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Preface

This book grew out of two previous introductory texts: Fundamentals
of Mathematics for Linguists by Barbara Hall Partee and Introduction to
Mathematical Linguistics by Robert Wall, both of which had gone out of
print in the U.S by the mid 1980’. Faced with the daunting prospect of
revising and updating each of these books for re-publication, the authors
decided to pool their resources and soon after Alice ter Meulen joined them
in the project of producing this book, Mathematical Methods in Linguistics,

Like its predecessors, this book is designed primarily for students in lin-
guistics, but it can of course be used by anyone wanting an introduction to
the kind of discrete mathematics which finds application in many areas of
contemporary linguistic theory. We have tried to make this a gentle intro-
duction in that nearly all the basic material on set theory and logic (Parts
A and B) presuppose no mathematical skills beyond the high school level.
Indeed, since the mathematics covered here deals with discrete entities—for
example, strings of letters from some alphabet-rather than with continu-
ous structures such as lines and areas, the reader will find that it bears a
stronger resemblance to high school algebra than to calculus or analytic ge-
ometry, One aim, then, is to provide a kind of basic literacy course in set
theory and formal logic, which are essential to understanding formalizations
in a broad and ever-increasing range of work in linguistics (and in many
other fields as well).

The largest portion of this book, however, shows how more complex and
interesting structures can be built out of the set-theoretic and logical bases,
and, within the limits of space available in these already dense pages, we have
tried to indicate how these structures can prove useful in certain linguistic
domains. Part C, for example, leads from the notions of order and operation
to algebraic structures such as groups, semigroups, and monoids, and on
to lattices and Boolean and Heyting algebras, which have played a central
role in much recent work in the semantics of events, mass terms, collective
vs. distributive actions, etc. In Part D, the model-theoretic semantics of

xvii
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predicate logic is extended and applied to a limited, but interesting, fragment
of English, and this leads into a discussion of work on generalized quantifiers
and the problems posed by intensional constructions. Part E deals with an
area which has traditionally been labelled “mathematical lingusitics,” ie.,
formal languages and automata theory This section includes proofs of the
non-regularity of English and of the non-context freeness of Swiss German as
well as material on formal languages —e.g., indexed languages, tree adjoining
languages, and categorial languages— lying between the context free and
context sensitive classes. There is also a brief discussion of the mathematical
properties of “standard theory” transformational grammars.

As is perhaps evident from these cursory descriptions, Parts C, D, and E
each form nearly independent sequels to the introductory material in Parts
A and B There is far more material here than can be covered in a one
semester course (or perhaps even a one year course), so an instructor will
necessarily have to make a selection according to the background and inter-
ests of the class, For those approaching the subject matter for the first time,
it might be wise not to try to read the first eight chapters in sequence but
to take the elementary sections on set theory and logic in parallel, leaving
the more advanced material on axiomatic systems, Chapter 8, for later. The
exercises at the end of most chapters and sections (with answers to many of
them supplied at the back of the book) will help both students enrolled in
a class and those working on their own to check their understanding of the
concepts introduced Some relevant but not, strictly speaking, essential ma-
terial has been relegated to appendices, and there are, of course, references
and suggestions for further reading to be found with each section.

A word should be said about what is not included. We have not tried to
cover probability and statistics (used in glottochronology, frequency counts
of words and constructions in texts, and in fact relevant to the analysis
of any sort of experimental data), the mathematics of wave theory (used
in acoustic phonetics), and the mathematics of computation beyond basic
automata theory (used in computational linguistics in the study of parsing
and machine translation, for example). There is virtually no limit to the
mathematical tools which might eventually prove useful in solving linguistic
problems, and so a book such as this one can never hope to be completely
comprehensive.

Beyond the specific aims just outlined, we have an even broader purpose
in mind in puttting this textbook together. To quote from the Preface of
Fundamentals of Mathematics for Linguists:
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A further and even more general aim of the book is to make math-
ematical concepts and mathematical reasoning more accessible,
less formidable, and hopefully even pleasurable, to those students
who have stayed away from mathematics out of a perceived inse-
curity or distaste for the subject Many of the best textbooks on
subjects treated here presuppose a considerable degree of math-
ematical sophistication, not because the subject matter requires
it, but just because in most curricula such topics as formal sys-
tems and automata theory are not standard first-year fare and
are more likely to be taken up by students who have studied a
considerable amount of other logic or mathematics first. And it
is certainly true that this book by itself does not provide {all] the
tools to become a creative researcher in mathematical linguistics
or in any of the branches of mathematics here covered; but [we]
believe it does provide a solid grounding to enable the student to
understand much of the basis of the formalization encountered
in linguistics and other social and behavioral sciences, and to go
© on to study further mathematics and logic with confidence.

Many people contributed to the preparation of this boock. We would
especially like to thank Fred Landman, David Dowty, Pauline Jacobson,
John Etchemendy, Tom Hukari, Ammold Zwicky, Craige Roberts, and Peter
Lasersohn for reading earlier versions of the manuscript and field-testing
parts of it in the classroom. Their suggestions and criticisms have led to
many improvements, for which we are very grateful. Kathy Adamczyk, Louis
Conover, John Brolio, Avery Andrews, and Krzysiek Rozwadowski worked
uncountably many hours putting the text into computer-readable form and
IATpXing it into camera-ready copy. Their patience and dedication knows no
bounds, and they are to be thanked for the fact that the price of the book is a
finite and relatively reasonable amount. A special debt of gratitude is owed
to Lauri Karttunen, Annie Zaenen, Mark Aronszajn, and Steven Weisler
for their support, encouragement, and generous hospitality. We would also
like to express our sincere appreciation to Martin Scrivener of Kluwer Aca-
demic Publishers for his continued patience, understanding, and unfailing
support during the long process of getting this book into print. And we
gratefully acknowledge the help of the System Development Foundation for
Grant No. 650 to Barbara Partee during part of the time the manuscript
was being prepared, and a research grant from the University of Groningen
during 1985-86 to Alice ter Meulen.
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For any mistakes, omissions, or other deficiencies remaining, the authors
have agreed to blame each other,
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Chapter 1

Basic Concepts of Set
Theory

1.1 The concept of a set

A set is an abstract collection of distinct objects which are called the mem-
bers or elements of that set. Objects of quite different nature can be members
of a set, e.g. the set of red objects may contain cars, blood-cells, or painted
representations. Members of a set may be concrete, like cars, blood-cells or
physical sounds, or they may be abstractions of some sort, like the number
two, or the English phoneme /p/, or a sentence of Chinese. In fact, we
may arbitrarily collect objects into a set even though they share no property
other than being a member of that set The subject matter of set theory and
hence of Part A of this bock is what can be said about such sets disregarding
the actual nature of their members.

Sets may be large, e.g. the set of human beings, or small, e g the set
of authors of this book. Sets are either finite, e.g. the readers of this book
or the set of natural numbers between 2 and 98407, or they are infinite, e.g.
the set of sentences of a natural language or the set of natural numbers:
zero, one, two, three, . ... Since members of sets may be abstract objects,
a set may in particular have another set as a member. A set can thus
simultaneously be a member of another set and have other sets as members.
This characteristic makes set theory a very powerful tool for mathematical
and linguistic analysis.

A set may be a legitimate object even when our knowledge of its member-
ship is uncertain or incomplete. The set of Roman Emperors is well-defined

3



4 CHAPTER 1

even though its membership is not widely known, and similarly the set of all
former first-grade teachers is perfectly determined, although it may be hard
to find out who belongs to it. For a set to be well-defined it must be clear in
principle what makes an object qualify as a member of it. For our present
purposes we may simply assume that, for instance, the set of red objects is
well-defined, and disregard uncertainties about the exact boundary between
red and orange or other sources of vagueness.

A set with only one member is called a singleton, e.g. the set consisting
of you only, and there is one special set, the empty set or the null set, which
has no members at all. The empty set may seem rather startling in the
beginning, but it is the only possible representation of such things as the set
of square circles or the set of all things not identical to themselves. Moreover,
it is a mathematical convenience. If sets were restricted to having at least
one member, many otherwise general statements about sets would have to
contain a special condition for the empty set. As a matter of principle,
mathematics strives for generality even when limiting or trivial cases must

be included

We adopt the following set-theoretic notation: we write A, B, C,...
for sets, and a,b,c,... or sometimes z,y,z,... for members of sets. The
membership relation is written with a special symbol €, so that b € A is
read as ‘b is a member of A’. It is convenient also to have a notation for
the denial of the membership relation, written as ¢, so that b ¢ A is read as
‘b is not a member of A’. Since sets may be members of other sets we will
sometimes write A € B, when the set A is a member of set B, disregarding
the convention that members are written with lower case letters.

1.2 Specification of sets

There are three distinct ways to specify a set: (1) by listing all its members,
(2) by stating a property which an ob ject must have to qualify as a member
of it, and (3) by defining a set of rules which generate its members. We
discuss each method separately.

List notation: When a set is finite, its members can in principle be
listed one by one until we have mentioned them all. To specify a set in
list notation, the names of the members, written in a line and separated by
commas, are enclosed in braces For example, the set whose members are
the world’s longest river, the first president of the United States and the
number three could be written as



SPECIFICATION OF SETS 5

(1-1) {The Amazon River, George Washington, 3}

Several things must be noted here. First, in specifying a set, we use a name
or some definite description of each of its members, but the set consists
of the objects named, not of the names themselves. In our example, the
first president of the United States, whose name happens to be ‘George
Washington’, is a member of the set. But it is the man who belongs to the
set, not his name Exactly the same set could have been described in the
following way

(1-2) {The Amazon River, the first president of the United States, 3}

by using an alternative description for this individual. Of course, a set may
also contain linguistic objects like names. To avoid confusion, names which
are members of sets in their own right are put in single quotes. The set

(1-3) {The Amazon River, ‘George Washington’, 3}

should hence be distinguished from the set in (1-1), as it contains a river,
a name and a number, but not the man who was the first president of the
United States. It is important to realize that one and the same set may
be described by several different lists, which prima facie have nothing in
common except that they denote the same individuals.

Second, insofar as sets are concerned, it is an accidental feature of our left
to right writing convention that the members are listed in a particular order.
Contrary to what this notation may suggest, there is no first, second or third
member in the set (1-1) A less misleading notation, which we sometimes
use, is shown in (1-4) below; it avoids the suggestion of any ordering of its
members (see the Venn diagrams in Sec. 6 below).

(1-4) :
George Washington

The Amazon River

The list notation is obviously more convenient to write and typeset, and is
therefore usually preferred.
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Another point about the list notation for sets is that writing the name of
a member more than once does not change its membership status. Should
we write

(1-5) {a,b,c,d,e, e, e,e}
we would have described exactly the same set as by writing
(1—6) {a,b,c,d,e}

This is a consequence of a fundamental principle of set theory: for a given
object, either it is a member of a given set or it is not. There is no such thing
as halfway, multiple or gradual membership in our set theory (although there
have been attempts to construct theories of “fuzzy sets”; see Zadeh (1987)).

For large finite sets the list notation may be impractical and is abbrevi-
ated if some obvious pattern can be recognized in the list. For example, to
list all multiples of five between zerc and one hundred, we may write:

(1-7) {0,5,10,15,...,95,100}

Predicate notation: The list notation can be used, strictly speaking,
only for finite sets, although it is sometimes used in elliptical form for well-
known infinite sets such as the various sets of numbers. For example, the set
of positive integers (whole numbers) is sometimes denoted by {1,2,3,4,...}.
A better way to describe an infinite set is to indicate a property the mem-
bers of the set share. The so-called predicate notation for this type of set
description is illustrated by

(1-8) {z | z is an even number greater than 3}

The vertical line following the first occurrence of the variable z is read ‘such
that’. The whole expression in (1-8) is read ‘the set of all z such that z
is an even number greater than 3. Here z is a variable, which we may
think of as an auxiliary symbol that stands for no particular object, but it
indicates what the predicate is applied to. Note that the predicate notation
describes finite and infinite sets in the same way (e.g., the predicate ‘z is an
even number between 3 and 9’ specifies the finite set {4, 6,8}) and that two
predicates, if they are coextensive, will specify the same set. For example,

(1-9) {z | z is evenly divisible by 2 and is greater than or equal to 4}
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is the same set as (1-8).
A predicate may also define its members in relation to something else
For instance, the set

(1-10) {z | z is a book and Mary owns z}

contains the books that Mary owns.

Russell’s Paradox: In the early years of set theory any conceivable
property was thought to be a defining property of a set. But Bertrand Russell
discovered in 1901 that a paradox could be obtained from an apparently
acceptable set specification of that sort

Russell observed first that if sets are defined by properties of their mem-
bers, some sets will turn out to be members of themselves and other sets
will not. For example, the set of all elephants is not itself an elephant, and
therefore is not a member of itself. But the set of all abstract concepts must
contain itself as member, since a set is an abstract concept. The properties
‘is a member of itself’ and ‘is not a member of itself’ should therefore also be
defining properties of sets. In particular, then, one could define a set I/ as the
set of all those sets which are not members of themselves: U = {z |z ¢ z}.
Then we may ask of U whether it is a member of itself. Now two cases may
obtain: (i) if U is not a member of itself, then it satisfies the defining char-
acteristic of members of U, and therefore it must be a member of U, ie., of
itself; or (ii) if U is a member of itself, then it does not satisfy the deﬁmng
property, hence it is not a member of U, i.e., of itself Since U either is or is
not a member of U, the result is a logical paradox. The evident conclusion
from this paradox is that there is no such set U, but nothing in Cantor’s
set theory excluded such a possible defining property. The discovery of the
Russell paradox was therefore of great importance (many different but es-
sentially equivalent versions have since been formulated), but it was all the
more significant in light of the fact that logicians and mathematicians had
been attempting to show that set theory could serve as a foundation for all
of mathematics. The appearance of a paradox in the very foundations of set
theory made some people doubtful of long-used and familiar mathematical
notions, but mathematical practice continued as usual without being ham-
pered by this foundational crisis. Many inventive and innovative solutions
have been proposed to avoid the paradox, to resolve it or to make its con-
sequences harmless. One such way, initially suggested by Russell, was type
theory, which has found fruitful applications to natural language (eg. in
Montague Grammar; see Part D), as well as in the context of programming
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languages and their semantics, but it is beyond the scope of this book to
discuss the type theories in general or any of the various other solutions to
the set-theoretic paradoxes (see, however, the axiomatization of set theory
in Chapter 8, section 2.8).

Recursive rules: Since finite sets specified simply by listing their mem-
bers can never lead to such paradoxes, no changes had to be made for them.
For infinite sets, the simplest way to avoid such paradoxes and still be able
to define most sets of relevance to ordinary mathematics is to provide a rule
for generating elements “recursively” from a finite basis. For example, the
set B = {4,6,8, ..} (=(1-8)=(1-9)) can be generated by the following rule:

(1-11) a)4€ E
bYIfze E,thenz+2€¢ F
¢) Nothing else belongs to E.

The first part of the rule specifies that 4 is a member of E; by applying
the second part of the rule over and over, one ascertains that since 4 € E,
then 6 € E; since 6 € E, then 8 € E; etc. The third part insures that no
number is in E except in virtue of @ and b

A rule for generating the members of a set has the following form: first,
a finite number of members (often just one) are stated explicitly to belong to
the set; then a finite number of if-then statements specifying some relation
between members of the set are given, so that any member of the set can be
reached by a chain of if-then statements starting from one of the members
specified in the first part of the rule, and nothing that is not in the set can
be reached by such a chain. We will consider such recursive devices in more
detail in Chapter 8, section 1.1.

The earlier method of specifying a set by giving a defining property
for its members has not been abandoned in practice, since it is often quite
convenient and since paradoxical cases do not arise in the usnal mathematical
applications of set theory. QOutside of specialized works on set theory itself,
both methods are commonly used.

1.3 Set-theoretic identity and cardinality

We have already seen that different lists or different predicates may specify
the same set. Implicitly we have assumed a notion of identity for sets which
is one of the fundamental assumptions of set theory: two sets are identical
if and only if they have exactly the same members. For instance,
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(1-12) {1,2,3,4,5,6}

and

(1-13) {z | z is a positive integer less than T}
and

(1-14) a)le 4
b)ifz € A and z is less than 6,thenz + 1€ 4
¢) nothing else is in A

are three different kinds of specifications, but because each picks out exactly
the same members, we say that they specify the same set. We use the equals
sign ‘=’ for set-theoretic identity. Thus we may write, for example,

(1-15) {1,2,3,4,5,6} = {z | z is a positive integer less than 7}

The equals sign is also used in naming sets. For example, we might write
‘let B = {1,2,3,4,5,6} to assign the name ‘B’ to the set in (1-12). The
context will make it clear whether ‘=" is being used to stipulate the name of
a set or to assert that two previously specified sets are identical.

A consequence of this notion of set-theoretic identity is that the empty
set is unique, as its identity is fully determined by its absence of members.
Thus the set of square circles and the set of non-self-identical things are the
same set. Note that the empty list notation ‘{}’ is never used for the empty
set, but we have a special symbol ‘@’ for it.

The number of members in a set A is called the cardinality of A, written
|A| or #(A). The cardinality of a finite set is given by one of the natural
numbers. For example, the set defined in (1-12) has cardinality 6, and since
(1-13) and (1-14) describe the same set, they describe sets of the same car-
dinality (of course distinct sets may also have the same cardinality). Infinite
sets, too, have cardinalities, but they are not natural numbers. For exam-
ple, the set of natural numbers itself has cardinality ‘aleph-zero’, written R,
which is not a natural number. We will take up the subject of infinite sets
in more detail in Chapter 4

1.4 Subsets

When every member of a set A is also a member of a set B we call 4 a
subset of B. We denote such a relation between sets by A C B. Note that
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B may contain other members besides those of 4, but this is not necessarily
so. Thus the subset relation allows any set to be a subset of itself. If we
want to exclude the case of a set being a subset of itself, the notion is called
proper subset, and written as A C B. For the denial of the subset relation
we put a slash across the subset symbol, e.g. A € B means that A is not a
subset of B, hence that A has at least one member which is not a member
of B.

The following examples illustrate these concepts.

(1-16) &) {a,8,¢} C {s,b,0,¢,9,i,c}
b) {d,b,j} Z {S)b)a7e)g)i7c}

) {a7b’c} C {S7b’a’e’g7i’c}

d) 0 C {a}

e) {a,{a}} C {a,b,{a}}

f) {{a}} £ {a}

g) {a} € {{a}}, but {a} € {{a}} (")

A curious consequence of the definition of subset is that the null set is
a subset of every set. That is, for any set A whatever, § C A Since 0
has no members, the statement that every member of § is also a member of
A holds, even if vacuously. Alternatively, we could reason as follows. How
could @ fail to be a subset of A? According to the definition of subset, there
would have to be some member in {§ that is not also a member of A. This is
impossible since § has no members at all, and so we cannot maintain that
@ € A. Since the argument does not depend in any way on what particular
set is represented by 4, it is true that § C A for every A.

Note, however, that while § C {a}, for example {0} € {a} The set {0}
has a member, namely §, and therefore is not the empty set. It is not true
that every member of {#} is also a member of {a}, so {0} € {a}.

Members of sets and subsets of sets both represent relationships of a
part to a whole, but these relationships are quite different, and it is im-
portant not to confuse them. Subsets, as the name suggests, are always
sets, whereas members may or may not be. Mars is a member of the set
{Earth, Venus, Mars} but not a subset of it. The set containing Mars as its
only member, {Mars}, is a subset of {Earth, Venus, Mars} because every
member of the former is also a member of the latter. Further, whereas every
set is a subset of itself, it is not clear whether a set can ever be a member
of itself, as we saw above in the discussion of Russell’s Paradox. Note how
important it is here to distinguish between Mars, the planet, and {Mars},

(g
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the set.

Sets with sets as members provide the most opportunities for confusion.
Cousider, for example, the set A = {b, {¢}}. The members of A are b and {c}.
From the considerations in the preceding paragraph we see that 6 ¢ A and
{4} C A. Similarly, {¢} € A because ¢ is not a member of 4, and {{c}} C 4
because every member of {{c}}, namely, {c}, is a member of A, The reader
should also verify the following statements concerning this example: {b} ¢ 4;
e @ A {{c}} € 4; {b,{c}} € 4 {b,{c}} £ 4 {{b, {c}} £ A.

Another difference between subsets and members has to do with our
previous remarks about sets of sets. We have seen that if 6 € X and X € C,
it does not necessarily follow that b € C The element b could be a member
of C, but if so this would be an accidental property of C, not a necessary
one With inclusion, however, if A C B and B C C, it is necessarily true
that A C C; that is, if every member of A is also a member of B, and
further if every member of B is also a member of C, then it must be true
that every member of A is also a member of C. For example, {a} C {a,b}
and {a,b} C {a,b,¢} so it follows that {a} C {a,b,¢}. On the other hand,
a € {a} and {a} € {{a}, b}, but a & {{a}, b} (assuming of course that a and
b are distinct).

1.5 Power sets

Sometimes we need to refer to the set whose members are all the subsets of a
given set A. This set is called the power set of 4, which we will write as p(A4).
Suppose A = {a,b}; then the power set of 4, p(4), is {{a}, {8}, {a, b}, 0}.
The name ‘power set’ derives from the fact that if the cardinality of 4 is
some natural number n, then p(A4) has cardinality 27, i.e., 2 raised to the
n power, or 2 X 2x 2 X ... X 2 (n times). Sometimes the power set of 4 is
denoted as 24

1.6 Union and intersection

We now introduce two operations which take a pair of sets and produce
another set.

The union of two sets A and B, written AU B, is the set where members
are just the objects which are members of A or of B or of both. In the
predicate notation the definition is
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(1-17) AUB:def{m”’ € Aorz € B}

Note that the disjunction ‘or’ in (1-17) allows an object to be a member
of both A and B. For this reason, the ‘or’ is an inclusive disjunction; (see
Chapter 6, section 2). For example,

(1-18) Let K = {a,b}, L = {¢,d} and M = {b,d}, then

KUL = {a,b,c,d}

KuM = {a,b,d}

LUM = {b,c,d}

(KUL)UM = KU(LUM) = {a,b,c,d}
Kup = {a,b} = K

LU = {c,d} = L

Set-theoretic union can easily be generalized to apply to more than two
sets, in which case we write the union sign in front of the set of sets to
be operated on: eg. |J{K,L,M} = the set of all elements in K or L
or M = {a,b,c,d}. There is a nice method for visually representing set-
theoretic operations, called Venn diagrams. Each set is drawn as a circle
and its members are represented by points within it. The diagrams for two
arbitrarily chosen sets are represented as partially intersecting — the most
general case ~ as in Figure 1-1. The region designated ‘1’ contains elements
which are members of A but not of B; region 2, those things in B but not in
A; and region 3, members of both B and A. Points in region 4 outside the
diagram represent elements in neither set. Of course in particular instances
one or more of these regions might turn out to be empty.

The Venn diagram for the union of A and B is then made by delineating
all the regions contained in this set - shown in Figure 1-2 by shading areas
1,2, and 3.

The second operation on arbitrary sets A and B produces a set whose
members are just the members of both A and B. This operation is called
the intersection of A and B, written as A N B. In predicate notation this
operation would be defined as

(1-19) 4An Bzde‘f{m |z € A and z € B}

For example, the intersection of the sets X and M of (1-18) is simply the
singleton {b}, since b is the only object which is both a member of K and a
member of M. Here are some more examples:
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(1-20) KnL =0
ILnM {d}

KnkK = {a,b} = K
Knd =0
(KNL)NnM = En(LNM) = 0
Kn(LuM) = {b}

The general case of intersection of arbitrary sets A and B is represented
by the Venn diagram of Figure 1-3

Figure 1-3: Set-theoretic intersection AN B.

Intersection may also be generalized to apply to three or more sets; e g.,
N{K,L,M} = 0. The intersection of three arbitrary sets 4, B and C is
shown in the Venn diagram of Figure 1-4. Here the black area represents
what is common to the regions for AN B, BN C and A N C. Obviously
when more than three sets are involved, the Venn diagrams become very
complex and of little use, but for simple cases they are a valuable visual aid
in understanding set-theoretic concepts.

Problem: Construct a Venn diagram for the union of three arbitrary sets.

1.7 Difference and complement

Another binary operation on arbitrary sets A and B is the difference, written
A — B, which ‘subtracts’ from A all objects which are in B. The predicate
notation defines this operation as follows:
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Figure 1-4: Venn diagram for {4, B, C}
(AnB,BNC and ANC (shaded) and
N {4, B, C} (black)).

