decidability (cont.)

The quantifier cases are as expected:

(∃xϕ)t = ∃x
(
x ∈ D ∧ ϕt

)
(∃Xϕ)t = ∃X

(
X ⊆ D ∧ ϕt

)
It’s easy to check that (·)t preserves satisfiability.

Corollary 4.5

SnS, for any n ∈ ω is decidable.

Proof.

Tn is definable as a subset of Tω by

ϕ (X ) := Xε ∧ ∀x

Xx ∧ x 6= ε→ ∃y

Xy ∧
∨

0≤i≤n
x = si (y)



69 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of SωS

Proving Decidability (cont.)

The quantifier cases are as expected:

(∃xϕ)t = ∃x
(
x ∈ D ∧ ϕt

)
(∃Xϕ)t = ∃X

(
X ⊆ D ∧ ϕt

)
It’s easy to check that (·)t preserves satisfiability.

Corollary 4.5

SnS, for any n ∈ ω is decidable.

Proof.

Tn is definable as a subset of Tω by

ϕ (X ) := Xε ∧ ∀x

Xx ∧ x 6= ε→ ∃y

Xy ∧
∨

0≤i≤n
x = si (y)


69 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

The Logic S4

Here, I follow section 6.3 of Blackburn et al. [2002].
S4 is the modal logic of reflexive, transitive frames. That is, it is
the smallest set of formulas in the basic modal language containing

1 all propositional tautologies

2 (Dual): �p ↔ ¬�¬p
3 (K): � (p → q)→ (�p → �q)

4 (T): p → �p
5 (4): � � p → �p

and closed under modus ponens, uniform substitution, and
necessitation (from p infer �p).
A logic satisfying (1), (2), and (3) and all the closure properties
above is called normal.

70 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Some Facts About S4

Theorem 4.6

S4 is sound and strongly complete with respect to the class of
reflexive, transitive models.

Theorem 4.7

If a normal modal logic is sound and strongly complete w/r/t a
first-order definable class of models M, then it is also sound and
strongly complete w/r/t the class of countable models in M.

Corollary 4.8

S4 is sound and complete w/r/t the class of countable, reflexive,
transitive trees.

Proof.

By the above theorems and the technique of tree unraveling.
71 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Proving S4’s Decidability

Theorem 4.9

S4 is decidable

The strategy will be to identify models of S4 with subtrees of Tω
and then write down an SωS sentence asserting S4-satisfiability of
a formula.
S ⊆ Tω is an initial subtree if ε ∈ S and y ∈ S and x ≤ y imply
that x ∈ S . Let ≤S :=≤� S .

72 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Proving S4’s Decidability

Lemma 4.10

Let
(
~W , ~R

)
be the tree unravling of some countable frame (W ,R)

around point w and let R∗ be the reflexive transitive closure of ~R.

Then
(
~W ,R∗

)
∼= (S ,≤S) for some initial subtree S of Tω.

Proof.

We inductively define an isomorphism f :

f (〈w〉) = ε where 〈w〉 is the root of
(
~W ,R∗

)
.

Now, suppose for ~u ∈ ~W , f (~u) = m. The set

Ru =
{
~s ∈ ~W | ~u ~R~s

}
is countable, so fix an enumeration of

it. Define: f (Ru
i ) = si (m) = si (f (~u)).

It’s easy to check that this is an isomorphism.
73 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Proving S4’s Decidability

As before, we have to steps left: (1) show that the class of initial
subtrees is definable and (2) define an appropriate translation from
the modal language to the language of Tω.
For (1), we have

IST (X ) :=∃x (Root(x) ∧ Xx)∧
∀yz ((Xz ∧ y ≤ z)→ Xy)

where Root(x) := ¬∃y (y < x).
≤S is clearly defined by Sx ∧ Sy ∧ x ≤ y .

74 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Proving S4’s Decidability

The translation (·)tx ,S is essentially identical to the standard
translation STx , except for the modality clause:

(�ϕ)tx ,S = ∃y
(
x ≤S y ∧ (ϕ)ty ,S

)
Note that we need the free set variable S because we are not
mapping to a unique substructure of Tω.