(1-21) A-B :def{m |z € A and z ¢ B}

A — B is also called the relative complement of A and B. For instance for the
particular sets L and M, given in (1-18), L — M = {c}, since ¢ is the only
member of L which is not a member of M. If A and B have no members in
common, then nothing is taken from A;ie., A— B = A. Note that although
for all sets A, B: AUB = BUA and ANB = BNA, it is not generally true
that A— B = B— A 1If one thinks of difference as a kind of subtraction, the
fact that the order of the sets matters in this case is quite natural.

The Venn diagram for the set-theoretic difference A — B is shown in
Figure 1-5.

Some more examples:

(1-22) K-M = {da}
L-K = {ed} = L
M-L = {8}
K0 = {ob} = K
b-K =10

This operation is to be distinguished from the complement of a set A,
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Figure 1-5: Set-theoretic difference A — B.

written A’, which is the set consisting of everything not in A. In predicate
notation

(1-23) A'=def {z |z ¢ A}

Where do these objects come from which do not belong to A? The answer
is that every statement involving sets is made against a background of as-
sumed objects which comprise the universe (or domain) of discourse for
that discussion. In talking about number theory, for example, the universe
might be taken as the set of all positive and negative real numbers. A truly
universal domain of discourse fixed once and for all, which would contain
literally ‘everything’ out of which sets might be composed, is unfortunately
impossible since it would contain paradoxical objects such as ‘the set of all
sets’. Therefore, the universe of discourse varies with the discussion, much as
the interpretation of the English words ‘everything’ and ‘everyone’ tends to
be implicitly restricted by the context of discourse When no other specified
name has been given to the universe of discourse in a particular discussion,
we conventionally use the symbol U for it. When it is clear from the con-
text or irrelevant to the discussion at hand, the universe of discourse may
not be explicitly mentioned at all, but the operation of complement is not
well-defined without it. The complement of a set A, then, is the set of all
objects in the universe of discourse which are not in A4, i.e.,

(1-24) A'=U-4

We see that in (1-23) the variable z in the predicate notation is implicitly
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understood to range over (i e , takeits values from) the set- theoretic universe
U (and the same is true, incidentally, in (1-17) and (1-19)).
The Venn diagram with a shaded section for the complement of A is

////////////

shown in Figure 1-6.

)

Figure 1-6: The set-theoretic complement
A

1.8 Set-theoretic equalities

There are a number of general laws pertaining to sets which follow from the
foregoing definitions of union, intersection, subset, etc. A useful selection of
these is shown in Figure 1-7, where they are grouped (generally in pairs — one
for union, one for intersection) under their more or less traditional names.
We are not yet in a position to offer formal proofs that these statements really
do hold for any arbitrarily chosen sets X, Y, and Z (we will take this up in
Chapter 7, section 6), but for now we may perhaps try to convince ourselves
of their truth by reflecting on the relevant definitions or constructing some
Venn diagrams.

It is easy to see that for any set X, X U X is the same as X, since
everything which is in X or in X simply amounts to everything which is in
X. And similarly for everything whichis in X and in X,so X N X = X.

Likewise, everything which is in X or in Y (or both) is the same as
everything which is in ¥ or in X (or both); thus, X UY =Y U X. The
argument for intersection is similar.
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1. Idempotent Laws
(a) XUX =X () XNX =X

2. Commutative Laws
(a) XUY=YUX by XNnY =YnX

3. Associative Laws
(a) (XUY)UZ=XU((¥YUZ) (b)) XnY)nZ=Xn{¥nNnZ

4. Distributive Laws
() Xu(¥nZ)=(XUuY)n(XU2Z)
B) Xn(YuzZ)=(XnYYU(XNnZ)

5. Identity Laws

(a) XUp=X (c) Xno=290
(b) XUuU=U (d) XnU=X
6. Complement Laws
(a) XUX'=U (¢) XNX'=90
) XV =X (dy X-Y=XnY'

7. DeMorgan’s Law
(a) (XUuYyYy=X'nY' (b)) XnYy=X'uY'

8. Consistency Principle
(a) X CYifXUY =Y (b) XCYifXNnY =X

Figure 1-7: Some fundamental set-theoretic
equalities.
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The Associative Laws state that the order in which we combine three
sets by the operation of union does not matter, and the same is true if the
operation is intersection To see that these hold, imagine the construction of
the appropriate Venn diagrams. We have three intersecting circles labelled
X,Y,and Z. We shade X UY first and then shade Z. The result is shading
of the entire area inside the three circles, and this corresponds to (X UY )UZ,
Now we start over and shade Y U Z first and then X . The result is the same.

The construction of the Venn diagrams to illustrate the Distributive Laws
is somewhat trickier. In Figure 1-8 we show a Venn diagram for X N(Y U Z).
To make it more perspicuous, X has been shaded with vertical lines and
Y U Z horizontally. The intersection of these two sets is then represented
by the cross-hatched area. Figure 1-9 shows the corresponding diagram for
(XNY)u(XNZ) XNY is shaded vertically and X N Z horizontally; thus,
the union is represented by the area shaded in either (or both) directions.
The reader should now be able to construct the Venn diagram for case (a)
of the Distributive Laws.

N

N

rw""TﬂWTT"n,_‘

A1

Figure 1-8: Venn diagram for X N (Y U Z)
(X shaded vertically, Y U Z shaded
horizontally, X N (Y U Z) cross-hatched).

The Identity Laws are evident from the definitions of union, intersection,
the null set, and the universal set. Everything which is in X or in § just
amounts to everything whichis in X, etc. The Complement Laws are likewise
easily grasped from the definitions of complement with perhaps a lock at
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“ \LLJ"L‘“J..LJJ

Y 7Z

Figure 1-9: Venn diagram for
(XNY)U(X NZ)(XNY shaded vertically,
X N Z shaded horizontally,

(X NY)U(X N Z) the entire shaded area).

the Venn diagram in Figure 1-6. Case (d) becomes less baffling if we look
at Figure 1-5 and consider the area corresponding to the intersection of 4
with the complement of B.

DeMorgan’s Laws are a symmetrical pair. Case (a): everything which is
in neither X nor Y is the same as everything which is not in X and not in
Y. Case (b): everything which is not in both X and Y is either not in X or
not in ¥ (or in neither). This case is less immediately evident, and a Venn
diagram will help.

The Consistency Principle is so called because it is concerned with the
mutual consistency of the definitions of union, intersection, and subset. If
we think of a Venn diagram in which the circle for X lies entirely inside the
circle for Y (representing X C Y'), then it is easy to see that X UY =Y.
On the other hand, if we know that X UY =Y, then in the standard Venn
diagram the region corresponding to elements which are in X but not in ¥
must be empty (otherwise, the union would not be equal to Y'). Thus, X’s
members lie entirely in the Y circle; so X CY. The (b) case is similar.

It may help in getting a grasp on some of these laws if one considers
analogues from algebra. The operation of + (addition) and * (multiplication)

obey a commutative law:
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(1-25) for all numbers z,y, zt+y=yt+tzandzxy=yxz
and an associative law:

(1-26) for all numbers z,y, 2z, (z4+y)+z==z+(y+2)and (z*xy)xz =
zx(y=*2z)

but neither is idempotent: in general it is not true that z + z = z nor that
z %z =z However, there is a distributive law relating * and + as follows:

(1-27) for all numbers z, y, z, zx*(y+2z)=(zxy)+(zx*2)

but no such law holds if * and + are interchanged; ie., it is not in general
true that z 4+ (y x 2) = (2 + y) * (z + 2). (For example, let z =1, y = 2, and
z = 3; then the left side is 7 and the right side is 12)

Arithmetic analogues of the Identity Laws atre z + 0 =z, 2 x 0 = 0, and
z * 1 = z with 0 playing the role of the null set and 1 that of the universal
set. (But this analogy, too, breaks down: z + 1 does not equal 1.)

What we have seen then is that there is an algebra of sets which is
in some respects analogous to the familiar algebra involving addition and
multiplication but which has its own peculiar properties as well. We will
encounter this structure once more when we take up the logic of statements
in Chapter 6, and we will discover in Chapter 12 that both are instances of
what is called a Boolean algebra.

For the moment our concern is not with the structure of this algebra
but rather to show how these equalities can be used in the manipulation of
set-theoretic expressions. The idea is that in any set-theoretic expression
a set may always be replaced by ome equal to it. The result will then be
an expression which denotes the same set as the original expression. For
example, in AN (B U C)" we may replace (B U C)’ by its equivalent, B'N C’
(citing DeMorgan’s Laws), to obtain AN(B'NC"). Since (BUC) and B'NC’
have the same members, so do AN(BUC) and AN (B'NC').

This technique can be used to simplify a complex set-theoretic expres-
sion, as in (1-28) below, or to demonstrate the truth of other statements
about sets, as in (1-29) and (1-30). It is usually convenient to arrange such
demonstrations as a vertical sequence in which each line is justified by ref-
erence to the law employed in deriving it from the preceding line.

(1-28) Ezample: Simplify the expression (AU B)U (B n C)
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1. (AuB)u(BNnCY

2. (AuB)U(B'UC" DeM.
3. AU(BU(B'UCY) Assoc
4 AUu((BuUB)UC Assoc.
5 Au(Uul) Compl,
6. Au(C'uU) Comm.
7. AUU Ident.
8 U Ident.

(1-29) Ezample: Show that (AN B)N(ANC) = An(B-C).

L (AnB)n(4AncCy
2. (AnB)n(4'uC) DeM
3. An(Bn(4'UucCh) Assoc.
4. An((Bn4AYu(BnC) Distr,
5 (An(BnA)U(ANn(BnCY) Distr.
6. (An(AnB)U(An(BnCY) Comm.
7. (ANA)YNnBYu(An(BnCh) Assoc.
8. (InBYU(AN(BNC)) Compl.
9. (Bnp)u(An(BncC")) Comm.
10. QUu(4An(BncCh) Ident.
1. (An(BnCH)up Comm.
12, An(BNnC") Ident.
13. An(B-C) Compl

(1-30) Ezample: Show that X NY C X UY.

By the Consistency Principle this expression is true if (X NY)N(XUY) =
X NY. We demonstrate the latter.
L (XnY)Nn(XuY)

2. (XnY)nX)u((XnY)nY) Distr.

. (XNnXnNY)Hu((XnY)nY) Comm.

4. (XnX)NY)U((XNnY)NnY) Assoc.

5, (XnX)nY)Uu(Xn(¥YnY)) Assoc,

6. (XNY)u(XnY) Idemp. (twice)
7. XNnY Idemp.

Such arrays constitute formal proofs (of the fact that, in each of these
cases, the set in the last line is equal to that in the first line ) We will
take up the topic of proofs in due course, but the reader who attempts such
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derivations in the exercises will no doubt encounter a notoriously trouble-
some problem connected with proofs; namely, while it is relatively simple to
verify that a given proof is correct, it may be very difficult to find the one
one wants. So if presented with a problem such as (1-29), one might have
to try many unsuccessful paths before finding one that leads to the desired
final expression. A certain amount of cutting and trying is therefore to be
expected

Exercises

1. Given the following sets:

A = {a,b,c,2,3,4} E = {a:b: {c}}

B = {a,b} F =90

C = {c, 2} G = {{476}:{622}}
D = {b,c}

classify each of the following statements as true or false
(a) ce 4 (g DcA (m) BCG@G

(b) ceF (h) ACC (n) {B}CG

(¢) ceE (i) DCE (o) DC@G

(d) {ceE () FCA (p) {D}CG

(e) {cteC (k) ECF (a) GCA4

(f) BCA () Be@G (r) {{e}}CE

2. For any arbitrary set S,

(a) is § a member of {S}?
(b) is {S} a member of {S}?
(c) is {S} a subset of {5}?
(d) what is the set whose only member is {S}?
3. Write a specification by rules and one by predicates for each of the
following sets. Remember that there is no order assumed in the list,

s0 you cannot use words like ‘the first’ or ‘the latter’. Recall also that
a recursive rule may contain more than one if-then statement.

(a) {5,10,15,20,.. }

(b) {7,17,27,37,..}

(c) {300,301,302,...,399,400}

(d) {3,4,7,8,11,12,15,16,19,20, .}
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(e) {0,2,-2,4,-4,6,~6,.. .}
(£) {1,1/2,1/4,1/8,1/16,.. }

4. Consider the following sets;

§1 = {{0},{4}, 4} S6 = 0
52 = A St = {0}
§3 = {4} S8 = {{0}}
S¢ = {{4}} §9 = {0,{0}}
56 = {{4},4}

Answer the following questions Remember that the members of a
set are the items separated by commas, if there is more than one,
between the outermost braces only; a subset is formed by enclosing
within braces zero or more of the members of a given set, separated
by commas.

(a) Of the sets S1 - §9 which are members of 517

(b) which are subsets of 517

{¢) which are members of 597

(d) which are subsets of S97

(e) which are members of 547

(f) which are subsets of 547

. Specify each of the following sets by listing its members:

(a) pfa,b,c} (d) {0}
(b) p{a} (e) pp{a b}
(c) b
. Given the sets A,...,G as in Exercise 1, list the members of each of

the following;:

(a) BUC (g) ANE (m) B-A4
(b) AUB (h) CnD (n) C-
(¢) DUE (i) BnF (o) E
(d) BUG (j) CNE (p) F-
(¢) DUF (k) BNnG (q) G
(f) AnB (1) A-B
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7. Given the sets in Exercise 1, assume that the universe of discourse is
U{4, B,C,D, E,F,G}. List the members of the following sets:

(a) (AnB)UC (h) D'nE
(b) AN(BUC) (i) Fn(4-B)
(¢) (BUC)-(CUD) (j) (AnByuU
(d) An(C-D) (k) (CuD)nU
(e) (ANC)-(4nD) () cCnD
f) ¢ (m) GUF
(g) (DUEY (m) (BnOCY

8. Let A = {a,b,c}, B={c,d} and C = {d,e, f}.

(a) What are:

(i) AuB (v) BUD

(i) AnB (viy An(BnC)
(iii) AU(BNO) (viiy A-B
(iv) cCu4

(b) Is a a member of {4, B}?
(¢) Is a a member of 4 U B?

9. Show by using the set-theoretic equalities in Figure 1-7 for any sets A,
B, and C,
(a) ((AuC)n(BuC") C(AUB)
(b) AN(B-4)=10
10. Show that the Distributive Law 4(a) is true by constructing Venn di-
agrams for X U(Y N Z) and (X UY)N(X U Z).

11. The symmetric difference of two sets A and B, denoted A + B, is
defined as the set whose members are in A or in B but not in both A
and B, ie.

A+ B=g(AUB)- (4N B)

(a) Draw the Venn diagram for the symmetric difference of two sets,

(b) Show that A+ B = (A — B) U (B — A) by means of the set-
theoretic equalities in Figure 1-7. Verify that the Venn diagram
for (A— B)U (B — A) is equivalent to that in (a).

(¢) Show that for all sets A and B, A+ B = B + A.
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(d) Express each of the following in terms of union, intersection, and
complementation, and simplify using the set-theoretic equalities.
(i) A+4 (iv) A+ B,where ACB
(i) A+U (v) A+ B,where ANB=19
(iii) A+0
(e) Show that (A-B)+(B-A)=A+ B
(f) Show that (A+B)C BifACB

Call adjectives which are correctly predicated of themselves ‘autolog-
ical’ and those which are not, ‘heterological.” For example, ‘English’
and ‘short’ are autological, but ‘French’ and ‘long’ are heterclogial,
Show that when we ask whether the adjective ‘heterological’ is hetero-
logical or autological we are led to a contradiction like that in Russell’s
Paradox. This is known as Grelling’s Paradox.
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Relations and Functions

2.1 Ordered pairs and Cartesian products

Recall that there is no order imposed on the members of a set. We can, how-
ever, use ordinary sets to define an ordered pair, written { a,b ) for example,
in which a is considered the first member and b is the second member of the
pair. The definition is as follows:

(2—1) < a,b > :def{{a}: {a: b}}

The first member of {a,b) is taken to be the element which occurs in
the singleton {a}, and the second member is the one which is a member of
the other set {a,b}, but not of {a}. Now we have the necessary properties
of an ordering since in general (a,b) # (b,a). This is so because we have
{{a},{a,b}} = {{b},{a,b}} (that is, (a,b) = (b, a)), if and only if we have
a = b. Of course, this definition can be extended to ordered triples and
in general ordered n-tuples for any natural number n. Ordered triples are
defined as

(2—2) (a,b,c):def((a,b>,c>

It might have been intuitively simpler to start with ordered sets as an ad-
ditional primitive, but mathematicians like to keep the number of primitive
notions to a minimurm.

If we have two sets A and B, we can form ordered pairs from them by
taking an element of A as the first member of the pair and an element of B

27
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as the second member. The Cartesian product of A and B, written A x B,
is the set comsisting of all such pairs. The predicate notation defines it as

(2-3) AxB=ge{(2,y)|z € Aandyec B}

Note that according to the definition if either A or B is §§, then Ax B = {.
Here are some examples of Cartesian products:

(2-4) Let K = {a,b,c} and L = {1,2}, then
KxL {(a,1),(a,2),(b,1),(

LxK = {{1,a),(2,a),{1,b),
LxL = {<1:1>s<1:2>7<2:1>7

i

o~ e~

It is important to remember that the members of a Cartesian product
are not ordered with respect to each other. Although each member is an
ordered pair, the Cartesian product is itself an unordered set of them.

Given a set M of ordered pairs it is sometimes of interest to determine
the smallest Cartesian product of which M is a subset. The smallest A and
B such that M C A X B can be found by taking A = {a | (e,b) € M for
some b} and B = {b| (a,b) € M for some a}. These two sets are called the
projections of M onto the first and the second coordinates, respectively. For
examnple, if M = {(1,1),(1,2),(3,2)}, the set {1,3} is the projection onto
the first coordinate, and {1,2} the projection onto the second coordinate.
Thus {1,3} x {1,2} is the smallest Cartesian product of which M is a subset.

2.2 Relations

We have a natural understanding of relations as the sort of things that hold
or do not hold between objects. The relation ‘mother of’ holds between
any mother and her children but not between the children themselves, for
instance. Transitive verbs often denote relations; e.g., the verb ‘kiss’ can
be regarded as denoting an abstract relation between pairs of objects such
that the first kisses the second. The subset relation was defined above as
a relation between sets. Objects in a set may be related to objects in the
same or another set. We write Rab or equivalently aRb if the relation R
holds between objects a and b. We also write B C A x B for a relation
between objects from two sets 4 and B, which we call a relation from A to
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B. A relation holding of objects from a single set 4 is called a relation in
A. The projection of R onto the first coordinate is called the domain of R
and the projection of R onto the second coordinate is called the range of R.
A relation R from A to B thus can be viewed as a subset of the Cartesian
product A x B. (There are unfortunately no generally accepted terms for
the sets A and B of which the domain and the range are subsets ) It is
important to realize that this is a set-theoretic reduction of the relation R to
a set of ordered pairs,ie {(a,b)| aRb}. For example, the relation ‘mother
of’ defined on the set H of all human beings would be a set of ordered pairs
in H x H such that in each pair the first member is mother of the second
member. We may visually represent a relation R between two sets A and B
by arrows in a diagram displaying the members of both sets.

A B

————

e

Figure 2-1: Relation R: A — B.

In Figure 2-1, A = {a,b} and B = {¢,d,e} and the arrows represent a
set-theoretic relation R = {{a,d),{a,e),(b,c)}. Note that a relation may
relate one object in its domain to more than one object in its range. The
complement of a relation R C A x B, written R’, is set-theoretically defined
as

(2-5) R :def(A x B)- R

Thus R’ contains all ordered pairs of the Cartesian product which are not
members of the relation R. Note that (R')’ = R. The inverse of a relation
R C A x B, written B!, has as its members all the ordered pairs in R, with
their first and second elements reversed. For example, let 4 = {1,2,3} and
let R C AxAbe {(3,2),(3,1),(2,1)}, whichis the ‘greater than’relation in
A. The complement relation R'is {{1,1),(1,2),(1,3),(2,2),(2,3),(3,3}},
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the ‘less than or equal to’ relation in A. The inverse of R, R™1, is {(2,3), (1,
3),(1,2)}, the ‘less than’ relation in A. Note that (R~1)"! = R, and that
if RCAx B,then R"! C B x A,but R" C A X B.

We have focused in this discussion on binary relations, ie., sets of or-
dered pairs, but analogous remarks could be made about relations which are
composed of ordered triples, quadruples, etc , ie., ternary, quaternary, or
just n-place relations.

2.3 Functions

A function is generally represented in set-theoretic terms as a special kind
of relation. A relation R from A to B is a function if and only if it meets
both of the following conditions:

1. Each element in the domain is paired with just one element in the
range.

2. The domain of R is equal to A.

This arnounts to saying that a subset of a Cartesian product A x B can
be called a function just in case every member of A occurs exactly once as
a first coordinate in the ordered pairs of the set.

As an example, consider the sets 4 = {a,b,c} and B = {1,2,3,4}. The
following relations from A to B are functions:

(2-6) P = {(a,1),(b,2),(c,3)}
Q = {<a:3>:<b74>7<c21>}
R = {{a,8),(5,2),(c,2)}

(27§ = {{a,1),(b,2)}
T = {(a,2),(b,3),(a,3),(c, 1)}
Vo= {{(a,2),(a,3), (b,4)}

S fails to meet condition 2 because the set of first members, namely
{a,b}, is not equal to A. T does not satisfy condition 1, since a is paired
with both 2 and 3. In relation V both conditions are violated.
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Much of the terminology used in talking about functions is the same as
that for relations. We say that a function that is a subset of A x B is a
function from A to B, while one in A x A is said to be a function in A. The
notation ‘F: A — B’ is used for ‘F is a function from 4 to B’ Elements in
the domain of a function are sometimes called arguments and their corre-
spondents in the range, values. Of function P in (2-6), for example, one may
say that it takes on the value 3 at argument ¢. The usual way to denote
this fact is P(¢) = 3, with the name of the function preceding the argument,
which is enclosed in parentheses, and the corresponding value to the right
of the equal sign.

‘Transformation,’ ‘map,” ‘mapping,’ and ‘correspondence’ are commonly
used synonyms for ‘function,” and often ‘F(a) = 2’ is read as ‘F maps a into
2 Such a statement gives a function the appearance of an active process
that changes arguments into values, This view of functions is reinforced by
the fact that in most of the functions commonly encountered in mathematics
the pairing of arguments and values can be specified by a formula contain-
ing operations such as addition, multiplication, division, etc. For example,
F(z) = 22 + 1 is a function which, when defined on the set of integers,
pairs 1 with 3, 2 with 5, 3 with 7, and so on. This can be thought of as
a rule which says, “To find the value of F at z, multiply z by 2 and add
17 Later in this book it may prove to be necessary to think of functions as
dynamic processes transforming ob jects as their input into other objects as
their output, but for the present, we adhere to the more static set-theoretic
perspective, Thus, the function F(z) = 2z + 1 will be regarded as a set of
ordered pairs which could be defined in predicate notation as

(2-8) F ={(z,y) |y =2z + 1} (where z and y are integers)

Authors who regard functions as processes sometimes refer to the set of
ordered pairs obtained by applying the process at each element of the domain
as the graph of the function. The connection between this use of “graph”
and a representation consisting of a line drawn in a coordinate system is not
accidental.

We should also note that relations which satisfy condition 1 above but
perhaps fail condition 2 are sometimes regarded as functions, but if so, they
are customarily designated as ‘partial functions.” For example, the function
which maps an ordered pair of real numbers (a,b) into the quotient of a
divided by & (e.g., it maps (6,2) into 3 and (5, 2) into 2.5) is not defined
when b = 0. But it is single-valued - each pair for which it is defined is
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associated with a unique value — and thus it meets condition 1. Strictly
speaking, by our definition it is not a function, but it could be called a
partial function. A partial function is thus a total function on some subset
of the domain. Henceforth, we will use the term ‘function,’ if required, to
indicate a single-valued mapping whose domain may be less than the set A
containing the domain.

It is sometimes useful to state specifically whether or not the range of a
function from 4 to B is equal to the set B. Functions from A to B in general
are said to be into B If the range of the function equals B, however, then the
function is onto B. (Thus onto functions are also into, but not necessarily
conversely ) In Figure 2-2 three functions are indicated by the same sort
of diagrams we introduced previously for relations generally It should be
apparent that functions F and G are onto but H is not. Al are of course
nto.

Figure 2-2: Hlustration of onto and into
functions.

A function F: A — B is called a one-to-one function just in case no mem-
ber of B is assigned to more than one member of A. Function F in Figure
2-2 is one-to-one, but G is not (since both b and ¢ are mapped into 2), nor
is H (since H(b) = H(¢) = 3). The function F defined in (2-8) is one-to-one
since for each odd integer y there is a unique integer z such that y = 2z + 1.
Note that F is not onto the set of integers since no even integer is the value
of F' for any argument z. Functions which are not necessarily one-to-one
may be termed many to one. Thus all functions are many-to-one strictly
speaking, and some but not all of them are one-to-one. It is usual to apply
the term ”many-to-one”, however, only to those functions which are not in
fact one-to-one.

A function which is both one-to-one and onto (F in Figure 2-2 is an
example) is called a one-to-one correspondence Such functions are of special
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interest because their inverses are also functions (Note that the definitions
of the inverse and the complement of a relation apply to functions as well )
The inverse of G in Figure 2-2 is not a function since 2 is mapped into both
b and ¢, and in H~! the element 2 has no correspondent,

Problem: Is the inverse of function F' in (2-8) also a function? Is F a
one-to-one correspondence?
2.4 Composition
Given two functions F: A — B and G: B — C, we may form a new function
from A to C, called the composite, or composition of F' and G, written Go F.
In predicate notation function composition is defined as

(2-9) GoF:def{(:c,z) | for some y,(z,y) € F and (y,z) € G}

Figure 2-3 shows two functions F and G and their composition,

L M

GoF:K — M

G:L— M

Figure 2-3: Composition of two functions F
and G.
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Note that F'is into while G is onto and that neither is one-to-one. This
shows that compositions may be formed from functions that do not have
these special properties, It could happen, however, that the range of the
first function is disjoint from the domain of the second, in which case, there
is no y such that (z,y) € F and (y,z) € G, and so the set of ordered pairs
defined by G o F is empty In Figure 2-3, F is the first function and G is
the second in the composition. Order is crucial here, since in general G o F'
is not equal to F o G The notation G o F may seem to read backwards,
but the value of a function F' at an argument a is F(a), and the value of G
at the argument F(a) is written G(F(a)). By the definition of composition,
G(F(a)) and (G o F)(a) produce the same value,

A function F: A — A such that FF = {{z,z) | ¢ € A} is called the
identity function, written idy. This function maps each element of A to
itself. Composition of a function F' with the appropriate identity function
gives a function that is equal to the function F itself This is illustrated in
Figure 2-4.

A B B
G
NG —
F idp
idgoF=F
A A B
- M
1dg F
Foidy=F

Figure 2-4: Composition with an identity
function.

Given a function F: A — B that is a one-to-one correspondence (thus the
inverse is also a function), we have the following general equations:

(2-10) F-loF = idy
FoF-1 = 4dg
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These are illustrated in Figure 2-5,

Figure 2-5: Composition of one-to-one
correspondence with its inverse.

The definition of composition need not be restricted to functions but can
be applied to relations in general. Given relations R C Ax B and S C BxC
the composite of R and S, written S o R, is the relation {{z,z) | for some
y, (z,y) € Rand (y,z) € S} An example is shown in Figure 2-6.

A B A C
= =<7 ]gt
b h
RCAXB SoRCAxC

Figure 2-6: Composition of two relations R
and S.
For any relation R C A x B we also have the following;:

(2-11) idgoR = R
Roidy = R

(Note that the identity function in A4, ida, is of course a relation and could
equally well be called the identity relation in A )
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The equations corresponding to (2-10) do not hold for relations (nor for
functions which are not one-to-one correspondences) However, we have for
any one-to-one relation R: 4 — B:

(2-12) R idy
1

R1to -
RoR-1 C

idp

We should note here that our previous remarks about ternary, quater-
nary, etc. relations can also be carried over to functions. A function may
have as its domain a set of ordered n-tuples for any =, but each such n-tuple
will be mapped into a unique value in the range. For example, there is a
function mapping each pair of natural numbers into their sum.

Exercises

1. Let A = {b,c} and B = {2,3}

(a) Specify the following sets by listing their members.
(i) AxB (iv) (AUB)x B
(iiy BxA (v) (AnNB)xB
(i) AxA (vi) (A-B)x (B 4)
(b) Classify each statement as true or false.
(i) (AxB)U(BxA)=10
(it) (Ax A) C (Ax B)
(iii) (e,c) C (A x 4)
(iv) {(5,3),(3,8)} C (A x B)U(B x 4)
(v) 0C Ax A
(vi) {(5,2),(e,3)} is a relation from A4 to B
(vii) {(b,b)} is a relation in A
(c) Consider the following relation from A to (4 U B):
R={(b,b),(b,2),(c,2),(c,3)}
(1) Specify the domain and range of R
(i) Specify the complementary relation R’ and the inverse R™!
(iit) Is (R")~! (the inverse of the complement) equal to (R™1)
(the complement of the inverse)?
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2. Let A = {a,b,c} and B = {1, 2}. How many distinct relations are there
from A to B? How many of these are functions from A to B? How
many of the functions are onto? one-to-one? Do any of the functions
have inverses that are functions? Answer the same questions for all
relations from B to A.

3. Let
Rl - {(171>:<2’1>:<374’>7<272>7<373>:<4:4>7<471>}
Ry = {<3’4>7<1’2>’<174>7<2’3>><2’4>7<173>}
(both relations in 4, where 4 = {1,2,3,4}).
(a) Form the composites Ry o Ry and Ry o Ry. Are they equal?
(b) Show that R7* o Ry # ids and that Ry o Ry € id4.
4. For the functions F' and G in Figure 2-3:
(a) show that (Go F)"1 = F~1oG™1.

(b) Show that the corresponding equation holds for relations R and
S in Figure 2-6.
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Properties of Relations

3.1 Reflexivity, symmetry, transitivity, and con-
nectedness

Certain properties of binary relations are so frequently encountered that
it is useful to have names for them. The properties we shall consider are
reflezivity, symmetry, transitivity, and connectedness. All these apply only
to relations in a set, i.e,, in A X A for example, not to relations from A to
B, where B # A. ¢

Reflexivity

Given a set A and a relation R in 4, R is reflezive if and only if all the
ordered pairs of the form (z,z ) are in R for every z in A

As an example, take the set A = {1,2,3} and the relation Ry = {(1,1),
(2,2),(3,3),(3,1)} in A R; is reflexive because it contains the ordered
pairs (1,1),(2,2), and (3,3). The relation R, = {{1,1),(2,2)} is non-
reflexive since it lacks the ordered pair (3,3) and thus fails to meet the
definitional requirement that it contains the ordered pair (z,z) for every
z in A Another way to state the definition of reflexivity is to say that a
relation R in A is reflexive if and only if id4, the identity relation in A, is
a subset of B. The relation ‘has the same birthday as’ in the set of human
beings is reflexive.

A relation which fails to be reflexive is called nonreflexive, but if it con-
tains no ordered pair (z,z) with identical first and second members, it is
said to be irreflezive. Rz = {(1,2),(3,2)} is an example of an irreflexive
relation in A. Irreflexivity is a stronger condition than nonreflexivity since

39
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every irreflexive relation is nonseflexive but not conversely. The relation ‘is
taller than’ in the set of human beings is irreflexive (therefore also nonre-
flexive), while the relation ‘is a financial supporter of’ is nonreflexive (but
not irreflexive, since some people are financially self-supporting) Note that
a relation R in A is nonreflexive if and only if i¢d4 € R; it is irreflexive if and
only if RNidy = 0.
Symmetry

Given a set A and a binary relation R in A, R is symmetric if and only if
for every ordered pair (z,y) in R, the pair (y,z )isalsoin R It isimportant
to note that this definition does not require every ordered pair of A X 4 to
be in R. Rather for a relation R to be symmetric it must always be the case
that if an ordered pair is in R, then the pair with the members reversed is
also in R.

Here are some examples of symmetric relations in {1,2,3}:

(3_1) {<1"2>><271>’<3’2>7<2’3>}
{(1,3),(3,1)}
{(2,2)}

{(2,2)} is a symmetric relation because for every ordered pair in it, i.e.,
(2,2), it is true that the ordered pair with the first and second members
reversed, ie, (2,2), is in the relation. Another example of a symmetric
relation is ‘is a cousin of’ on the set of human beings. If for some (z,y)
in R, the pair (y,z) is not in R then R is nonsymmetric. The relation ‘s
a sister of’ on the set of human beings is nonsymmetric (since the second
member may be male, It is, however, a symmetric relation defined on the
set of human females).

The following relations in {1,2,3} are nonsymmetric:

If it is never the case that for any (z,y) in R, the pair (y,z) is in
R, then the relation is called asymmetric. The relation ‘is older than’ is
asymmetric on the set of human beings. Note that an asymmetric relation
must be irreflexive (because nothing in the asymmetry definition requires
and y to be distinct). The following are examples of asymmetric relations in
{1,2,3}%
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2)}

(3-3) {(2,3),(1,
2,3),(1,2)}

2,3
{(1,3), ¢
{(3,2)}
A relation is anti-symmetric if whenever both (z,y) and (y,z ) arein R,
then z = y. This definition says only that if both (z,y) and (y,z) aze in
R, then z and y are identical; it does not require (z,z) € Rforallz € 4. In
other words, the relation need not be reflexive in order to be anti-symmetric.

The following relations in {1, 2,3} are anti-symmetric,

(3~4) {<2:3>7<1’1>}
{(1,1),(2,2)}
{(1,2),(2,3)}

Transitivity

A relation R is transitive if and only if for all ordered pairs (z,y) and
(y,z) in R, the pair (z,z) is also in R.

Because there is no necessity for z, y, and z all to be distinct, the fol-
lowing relation meets the definition of transitivity,

(3-5) {({2.2)}

wherez =y =z =2,

The relation given in (3-6) is not transitive,

(3—6) {<273>’<3’2>7<2’2>}

because (3,2) and (2,3) are members, but (3,3) is not.

Here are some more examples of transitive relations:

(3-7) {(1.2),(2,3),(1,3)}
{(1,2),(2,1),(1,1),(2,2)}
{(1,2),(2,3),(1,3),(3,2),(2,1),(8,1),(1,1),(2,2),(3,3)}

The relation ‘is an ancestor of’ is transitive in the set of human beings.
If a relation fails to meet the definition of transitivity, it is nontransitive. If
for no pairs (z,y) and (y, z) in R, the ordered pair {z,z) is in R, then the
relation is intransitive. For example, the relation ‘is the mother of’ in the
set of human beings is intransitive,
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Relation (3-6) is nontransitive, as are the following two:

(3_8) {< 172>’<273 >}
{(1,2),(2,3),(1,8),(3,1)}

The first of these relations is also intransitive, as are the following relations:

(3—9) {<3:1>:<1:2>’<2’3>}
{(3,2),(1,3)}

Connectedness

A relation R in A is connected (or connexz) if and only if for every two
distinct elements ¢ and y in 4, (z,y) € Ror (y,z) € R (or both).

Note that the definition of connectedness refers, as does the definition
of reflexivity, to all the members of the set A. Further, the pairs {z,y)
and (y,z ) mentioned in the definition are explicitly specified as containing
nonidentical first and second members. Pairs of the form (z,z) are not
prohibited in a connected relation, but they are irrelevant in determining
connectedness.

The following relations in {1, 2,3} are connected:

(3-10) {(1,2),(3,1),(3,2)}
{{1,1,(2,3),(1,2),(3,1),(2,2)}

The following relations in {1,2, 3}, which fail the definition, are noncon-
nected.

(3-11) {(1,2),(2,3)}
{(1,3%(3,1):(2,2),(3,2)}

It may be useful at this point to give some examples of relations speci-
fied by predicates and to consider their properties of reflexivity, symmetry,
transitivity, and connectedness

(3-12) Ezample: Ry is the relation ‘is father of’ in the set H of all human
beings. Ry is irreflexive (no one is his own father); asymmetric (if
z is y’s father, then it is never true that y is z’s father); intransitive
(if z is y’s father and y is 2z’s father, then z is z’s grandfather but
not z's father); and nonconnected (there are distinct individuals =
and y in H such that neither ‘z is the father of ¥’ nor ‘y is the
father of 2’ is true).
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(3-13) Ezample: R is the relation ‘greater than’ defined in the set 7 =

(3-14)

3.2

{1,2,3,4,...} of all the positive integers Z contains an infinite
number of members and so does R, but we are able to determine
the relevant properties of R from our knowledge of the properties
of numbers in general. R is irreflexive (no number is greater than
itself); asymmetric (if z > y, then y # =; transitive (if z > y
and y > z, then ¢ > z), and connected (for every distinct pair of
integers ¢ and y, either z > yor y > z.

Ezample: R, is the relation defined by ‘z is the same age as y,” in
the set H of all living human beings. R, is reflexive (everyone is
the same age as himself or herself); symmetric (if z is the same age
as y, then y is the same age as z); transitive (if # and y are the
same age and so are y and z, then z is the same age as z); and
nonconnected (there are distinct individuals in H who are not of
the same age).

Diagrams of relations

It may be helpful in assimilating the notions of reflexivity, symmetry and
transitivity to represent them in relational diagrams. The members of the
relevant set are represented by labeled points (the particular spatial arrange-
ment of them is irrelevant). If ¢ is related to y, ie. (z,y) € R, an arrow
connects the corresponding points. For example,

Q) ¢}

10.:)/2

Figure 3-1: Relational diagram.

Figure 3-1 represents the relation

R={(1,2),(2,1),(2,2),(1,1),(2,3),(3,3)}

It is apparent from the diagram that the relation is reflexive, since every
point bears a loop. The relation is nonsymmetric since 3 is not related to 2
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whereas 2 is related to 3. It cannot be called asymmetric or antisymmetric,
however, since 1 is related to 2 and 2 is related to 1. It is nontransitive since
1 is related to 2 and 2 is related to 3, but there is no direct arrow from 1 to
3. The relation cannot be intransitive because of the presence of pairs such
as (1,1).

If a relation is connected, every pair of distinct points in its diagram will
be directly joined by an arrow. We see that R is no connected since there is
not direct connection between 1 and 3 in Figure 3-1.

3.3 Properties of inverses and complements

Given that a relation R has certain properties of reflexivity, symmetry, tran-
sitivity or connectedness, one can often make general statements about the
question whether these properties are preserved when the inverse R~! or
complement R’ of that relation is formed.

For example, take a reflexive relation R in A, By the definition of reflexive
relations, for every ¢ € A4, (z,z) € R. Since R™! has all the ordered pairs
of R, but with the first and second members reversed, then every pair (z,z )
is also in R™!. So the inverse of R is reflexive also. The complement R’
contains all ordered pairs in A x A that are not in R. Since R contains
every pair of the form (z,z ) for any =z € A, R’ contains none of them. The
complement relation is therefore irreflexive.

As another example, take a symmetric relation R in A. Does its com-
plement have this property? Let’s assume that the complement R’ is not
symmetric, and see what we can derive from that assumption If R’ is not
symmetric, then there is some ( z,y) € R’ such that {y,z) € R', by the def-
inition of a nonsymmetric relation. Since (y,z) € R', (y,z ) must be in the
complement of R', which is R itself. Because R is symmetric, {(z,y) must
also be in R. But one and the same ordered pair { z,y ) cannot be both in R
and in its complement R’, so the assumption that the complement R’ is not
symmetric leads to an absurd conclusion. That means that the assumption
cannot be true and the complement R’ must be symmetric after all. f Ris a
symmetric relation in A, then the complement R'is symmetric and vice versa
(the latter follows from essentially the same reasoning with R’ substituted
for R). This mode of reasoning is an instance of what is called a reductio
ad absurdum proof in logic. It is characterized by making an assumption
which leads to a necessarily false conclusion; you may then conclude that
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the negation of that assumption is true. In Chapter 6 we will introduce rules
of inference which will allow such arguments to be made completely precise.

For sake of easy reference the table in Figure 3-2 presents a summary of
properties of relations and those of their inverses and complements. These
can all be proved on the basis of the definitions of the concepts and the laws
of set theory. Since we have not yet introduced a formal notion of proof, we
will not offer proofs here, but it is a good exercise to convince yourself of
the facts by trying out a few examples, reasoning informally along the lines
illustrated above.

R (not 0) R™! R’

reflexive reflexive irreflexive
irreflexive irreflexive reflexive
symmetric symmetric (R™! = R)  symumetric
asymmetric asymumetric non-symmetric
antisymmetric antisymmetric depends on R
transitive transitive depends on R
intransitive intransitive depends on R
connected connected depends on R

Figure 3-2: Preservation of properties of a
relation in its inverse and its complement.

3.4 Equivalence relations and partitions

An especially important class of relations are the equivalence relations. They
are relations which are reflexive, symmetric and transitive. Equality is the
most familiar example of an equivalence relation. Other examples are ‘has
the same hair color as’, and ‘is the same age as’. The use of equivalence
relations on a domain serves primarily to structure a domain into subsets
whose members are regarded as equivalent with respect to that relation.

For every equivalence relation there is a natural way to divide the set on
which it is defined into mutually exclusive (disjoint) subsets which are called
equivalence classes. We write [z] for the set of all y such that (z,y) € R.
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Thus, when R is an equivalence relation, [z] is the equivalence class which
contains ¢ The relation ‘is the same age as’ divides the set of people into age
groups, i.e., sets of people of the same age Every pair of distinct equivalence
classes is disjoint, because each person, having only one age, belongs to ex-
actly one equivalence class. This is so even when somebody is 120 years old,
and is the only person of that age, consequently occupying an equivalence
class all by himself. By dividing a set into mutually exclusive and collectively
exhaustive nonempty subsets we effect what is called a partitioning of that
set.

Given a non-empty set A, a partition of 4 is a collection of non-empty
subsets of A such that (1) for any two distinct subsets X and Y, X NY =0
and (2) the union of all the subsets in the collection equals A The notion of
a partition is not defined for an empty set. The subsets that are members
of a partition are called cells of that partition.

For example, let A = {a,b,c,d,e}, Then, P = {{a,c},{b,€e},{d}} is
a partition of A because every pair of cells is disjoint: {a,c} N {b,e} = 0,
{b,e}n{d} =0, and {a,c} N {d} = 0; and the union of all the cells equals
A U{{e,c}, {b,e}, {d}} = A

The following three sets are also partitions of A:

(3-15) Py = {{a,c,d},{b,e}}
Py = {{a},{b}, {c},{d},{e}}
Py = {{a,b,¢,d,e}}

P5 is the trivial partition of A into only one set. Note however that the
definition of a partition is satisfied.

The following two sets are not partitions of A:

(3-18) C = {{a,b,c}, {b,d}, {e}}
D= {{a}>{b>e}>{c}}

C fails the definition because {a,b,c}N {b,d} # 0 and D because | J{{a},
{b,e}, {c}} # 4

There is a close correspondence between partitions and equivalence rela-
tions. Given a partition of set A, the relation R = {{z,y) | = and y are in
the same cell of the partition} is an equivalence relation. Conversely, given a
reflexive, symmetric, and transitive relation R in A, there exists a partition
of A in which z and y are in the same cell if and only if z and y are 1elated by
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R. The equivalence classes specified by R are just the cells of the partition.
An equivalence relation in A is sometimes said to induce a partition of A.

As an example, consider the set 4 = {1,2,3,4,5} and the equivalence
relation

b

(3-17) R={(1,1),(1,3 ,3),(2,2),(2,4),(4,2),(4,5),
5,2

( 3
(4,4),( 5),(2,5)}

which the reader can verify to be reflexive, symmetric, and transitive, In
this relation 1 and 3 are related among themselves in all possible ways, as
are 2, 4, and 5, but no members of the first group are related to any member
of the second group. Therefore, R defines the equivalence classes {1,3} and
{2, 4,5}, and the corresponding partition induced on 4 is

3
5

?

(3-18) Pr={{1,3},{2,4,5}}

Given a partition such as

(3-19) @ = {{1,2},{3,5}, {4}}

the relation Rg consisting of all ordered pairs (z,y) such that z and y are
in the same cell of the partition is as follows:

(3—20) RQ = {<1>1>7<172>7<2>1>3<272>’<3>3>7<375>3<573>3<535>7<474

Ro is seen to be reflexive, symmetric, and transitive, and it is thus an
equivalence relation.

Another example is the equivalence relation ‘is on the same continent
as’ on the set A = {France, Chile, Nigeria, Ecuador, Luxembourg, Zambia,
Ghana, San Marino, Uruguay, Kenya, Hungary}. It partitions A into three
equivalence classes: (1) A; = {France, Luxembourg, San Marino, Hungary},
(2) Ay = {Chile, Ecuador, Uruguay} and (3) A3 = {Nigeria, Zambia, Ghana,
Kenya}.

3.5 Orderings

An order is a binary relation which is transitive and in addition either (i)
reflexive and antisymmetric or else (i) irreflexive and asymmetric. The
former are weak orders; the latter are strict (or strong).
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To illustrate, let A = {a,b,c,d}. The following are all weak orders in A:

(3-21)  Ri={(a,b),(a,c),(a,d),(b,c),(a,a),(b,b),(c,c),(d,d)}
RZ:{<b>a>7<b>b>:<a>a>><cac>7<d>d>>< b),{c, >}
Ry = {<dvc>><d>b>7<d>a>><c7b>7<c:a>7<a>a>7<b b>7<c C>
(d,d),(b,a)}

These are represented in Figure 3-3 as relational diagrams, from which it
can be verified that each is indeed reflexive, antisymmetric, and transitive

]
Q=
o= 09 LDy
\ c b a d c b a
O ¢ d
Rz R3

Figure 3-3:
Diagrams of the weak orders in (3-21).

To these weak orders there correspond the strict orders Sy, Sz and S3,
respectively:

a,c),{a,d) (bc)}
e,b),{c,a)}

d,b),(d,a),{e,b),(c,a),(b,a)}

(3_22) S1= {<a>b>>
Sy = {(b

3]
~
o~

These can be gotten from the weak orders by removing all the ordered
pairs of the form ( =z, ). Conversely, one can make a strict order into a weak
order by adding the pairs of the form (=z,z ) for every z in A.

As another example of an order, consider any collection of sets C and a
relation R in C defined by R = {{ X,Y )| X C Y} We have already noted
in effect (Chapter 1, section 4) that the subset relation is transitive and
reflexive. It is also antisymmetric, since for any sets X and Y, if X CY and
Y C X, then X =Y (this will be proved in Chapter 7). The corresponding
strict order is the ‘proper subset of’ relation in C.
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_//"C
°/b o:——»o-—.o .::»o—-»o.—_»o
a\ c b a d c b a
d °d
51 52 53
Figure 3-4:

Diagrams of the strict orders in (3-22).

Further, we saw in Example (3-13) that the relation R ‘greater than’ in
the set of positive integers is irreflexive, asymmetric and transitive. It is
therefore a strict order. (Problem: What relation defines the corresponding
weak order?)

Some terminology: if R is an order, either weak or strict, and (z,y) € R,
we say that z precedes y, = is a predecessor of y, y succeeds (or follows) z,
or y 18 a successor of z, these being equivalent locutions. If =z precedes y
and z # y, then we say that ¢ immediately precedes y or = is an immediate
predecessor of y, etc., just in case there is no element z distinct from both
z and y such that z precedes z and z precedes y. In other words, there is
no other element between ¢ and y in the order. Note that no element can
be said to immediately precede itself since  and y in the definition must be
distinct,

In Ry and Sy in (3-21) and (3-22), b is between ¢ and ¢; therefore,
although ¢ precedes ¢, a is not an immediate predecessor of ¢. In Ry and Sy,
¢ is an immediate predecessor of b, and b is an immediate predecessor of a.

In diagramming orders it is usually simpler and more perspicuous to
connect pairs of elements by arrows only if one is an immediate predecessor
of the other. The remaining connection can be inferred from the fact that
the relation is tranmsitive. In order to distinguish weak from strict orders,
however, it is necessary to include the ‘reflexive’ loops in weak orders. Di-
agrammed in this way, the orders in (3-21) would appear as in Figure 3-5.
The diagrams of the corresponding strict orders would be identical except
for the absence of the loops on each element.

There is also a useful set of terms for elements which stand at the ex-
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o e 000 0000

a c b a d c b a
e d e d
Ry R, Rj

Figure 3-5: Immediate predecessor diagrams
of the orders in (3-21).

tremes of an order. Given an order R in a set 4,

1. an element z in A is minimal if and only if there is no other element
in A which precedes z (examples: e in Ry and $y; ¢ and d in Ry and
Sz; din R3 and 53)

2. an element z in A is least if and only if z precedes every other element
in A (examples: a in Ry and S1; din R3 and S3)

3. an element ¢ in A is mazimal if and only if there is no other element
in A which follows ¢ (examples: ¢ and d in Ry and Si; ¢ and din R,
and Sy; ¢ in R3 and S3)

4, anelement ¢ in A4 is greatest if and only if ¢ follows every other element
in A (examples: ¢ in Rz and S3).