75 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Proving S4’s Decidability

Now, we complete the proof. Let ϕ be a modal formula using
propositional letters p1, . . . , pn. Define the formula

SatS4 (ϕ) :=∃S∃P1 . . . ∃Pn∃x(

IST(S) ∧ P1 ⊆ S ∧ · · · ∧ Pn ⊆ S∧
Sx ∧ (ϕ)tx ,S)

One can check that Tω |= SatS4 (ϕ) iff ϕ ∈ S4 since the latter
holds iff ϕ is satisfied at some node in a countable, reflexive
transitive tree.
Thus, decidability of S4 is reduced to the decidability of SωS.

76 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Other Modal Logics

Now, S4 can be proved decidable by other methods (e.g. by
having the finite model property).
The logic KvB is the logic of a general frame J based on the frame:

0 1 2 3 4
· · · ω

ω + 1

X X

with a certain collection of admissible sets on it.
KvB is not the logic of any class of frames and therefore does not
have the finite model property. Nevertheless, the methods used
here can be applied to it to show that KvB is decidable.

77 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Other Applications

Rabin’s Theorem has also been used to prove the following
decidable:

1 The monadic second order theory of all countable
(well-ordered) linearly ordered sets.

2 The first-order theory of Cantor’s discontinuum.
Cantor’s discontinuum: {0, 1}ω with the product topology,
which is isomorphic to the subset of (0, 1) given by the usual
definition.

3 The second-order theory of all countable Boolean algebras
(where set variables range over ideals).

4 Other modal logics: the modal µ-calculus, the computational
tree logic CTL*.

78 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

References I

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal
Logic, volume 53 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, June 2002.

Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical
Decision Problem. Perspectives in Mathematical Logic. Springer,
Berlin, 1997.

Julius Richard Büchi. On a decision method in restricted
second-order arithmetic. In 1960 International Congress for
Logic, Methodology, and Philosophy of Science, pages 1–11.
Stanford University Press, 1962.

79 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

References II

Yuri Gurevich and Leo Harrington. Trees, Automata, and Games.
In Proceedings of the 14th Annual ACM Syposium on the
Theory of Computing (STOC ’82), pages 60–65, 1982. ISBN
0897910672.

Bakhadyr Khoussainov and Anil Nerode. Automata Theory and its
Applications, volume 21 of Progress in Computer Science and
Applied Logic. Springer, New York, 2001. ISBN 9781461266457.

Michael O Rabin. Decidability of Second-Order Theories and
Automata on Infinite Trees. Transactions of the American
Mathematical Society, 141:1–35, 1969.

A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper. The
Complementation Problem for Büchi Automata with
Applications to Temporal Logic. Theoretical Computer Science,
49:217–237, 1987.

80 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

References III

Moshe Y Vardi and Pierre Wolper. Reasoning about Infinite
Computations. Information and Computation, 115:1–37, 1994.

Alexander Yakhnis and Vladimir Yakhnis. Extension of
Gurevich-Harrington’s Restricted Memory Determinacy
Theorem: A Criterion for the Winning Player and an Explicit
Class of Winning Strategies. Annals of Pure and Applied Logic,
48:277–297, 1990.

Suzanne Zeitman. Unforgettable Forgetful Determinacy. Journal
of Logic and Computation, 4(3):273–283, 1994.

81 / 82



Introduction Infinite Automata and S1S Infinite Tree Automata and S2S Applications

Decidability of Modal Logics

Thank You

Questions?

82 / 82


	Introduction
	Explaining Rabin's Theorem
	A Perspective on Finite Automata

	Infinite Automata and S1S
	The Warm-up: S1S
	Infinite Automata
	Decidability of S1S

	Infinite Tree Automata and S2S
	Infinite Tree Automata
	Closure Under Complement
	Decidability of S2S

	Applications
	Decidability of SS
	Decidability of Modal Logics
	References