Note that ¢ in Ry and S is both a minimal and a least element, while
¢ and d in these same orders are both maximal but not greatest (¢ does
not follow d, for example). Element d in Ry and Sz is both minimal and
maximal but neither greatest nor least. The order defined by R in Example
(3-13) has 1 as a maximal and greatest element (it follows all other elements
and has no successors) but there is no minimal or least element in the order.
Observe here that the form ‘greatest’ as used technically about orders need
not coincide with the notions ‘greater than ’ or ‘greatest’ in the realm of
numbers.

A least element, if there is one in an order, is unique (if there were
two, each would have to precede the other, and this would violate either
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asymmetry or antisymmetry), and similarly for a greatest element., There
may be more than one minimal element, however {e.g, ¢ and d in Ry and
S, above), and more than one maximal element An order might have none
of these; the relation ‘greater than’ in the set of all positive and negative
integers and zero, {0,1,~1,2,~1,.. } has no maximal, minimal, greatest or
least elements,

If an order, strict or weak, is also connected, then it is said to be a total or
linear order. Examples are Rz and S3 above and the relation R of Example
(3-13). Their immediate predecessor diagrams show the elements arranged
in a single chain. Order R; is not total since d and ¢ are not related, for
example. Often orders in general are called partial orders or partially ordered
sets. The terminology is unfortunate, since it then happens that some partial
orders are total, but it is well established nonetheless, and we will sometimes
use it in the remainder of this book.

Finally, we mention some other frequently encountered notions pertain-
ing to orders A set A is said to be well-ordered by a relation R if R is a
total order and, further, every subset of A4 has a least element in the order-
ing relation. The set of natural numbers N = {0,1,2,3,. ..} is well-ordered
by the ‘is less than’ relation (it is a total order, and every subset of N will
have a least element when ordered by this relation). The set of integers
Z =1{0,1,~1,2,-2,...}, on the other hand, is not well-ordered by that rela-
tion, since the negative integers get smaller ‘ad infinitum’. Note that every
finite linearly ordered set must be well-ordered

A relation R in A is dense if for every (z,y) € R, ¢ # y, there exists
a member z € A4, z # z and y # z, such that (z,z) € R and (z,y) € R.
Density is an important property of the real numbers which we can think
of as all the points lying on a horizontal line of infinite extent. The relation
‘is greater than’ is not dense on the natural numbers, but it is dense on the
real numbers.

Exercises

1. (a) Determine the properties of the following relations on the set of
all people. In each case, make the strongest possible statement,
e.g. call a relation irreflexive whenever possible rather than non-
reflexive.
(i) is a child of
(ii) is a brother of
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(iii) is a descendant of
(iv) is an uncle of (assuming that one may marry one’s aunt or
uncle)

(b) Which of your answers would be changed if these relations were
defined in the set of all male human beings?

. Investigate the properties of each of the following relations If any

one is an equivalence relation, indicate the partition it induces on the
appropriate set. (If you do not know the concepts, try to find some rea-
sonable assumptions, state them explicitly, and do the exercise based
on those).

(a) M = {{z,y) | ¢ and y are a minimal pair of utterances of
English}

(b) C = {{=z,y) | = and y are phones of English in complementary
distribution}

(¢) F={{z,y) |z and y are phones of English in free variation}
(d) A={{z,y) |z and y are allophones of the same English phoneme}

(e) @ is the relation defined by ‘X is a set having the same number
of members as Y’ in some appropriate collection of sets.

. Let A = {1,2,3,4}.

(a) Determine the properties of each of the following relations, its
inverse and its complement. If any of the relations happens to be
an equivalence relation, show the partition that is induced on 4.

R1={

Ry, = {
R3 = {
{

&
>
i

(b) Give the equivalence relation that induces the following partition
on A: P = {{1},{2,3}, {4}}.

(¢) How many distinct partitions of A are possible?

4. What is wrong with the following reasoning that reflexivity is a conse-

quence of symmetry and transitivity? (Birkhof & MacLane (1965)). If
(z,y) € R, then (y,z) € R, since we assume R is symmetric. If both
(#,y) and (y,z) are in R, then (z,z ) must be in R by transitivity.
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5. Let A = {1,2,3,5,6,10, 15,30} and let R be a relation in A defined as
follows:

R ={{(=,y) | ¢ divides y without remainder}
(a) List the members of R, and show that it is a weak partial order
but not a total order,

{(b) Construct an immediate predecessor diagram for this order and
identify any maximal, minimal, greatest, and least elements.

(c) Do the same for the set p(B), where B = {a, b, ¢}, and the relation
‘is a subset of’.






Chapter 4

Infinities

In the preceding chapters we have occasionally dealt with sets, such as the
set of positive integers, which we intuitively regard as infinite. We now want
to examine the concept of infinity in more detail.

Some initially plausible approaches to the problem of characterizing in-
finity are not satisfactory. A definition employing the terms ‘never-ending’
or ‘impossible, in principle, to list exhaustively,” for example, would be defec-
tive, since these expressions are themselves no clearer than the term ‘infinite’
that is to be explicated. What is needed is a definition that makes use of
set-theoretic concepts already at hand and that accords with our intuitions
about what sets should be regarded as infinite. Since an infinite set is in
some sense “larger” than any finite set, we start by defining what it means
for two sets to be of equal or unequal size,

4.1 Equivalent sets and cardinality

We say that two sets A and B have the same number of members, or are
equivalent, if and only if there exists a one-to-one correspondence between
them. Since a one-to-one correspondence is a function that is one-to-one and
onto, every member of A4 is paired with exactly one member of B, and vice
versa. In such a situation it would certainly be reasonable to say that the
sets are of equal size. We denote the equivalence of A and B by A~ B
The terms equal and eguivalent must not be confused. Equal sets have
the same members while equivalent sets have the same number of members.
Equal sets, are therefore, necessarily equivalent but the converse is, in gen-
eral, not true. Further, nothing is said in the definition of equivalence about

55
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the exact nature of the one-to-one correspondence between the sets ~ only
that one exists.

For the case of finite sets this definition of equivalence leads to the ex-
pected conclusion. A set with just four distinct members, for example, can
be put into one-to-one correspondence with any other set having exactly four
distinct members, but not with any set with more or fewer members. The
relation of equivalence of sets is, as the name implies, an equivalence relation
with the property that all of the sets with the same number of members are
put into the same equivalence class. To each equivalence class we can assign
a number, called the cardinal number, denoting the size of each set in the
class. For finite sets, the cardinal numbers correspond exactly to the natural
numbers. Thus a set A with just four members is said to have a cardinality
of 4, written |4|= 4, as we indicated in Chapter 1.

In the case of infinite sets something rather surprising happens. Consider,
for example, the set of positive integers P, the set F of positive even integers
(without zero), and the function F from P to E that maps every integer z
into 2z as indicated in Figure 4-1.

Figure 4-1: A one-to-one mapping from the
positive integers to the positive even integers.

Every positive integer can be multiplied by 2 to give as a unique value a
positive even integer. This shows that F is a function whose range is in E.
The function F is one-to-one because for any integers ¢ and y, if 2z = 2y,
then z = y. Further F is onto, since every member of E can be represented
as 2z, for some positive integer . Thus, F is a one-to-one correspondence,
and P and F, being equivalent sets, have the same number of members. This
result is surprising in view of the fact that F is a proper subset of P (3, for
example, is in P but not in E). We are accustomed to thinking of a set as
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being “larger” than any of its proper subsets, but if we adopt the notion of
equivalence as the criterion for equal size of sets, then we are inescapably led
to conclude that sometimes a set and a proper subset of that set may have
the same number of members. If, on the other hand, we were to say that a
set is always “larger” than a proper subset of itself, we would have to accept
the puzzling consequence that sets of different size can be put into one-to-
one correspondence. Either way the situation seems paradoxical When we
examine the sets that exhibit this unusual behavior, however, we find that
they are just the ones that we would intuitively call infinite. Accordingly,
we define an infinite set in the following way:

DEFINITION 4.1 A set is infinite iff it is equivalent to a proper subset of
itself. ]

(4-1) FEzample: The set of natural numbers N = {0, 1,2,3,.. .} is infinite.
Consider the set P = {1,2,3,4, ..}, which is a proper subset of N
and establish the mapping indicated in Figure 4-2 in which each
natural number n is carried into n+ 1. To each member of N there
corresponds a unique member of P, and vice versa. Therefore, G
is a one-to-one correspondence, and P ~ N.

Figure 4-2: Mapping showing that the set
N is equivalent to a proper subset of itself



58 CHAPTER 4

(4-2) Ezample: The set of all (finite) strings A* on the alphabet
{a,b} is infinite. Take as a proper subset of A~ the set B =
{b,ba,bb,baa,bab,bba, ..} ie., all strings in A* beginning with b.
The mapping h shown in Figure 4-3 is a one-to-one correspondence
because for every string = in A* there is a unique string bz in B,
and vice versa (e is the empty string of zero length).

Figure 4-3: A one-to-one mapping of
{a,b}* onto a proper subset of itself.

It should be easy to see that no finite set can be equivalent to one of
its proper subsets (take, for example, the set {a,b,c} and any of its proper
subsets). One point about the definition of infinite sels sometimes causes
confusion: Only the ezistence of at least one equivalent proper subset is
required. The definition does not say that an infinite set is equivalent to
every proper subset of itself, a condition that in fact could never be met.
For example, N is not equivalent to its proper subset {0, 3,18}.

4.2 Denumerability of sets

We have said that we can associate with each finite set a natural number
that represents its cardinality, and that sets with the same cardinality form
an equivalence class. Equivalent infinite sets can also be grouped into equiv-
alence classes, all members of which have the same cardinality, but there is
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no positive integer that can be associated uniquely with such an equivalence
class as its cardinal number. This follows from the fact that every integer
is the cardinal number of a class of finite sets, and no infinite set can be
equivalent to a finite set, since no one-to-one correspondence between them
is possible. Nonetheless, it is convenient to have symbols denoting the cardi-
nality of infinite sets; the one conventionally adopted as the cardinal number
of the set of natural numbers (and all sets equivalent to it) is R (aleph null
or aleph zero). It must be emphasized as we have said, that X, is not a
natural number, ie., not a member of the set N = {0,1,2,3,...}. Each
natural number has a corresponding cardinal number, but there are cardinal
numbers, e.g N that correspond to no natural number. A cardinal number
can be regarded as an answer to a question about the number of members
in a set If we ask ‘How many natural numbers are there?’ or ‘How many
positive integers are there?’, the answer is the cardinal number N

By definition, a set with cardinality g, i.e., one that is equivalent to
the set of natural numbers, is called denumerable or denumerably infinite or
countably infinite. A set that is either finite or denumerably infinite is called
countable. We have already seen that the set of positive even integers (E in
Figure 4-1) is denumerable Here are some other examples:

(4-3) Ezample:  The set of integers, including zero, Z =
{0,+1,-1,+2,-2,+3,-3,. }, is denumerably infinite One pos-
sible one-to-one correspondence with N is

Z = {0, +1, -1, +2, -2, +3, -3, ..}
N = {0, 1, 2 3 4 5 6, ..}

The function F:Z — N is defined by

0 when ¢ = 0
Flz)=< 2z —1 when = is positive
-2z when z is negative

That F is indeed a one-to-one correspondence can be seen by noting
that positive numbers in Z correspond to odd numbers in N, and negative
numbers in Z correspond to even numbers in N (with 0 corresponding to 0).
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(4-4) Ezample: The set of reciprocals of the natural numbers without

zero S = {1,3,%:5: 55> -} is denumerably infinite, as shown by

the following one-to-one correspondence with N:
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(4-5) Ezample: The set of odd positive integers F = {1,3,5,7,9,.. .} is
denumerably infinite. One possible one-to-one correspondence with

N is
F = {1, 3 5, 7, 9, ..}
LT o
N = {0, 1, 2, 3, 4 ...}

We have seen that the set of positive integers P, the set of even positive
integers E, and the set of odd integers F all have the same cardinality. Since
P = FUF one might have supposed that P would have more members than
either E or F, but this is not the case Thus, the union of two infinite sets
is not necessarily a set with greater cardinality.

Are there sets larger than the set of positive integers? One that might
intuitively seem so is the set of ordered pairs in the Cartesian product N x N.
When the pairs are listed in the order indicated by the arrow in Figure 4
4, however, we find that the following one-to-one correspondence between
N x N and N can be established, although in this case it is somewhat more
difficult to prove that the correspondence is actually one-to-one.

One would also tend to think that there are more rational numbers than
natural numbers, since there are an infinite number of rational numbers
between any two natural numbers (recall that a rational number is one which
can be represented as the ratio of two integers z/y where y # 0). However,
a one-to-one correspondence can be established, proving that the sets are
actually of the same cardinality.

To set up a correspondence, we write down the positive rational numbers
in an array of the following form:
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Figure 4-4: An enumeration of the members

of N x N.

NxN

i

{(0,0),(0,1),(1,0),(0, 2),(1

Figure 4-5: A one-to-one

1>)<27 0>7<07 3>><17 2>7<2’ 1>)' ! }

correspondence

between N X N and N.

1/1,2/1,3/1,4/1,5/1,6/1,. ..
1/2,2/2,3/2,4/2,5/2,. .
1/3,2/3,3/3,4/3, ...
1/4,2/4,3/4,...

1/5,2/5,. ..

1/6,...

We first set up a correspondence between the elements of this array and
the positive integers as follows: starting in the upper left-hand corner, count
down the successive diagonals from the top row to the leftmost column. The
first few terms of this correspondence are: 1/1to1,2/1t02,1/2t03,3/1to
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4,2/2t05,1/3t06,4/1t07,..., etc. This is similar to the enumeration we
gavein Figure 4-4. Next we pair the negative rationals with negative integers
and 0 with 0 to give a complete correspondence between the integers and
the rationals We then make use of the established correpondence between
the natural numbers and the integers to obtain a correspondence between
the natural numbers and the rationals. (The rational numbers will each
have been written down more than once by this procedure; eg, 1/2 wil
also appear as 2/4, 3/6, etc But having shown a one-to-one corzespondence
between this larger set and the natural numbers, it is easy enough to go
through the list striking out each occurrence of a rational number which
has already appeared in another form, moving the succeeding terms higher
up in the list to fill in the gaps ) Putting the members of a set in a one-to-
one correspondence with the natural numbers by means of some well-defined
procedure such as this one is sometimes called effectively listing the members
of that set.

4.3 Nondenumerable sets

Not only is there a procedure for effectively listing the ordered pairs of
integers, one can also effectively list the ordered triples, quadruples, etc.,
i.e., the set of n-tuples for any given n. (Problem: Give a systematic method
for listing the ordered triples of integers as a linear sequence.) Thus, a set
with cardinal number greater than R¢ will not be found by taking successive
Carteslan products of N. At one time it was suppposed that there were no
sets with cardinality greater than Rg, but Georg Cantor (1845-1918), the
mathematician who developed a large part of the theory of sets, proved that
for any set A, the power set of A always has greater cardinality than 4.
Thus, the power set of N will have cardinality greater than N,

THEOREM 41 (Cantor): For any set A, |A|<|p(4)| |

Proof. There is a function from p(A4) to A that maps every set containing
Jjust one element into that element in A, and maps all the other sets into
some fixed element of A This function is onto since every member of A has
at least one correspondent in p(A4). Thus |A|<[p(A)| or |A]|=|p(4)], i.e.,
p(A) is at least as large as A. We next show that there is no one-to-one and
onto function F from A to p(A4), and thus that the sets cannot be equivalent.
Assume that there is such an F : A — p(A) Then every member of 4 is
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mapped onto some subset of A. In general, some members of A will be
mapped into a subset of which they are also members, and some will not.
In the example in Fig. 4-6, 0 and 2 are each mapped by F' into a set which

Figure 4-6: Dlustration of an alleged
one-to-one correspondence between a set and
its power set.

has that element as a member, but 1 and 3 are not. Now form the set B by
taking every member of A that is mapped into a subset not containing that
member. That is, B = {z € Az ¢ F(z)}. B is some subset of A and is
therefore one of the members of p(A) By hypothesis, F is onto, so there is
at least one member of A that is mapped into B. Call this member y. Now
we ask whether y is in B or not.

1. ify € B then it is not a member of the set it is mapped into, B. Thus
ify € B then y ¢ B. Contradiction!

2. if y & B then it is one of those elements not in the set it is mapped
into, so by definition it must be in B. So if y & B, then y € B.
Contradiction again! ]

This two-fold contradiction, which is reminiscent of Russell’s Paradox
(see Chapter 1 2), shows that the assumption that F is one-to-one and onto
is false. Therefore it cannot be the case that [A]=]p(4)], so we conclude that
|Aj<|p(A)] A corollary of this important theorem is that there is a cardinal
number greater than aleph-zero, which is commonly called 280, by analogy
with the finite cardinals, where the power set of a set with n members has 27
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members. 2% does not denote an integer or any other real number, however,
since raising 2 to the power X is not a meaningful arithmetic operation.

Forming the power set of p(N) leads to a cardinal number 22*° that

is larger than 2%¢; p(p(p(N))) has cardinality 222“0, and so on. Cantor’s
Theorem thus yields an infinite sequence of ever greater infinite cardinal
numbers: Ry < 280 < 22%° <

Another example of a nondenumerable set is the set of all real numbers
between 0 and 1 (including 0 and 1 themselves), which we denote [0, 1].
The 1eal numbers consist of (1) the integers, (2) the other rational numbers
and (3) the irrational numbers such as v/5, =, 1¥/2, etc., which are not
expressible as the ratio of two integers. In number theory it is proved that
all real numbers, whether rational or irrational, can be written as an integer
(possibly 0) followed by an infinitely long decimal fraction to the right of the
decimal point. The fraction %, for example, can be written as 0.3333333 ..,
where the ellipsis indicates that the sequence of 3’s is infinite, Fractions such
as % can be represented as 0.5 or 0.50 or 0.500, etc., or else as the infinite
repeating decimal 0.499999 ... Proof of this last statement would require
an excursus into geometric series, but it can be made at least more plausible
by considering the following: § = 0 11111..; 1 = 9(3) = 9(0.11111...) =
0.99999 .., The decimal fraction of an irrational number is also infinitely
long, but unlike a rational number it does not have repeating digit sequences.

Cantor’s proof of the nondenumerability of {0, 1] begins with the assump-
tion that every number in this set is uniquely represented by a sequence
composed of 0 and an infinitely long decimal fraction. To assure that this
representation is unique for each member of the set, we also take every
rational number that might be written with an infinite string of 0’s, e.g.,
0 5000. .., in the form having an infinite string of 9’s, e g., 0.4999 ... We
now make the assumption that is to be proved false, namely, that the set [0, 1]
is denumerable. If so, then its members can be put into a linear sequence
with a first member, etc., and this sequence will contain every member of
[0,1] In Figure 4-7, this sequence zy, 3, Z3,...,&n, ., is indicated as run-
ning vertically down the page with the decimal representation of each ®; to
the right of the equals sign. The a’s are the individual digits in each decimal
fraction; a1s, for example, is the third digit in the decimal part of the first
number in the sequence.

We now show that there is a number y in the set {0,1] that is not in
the sequence z;, &3, 23,.. ,&n, .. This number has the following charac-
teristics: the integer part is 0; the first decimal digit, a,;, is different from
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zy = 0Oanapais - -a1n-
zy = 0.@21022a33° Q3n-

zz = 0.azaszazs azn -
T, = O‘inanzarﬁ v lpn

Figure 4-7: Putative enumeration of [0,1]

ay1; its second decimal digit, a,p; is different from agy; and in general the
nth decimal digit a,, is different from a,, Therefore, y cannot be equal to
z; because they differ in the first decimal place (and we have agreed that
each number has a unique representation in the array); likewise, ¥ cannot be
equal to £y because they differ in the second decimal place; and in general,
y cannot equal any number &, in the array because it differs from y in (at
least) the nth decimal place. Yet y is a number between 0 and 1 because
it is of the form y = 0.ay1849a,3 - - @y -~ Thus, our assumption that the
elements of [0,1] can be put into a linear sequence cannot be maintained, and
the set is nondenumerable. This particular form of reductio ad absurdum, the
so-called diagonal argument (y is constructed to be distinct from the integer
0.a11@22033 ' Gny, - On the diagonal of the square array), is encountered
frequently in proofs involving infinite sets.

This proves that the cardinality of the set {0,1] is greater than Rg but
does not determine just what it is. Cantor was able to show (by a proof
we will not reproduce here) that [0, 1] is equivalent to the power set of the
integers, and thus its cardinal number is 2%¢. Other sets with this cardinality
are the set of all real numbers, the set of all points on a line (of whatever
length), the set of all points on a plane, the set of all points in n-dimensional
space (for any finite n), and the set of all subsets of the integers.

A problem that remained unsolved for many years was whether there
ate any infinite cardinal numbers other than Rg, 280,22 etec. Is there,
for example, a cardinal number 8 such that g < 8 < 280 or, to put it
another way, is there a set intermediate in size between N and p(N)? The
conjecture that the answer to this question was negative is known as the
Continuum Hypothesis, It was not until 1963 that the matter was finally
resolved (an event sufficiently newsworthy that it was reported in the New
York Times (Nov. 14, 1963, p. 37)), when P.J. Cohen showed that the
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Continuum Hypothesis can be neither proved nor disproved on the basis
of the usual assumptions about set theory The Continuum Hypothesis is
therefore independent, and either it or its negation could be added to set
theory without being redundant o1 creating a contradiction.

The following examples further illustrate the diagonal method and some
other methods of showing that a set has cardinality greater than Ng.

(1) The set of all real numbers z, 0 < & < 1, written in binary notation.
The diagonal method can be applied to this set exactly as to the set of real
numbers between 0 and 1 in decimal notation. Since every digit is either a
0 or a 1, one simply sets ¢n, = 1 if @ny, = 0, and ynp = 0 if apn, = 1. The
only reason for giving special mention to the binary notation case is that
it is often easier to relate other sets to the real numbers in binary notation
than to the real numbers in decimal notation

(2) The set of all subsets of the set of natural numbers, ie, p(N). For
this example, we will use a method which is not overtly “diagonal”, although
it is closely related. (We already know from Theorem 4-1 that this set has
cardinality greater than Ry; we use the example to illustrate a method of
proof.)

Assume that p(N) has the same cardinality as the natural numbers, i.e.
Ro Then it would be possible to list all the members of p(N), i.e. all the
subsets of N, in some linear order, as Sg, S1, S2,.. .. Suppose that we had a
complete list of this sort. We could then construct a new subset of N, to be
called 5*, as follows:

Let the natural number 0 be a member of S* if and only if 0 is not a
member of Sg

Let 1€ 5*ifand only if 1 ¢ Sy.
Let 2¢ 5 ifand only if 2 ¢ 5
In general, let n ¢ S~ if and only if n & S,,.

Then S* is a set of natural numbers, i e, a subset of N, which is different
from each subset in the list by at least one member. If n € S, for all n, then
So = 0, and § was not in the list Therefore the list could not have been
complete after all, and the cardinality of p(IN) must be greater than Rg.

(3) The set of all languages on a finite alphabet. Given an alphabet
V = {ag,a1,89,. .. an}, define a senience on V to be any finite string of
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elements of V' (allowing repetitions). Define a language on V to be any set
of sentences on V.

As a preliminary step, we will show that the set of all sentences on V
has cardinality Rg, by showing how the sentences can be listed in a single
linear list We will list first all the 1-symbol sentences, and then all the
2-symbol sentences, etc. Within each group, the sentences can be listed in
alphabetical order, letting ag be the first symbol and a,, the last. Thus the
list will begin as follows:

ao

a

an
agdg

apay

aoln
ai1ao

aiay

a1an

aza0

anln

agdoag

anlndn

aglpdolo

Since all the sentences are clearly included in the list, they can be numbered
0,1,2, .., thus establishing a one-one correspondence between the set of
sentences and the natural numbers.

Having established that the set of all sentences on V has cardinality R,
we can now show that the set of all languages on V has a greater cardinality.
We will show three different methods of proof which can be used.
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(i) (Diagonal proof.) Assume that the set of all languages on V has
cardinality R, so that the languages can be listed Lo, L1, Ly,. ... We have
already established a means of listing all the sentences on V as sg, $1, 82, .. .
Then we can set up an infinite square array of 0’s and 1’s as shown below,
where an entry :cic is 0 if s; is not in Ly and :cic is 1if s; is in Ly,

W
=}
w
fart
W
[\
W
()
W
N

8

Lo Ty

Ll wo .’Ill

8

8
N N NN N NO
8
w
&
N

2
Ly Ty 7

Ly |25 = z3 =23 =z
Ly |z§ =zt =z§ =z§ i

Thus for instance the language consisting of all and only the odd-numbered
sentences would be represented by a row 010101 .. ; the language consisting
of all the 1-symbol sentences (ao through a,,) would be represented by a row
whose first n + 1 entries were 1’s, with all the remaining entries 0’s.

Then we can construct a representation of a language L™ different from
any in the list as follows: Let ¢ = 0 if 2 = 1; 25 = 1 if 2§ = 0. In the same
way make 7 different from i, 5 different from z2, etc.; in general, z},, = 0
if2m =1, and 23, = 1 if 2 = 0. Then by the given interpretation of 0’s
and 1’s, it follows that s, is in L~ if and only if s,, is not in L,,, and thus
that L* differs by at least one sentence from every language in the list. Since
the procedure applies to any such putative list of all languages, it follows
that there cannot be such a list, and therefore that the set of all languages
on V has a cardinality greater than N,.

(i) The second proof is analogous to the proof used for the set p(N)
given as example (2) above Let S be the name of the set of all sentences
on V. Then since every language on V is a set of sentences on V', and every
set of sentences on V is a language on V, the set of all languages on V is
exactly the set of all subsets of 5,ie. p(S). Then suppose that the set of all
languages on V had cardinality Rg. We could then list all the languages, i.e,
all the members of p(S5), in a single list, Lg, L1, L2, .. . But then we could
immediately construct a new language L~ as follows (using the enumeration
of the sentences of 5 previously established): let so € L™ if and only if
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so & Lo, s1 € L™ if and only if s; & L, etc.; in general, s,, € L™ if and only
if $;p & Lm. Thus L™ is a subset of S which differs from every language in
the list by at least one member, and the list, therefore, could not have been
complete, Therefore, the set of all languages, p(S), cannot have cardinality
NOH

(iii) The third proof is an example of a general method: to show that
a given set has cardinality greater than N, it is sufficient to show that it
can be put into a one-one correspondence with a set already known to have
cardinality greater than Ry, Since the set of real numbers between 0 and 1
in binary notation is already known to have cardinality greater than Rg, we
will set up a one-one correspondence between it and the set of all languages
on V.

Let each language be represented as an infinite sequence of 0’s and 1’s
in the manner described in the first method of proof above. (We do not,
however, assume that the languages can be listed in a linear order, since we
have already seen that such an assumption leads to a contradiction.) Then
each language can be paired with a unique real number between 0 and 1,
since the infinite decimal is also an infinite sequence of 0’s and 1’s designating
exactly one language and exactly one real number.

The establishment of the correspondence completes the proof

The three methods of proof outlined above are equally valid The first
two have the advantage of not requiring prior knowledge of any sets with
cardinality greater than No, but once such knowledge is at hand, the third
method is often more convenient. Furthermore, only the third method, set-
ting up a one-one correspondence, can establish exactly what the cardinality
of a set is, and then only when the cardinality of the corresponding set is
known. In the examples above, all the sets with cardinality greater than N
have the same cardinality as the set of real numbers, but we have not proved
the fact for any of the sets, and we cannot take it for granted because, as
we have seen, there are in fact infinitely many different cardinalities greater
than NQH

A set which is not countable is called uncountable or non-denumerable
or non-denumerably infinite.

4.4 Infinite vs. unbounded

There is sometimes confusion over the difference between the terms ‘infinite’
and ‘unbounded’, particularly with respect to statements like ‘The length
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of English sentences is unbounded’, or ‘English has sentences of unbounded
length.’ Unbounded means ‘having no upper bound’, i e. having no limiting
value such that every value is at or under that limit. Both of the cited
sentences mean simply that there is no fixed length such that all English
sentences are of that length or less, and this is perfectly consistent with the
statement that every English sentence is finite in length One can argue
validly from the premise that the length of English sentences is unbounded
to the conclusion that the set of English sentences is infinite (see problem
4 in the following exercises), but one cannot validly argue from that to the
conclusion that the length of some English sentence is infinite.

Further examples

(1) The number of sides of regular polygons is unbounded, since for any
polygon with n sides, there is another with n + 1 sides; but the number of
sides is always finite. The set of such polygons is infinite.

(2) Consider the set of real numbers z such that 0 < # < 1. Although
there is no largest real number in that set (1 itself is excluded from the set,
and for every real number less than 1, there is a larger real number that
is less than 1), the size of the real numbers in that set is bounded, since 1
serves as an upper bound. In this case, the size of the members of the set is
bounded, but the set itself is nevertheless infinite.

(3) Starting with the words in some given English dictionary, the length
of English sentences that do not use any word more than once is bounded.
(The number of distinct words in the given dictionary would provide an
upper bound; it is irrelevant to the question of boundedness whether an
English sentence of that length could actually be constructed.)

As can be seen from the examples, the terms ‘bounded’ and ‘unbounded’
apply to values of functions, or to measures of various sorts applied to mem-
bers of a set; these terms do not describe cardinalities of sets, as do ‘finite’
and ‘infinite’. It is mever strictly meaningful to speak of an ‘unbounded
set’, although such a phrase may sometimes be interpretable in context as
elliptical for some longer phrase. Confusion can be most easily avoided by
eschewing the use of the term ‘unbounded’ altogether, and replacing state-
ments like the first two above by statements like ‘There is no upper bound
on the length of English sentences’. For the reader who encounters the term
‘unbounded’ in a statement, it may be advisable to ascertain whether the
statement can be unambiguously recast in such a form before proceeding.
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Exercises

1.

2,

Show that the relation of equivalence of sets is in fact an equivalence
relation.

Show that the set of integral powers of 10 {10, 100, 1000, 10,000,
100, 000, . ..} is denumerably infinite

. Show that the set of all negative integers is infinite

Suppose that the following assumptions are true of English:

(i) There is a finite alphabet for writing sentences, consisting of
26 letters, a set of punctuation marks and a space

(ii)  Every sentence is a finite string in the alphabet given in (i).

(ii)  There is no upper bound on the length of sentences of En-
glish. E.g given any sentence, a longer one can be made by
conjoining it with another one.

What then is the cardinality of the set of all sentences of English?

Motivate your answer

. A hotelkeeper has a hotel with a denumerably infinite number of rooms,

all single rooms, numbered 1,2, 3,4,5. ... On Saturday night the hotel
was full, but Joe Doe came in asking for lodging. The obliging hotel-
keeper, using his intercom, asked each guest to move into the room
n + 1 when his present room was numbered n. So Joe Doe was given
room 1. But on Sunday everyone stayed for another night. Now a de-
numerably infinite football team came in asking for lodgings one room
per person How could the obliging hotelkeeper accommodate them?

Assume that the earth rests on the back of a giant turtle, and that the
turtle sits on the back of two giant turtles, and those two on three, etec.
‘all the way down’ (ie. there is no bottom layer of turtles).!

!This problem was inspired by a legendary anecdote reported in the preface of an
equally legendary, but actual Ph.D. dissertation, Constraints on Variables in Syntaz by
J. R. Ross, MIT 1967. Since only parts of the dissertation are published, we repeat the
anecdote here as told by Ross for historically accurate preservation:
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(a) Suppose each turtle is the sole deity of some monotheistic sect
(exactly one sect per turtle). What is the cardinality of the set
of all such sects?

(b) Suppose each subset of the set of all these earth-supporting turtles
forms the deity-group of some one sect (a-, mono- or polytheis-
tic, with the latter including both finite and infinite numbers of
deities). What is the cardinality of the set of all such sects?

After a lecture on cosmology and the structure of the solar system, William James was
accosted by a little old lady. “Your theory that the sun is the center of the solar system,
and that the earth is a ball which rotates around it has a very convincing ring to it, Mr.
James, but it’s wrong. I've got a better theory”, said the little old lady. “And what is
that, madam?” inquired James politely, “That we live on a crust of earth which is on
the back of a giant turtle”. Not wishing to demolish this absurd little theory by bringing
to bear the masses of scientific evidence he had at his command, James decided to gently
dissuade his opponent by making her see some of the inadequacies of her position, “If
your theory is correct, madam,” he asked, “what does this turtle stand en?” “You are a
very clever man, Mr. James, and that’s a very good question” replied the little old lady,
“but I have an answer to it. And it’s this: the first turtle stands on the back of a second,
far larger turtle, who stands directly under him”. “But what does this second turtle stand
on?” persisted James patiently, To this the little old lady crowed triumphantly. “It’s no
use, Mr. James - it’s turtles all the way down.”
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(Note that two different sects may of course worship some turtles
in common as long as they do not worship exactly the same set )

7. Cardinal numbers form their own numerical system in which we can
do cardinal arithmetic. This exercise gives the basic notions. Let A4
and B be disjoint sets, finite or infinite, and let ¢ = [A] and b = |B|.
We define cardinal addition, written @, and cardinal multiplication,
written ®, as follows:

a®b
a®b

(AU B)]
(A x B)]

It

When A and B are both finite, cardinal addition and multiplication
produce the same results as the corresponding arithmetic operations
on integers. When at least one is infinite, however, the operations ate
no longer parallel in all respects. Find examples of sets A and B for
which the following hold:

(a) No B 1 = NO
(b) Ro®2 = R
(c) Rg®Re = Ro
(d) NO ® No = No

Do the operations @ and @ appear to be commutative and associative?

8. It can be proved that ¥y is the smallest infinite cardinal number. Con-
sider the following putative counterexample to this claim. Choose a
cardinal number z such that 2% = ®y. & cannot be finite, since 2 raised
to any finite power is finite; but & cannot be equal to Xq either, since
2% > Ry by Cantor’s Theorem. Therefore z is an infinite cardinal
number less then Rg. What is wrong with this argument?






Appendix A

Set-Theoretic
Reconstruction
of Number Systems

In this appendix we represent the structures of the natural numbers, the
integers, and the rationals in pure set-theoretic terms. This set-theoretic
representation of numbers gives us first of all a good impression of the power
of set theory in representing other structures or mathematical systems. To
represent a number structure in pure set-theoretic terms means to define its
primitives, operations and relations in set-theoretic terms only. To define the
notion number in terms of sets may seem strange at first, since we are so much
more familiar with numbers than with sets. The set-theoretic representation
of numbers is in fact quite artificial and and the one given here is also not
the only conceivable one. It is sufficiently cumbersome that it is never used
in practice for ordinary manipulation of numbers. So its function is purely
theoretical: it is a necessary step in establishing the interesting claim that
set theory is the universal foundation of all of mathematics.

A.1 The natural numbers
First we define 0 as the empty set:
0 :defw

Then for the number 1 let us find a set with exactly one member which is
built from sets already constructed, ie. built from §. Such a set is {f}. So
we define

1= gef {0)
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As a result of these two definitions we see that
1= {0}
We continue in the same way
2 =4 {0, 10}) = {0,1)
3= e {0, {03, {0.{0}}} = {0, 1,2}

We can proceed indefinitely in this way, defining each successive number
as the set of all its predecessors. This can be expressed formally in either of
two ways:

for all n (i) n+1={0,1,2,...,n}
or (i) mn+1=nU{n}

Given any set of finite elements of any sort, the way to tell how many
elements it has is to compare it with each of these ‘number’ sets in turn until
one is found whose members can be put in a one-to-one correspondence with
the members of the set in question. An analogy can be drawn to the method
of telling that something is a meter long by comparing it to the standard
meter, a physical object preserved in Paris.

Each natural number has a unique representation in our scheme, but it
remains to be shown that the numbers, as reconstructed, have the properties
that we expect them to have. In particular, our reconstruction should exhibit
the required behavior in relations such as equality and greater-than, and
under operations such as addition and multiplication.

The notion of a successor of a natural number is defined as:
successor of =def e U {=}.

We indicate the successor of z by s(z).

Equality between natural numbers is defined as set equality, i.e., having
identical membership. Thus, 5 and s(4) are the same number, each being
{0,1,2,3,4}.

The linear order ‘less than’ is defined by set inclusion: ¢ < y iff z C y;
also, # < y, ‘less than or equal to,” iff z C y, and similarly for ¢ > y and
z>y
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Addition can be defined by a pair of rules using the notion of successor:

forallz (i) z+0==
(i) =+ s(n)=s(z+n)

For example, to add two numbers, the second part of the definition is
repeated until the first part becomes applicable The steps for 4 + 3 are:

4+3 = 4+5(2) def. successor
= s(4+2) def. addition
= s(4+s(1)) def. successor
s(4+1)) def. addition
s(4+ s(0))) def successor

]
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(
= s(s(s(4+0))) def addition
= s(s(s(4)) def. addition
= s(s(8)) def. successor
= 3(6) def. successor
7 def. successor

Subtraction can also be defined by a pair of rules, but it is only defined
when a set is being subtracted from one which contains it:

foralz (1) z-z=0

(i) s(z)-n=s(z—n)

For example,

4-2

|
o

-2 def. of successor
3-2) def. of subtraction

Il
o

(

(
= (s(2) —2) def. of successor
= 5(s(2-2)) def of subtraction
= s(s(0)) def. of subtraction
= (1) def. of successor
= 2 def. of successor

Multiplication can be defined by a pair of rules involving addition, which
has been already defined:
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foralz (i) z l==2

For example,

2.3 = 2 5(2) def. of successor
= 2.2+2 def. of multiplication
= 2-8(1)+2 def. of successor
= (2:1+2)+2 def. of multiplication

= (2+2)+2 def. of multiplication
= 442 =6 by addition, as
previously defined

A.2 Extension to the set of all integers

Mathematicians (and scientists in general) strive to develop concepts with
as wide a range of application as possible. Looking at the system above,
one detects a gap: the concepts of equality, addition and multiplication
are defined for any two natural numbers, but subtraction is not. It would
desirable to extend the number system so as to have subtraction defined
everywhere,

What does it mean to ‘extend’ a system? It means to create a new system
with additional elements and possibly additional operations or relations in
such a way that the new system contains a subsystem which is isomorphic
to the old system. In other words, there is some subset of the elements,
operations and relations of the new system which can be put in one-to-one
correspondence with the elements, operations and relations of the old sys-
tem, so that the corresponding operations on corresponding elements yield
corresponding elements, and the corresponding relations contain correspond-
ing ordered pairs of elements. This guarantees in effect that nothing of the
old system has been lost in constructing the new one.

In this case, where we are concerned with an operation, subtraction,
which is not defined on certain elements, we would much prefer, for purposes
of conceptual economy, that the operation in the new system be given a single
definition on all the elements. We will construct a new number system
in which subtraction has a uniform definition on all elements, and which
contains a subsystem which is isomorphic to the original system. The new
number structure is called the integers. Remember that the set-theoretic
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representation of number structures is not in any sense a definition of what
the numbers are in absolute terms, but rather of how they can be represented
by set-theoretic constructions or re-constructions.

The representation of the integers does not bear any resemblance to the
ordinary integers ... —2,-1,0,1,2, ... They are here defined in a special
way so that the operations and relations on them can be defined in terms of
the operations and relations already defined for the natural numbers.

DEFINITION A 1 An integer is an ordered pair {a,b) of natural numbers. ®

(Intuitively, the ordered pair (e, ) will correspond to the integer which
is the difference a — b; i.e, (5, 3) represents 2; (2,4) represents —2. Thus,
many oredered pairs represent the same integer.)

Equality: (a,b) = {c,d) if and only if ¢ + d = ¢ + b, using the definition of
+ for the natural numbers. Note first that equality is an equivalence relation
in the new system. Note also that under this definition {(a,b) = {(a + k,b+ k)
for any k. Hence,

<77 3) = <672> = <571> <470>
(3,7) = (2,6) = (1,5) = (0,4)
(3,8) = (2,2) = (L) = (0,0)

Every integer is therefore equal to some integer of one of these three forms:

1. {a—5,0)
2, (0,a—-b)
3 (0,0)

where @ and b are natural numbers and ‘~’ is as defined for the natural
numbers. By convention, all integers equal to some integer of the first type
will be called positive integers, the second type negative integers and the
third type zero.

Ordering ‘greater than’: (a,b) > (c,d) if and only if ¢ + d > ¢ + b where
> on the right is the relation ‘greater than’ defined on the natural numbers.
For example, (6, 3) > (2,1) (i.e, 3 > 1) because (6 + 1) > (2 + 3); similarly,
(4,4) > (2,5) (i.e, 0> —3) since (4+ 5) > (2 + 4).

Addition: (a,b) + {¢,d) = (@ + ¢,b + d) where addition on the right is
addition as already defined on natural numbers. For example, (6,3)+(4,2) =
(10,5) (ie., 3 +2 =5); also, (2,5) + (2,1) = (4,6) (i.e., =3+ 1= —2).
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Subtraction: {a,b) — {(c,d) = (a,b) + (d,¢) = (¢ + d,b + ¢). For example,
(4,2) —(6,3) = (4,2) + (3,6) = (4 +3,2+6) = (7,8) (ie,2-3=-1). (To
subtract, one adds the ‘negative’ of the subtrahend, ie, 2~3=2+(-3))
Note further that (a,b) = {(a,0) — (b,0). Since we call numbers of the form
{a,0), (b,0) positive, we may now interpret this result as showing that any
integer (a,b) can be represented as the difference of two positive integers
{(a,0) — (b,0).

Multiplication: (a,b)  {¢,d) = {(e-¢)+ (b d),(e d)+ (b ¢)), where
multiplication on the right side is multiplication as already defined on natural
numbers. For example, (6,3) (4,2) = ((6 4) + (3 2),(6 2)+ (3 4)) =
(244 6,12+ 12) = (30,24) (ie, 3 2 = 6); similarly, (2,5)-(1,2) = {(2 1) +
(5 2),(2-2)+(5 1)) =(2+ 10 ,4+5) = (12,9) (ie, (=3) (-1)=3) This
definition has the desired result for positive integers: (a,0) {¢,0) = {(a ¢,0);
and for negative integers: (0,b) (0, d) = (bd,0); {(e,0) (0,d) = (0,ad).

The natural numbers are not themselves a subset of this set-theoretic
tepresentation of the integers. Rather, the set of all integers contains a
subset consisting of the positive integers and zero which is isomorphic to
the set of natural numbers Although in many applications the distinction
between natural numbers and non-negative integers is not important, the
concepts can be seen to differ by virtue of the total systems of which they
are part. For example, while the positive integer +5 can be subtracted
from the positive integer +3, the corresponding natural number 5 cannot be
subtracted from the natural number 3,

A.3 Extension to the set of all rational numbers

The operations of addition, subtraction and multiplication are now de-
fined on all the integers. We have not said anything yet about division.
The question “What number multiplied by z gives y?’ does not always have
an answer in the integers. The next extension of this system will be to a
number structure in which this question is always answered: the rationals.
There is one notable exception: division by 0 is always impossible. (It is
instructive to attempt to extend the system to one which includes division
by 0 and observe the difficulties one encounters.) The elements of the new
system will be defined in terms of integers, for convenience written as usual

—2,-1,0,1,2,... The operations and relations of the new system will
be defined in terms of the operations and relations on the integers. An iso-
morphism can then be shown between the integers and a subsystem of the
rationals.
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DEFINITION A2 A rational number is an ordered pair {a,b) of integers
where b # 0. |

The pair (g, b) may be interpreted in the language of ordinary arithmetic

as the fraction ¢. Note that since each integer is defined as a pair of natural

numbers a rational will be a pair of pairs of natural numbers.
Fquality: (a,b) = (¢,d) if and only ifa d=1c b
Ordering ‘greater than”: (a,b) > (¢,d) if and only ife - d > c-b.
Addition: (a,b) + (c,d)={(a d+c bb d)
Subtraction: {(a,b) — (¢,d) ={(a d—c-b,b d)
Multiplication: {(a,b) (¢c,d) = {a-c,b d).
Division: {a,b):{c,d) = (a d,c b)
(All operations on the right sides are as defined for the integers.)

It will be noted that attempting to divide by 0 yields an ordered pair
whose second member is 0; by definition, such ordered pairs are not rational
numbers and hence division by 0 is impossible within the system.

To define the isomorphism between the integers and a substructure of
the rationals (except division), let the rational number (z,1) correspond
with the integer , and all the operations for the rationals (except division)
correspond to operations with the same name for the integers and similarly
for the ordering. It can be verified that this is an isomorphism.
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A.4 Extension to the set of all real numbers

This section does not actually come within the realm of discrete math-
ematics, which deals with set of cardinality no larger than Ng. The real
numbers, as we saw in Chapter 4, form a larger set, and its properties are
different in many ways. Most of the subject of calculus, for example, depends
on some of the essential properties of the real number system.

This extension of the number system in its set-theoretic representation
allows us to obtain a system in which we always have an answer to a question
like “Which number multiplied by itself gives 27°. There are two fundamental
ways of constructing the real number system, one due to Cantor, the other

to Dedekind. We give here Cantor’s construction. Consider sequences
A—12384568

= 2:30 405187
and
B—2345671

102732425787
Both of these sequences converge to 1; i.e., the more a sequence is developed,
the closer one gets to 1, even though 1 is never actually reached. This is
expressed more precisely by saying that a sequence ag,a1,4as,. .. converges
to = if for any positive number ¢ (epsilon), no matter how small, we can
find an index N such that la, — 2| < € for all n > N. Some sequences of
rational numbers converge to a number which is itself not representable as a
rational number. The above definition cannot be used to test convergence in
such cases, since we have no means of expressing the point of convergence.
Another definition of convergence can be given which is equivalent to the
former but which does not depend on the nature of .

DEFINITION A3 A sequence ag, a1, 4as, ... converges if for any positive num-
ber € no matter how small we can find an index N such that |a, — an,] < ¢
foralm > N andn > N. [

In other words, we are stating that the terms far out in the series must
get closer and closer to each other, which has the same effect as saying that
they must all get closer and closer to some particular point of convergence.
Cantor defined a real number as a convergent sequence of rational numbers.
The rational numbers themselves can be represented in this system as se-
quences of the form »,r,r,.. . where r is a rational number, since a sequence
all of whose members are identical cerainly satisfies the definition of conver-
gence. If one thinks of real numbers as infinite decimals, one way of repre-
senting real numbers would be as the limit of a sequence of finite decimals
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which are rational numbers) of the form 21., &;.29, #1. 2223, T1. 222324, ie.,
z ;fe mEama, . Operations must all be defined anew for the real num-
bers, but this is quite simple. To give just one example, addition is defined

by: ao,a1,82, .. +bo,b1,by,. . =ao+bo,a1 +b1,a04 b,






leview Exercises

1. Consider the following sets:

A = {@,{B},{@, B}}

Ay = {B}

As = {0}

A4 = {0,{@,3}}
As = {{B},{@,B}}
As = {0,B}

Determine the following sets:

(a) A1 NAy

(b) (Az U Ag) — Ag
(c) p(4s) N As
(d) A4 - 4

2. On the integers specify a relation which is :

(a) symmetric and irreflexive
(b) transitive and asymmetric
3. Consider the set N of all natural numbers in set-theoretic representa-
tion
(a) Let R be the subset relation on N. Is R symmetric and/or tran-
sitive and/or reflexive ?
(b) ¥n € N and z € n, is necessarily z C n? Motivate your answer.
4. Suppose that, starting with a single common ancestor, Adam, each

man has some finite positive number of sons, each of his sons has some
finite positive number of sons etc. forever. Suppose that for each
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REVIEW EXERCISES

man other than Adam we know who his father was and also what his
chronological order is amongst his brothers (no simultaneously born
twins, no women either).

(a) Show how a one-to-one correspondence between the set of all men
and the natural numbers may be constructed, including an illus-
tration of how the beginning of the list might look.

(b) Let every distinct set of men (finite or infinite, and spanning
arbitrary stretches of time) be called a ‘club’. Show without using
any of the results of Chapter 4 that the set of all clubs is non-
denumerably infinite.

. Determine whether the following systems are partially ordered, linearly

ordered or well-ordered

(a) the set of all positive and negative rational numbers; the relation
‘is equal to or less than’

(b) the set of all negative rational numbers; same relation as (a)

(c¢) the set of all negative rational numbers and zero; the relation ‘is
equal to or greater than’

(d) the set A of all strings finite in length formed by concatenating
elements a, b, ¢; the relation ‘is at least as long as’

(e) the same set A asin (d); the relation R described by ‘zRy if either
y is longer than z or z and y are the same length but z does not
come after y alphabetically’

*(f) the set of natural numbers; the relation R described by ‘zRy if
z and y are both even and z < y or, if z and y are both odd and
z <y

*(g) as (f) but R is: ‘cRy if ¢ and y are both evenand z < y or, if &
and y are both odd and ¢ < y or ¢ is even and y is 0odd’.

*(h) as (f) but Ris: ‘eRy if z and y are both evenand ¢ < y or, if &
and y are both odd and ¢ < y or ¢ is odd and y is even’.

. Show that for any sets 4, B,C, if |A| < |B|, and |B| < |C|, then

141 <1,
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Chapter 5

Basic Concepts of Logic and
Formal Systems

5.1 Formal systems and models

Formalization or axiomatization is an outgrowth of the broader goals of
scilentific systematization Euclid systematized geometry by showing how a
great many statements known to be true about geometrical figures could be
logically derived from a small set of principles assumed to be true, called the
azioms. Newton systematized mechanics by showing how the known laws
of motion, both planetary and terrestrial, could be derived from three basic
statements. In both cases, the initial assumptions had the status of true
statements, ‘self-evident’ in the Euclidean system, empirically discovered
truths in the Newtonian system. In both cases the system was concerned
with particular objects, points and lines in the one case, physical objects in
the other,

The realization that a strict separation of the formal, syntactical aspects
of a system from any of its meaning assignments or interpretations, i.e its
semantics, is both possible and desirable was one of the consequences of the
discovery of non-Euclidean geometries.

FEuclid’s axioms included one known as the ‘Parallel Postulate’ which can
be stated as follows.

Parallel Postulate: Given a line L and a point P not on line L, one and
only one line L' can be drawn through P parallel to the line L (i.e, not
intersecting no matter how far extended.)

89
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Since this particular postulate had always seemed less ‘self-evident’ than
the others, numerous attempts, all unsuccessful, were made to derive it from
the remaining axioms. N. Lobachevsky and (independently) J. Bolyai in
the early 19th century made such an attempt, trying to use the method
of reductio ad absurdum, which we have illustrated in our reasoning about
properties of complement relations in Section 3.3 They began by assuming
that more than one line parallel to L could be drawn through point P, but
instead of deriving a contradiction as intended, they discovered or invented
the first non-Euclidean geometry The revised axiom system turned out to
be perfectly consistent (a notion we discuss in Chapter 8) Later, Riemann
constructed another non-Euclidean geometry, in this case by replacing the
Parallel Postulate by a postulate stating that no lines parallel to a given line
L could be drawn through a given point P not on L, ie. that all distinct
lines intersect eventually Again, no contradiction arose. These discoveries
in no sense refuted Euclidean geometry, but they did lead to a fundamental
change in our attitude towards the axioms. Earlier the axiomatic approach
was thought to systematize a body of absolute truths, but after Bolyai,
Lobachevsky and Riemann it began to be appreciated that while the derived
statements were valid, i.e. logically necessary consequences of the axioms,
the axioms themselves were simply assumptions. We now no longer ask
whether certain axioms are true in any absolute sense, but what, if anything,
they might be true of. That question is equivalent to asking what models,
if any, the set of axioms has.

Euclidean geometry may seem by its usual terminology to have presup-
posed a particular model, namely the abstract set of points and lines and
the figures that can be constructed with compass and straightedge. How-
ever, to look at it as a genuinely formal system we must first replace the
occurrences of the words ‘point’ and ‘line’ by undefined primitives such as
‘p’ and ‘1, making corresponding changes in the definitions of subsequent
terms, since notions of ‘parallel’, ‘triangle’ etc. can be defined in terms of
‘point’ and ‘line’. We then find that, for instance, if we start with a fixed
circle in a plane and interpret ‘p’ as ‘point in the interior of the circle’ and
‘1’ as ‘open-ended chord of this circle’ (an ‘open-ended chord of a circle’ is a
straight line within the circle which approaches indefinitely closely, but does
not touch the circumference), then through a given point, more than one
parallel can be drawn to a given line. This is illustrated in Figure 5-1.

Starting with line AB and point C, we can construct lines DCE and
FCG@G, among others. DCE and FCG@ are both parallel to AB since neither
will intersect AB ‘no matter how far extended’, i.e. no matter how close to
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Figure 5-1: Open-ended chords in a circle

the circumference of the circle they get. This interpretation therefore does
not satisfy the Euclidean axioms and does not provide a model for them. It
does provide a model for the Bolyai-Lobachevsky non-Euclidean geometry.
In fact, it is often by constructing a model for a set of axioms that we prove
them to be consistent (see Ch. 8, Sec. 2 for the connection between these
two important notions ‘consistency’ and ‘having a model’). Any system or
structure in which all of Euclid’s axioms are true is called a model of Euclid’s
system; plane geometry is the standard or intended model, since it was with
that “in mind” that Euclid developed the formal system in the first place.

The development of quantum mechanics has similar consequences for the
attitude we have towards Newton’s physical system. It is still true that
all of the laws of mechanics which Newton derived follow from three basic
principles. But the laws are now seen to hold only in certain macroscopic
situations. The actual physical universe is no longer held to be a model of
the Newtonian system.

In the cases of geometry and mechanics the model came first and the
formalization later. This is the usual case in empirical research and in math-
ematics, but it is not the only one. It proves to be very fruitful to study
formal systems in the abstract, since insofar as distinct systems have a simi-
lar structure, their formalizations are alike. Direct study of a formal system
can yield results which can be applied generally to all systems which are
models of it. Also, once we show that a certain system is equivalent in its
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formal structure to another better known system, what we know about the
latter may transfer to new insights about the former.

In general, a formal system consists of:
(i) a non-empty set of primitives
(ii) a set of statements about the primitives, the azioms
(iii) a means of deriving further statements from the axioms, either:

(a) an explicit set of recursive rules of derivation; or

(b) appeal to a background logic for the language in which the axioms
are stated, usually predicate logic; or

(¢) no explicit means of derivation; one is to derive “whatever logically
follows” from the axioms.

Some of the more “syntactic” formal systems that we will illustrate in Chap-
ter 8 follow option (iiia) above.

In most formalizations of scientific theories and branches of mathematics,
it is taken for granted or assumed to be given what the permitted background
logic or forms of reasoning are. But forms of reasoning themselves are the
subject matter of logic, to which most of this part of this book is devoted.
Hence we use logic or a logical language to reason about other systems like
set theory, geometry or physics, We call the language which we use to talk
and reason about another system the meta-language, and the system rea-
soned and talked about the object language. The distinction is of course a
relative one, since we can use set theory, for instance, in its turn as a meta-
language to talk about physical systems. Natural languages are the only
kind of languages 1ich enough to incorporate their own meta-language We
talk in English about English, although in linguistics we also develop spe-
cialized formal languages to talk about sentence structure or word meaning,
for instance.

In the last chapter of this part of the book, Chapter 8, we will return to
the subject of formal systems, axiomatization, and model theory, after we
have introduced enough logic to present some interesting examples. We will
also see how a system of logic can itself be axiomatized. In the case of logic,
an axiomatization will consist of:

(i) a syntax defining the expressions of the language.

(ii) a set of axioms (themselves among the formulas of the language)
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(iif) a set of explicit rules of inference for deriving further formulas from
the axioms. The axioms plus all further formulas so derivable are the
theorems of the system

5.2 Natural languages and formal languages

The languages we speak and use naturally to communicate with each other
are what we call natural languages. Natural languages are acquired as first
languages in childhood and are suited to just about any communicative goal
we may have. Formal languages, on the other hand, are usually designed
by people for a clear, particular purpose, but, although these languages are
constructed, in use they may to a certain extent change and evolve. Exam-
ples of formal languages are the language of set theory with which you got
acquainted in Part A, the language of logic which we introduce in Chapters
6 and 7, the language of ordinary arithmetic, and programming languages
like Pascal, Fortran, Prolog, Lisp and all their ‘dialects’. There are many
other notational systems with conventional meaning which may deserve the
name ‘language’ as well, like musical notation, traffic light systems, Morse
code and so on, but we will leave these out of our present considerations.
One of the most important uses linguists and especially semanticists make
of formal languages is to represent meaning of natural languages. Charac-
terizing meaning is the main goal of the semantic component of a grammar,
whether it be a grammar of a formal language or a grammar of a natural
language. Like any scientific enterprise, semantics chooses particular aspects
and parts of meaning as objects of study and employs formal languages as
analytic tools, Logic is a branch of the foundations of mathematics which
has developed a number of particularly useful formal languages, of which
the first-order logic introduced in this part of the book is perhaps the best
known and most often used. As we already suggested in the previous section,
logical languages can be used as meta-languages in which we reason about
set theory as object language or about set theoretic objects. But logical
languages can be applied to any other object language and formalize the
reasoning from axioms to theorems in that domain. Omne of our interests
in this book is in developing the background for applications of logic and
formal languages to natural languages, such as English. Part D is devoted
to such applications and to a number of current topics in the semantics of
natural language. But first we have to study the language of logic, and learn
how to use it. And of course the study of logic has many other important
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applications both within and outside of the field of linguistics.

5.3 Syntax and semantics

The distinction between the syntaz and the semantics of a language or a
formal system is essentially a distinction between on the one hand talking
about properties of expressions of the system itself, such as its primitives,
axioms, rules of inference o1 rewrite rules, and theorems, and on the other
hand talking about relations between the system and its models or interpre-
tations Although the separation of form and content is itself ancient, it is
not always possible to draw a hard and fast line between the purely syntac-
tic and the purely semantic aspects of a language or system, especially since
many properties of a system are likely to be reflected in both its syntax and
its semantics But there is general agreement that syntax and semantics
have some clear distinctions among their core notions. For instance, the
construction of proofs from premises or axioms according to formal rules of
inference or rewriting rules is a syntactic activity, while demonstrating that
a certain set of axioms is consistent by showing that it has a model (see
Chapter 8) is giving a semantic argument. On the syntactic side are well-
formedness rules, derivations, proofs, and other notions definable in terms
of the forms of expressions On the semantic side are notions like truth and
reference, properties which expressions may have relative to one model or
interpretation and fail to have with respect to another,

Both syntactic and semantic methods of argumentation and tools of anal-
ysis have proved valuable in the study of formal systems. Neither is inher-
ently superior or more legitimate; one may be more direct or handy than the
other for answering a particular question or showing that a given formal sys-
tem has some property o1 other. Many important results in the metatheory
of logic concern the relation between syntax and semantics, and the disci-
pline of model theory is expressly concerned with the application of semantic
tools to logic and mathematics (See Chapter 8)

The program of studying only the syntax of a system without making
any appeal, explicit or tacit, to its meaning constitutes the formalist re-
search program, which is known as Hilbert’s program in the foundations of
mathematics and, stretching the concept perhaps, as Chomsky’s program of
studying syntax autonomously in the theory of generative grammar. Modern
generative syntax is in fact rooted in the mathematical theory of formal lan-
guages and automata, a syntactic enterprise on the above characterization,
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since it deals with the properties of string rewriting and symbol manipulat-
ing in systems. Semantics in the “formal semantics” tradition is rooted in
logic and model theory, and borrows many of its tools from those developed
by logicians for the study of the formal languages of logic. It is ironic that
the name “formal semantics” has become the standard name of the model-
theoretic approach to semantics, which is decidedly not a formalist program
in the above sense

Outside of logic the term semantics is often used in a much broader sense,
roughly as anything relating to meaning In linguistics one finds a range of
uses along with ongoing debates concerning where theoretical boundaries can
most usefully be drawn So in one sense, issues concerning scope ambiguity
are certainly among the concerns of semantic theories of natural languages;
at the same time one can distinguish among theories that treat certain scope
ambiguities “in the syntax” or “in the semantics.” In the chapters which
follow, we will stick to the rather clearly regimented usage that has become
customary in logic, reserving the term semantics for the study of the relations
of formal systems to their interpretations

5.4 About statement logic and predicate logic

In Chapters 6 and 7 we will examine two systems of logic: statement logic
(also called the propositional calculus or statement calculus) and predicate
logic (also known as (first-order) predicate calculus). Each will be treated
as a formal language with its own vocabulary, rules of syntax, and seman-
tics {or system of interpretation) But as we will see, the syntactic and
semantic components of these languages are very much simpler than those
of any natural language; indeed, that is their virtue, since they have been
purposely constructed to avoid ambiguities and many complicated features
contained in natural languages. For instance, the sentences of our logical
languages are all declaratives—there are no interrogatives, imperatives, per-
formatives, etc.—and, further, the means of joining sentences together to
form compound sentences is severely limited. We will find sentential con-
nectives corresponding (roughly) to English and, or, not, if ... then, and if
and only if, but nothing to answer to because, while, aféter, although, and
many other conjunctions In predicate logic we will in addition find counter-
parts of a few determiners of English—some, all, no, every,—but not most,
many, a few, several, one half, etc. As a discipline, logic is the study of
reasoning (the product not the process—the latter is the province of psy-
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chology), with the objective of identifying correct, or valid, instances and
distinguishing them from those that are incorrect, or invalid. We recognize
intuitively for example, that the reasoning exhibited in argument (5-1) is
valid, in that the conclusion (the sentence below the horizontal line) is a
necessary consequence of the premises above the line. To put it another
way, if we grant the truth of the premises in (5-1), we cannot, logically,
deny the truth of the conclusion.

(5-1) All men are mortals.
Socrates is a man.
Therefore, Socrates is a mortal.

In contrast, the reasoning in argument (5-2) is easily seen to be invalid:

(5-2) All cats are mammals.
All dogs are mammals.
Therefore, All cats are dogs.

That is, in (5-2) even if we accept the premises we may logically reject the
conclusion.

A system of formal logic—for these examples it will be predicate logic—Iis
intended to give a systematic account of what underlies these intuitions. In
this enterprise the logical language serves as a model, or image, of the nat-
ural language (albeit a much simplified one), but it is designed so that one
can give an explicit account of validity for any arguments expressed in it, An
argument couched in natural language can then be assessed by translating it
into the logical language and determining the validity of the translation. Ar-
gument (5-1), for example, could be translated into the following argument
in predicate logic, which, as we will see in Chapter 7, is valid:

(5-3)  (Ve)(H(2) — M(z))

s)

D)

Clearly the success of such a program will depend heavily on the adequacy

of the translations (assuming a satisfactory characterization of validity and
invalidity in the logical language)

2| =

.
.

One motivation for proceeding in this way is that many arguments in
natural language, while superficially distinct, appear to be instances of the
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same underlying argument form. We observe, for example, that (5-1) pro-
duces another valid argument under systematic replacement of its proper
and common nouns:

(5-4) All rabbits are rodents.
Peter is a rabbit.
Therefore, Peter is a rodent.

Evidently the validity of (5-1) and (5-4) does not rest on the meanings of
words such as man, Socrates, and rabbit, but rather results from the frame-
work in which these words are embedded, i.e , the form of the argument. We
also observe that the word all is an integral part of of this form; replacing
it by some, for example, yields an invalid argument:

(5-5) Some men are mortals.
Socrates is a man.
Therefore, Socrates is a mortal.

(Note that the conclusion of (5-5), while true, does not follow necessarily
from the premises ) We might then say that (5-1) and (5-4) are instances
of the (valid) argument form (5-6):

(5-6) All X’s are Y’s
ais an X
Therefore,aisa Y

and similarly, (5-2) is an instance of the following invalid argument form:

(5-7) All X’s are Y’s
All Z’s are Y’s
Therefore, All X’s are Z’s

A logical language, then, is designed to provide effective translations and
an account of validity or invalidity for a certain range of argument forms,
Predicate logic treats the two forms just mentioned, for example, but state-
ment logic, as we will see presently, does not, since it is constructed to deal
only with argument forms whose validity hinges of the meanings of sentential
connectives such as and, or, and if . . . then, but not on quantifier words such
as all, and some.






Chapter 6

Statement Logic

6.1 Syntax

The syntax of statement logic is very simple: We assume an infinite basic
vocabulary of atomic statements represented by the symbols p,q,7,s,. ..,
with primes or subscripts added as needed.

DEeFINITION 6.1
1. Any atomic statement itself is a sentence or well-formed formula (wif).
2. Any wif preceded by the symbol ‘~’ (negation) is also a wif

3. Any two (not necessarily distinct) wifs can be made into another wif
by writing the symbol ‘&’ (conjunction), ‘v’ (disjunction), ‘—’ (condi-
tional), or ‘~’ (biconditional) between them and enclosing the result
in parentheses

Here are some examples of wif’s of statement logic constructed according to
these rules:

~ ~7r

(& g)v~q)—r) & s)

99
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The following are not wif’s:

(6-2) pg
vVp
~ \/pq
p V ¢ (lacks outer parentheses)
~ (p) (no parentheses around atomic statements)

Note: we will occasionally omit outer pairs of parentheses in the interest of
increased legibility, e.g, pV (¢ & r) instead of (pV (¢ & r)). The former can
be regarded as an informal abbreviation for the latter,

As we have said, logical languages are typically designed to mirror certain
natural language constructions. In the present case, the connectives &, V,
—, <, are intended as the couterparts of English and, or, if .. then, and
if and only if, when used to conjoin declarative sentences, e.g., the and of
John smokes and Mary snores. Atomic wif’s are the logical representatives
of simple declarative sentences, i e., those which do not contain instances of
the sentential connectives and, or, if ... then, if and only if, or not The
negation symbol ‘~’, is a unary operator rather than a binary connective in
that it applies to only one wif to produce a wif Its English counterpart is
the not in John will not leave or the more formal It is not the case that (e.g.,
It is not the case that John will leave). Note that what the logic regards as a
“simple” declarative sentence may in fact be quite complex syntactically For
example, John’s incessant smoking has caused Mary to consider strangling
him contains none of our designated sentential connectives and so would be
represented as an atomic sentence in statement logic,

A word about terminology. We will say that an English sentence such as
John smokes makes, or expresses, a statement. We ignore, for the present,
pragmatic concerns such as speaker and context. We use ‘statement’ as
a neutral term to avoid using the more common ‘proposition,’ since the
latter has acquired a number of different meanings over time which we would
prefer to avoid sorting out. Synonymous sentences, e.g , Paris is the capital
of France and France’s capital is Paris express the same statement, while
ambiguous sentences, e.g., Visiting relatives can be annoying express more
than one statement,
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6.2 Semantics: Truth values and truth tables

The semantics of statement logic is nearly as simple as its syntax. Each
atomic statement is assumed to have assigned to it one of the truth values: 1
(also called true) or 0 (false). We are thus working with a two-valued logic;
systems with more than two values have also been studied, but they will
not concern us here (but see Appendix BII) Each complex wif also receives
a truth value, which is determined by (1) the truth values of its syntactic
component statements, and (2) the syntactic structure of the complex wif;
i.e, its connectives and their arrangement in the formula. For example, the
truth value of (p & ¢) will be determined by the truth values of p and ¢
and by the so-called truth-functional properties of the connective &. The
latter is given by a truth table saying how the truth value of a formula is a
function of the truth values of its immediate constituents when the principal
connective is the conjunction & We now give the truth tables for the five
connectives along with some remarks on how they compare with their English
counterparts. In the following, P, @, etc., will stand for any arbitrary wff,
atomic or complex.

6.2.1 Negation

Negation reverses the truth value of the statement to which it is attached.
For any formula P, if P is true, then ~ P is false, and, conversely, if P is
false, then ~ P is true. This is summarized in the truth table of Table 6-1.

P|~P
1 0
0 1

Table 6-1: Truth table for negation

Logical negation is of course intended to mirror sentential negation in natural
language. In English, this is often expressed by the insertion of not into the
verb phrase (John is here, John is not here), sometimes with the addition
of a form of do (John smokes, John does not smoke). The semantic effect is
generally to produce a sentence opposite in truth value to the original, but
there are cases where this is not so: John must leave, John must not leave.
Here then is a case in which the English and the logical connectives are not
exact correspondents. Closer to the behavior of the logical connective is the
circumlocution it is not the case that (cf., John must leave, It is not the case
that John maust leave).
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6.2.2 Conjunction

If we conjoin two declarative English sentences by and, the result is, by and
lazge, true if both conjuncts are true, and false if one or both of the conjuncts
are false. For example, if John smokes is true and Jane snores is also true,
then John smokes and Jane snores is true; if either or both of the constituent
sentences are false, the entire conjunction is false. The truth table for the
logical connective & is constructed accordingly:

PlQ|(P&Q)
1]1 1
10
01
00

0
0
0

Table 6~2: Truth table for conjunction

Note that P and @ are variables denoting any wif whatsoever and that there
are four rows in the table corresponding to the four ways of assigning two
truth values independently to two statements,

As we have now come to expect, there are instances in which & does not
correspond exactly to the English sentential conjunction and. The latter,
for example, sometimes carries a temporal connotation which is absent from
the logical connective (cf, John took a shower and he got dressed, John got
dressed and he took a shower). In the logic of statements (p & ¢) always has
the same truth value as (¢ & p). Furthermore, while (p & p) is perfectly well
formed (and has the same truth value as p itself), a sentence such as John
smokes and John smokes is distinctly odd and could be appropriately used
only in rather special circumstances (perhaps as a colorful way of saying that
John smokes incessantly).

In translating from English into statement logic the sentential connective
but is often rendered as &; thus, John smokes but Jane snores might be
translated into (p & g¢), where the & carries none of the connotations of
contrast or unexpectedness of the English connective Similar remarks could
be made about howewver, although, despite the fact that, and so on.

English and can of course be used to conjoin noun phrases, verb phrases,
etc. as well as sentences (John and Mary, smokes and drinks), and nothing
in our logical language corresponds to this usage (remember that we are
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ignoring the internal structure of simple sentences). Sometimes sentences
containing phrasal conjunction can be treated as elliptical forms of sentential
conjunction; e.g., John and Mary smoke might be regarded as an abbreviated
form of John smokes and Mary smokes and thus could be translated into
something like (p & ¢). Not all cases of phrasal conjunction can be so
treated, however, as we can see by examples such as John and Mary met in
New York or Mary mized red and blue paint,

6.2.3 Disjunction

The logical connective V has the following truth table:

PlQ|(PVQ)
111 1
10 1
011 1
0l0 0

Table 6-3: Truth table for disjunction

Thus the disjunction of two statements is true if at least one of the disjuncts
is true; it is false only if both are false. The rough English correspondent is
the sentential connective or as in John smokes or Jane snores. The logical
connective is the so-called inclusive disjunction, which is true when both
disjuncts are true It is commonly supposed that English or also has an ez-
clusive sense, which excludes the possibility that both disjuncts are true; cf,,
You may have soup or you may have salad, but not both, but it is controver-
sial whether the English word is actually ambiguous or whether the inclusive
vs. exclusive sense of such disjunction sentences is determined by matters
of context and other pragmatic factors Latin vel and aut have often been
cited as natural language examples of disjunctions which bear, respectively,
the inclusive and exclusive senses, but even here the facts are not entirely
clear. In any event, the logical connective V is unambiguously inclusive, as
evidenced by the first row of its truth table. (There is no standard symbol
for exclusive logical disjunction, but if there were, its truth table would be
like that in Table 6-3 except for having the value 0 in the first row).

Similar remarks about phrasal disjunction can be made here as in the
case of of phrasal conjunction. For example, (Fither) John or Mary smokes
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can be regarded as elliptical for John smokes or Mary smokes and therefore
represented as (p V ¢) A problematic case is A doctor or a dentist can
write prescriptions, where the intended interpretation is that both doctors
and dentists can write prescriptions (it would be false if doctors could but
dentists couldn’t, for example). Thus, the best translation for this sentence
would be of the form (p & ¢), not (p V g).

6.2.4 The Conditional

The discontinuous connective if. . then in English is used in a host of differ-
ent ways and has been the subject of much discussion. The correspondent
in our logical language, —, shares one crucial feature with all the natural
language uses, viz., when the if clause (the antecedent) is true, and the then-
clause (the consequent) is false, the entire conditional statement is false. For
instance, If Mary is at the party, then John is at the party (too) is clearly
false if Mary is at the party but John isn’t. This is reflected in the second
row of the truth table for —:

r—lr—lor—ll

Table 6—4: Truth table for the conditional

(P — @) is true in all other cases, and it is this aspect of the semantics of
the conditional which is most controversial. When asked for the truth value
of If Mary is at the party, then John is at the party (too) in case Mary is
not at the party, we may be puzzled We might be inclined to say that the
conditional sentence has no clearly defined truth value or that the question
of its truth value does not arise, Even in the case where both Mary and John
are at the party, we might hesitate to say that the conditional is true since
we would expect some logical or causal connection between antecedent and
consequent be determined before we could determine the actual truth value
Here we seem to have a case where the logical and the English connectives
are greatly at variance. How can we justify our choice of 1 (true) in these
cases?
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The answer goes along two lines: (1) In a two-valued logic, if a statement
is not false, then it must be true: there is no other choice. (2) This definition
of the conditional suffices for the analysis of valid and invalid arguments in
mathematics and thus carries the weight of tradition. It is not without its
troublesome and sometimes paradoxical side effects, however.

6.2.5 The Biconditional

The truth table for the biconditional is shown in Table 6-5.

PlQ| (P Q)
11 1
10 0
01 0
0olo 1

Table 6-5: Truth table for the biconditional

English expressions translated by the biconditional are ‘if and only if’, ‘just in
case that’, and ‘is a necessary and sufficient condition for * It is sometimes
difficult to tell whether some statements in ordinary language should be
represented by the conditional or the biconditional., For example the sentence
I will leave tomorrow if I gel the car fized might mean that getting the
car fixed is a sufficient condition for leaving tomorrow (although I might
leave tomorrow anyway), but it might be intended to mean that getting the
car fixed is not only a sufficient but also a necessary condition for leaving
tomorrow (I won’t leave unless the car gets fixed). The latter interpretation
is forced when the connective is ‘if and only if: I will leave tomorrow if
and only if I get the car fized. In mathematics this connective is frequently
abbreviated ‘iff.” Formal definitions of mathematical terms always employ
it. The usual form is

(6-3) X iscalled aY (orisaY) iff X has property P.

Using ‘if’ instead of iff’ would leave open the possibility that X might also
be called a Y (the term being defined) in other circumstances as well. The
‘if and only if’ makes it a proper definition by restricting X’s being called
Y to only those cases in which X has property P.
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The truth tables provide a general and systematic method of comput-
ing the truth value of any arbitrarily complex statement, The number of
lines in the truth table is determined by the requirement that all possible
combinations of truth values of atomic statements must be considered. In
general, there are 2" lines when there are n atomic statements The order
of evaluating the constituent statements is from the most deeply embedded
one to the outermost. So to construct a truth table for ((p & ¢) —~ (pvr)),
one would proceed as follows:

(i) construct columns for the atomic statements p, g and 7,
(ii) construct columns for (p & g¢) and for (pV r),
(iil) conmstruct a column for ~ (pV r) reversing the values for (p V r),

(iv) construct the truth table for the entire statement, applying the condi-
tional table to the table for (p & ¢) and the table for ~ (pV 7).

The entire process is laid out in the following table.

(p&q) =~(pVvr))

=3
~—

(p

]
~—

(p

OO OO F ke iy
OO OO R
= R R R R R L o
[ N e e
2
N
r—"Or—"OOOOO)G
<
~3
N

O OO RO 3

L S R e =R =]

Table 6-6: Truth table for
(P& q) =~ (pvr))

Obviously truth tables can get very complex when more than three atomic
statements are involved, and clerical errors are easily made. But in principle
we can compute the entire table for any complex statement.
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6.3 Tautologies, contradictions and contingencies

Statements can be classified according to their truth tables. A statement is
called a tautology if the final column in its truth table contains nothing but
1’s,1i.e. the statement is always true, whatever the initial assignment of truth
values to its atomic statements. Such statements are true simply because of
the meaning of the connectives. A statement is called a contradiction if the
final column in its truth table contains nothing but 0’s,ie. it is always false,
whatever the initial assignment of truth values to its atomic statements. All
other staterments with both 1 and 0 in their truth table are called contingent
statements or contingencies, Their truth or falsity does depend on the initial
truth value assignment to their atomic statements

Some examples of each type, which the reader may verify, are:

o tautologies: (pV~p)h(p—=p),(p—=(2—p),~pP& ~p)
e contradictions: ~ (pV ~ p), p& ~ P)7 ~((pVv Q) - (qv P))

e contingencies: p, (pVp), (pVe) — 9), ((p— ¢) — p)

Here, for example, are truth tables for (p V ~ p) and (p & ~ p):

pl~p|l(pv~p)
1!0’ 1

1

Table 6-7: Truth table for tautology

(pV~p)
pl~p|(p& ~p)
1] 0 0
0’ 1 ' 0

Table 6-8: Truth table for contradiction
(p& ~p)
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¢

An important property of tautologies and contradictions is that any state-
ments whatever may be substituted for the atomic statements without af-
fecting the truth value of the original expression. For example, if in the
tautology (p vV ~ p) we replace p by (g — r), the resulting expression
((g = 7))V ~ (g — r))is still a tautology, as shown in Table 6-9. In
general, the substitution of any statement @ for pin (p V ~ p) produces
a statement of the form (@V ~ @). Whatever the truth value of ¢ in any
particular line, the truth value of ~ @ is the opposite; thus, one must be
true and the other false. The disjunction of ¢ and ~ (J is therefore true on
every line of the truth table. Since § may be any statement at all, elemen-
tary or complex, we see that this tautology (and all tautologies in fact) is
true by virtue of its form, i.e., the arrangement of statements and connec-
tives, and not because of the particular statements it is made of The same
considerations apply, mutatis mutandis, to contradictions

glr]l@=r)|~@=n]{g=r)V~(g=7)
111 1 0 1
170 0 1 1
01 1 0 1
010 1 0 1

Table 6-9: Truth table showing that
((g = r)v ~ (g — 7)) is a tautology

It is often very important to know whether a certain statement is a
tautology or not, but since long truth tables are cumbersome, there is a
simple “quick falsification” test which searches systematically for a line on
a truth table whose final value is 0. If the search is completed and no such
line is found, then we know for sure the statement under investigation is
a tautology. The test is an application of the general reasoning strategy
of reductio ad absurdum. We assume there is a line whose final value is 0,
and reason “backwards” from that assumption to see whether we can find
an assignment of truth values to the atomic statements without running
into contradictory or conflicting assignments. The procedure is illustrated
first with a simple example: (p — (g — p)) Assume there is a line whose
final value is 0. We enter the truth value directly under the principal or
“highest” connective i.e., the last one added in the syntactic construction of
the formula.
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(p~ (g—p)
0

Then reasoning from that assumption, we know that the antecedent of this
conditional must be true and the consequent false, since that is the only
0-case for conditionals.

(p— (g— p))
10 0

Now we simply fill out the 1-assignment for the atomic p in the consequent:
(since the assignment of truth values to the atomic statement must be uni-
form, i.e , the same throughout the entire formula).

(p—(g—p))
10 0 1

Looking at the truth table for conditionals we see now that we run into
conflicting assignments: on the one hand, the consequent (¢ — p) should
be false, but on the other hand that cannot be the case, since pis true and
(¢ — p) can only be false if p is false, given the table for conditionals, Hence
we may conclude that the assumption that there is a line on the truth table
for this statement which ends in false is itself false. Thus all lines must be
1; (p — (g — p)) is a tautology.

Let’s work through another example with the very similar, but contingent
((p— )~ p).

Step 1. ((p— q) — p)

0

Step 2. ((p— ¢) — p)
1 00

Step 3. ((p— ¢) — p)
01 00

(The antecedent (p — ¢) must be true, while p is false, and that is admiss-
able.)

Step 4. ((p— 9)— p)
0 10 00

or
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Step 4. ((p—4q)— p)
6 11 0660
Thus the truth value of ¢ may be either 1 or 0, and the procedure is completed
without running into conflicting assignments. So ((p — ¢) — p) must be at
least contingent, though it may even be a contradiction. We cannot now do
a similar short-cut test to see whether it is a contradiction, since we end up
writing the complete truth table checking for all the other cases. Note that
this method may not always save time if there turn out to be many possible
assignments which we have to check for a line ending in 0.

6.4 Logical equivalence, logical consequence and
laws

If a biconditional statement is a tautology, the two constituent statements so
connected are logically equivaleni For example, the truth table in Table 6—
10 shows the statements ~ (pVg) and (~ p & ~ ¢) to be logically equivalent
since (~ (pVyg) « (~p& ~ q))is a tautology:

plalleval~(Vvadl~pl~ad(~p& ~d|(~(pVa) = (~p& ~q))
11 1 0 00 0 1
ilo| 1 0 01 0 1
ol1] 1 0 i]o 0 1
olo| o 1 1)1 1 1

Table 6-10: Truth table showing the logical
equivalence of ~ (pV ¢) and (~p & ~ q)

Logically equivalent statements may also be characterized by saying that
they have the same truth value for any assignment of truth values to the
atomic statement (note the fourth and seventh columns in Figure 6-10). It
is of course just this fact which insures that the biconditional connecting the
two formulas will always be true.

Logically equivalent statements are important for the analysis of valid
patterns of reasoning because they may freely replace one another in any
statement without affecting its truth value. For example, in the statement
(p V q), replacement of p by the logically equivalent complex statement
(p & p) yields a statement ((p & p)V g) whose truth value is exactly the same
as the original statement, whatever that may happen to be. Substitution of
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logically equivalent expressions always preserves truth value, i.e. preserves
both truth and falsity. To denote logical equivalence between two arbitrary
statements P and ¢ we write P <= (. Note that this “double arrow” is
not a new connective for statements, but rather a convenient notation for
expressing that P« @ is a tautology

If a conditional statement is a tautology, we say that the consequent is
a logical consequence of the antecedent or, equivalently, that the antecedent
logically implies the consequent. An example is shown in the truth ta-
ble of Table 6-11, which demonstrates that g is a logical consequence of

((p— g &p)

plalp=a)|((p—>a)&p) | (=g &p)—4q)
1)1 1 1 1
1o o 0 1
011 1 0 1
ojo] 1 0 1

Table 6~11: Truth table showing that ¢ is a
logical consequence of ((p — ¢q) & p)

In contrast to logical equivalence, the relation of logical consequence pre-
serves truth but not necessarilly falsity. That is, is the antecedent of a
tautologous conditional is true, then the consequent must be true also (cf.
line 1 of Table 6-11, for example). If the antecedent is false, then nothing
can be guaranteed about the truth value of the consequent (cf. lines 3-4
of Table 6-11). The relation of logical consequence is important, as we will
see in the next section, since it is the basis for the construction of valid
arguments. We write P = @ to indicate that @ is a logical consequence of
P

Note that when P = @ we cannot in general substitute ¢ for P in a
larger formula and be guaranteed that truth will be preserved. For example,
given that (p& ~ p) = p) (which the reader may quickly verify by a truth
table), we cannot conclude that ((p& ~ p) — ¢) = (p — gq), replacing
(p& ~ p) by its logical consequence p. In fact, if p is true and ¢ is false,
then ((p& ~ p) — g) will be true and (p — g¢) false. Thus, our remarks
about truth preservation by logical consequence pertain only to replacement
of an entire formula by a logical consequence of that formula. This is in
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Laws of statement logic

1. Idempotent Laws 2. Associative Laws

(a)(PVP) « P @)((PVQ@Q)VR) <= (PV(QVR))
(B)(P&P) <= P b) (P& Q)& R) <= (P& (Q&R))
3. Commutative Laws 4. Distributive Laws

() (PVv@Q) <= (QVP) (@) (PV(Q&R)) <= (PVQ)&(PV
(B)(P&Q) <= (Q&P) L) (P&(QVR)) <= (P&Q) V(P&
5. Identity Laws 6. Complement Laws

(a) (PVF) < P (a) (PV~P) <= T

bL)(PVT) <= T (b) ~~P <= P

()(P&F) < F (also called double negation)
(Q)(P&T) = P (c)(P& ~P) = F

7. DeMorgan’s Laws 8. Conditional Laws

(a) ~(PVQ) = (~P& ~Q) (a) (P - Q) <= (~PVQ)
(b) ~(P&Q) <= (~PVv~Q) (B)(P-Q) <= (~Q —~~P)
(also called contraposition)
()(P-@Q) =~ (P& ~0Q)

9. Biconditional Laws

() (P @) <= (P—-Q)&(@—P))
B)(Po@) &= (~P& ~Q)V(P&Q))

Table 6-12
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contrast to the relation of logical equivalence where, as we noted above,
replacement of any subformula by a logically equivalent expression preserves
the truth value of the entire formula,

It is convenient to have at hand a small number of logical equivalences
from which all others may be derived. Table 6~12 gives those “laws” most
frequently used, together with their names. This list is redundant in that
some equivalences are derivable from others, but it is a convenient set to work
with. Since we will refer to them repeatedly in this and the next chapter,
it is worthwhile to memorize them. We write 1" for any arbitrarily chosen
tautology and F for any contradiction, and P, ¢, R for any statements
whatever, whether atomic of complex.

We may verify that these equivalences do indeed hold by the truth table
method. As an example, take an instance of the equivalence 8(a) of this
table: (p — ¢q) <= (~ pVgq) If these two statements are equivalent,
their corresponding biconditional must be a tautology. We may check that
with a truth table as shown in Table 6-13. Furthermore, in view of our
remarks in the preceding section about the preservation of tautologousness
under uniform substitution of atomic statements, we know that (P — @) «
(~ Pv @) is a tautology, for any statements P and ¢ whatever; hence, the
(a) case of the Conditional Laws.

Q) |~p|l(~pvg|[((p—q) < (~pVy)

|

| (p

o Bl o B e B0~
O O
=S ]
[ e =
Pt e D et
e el el et

Table 6~13: Truth table verifying a logical
equivalence,

Since logically equivalent statements may be substituted for each other with
preservation of truth values, we may use these laws to transform a statement
into one which is logically equivalent but perhaps of lesser complexity. The
procedure may be illustrated with a simple example, showing that (p —
(~ gV p)) reduces to T, ie. it is a tautology. We write the law used in each
step of the derivation at the right.
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(6-4) 1. (p—(~qVvp))
2. (~pV(~gqVvp)) Conditional law
3. ((~gqVvp)V~p Commutative law
4. (~qv(pV ~p)) Associative law
5, ~gqvT Complement law
6 T Identity law

As we have said, substitution of logical equivalents can be carried out on
subformulas contained within larger formulas. For example, (p & (¢ — r))
is logically equivalent to (p & (~ g V 7)), where the latter is derived from
the former by replacing the subformula (g — ) by its logical equivalent
(~ gV r). Since logically equivalent formulas have the same truth values
on every line of their truth tables, they will contribute in the same way to
the truth values of larger formulas in which they are embedded. Therefore,
the truth value of a larger formula will be unaffected by the substitution of
logically equivalent subformulas. This principle is sometimes referred to as
the Rule of Substitution.

This rule applies only to the substitution of subformulas, i.e., wff’s which
are syntactic constituents of a larger formula. It would not be allowed, for
example, to convert (p & (¢ — r)) into (¢ & (p — 7)), citing the logical
equivalence of (p & ¢) and (g & p), since (p & gq) is not a subformula
(constituent) of (p & (g — 7)).

In the following derivation the application of the Rule of Substitution
is explicitly noted by “(Sub.)” at line 4. This derivation does not achieve
a simplification of the original formula but shows how one of the logical
equivalences, contraposition, can be established using some of the other ones.
P and @ here are arbitrary wifs.

(6-5) 1. P—Q
2. ~Pv@ Cond.
3. Qv ~P Comm.
4. ~~Q@QV~P Compl (Sub.)
5 ~@ —-~P Cond

Note that essentially the same derivation could have been given to convert
(p — ¢) into the logically equivalent (~ ¢ —~ p), but since the equivalence
holds under any uniform substitutions of formulas for p and ¢, we may as well
carry out the derivation for the general case, i.e., as a derivation schema.
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6.5 Natural deduction

We have shown thus far how statements are combined syntactically, how
truth tables represent the semantics of connectives and how we use them to
compute the truth value of a complex statement, and how logical laws allow
rewriting a statement as a logically equivalent one. We are now ready to
take up an analysis of valid patterns of reasoning,

An argument consists of (1) a number of statements called premises,
which are assumed to be true, even if just for the sake of the argument, and
(2) a statement which is called the conclusion, whose truth is alledged to
follow necessarily from the assumed truth of the premises. We are interested
in characterizing the valid forms of argument by defining a number of infer-
ence rules which guarantee truth preservation (but which may or may not
preserve falsehood). An argument is called velid if and only if there is no
uniform assignment of truth values to its atomic statements which makes all
its premises true but its conclusion false; if there is such an assignment we
call the argument invalid,

The criterion for validity can be formulated differently, but equivalently,
by requiring that, if P;, P, ..., P, are the premises, and ¢ the conclusion,
the statement (P, & P, & .. & P,) — @) is a tautology. This is so because
the conditional is tautologous just in case there is no possibility of a true
antecedent and a false conclusion. Relating the validity of arguments to
tautologies allows us to use the laws from the previous section to infer that
any uniform substitution for the atomic statements in a valid argument
produces another valid argument.

Let’s take a simple example of a natural language argument we all in-
tuitively judge to be valid. We use .’. to indicate the conclusion, read as
‘therefore’.

(6-6) If John loves Mary, then Mary is happy
John loves Mary

.. Mary is happy

Translating this argument to the formal language with the following key:
p—John loves Mary,

g—Mary is happy,

we have:
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(6-7) pP—gq
p
-3

The truth table we constructed as Table 6-11 shows this argument to be
valid. The table demonstrates that g is a logical consequence of ((p —
g) & p). By the principle of uniform substitution in tautologies, we can
say that (P — @) & P) — Q) is a tautology for any formulas P and @
whatever, and thus

(6-8) PQ
LA
a. Q
is a valid argument form It is traditionally called Modus Ponens. Here is a
more complicated instance:

(6-9) ((~(rvs)—=t)= (r&t)
(~(rvs)—1)
L (r&i)

Here is an example of an invalid argument:

(6-10) p—q
q

P

The test of validity by truth table (Table 6~14), shows that the corresponding
conditional is not a tautology; thus, it is possible for the premises to be true
and the conclusion false, namely, when p is false and ¢ is true.

pla|p—=a ]|~ &a)|{((p—q) & q) = p)
71 1 1 1
i1{o] o 0 1
ol1]| 1 1 0
ojol 1 0 1

Table 6-14: Truth table for
(((p—4q) & q) —p)
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An English example which would be translated into the argument in (6-10)
is as follows:

(6-11) If John loves Mary, then Mary is happy
Mary is happy

.. John loves Mary

It is easy to see in this simple case that the truth of the premises does not
logically imply the truth of the conclusion, but in more complex instances
one can sometimes be deluded into thinking that the argument is valid. Such
seductive invalid argument forms are called fallacies. This one is known as
the fallacy of affirming the consequent. A similar one, the fallacy of denying
the antecedent, reasons from (p — ¢) and ~ p to the conclusion ~ g.

Although the validity of any argument form may be determined by con-
structing a truth table, it is often inconvenient to do so, particularly if it
contains a large number of elementary statements. An argument which con-
tains five elementary statements would require a truth table of 25 or 32 lines,
for example,

An alternative is to analyze the argument into a sequence of simpler
arguments, and if these simpler arguments have already been shown to be
valid, we can be sure that the original argument is also valid. For example,
to demonstrate the validity of the argument in (6-12)

P
q

(6-12)  (p—(g—(r&s)))
(

So(r&s)

we could show that the conclusion follows from the premises by a sequence
of two applications of the valid argument form Modus Ponens, This is shown
in (6-13).

(613) 1 (p— (g (r&9)))
2. p
3. q
4 (g— (r&s)) from lines 1 and 2 by Modus Ponens
5 (r&s) from lines 3 and 4 by Modus Ponens

Simple valid argument forms which can be used in the way we just used
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Modus Ponens are known as rules of inference. The seven listed in Table 6~
15 will suffice for all of the arguments we will encounter in this section Like
the table of logical equivalences given above, this list is redundant: some of
the rules can be derived from others, together with the logical equivalences.
As an exercise, the reader may wish to check each one for validity by means

of a truth table.

Name & Abbr.

Modus Ponens
(MP)

Modus Tollens
(M.T.)

Hypothetical
Syllogism
(HS))
Disjunctive
Syllogism
(D.S.)
Simplification
(Simp.)

Conjunction
(Conj.)

Addition
(Add.)

Rules of Inference

Form Ezample
P-qQ If John loves Mary, Mary is happy
P John loves Mary
. Q ‘. Mary is happy
P-q@ If John loves Mary, Mary is happy
~Q Mary is not happy
‘.~P *. John does not love Mary
P> @ If Fred lives in Paris, then Fred lives in Franc
Q- R If Fred lives in France, then Fred lives in Europe
‘P> R *. If Fred lives in Paris, then Fred lives in Europe
Pv@ Fred lives in Paris, or Fred lives in London
~ P Fred does not live in Paris
g *. Fred lives in London
P& @ Roses are red, and violets are blue
SO P *. Roses are red
P Roses are red,
Q Violets are blue.
“P&Q *. Roses are red, and violets are blue
P Roses are red -
‘. PVv@ *. Roses are red, or cigarettes are a health hazard

Table 6-15: Common rules of inference for

statement logic
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Here is an example of an argument using these rules The lines are numbered
for convenience in referring to them, and every line other than the premises
is justified by a rule of inference and the lines used by that rule.

(6-14) p—q
pVs

q—r

s —1

~7r

~q 35MT,
. ~p 1,6 MT.
s 2,7DS
t 4,8 M.P.

000D U W

The derivation in (6~14) is said to be a proof of ¢ from the premises in lines
1-5. Since the premises also logically imply the statements in lines 6, 7,
and 8, these have also been proved, and in fact we could have stopped after
any one of these lines and called the derivation a proof of ~ g, ~ p, or s;
it all depends on where we focus our attention. Note, however, that given
some premises and an alleged conclusion, we are not assured that there is
some derivation leading from the premises to that conclusion (there won’t be
when the argument form is invalid), and even when there is one, we cannot
be sure that we will be able to find it. On the other hand, given an alleged
proof such as (6-14), it is a simple matter to check whether it is in fact a
proof by verifying the derivation of each line. In general, logic provides us
with methods for checking proofs but not for discovering them. It is true
that in statement logic one can always determine whether a given conclusion
follows from given premises (we could always construct the truth table for
the corresponding conditional), but in more complex systems such as that
of the next chapter there is no general method for determining this.

Here is a more challenging proof, whose difficulty resides in the fact that
the premises are not of the right form to apply any rule of inference directly.
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(6-15) Prove (p — g) from the premises (p — (gV 7)) and ~ r.
L (p—(qgvr)

2. ~7

3.~pv(gvr) 1Cond
4. (~pVvg)Vvr 3 Assoc
5 rvV(~pvyq) 4 Comm
6. ~pVa 2,5D.S.
7. p—gq 6 Cond.

By converting the first premise to an equivalent statement by the Condi-
tional, Associative and Commutative Laws, we are finally able to apply D.S.
as the sole rule of inference in this proof Recall that substitution of logical
equivalents preserves truth value, and so in particular it preserves truth.
Thus, in a proof we can never pass from truth to falsity by replacing a
formula by its logical equivalent, and validity will not be affected.

The following proof makes use of the Rule of Substitution in deriving
logical equivalents:

(6-16) 1. ~(p—~q)

2. ~7r

3. ~(~(p& ~~7q) 1 Cond (Sub.)
4. (p& ~~q) 3 Comp.

5 (p&q) 4 Comp. (Sub.)
6. (p&ag)& ~1) 2,5 Conj.

7. (p&(g& ~ 1)) 6 Assoc.

8 (p& ~~(g& ~r)) 7 Comp. (Sub)
9. (p& ~(g—r)) 8 Cond. (Sub.)

(Henceforth we will not mention the Rule of Substitution explicity in
the annotation of a proof but merely refer to the logical equivalence used in
deriving that line.)

6.5.1 Conditional Proof

Certain proofs whose conclusions contain a conditional as the main connec-
tive are more easily proved by a method of conditional proof. Suppose an
argument has Py, Ps,.. . , P, as premises and ¢ — R as conclusion. In a con-
ditional proof we add the antecedent ¢ of the conclusion as an additional
auziliary premise and then from ¢ together with the other premises derive
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R. The conditional proof is concluded by cancelling the auxiliary premise ¢
and writing the conclusion ¢ — R. The validity of this method of proof is
based on the fact (which you should check for yourself) that

((Pl&Pz& &Pn)—*(Q——)R))
is logically equivalent to

(P& P& . &P, & Q)= R))

(where P1,. .., P,, @, and R are any wif’s.) As an example we construct a
conditional version of (6~15).

(6-17) Prove (p — g) from the premises (p — (gV 7)) and ~ r.
1 (p—(qvr)

2, ~r

3. |p Auxiliary Premise

4 gVvr 1,3 MP.

5. rVg 4 Comm,

6. g 2,5DS,

7 p—g 3-6 Conditional Proof

In writing a conditional proof we indicate with a bar each line which is based
on the auxiliary premise in order to remind ourselves that we are working
under a special additional assumption. A conditional proof must always
cancel that auxiliary premise by the rule of Conditional Proof before ending
the entire proof It is for obvious reasons forbidden to use any lines of the
conditional part of the proof after this cancellation. The following proof
shows how conditional proofs may be embedded

(6-18) Prove ((g — s) = (p— s)) from (p — (¢ & 7))
L (p—(g&r)

2. qg— s Auxiliary Premise

3. p Auxiliary Premise

4 g&r 1,3MP.

5. q 4 Simpl.

6. s 2,5 M.P.

7. |p—s 3~-6 Conditional Proof
8 ((g—s)— (p—s)) 2-7 Conditional Proof
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Comparable restrictions apply in more deeply embedded conditional proofs.
The exit from one level to the next higher one is always accompanied by the
formation of a conditional whose antecedent is the auxiliary premise from
the lower level and whose conclusion is the formula just derived (see hine 7
in (6-18), for example). Using lines from lower levels in lines of the proof at
higher levels is also forbidden (e.g., ¢ in line 5 is not available for use after
we leave the lowest level at line 7). Note, however, that lines from higher
levels are available in lower levels (e.g., line 1 is used in the derivation of line
4).

Auxiliary premises can be any wif whatsoever, so long as they prove use-
ful towards our final goal. In (6-18) the statement s did not occur anywhere
in the initial premise, but it is perfectly legitimate as part of an auxiliary
premise,

6.5.2 Indirect Proof

The inferences we have introduced up till now are direct proofs: the conclu-
sion is produced as the final line of the proof by a series of valid inferences,
In an indirect proof, we introduce the negation of the desired conclusion as
an auxiliary premise and reason to a contradiction. Given the assumption
that the other premises are all true, this contradiction shows that the aux-
iliary premise to be false, so its positive form, i.e., the desired conclusion,
must be true. This is the method of proof we have called reductio ad ab-
surdum. We now have the means to make this reasoning formally precise as
a rule of inference. It is a special form of conditional proof, as it uses an
auxiliary premise, but that auxiliary premise is not chosen freely; rather it
is the negation of the desired conclusion. The conclusion is not necessarily
of conditional form, and may even be atomic Here is an example of reductio
ad absurdum:

(6~19) Prove pfrom (pVgq), (¢ — r) and ~ 7

1. pVg

2, g—r

3. ~r

4. {~p Auxiliary Premise
5 1 ¢ 1,4 D.S.

6. |r 2,5 MP.

7. |r& ~r 3,6 Conj.

8 p 4-7 Indirect Proof
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Line 7 is a contradiction, and hence the auxiliary premise in line 4 is false.

Indirect proof can be shown to be a special form of conditional proof in
the following way. Adding the auxiliary premise ~ p in the proof above,
for example, we derive (r & ~ r) By the rule of conditional proof we get
(~p—(r & ~r)). As the next line we add the tautology ~ (r & ~ 7): a
tautology can be written down as a valid step anywhere in any proof since
it can never be false Then we derive ~ ~ p by Modus Tollens and then p
by the Complement Law.

Indirect proofs can have other indirect proofs and conditional proofs
embedded in them, and likewise they can be embedded in conditional proofs.
In all such cases, lines from a more deeply embedded section cannot be
assumed true in a less deeply embedded section.

Indirect proofs are used very frequently in mathematics, where they are
often much easier to construct than a direct proof. We encountered an
instance of it, for example, in showing that the null set is a subset of every set.
By assuming the negation of this statement, we were led to the conclusion
that the null set has a member, which, taken with the definition of the null
set, forms a contradiction. Thus, the assumption that the null set is not a
subset of every set reduces to an absurdity and cannot be maintained.

6.6 Beth Tableaux

In current research in theoretical computer science and logic, machines are
being developed which automatically prove theorems, so called ‘theorem
provers’. The main motivation is to simulate human theorem provers (which
you are becoming). But a straightforward implementation of the proof proce-
dures we have introduced for this elementary logical system is not possible. If
you attempt to derive a statement mechanically from a given set of premises,
you may start trying to substitute equivalent statements for the premises or
for parts of them, It is obviously not feasible to check all possible substi-
tutions as there are infinitely many equivalent statements to consider. You
rely often on a certain intuition or heuristic to determine which statements
are particularly useful to try and which are not. At present, such heuristics
are too little understood to consider implementing them in an automated
theorem prover. But if there is a clear procedure to list all substitutions
that should be taken into account for any given statement to be proven, its
derivation from the premises becomes feasible also for a machine. Such a
procedure exists and is known as the Beth method of Semantic Tableauz,
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after the Dutch logician Evert Beth The finite number of substitutions this
method needs in deducing a statement are:

1. the statement itself
2. all of its constituent statements

3. certain simple combinations of these statements, depending on the
given premises.

It is one of the most attractive features of (closed) semantic tableaux, con-
sidered as a method of proof, that all statements which appear in a proof
of a statement P are constituent statements of P. In this section we will
present the method for statements, and in the next chapter we will extend
the method to include some of the internal structure of statements,

Beth Tableaux are based on the idea that a conditional statement is
proven when all attempts to find a counterexample, falsifying its consequent
while verifying its premises, are shown to fail If there is a counterexample,
this method will find it, and what is more, if there is no counterexample,
we will always find out after a finite number of steps. A proof consists
always of a number of premises Py & Py & ... & P,—; and the conclusion
P,, connected by the conditional connective, A Beth Tableau attempts to
make the premises true and the conclusion false, hence making the entire
statement (P, & Py & ... & P,_;) — P,) false. If it is not successful,
the tableau is ‘closed’, and no interpretation of the substatements provides
a counterexample to the validity of the argument. But if it is successful,
the tableau will show how to construct a counterexample. The procedure is
quite simple, and we will introduce it by some elementary examples before
giving the complete set of rules for construction of tableaux.

Ezample 1. Prove ~~ p from (p & q).

The notation of Beth Tableaux we use here is as follows:

1) Set up two columns, separated by a straight vertical line (use plenty of
paper in the beginning, a tableaux might turn out to be rather more complex
than you anticipated).

2) Write TRUE on the left and FALSE on the right side of the line.

3) Insert the premise(s) under TRUE on line 1, and the conclusion under

FALSE
TRUE FALSE

1. (r&q) ~~ P
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We reason as follows, knowing the semantics of the connectives from their
truth tables. If the premise is (p & ¢), then this is assumed to be true in any
attempt to prove the conclusion ~~ p from it Since a conjunction can only
be true when both its constituent formulas are true, we can infer that p is
true and that ¢ is true. That information we write on the next two lines.

2. P
3. g

Since we have only atomic statements under TRUE now, we have to turn to
the statement under FALSE to develop the tableau further. We reason that
since the double negation is false, a single negation must be true, because
negation simply reverses the truth value of any statement That is recorded
by inserting ~ p under TRUE on the next line,

4. ~p ]

If a negation is true, that statement without that negation must be false,
for the same reason that motivated step 4. So we now get

5 ] P

We have only atomic statements now, and the tableau cannot be further
developed. But if we look back to the information we have extracted from
the given premise and conclusion, we see that on line 2 we inferred that p is
true, but on line 5 that the same statement pis false But that is impossible,
given the central assumption of logic that a statement cannot be both true
and false at the same time. So the otherwise sound reasoning we used in
developing the tableau has led us into a contradiction! You may now think
that hence the tableau method is of no use at all, but then you jump to
conclusions too rashly. For we have set up the tableau from the beginning
under a certain assumption: namely, that there exists an assignment of truth
values which verifies the premises and falsifies the conclusion. That is why
we put the premise under TRUE and the conclusion under FALSE. On that
assumption, we ran into a contradiction, just as in a reductio ad absurdum
proof This means that our assumption was illegitimate to start with. In
other words, there is no way to make the premise true and the conclusion
false, i.e. there is no counterexample to the claim that the conclusion follows
validly from the premise. The tableaux which run into contradiction by
having one and the same statement listed under TRUE and under FALSE
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are ‘closed’ by writing a double line under both sides of the tableau. Note
that the statement which gives closure does not have to be atormic, as it is in
this simple example. Any complex statement which is supposedly both true
and false leads to a contradiction, giving closure. The entire tableau for this
example is as follows:

TRUE FALSE
L (p&q) ~~ P
2 j2
3. g
4. ~p
5. j2

To show which connective is ‘decomposed’ in a line, we can annotate
each line after the first one with the connective symbol subscripted to the
line number, indicating also whether it occurs under TRUE or under FALSE.
The above tableau would have had respectively 2. & 7,3 & 1,4 ~p and 5..1.
It is a good practice to annotate the following examples for yourself in this
way.

Ezample 2 Prove ~ pV ¢ from ~ (p — ¢)

To make the premise ~ (p — ¢) true and the conclusion ~ pV ¢ false, we
open the tableau as follows:

TRUE FALSE
L ~(p—y9) ~pVy

Next the statement ~ pV ¢ is simplified giving rise to lines 2 and 3

2, ~p
3. g

These lines are motivated by the truth table for disjunction, which tells
us that a disjunction is false only when both disjuncts are. Now 2 can be
simplified, since a negation is false when the statement without negation is
true. So the next step is

4. P [

Similarly the premise can be simplified by cancelling the negation and listing
the statement without negation under FALSE
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5. | (-9

We know that a conditional statement is false just in case its antecedent is
true and its consequent is false. So from 5 we get to

. p l q

Now all statements have been simplified and no complex statements re-
main The tableau shows that when we interpret the atomic statement p as
true and the atomic statement ¢ as false, we obtain a counterexample to the
original statement ~ (p — g) —~ pV ¢. This claim can be verified with the
quick falsification method based on truth tables:

When one and the same atomic statement occurs on both sides of the
tableau, we assume that no counterexample can be based on it This is
obviously based on the law that a statement cannot be both true and false.

Example 3 is an illustration of a closing tableau, proving the statement
g =~ pVqvalid.

Ezample 8. Prove ~ pV ¢ from ¢

TRUE FALSE
L q ~pVyg
2. ~p
3 q
Closure obtained on the statement ¢ is indicated by the ====== line

on both sides. If there is a non-atomic statement on either side after closure
which may still lead to simplification, this only means that the truth value
of that statement does not matter to the validity of the entire sentence, as
is clearly the case in this example for ~ p. Hence closed tableaux may still
contain complex statements, but we cannot and need not apply any more
rules to them.

The construction of tableaux may get more complex when there are al-
ternative interpretations to consider. For instance, when a disjunction pV g
is true, then p may be true or ¢ may be true (or both) In such cases the
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tableau will split into alternative interpretations. Consider the tableau for
(~pvg) = (p—4q)

Ezample /.
TRUE FALSE
L (~pVy) (p—4q)
2 P
3. q
4 4; ~p |43 ¢ 4, 4,
5 p

Lines 2 and 3 are just as in Example 1. Line 4 leads to a split into
subtableaux 4, and 4,, since the disjunction may be true on the basis of
the truth of either disjunct. Each disjunct is hence entered into its ‘own’
subtableau and we simplify and check for possible closure of each subtableau.
In 4, the second subtableau is closed on each side as ¢ occurred under FALSE
in3 Then 5 simplifies the true negation ~ p, and again this subtableau closes
since p occurred under TRUE in 2,

A (sub)tableau closes only if a statement occurs both under TRUE and
under FALSE. A complex tableau closes only if all its subtableaux close. If
we do not obtain such a statement on both sides in the tableau construction,
then we find an assignment of truth values to the atomic statements which
constitutes a counterexample to the alledged validity of the tested statement.
The entire method of construction is given by the following construction
rules.

Construction Rules for Beth Tableaux
If statement occurs under If statement occurs unde

TRUE FALSE
negation ~p put p under FALSE put p under TRUE
conditional p — ¢ SPLIT! put p under TRUE

put ¢ under TRUE, and ¢ under FALSE

and p under FALSE



BeETH TABLEAUX 129

conjunction pé&q putpandg SPLIT!
under TRUE put p under FALSE
and ¢ under FALSE

disjunction pVg SPLIT! put p and ¢ under FALSE
put p under TRUE
and ¢ under TRUE

Note that the development of one open subtableau suffices to find a
counterexample. In constructing subtableaux all statements from the earlier
steps in the tableau before it split count in finding closure possibilities. In
general, it is a good strategy to apply splitting rules only after you have used
all other applicable rules.

Here is an example of a tableau which splits twice

Ezample 5. Prove (p & ¢) from (p — q)

TRUE FALSE
L (r—q) (p&q)
2. 2, 2, 2, p 2, g

3. 311¢ [312 321 ¢ | 322 8311|3127 (321 [322p

The split on the second line is constructed by the false conjunction, which
makes each of the two conjuncts false. The next line continues this split, and
introduces a second split by the true conditional, which makes the consequent
true and the antecedent false. Since we have to consider this situation under
each of the two assumptions in line 2, we split each subtableau and apply
the rule for a true conditional in each subtableau. In attempting to close
any subtableau, all statements that occur on lines above a given subtableau
must be taken into consideration. The subscripting of subtableaux indicates
which higher subtableaux are relevant, e g., in this example 2.5 is relevant
to 3 51, but 21 is not relevant to 3.5 5. Closure can only be obtained for the
subtableau 3., 1, hence we obtain the following counterexamples:

1) p=0andg=1 (3.11)
2) p=0Oandg=1lor0 (8.12)
3) p=0andg=0 (3.22)

In each of these cases the premise of this example is true and the conclusion
false.
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The method of semantic tableaux for the logic of statements constitutes
a ‘decision procedure’ for the validity of statements. This notion will be
central in Chapter 8, but we may make a few preliminary remarks about
it in the context of the tableau construction. Any statement consists of a
finite number of connectives and atomic statements. The rules guarantee
that any tableau construction comes to an end: it either closes or it provides
a counterexample. Any tableau hence consists of a finite number of steps
corresponding to the number of connectives in the statement tested, and a
circular or looping tableau is never possible. The only respect in which the
procedure is not fully automatic yet is in the order of application of the rules.

Exercises

1. Translate the following sentences into statement logic. Use lower case
letters for atomic statements and give the “key” to the translation, ie.,
say which atomic statements are the correspondents of which English
sentences. (In some cases you may want to use a syntactically different
version of the English sentence.) Example: “If John is at the party,
then Mary is, too.” Translation: (p — ¢) Key: p: “John is at the
party”; ¢: “Mary is at the party”

(a) Either John is in that room or Mary is, and possibly they both
are.

(b) The fire was set by an arsonist, or there was an accidental explo-
sion in the boiler room.

(¢) When it rains, it pours

(d) Sam wants a dog, but Alice prefers cats.

(e) If Steve comes home late and has not had any supper, we will
reheat the stew.

(f) Clarence is well educated only if he can read Chuvash.

(g) Marsha won’t go out with John unless he shaves off his beard and
stops drinking.

(h) The stock market advances when public confidence in the econ-
omy is rising and only then.

(i) A necessary but perhaps not sufficient condition for negotiations
to commence is for Barataria to cease all acts of agression against
Titipu
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In each case say what, if anything, has been “lost in translation”; that
is, what semantic properties of the English sentence are not represented
in the logical formula.

. The following sentences contain various sorts of ellipsis, so that some
of the connectives appear not to be connecting whole statements. Re-
formulate them so that the connectives connect statements (using dif-
ferent connectives if necessary) and translate into symbolic notation
as above.

(a) John and Bill are going to the movies, but not Tom
(b) Susan doesn’t like squash or turnips.
(¢) If neither Peter nor Fred is going to the party, then neither will L

(d) If Mary hasn’t gotten lost or had an accident, she will be here in
five minutes.

(e) A bear or a wolf frightened the boys.
(f) A party or a softball game would have amused the children.

. Let p,qg and 7 be true and let s be false. Find the truth values of the
following statements.

(a) (P& g)&s)

(b) (P& (g &3s))

(c) p—s

(d) s—p

() (p&q) = (r& ~s))
() (p—= (g« (r—s))

. Construct truth tables for each of the following statements. Note
whether any are logically equivalent.

(a) (v ~9q)

(b) ~(~p&yq)

(c) ((peq) &p)

(d) (p=(gv~r)&(p—(¢V~r))
(e) (((p—=q)—p) —19)
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For each of the following, use the “quick falsification” method to find
an assignment of truth values to the atomic statements which makes
the entire statement false.

(a) (pva)

(b) ((pve) = (P& 9))

(c) (~(~gqvp)V(p—19)

(d) (((p—=q)—=r)—35)—(P—4q))

(e) ((pva) & (r&s)) = (P& q) & 7) &s))

. Let p,q and r be atomic statements. Which of the following are tau-

tologies, contradictions or contingent statements?

. Certain of the logical connectives can be defined in terms of others

For example, (p — ¢) can be defined as an abbreviation for (~ p V g¢),
since the two statements are logically equivalent. Hence, all formulas
containing the connective — could be replaced by formulas containing
V and ~.

(a) Define — in terms of & and ~.

(b) Define & in terms of V and ~.

(¢) Define «~ in terms of — and &.
(Thus, the five connectives could ultimately be reduced to two:
V and ~).

(d) Show how the five connectives could be reduced to just & and ~.

. Use the laws in Table 6~12 to reduce each of the following statements

to the simplest equivalent statement.

(a) (~pV(r&q)
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(b) (vp& g Vv~(pvy)

(c) (~

p&((p&q) v

(p&)))

(d) ((~p&q) = (pva)

(e) (pv@)&(rVv~q))—(pVvr))
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9. Givea formal proof of validity for each of the following argument forms,
(A conditional or indirect proof will be much easier in some.)

(a)

(c)

(g)

LS

p—q (b) »p

q—rT ~Tr

~ (p&~r)—g
~p g

pVyg (d) p-~g
~q r—q

T —~p ~7T —8
o~ Jop—os
~pVg (f) pv(g&r)
~qg&r ~ 1
~(pvy) —s (pva)— (sVi)
r&s ~p

Jor&s

pPeg (h) ~p—yg
~p r— (sVi)
(¢& ~7r)Vi 5o~
(s\/t)—ar p—~1
wr& ~gq Jer— ¢
p—(g&) J) p-oyg
q‘._)s T — 8
r—1 ~qV~s
(S&t)—»wu P

u (t&u)—»r

o~vEV o~
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(p&q)—=(p— (r&s)) »
(P&q &u (p&a)vip&r)
JorVs (pVg) =~
Wper g

10. Express the following arguments in symbolic form, and determine
whether they are valid.

(a)

(b)

(c)

(d)

(e)

The butler or the cook or the chauffeur killed the baron. If the
cook killed the baron, then the stew was poisoned, and if the
chauffeur killed the baron, there was a bomb in the car. The stew
wasn’t poisoned, and the butler didn’t kill the baron. Therefore,
the chauffeur killed the baron.

If the subject has not understood the instructions or has not fin-
ished reading the sentence, then he has pressed the wrong button
or has failed to answer. If he has failed to answer, then the timer
hasn’t stopped. The subject has pressed the right button, and
the timer has stopped. Therefore, the subject understood the
instructions.

If the pressure is 1 atm, the water is boiling only if the tempera-
ture is at least 100°C If the pressure is 1 atm, then the water is
frozen only if the temperature is at most 0°C. The pressure is 1
atm and either the temperature is at least 100°C or it is at most
0°C. The water is not boiling. Therefore, the temperature is at
most 0°C.

If T am honest, then I am naive. Either I am honest or naive,
or else Sam was right and that magazine salesman is a crook. I
am not naive, and that magazine salesman is certainly a crook.
Therefore, Sam was right.

A certain consonantal segment, if it occurs initially, is prevocalic,
and if it is nomninitial, it is voiceless. If it is either prevocalic or
voiceless, it is continuant and strident. If it is continuant, then if
it is strident, it is tense. If it is tense, then if it occurs initially, it
is palatalized. Therefore, the segment is palatalized and voiceless.

11. Let the set S = {p, (pVq), (VP (PV ~p), (p & (g V ~ q)),

(~¢

)
—-p)(p=(g—-p)(~p—9),(PV(e& ~9) (pv(gV~ )}

Let the relation R = {{z,y) |z € Sand y € § and z < y}
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(a) Show that R is an equivalence relation,

(b) Find the equivalence classes into which R partitions S.

Construct Beth tableaux to test the validity of each of the following
arguments:

(a) p—(¢g—7))
~(~pVr)
p& ~gq

(b) p—g¢
g&r
p&q

(¢) (P—q) &(sVi)
t—gq
(P—a)V~(s—4q

Expressions in the propositional calculus may be written in “Polish
parenthesis-free notation,” which places the connective to the left of
the propositions it connects rather than between them In this notation
the connectives are N (negation), A (alternation), K (conjunction), C
(conditional), and E (biconditional). The last four extend over the
next two well-formed expressions to the right; negation extends over
only one. The expressions in standard notation in the left column
below would written in Polish notation as shown in the right column.

Standard  Polish

~p Np

PVg Apq
p&gq Kpq
P—q Crq
P g Epg

(p&q)vr AKpgr
p&(gvr) KpAgr

Observe that parentheses are unnecessary in Polish notation to distin-
guish between formulas such as (p& q) Vrand p& (¢ V7).

(a) Translate into Polish notation:
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(i) (pvg&(gvr))&(pVs)
(i) (~pé&(~p—q))—g
(iii) (pV g)=((r < s)&p)
(b) Translate into standard notation:
(i) ApCKNpNgKpEgr
(i) KANKAKEEpqrspgrs
(i) NCAKEpgrst

(c¢) Express DeMorgan’s Laws in Polish notation.



Chapter 7

Predicate Logic

7.1 Syntax

We now turn to the second of the logical languages we will examine: predi-
cate logic. In it we will be able to analyze arguments such as (5-1) and (5-2)
as well as all the arguments of the statement calculus.

In predicate logic an elementary statement can be composed of a pred-
icate and a number of ferms. For example, H(s) contains a (one-place)
predicate H and the term s; the statement L(j,m) is composed of a (two-
place) predicate L and two terms, 7 and m. The former might serve, for
example, as the translation of Socrates is human, where Socrates is repre-
sented by s and is hAuman by the predicate . Similarly, L(j,m) might be
the predicate logic counterpart of John loves Mary.

Predicates are specified as one-place, two-place, etc. according to the
number of terms they require to form a statement. In the examples above,
H was one-place and L was two-place. Combining a predicate with the
wrong number of terms results in an expression which is not well formed,
eg., H(j,m); L(s). Predicates will typically be represented by upper case
letters but will not ordinarily carry any explicit indication of the number of
terms they require. There is no limit on the number of places for a predicate
so long as the number is finite.

We should note here, incidentally, that a predicate in the logical language
need not correspond to a predicate in the grammatical sense in a natural
language. Although the (logical) predicate H above was used to translate
the (grammatical) predicate is human in the sentence Socrates is human,

137
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the logical predicate L corresponds to the transitive verb loves in John loves
Mary, and indeed nothing prevents us from translating John loves Mary into
predicate logic as G(m), where G is a one-place predicate corresponding to
John loves, which presumably is not a grammatical constituent at all.

Terms come in two varieties. The first is individual constants exemplified
by s,m, and j above. As the name suggests, in the semantics of the pred-
icate logic these will denote specific individuals, and in translating natural
language statements they will typically show up as the correspondents of
proper names such as John, Mary, and Socrates. The second kind of term
is the individual variable (or simply varable), for which we use lower case
letters from the end of the alphabet—wv, w, z, y, z—with primes and/or
subscripts attached if we need to mention more of them. When a predicate
is combined with one or more variables, e.g., H(z), L(m,y), the result is
not a statement but an expression called an open statement or propositional
function.

An open statement can be made into a statement by prefixing an appro-
priate number of quantifiers, thus: (Vz)H (z), (3y)L(m,y). The universal
quantifier is denoted by V and is the correspondent of English expressions
such as all, each, and every. The existential quantifier, represented by 3,
cotresponds to some (in the sense of “at least one, possibly more”). The
z written alongside the universal quantifier in (Vz)H (z) indicates that the
quantification is with respect to that variable in the expression which follows.
This labelling of quantifiers is necessary since an expression may in general
contain more than one quantifier and more than one variable. For example,
in (V2)(3y)L(z,y) the first position in L(z,y) is universally quantified and
the second existentially, but in (Jz)(vy)L(z,y) it is the other way around.

Letting H correspond once again to is human, we might gloss (Vz)H (z)
as Every individual is human or Everything is human. (3z)H (z) would
correspond to Some (af least one) individual is human, or briefly, Something
is human. Letting m correspond to Mary and L to loves, (Iy)L(m,y) could
be the translation of There is af least one individual whom Mary loves, or
more briefly, Mary loves something (or someone, if all individuals we happen
to be talking about are human). Similarly, (Vy)LZ(m,y) would correspond
to Mary loves every individual, or, again, if all the individuals happen to be
human, Mary loves everyone.

Note incidentally that in many instances the particular choice of vari-
able letters is not important. Instead of (Vz)H(z) we could equally well
have written (Vy)H (y) or (Vz)H(z2), etc. Similarly, (3z)L(m,z) would do
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just as well as (3y)L(m,y). Of course when more than one variable is in-
volved, we must use different letters for variables which may be distinct,
eg., in (Vz)(3y)L(z,y). To write L(z,z) and then quantifiy, say existen-
tially, to produce (3z)L(z,z) would give a statement which we might gloss
as There is at least one individual which loves itself (or himself). Here the
same term, z, occupies both positions required by the two-place predicate
L. In (3z)(Yy)L(z,y), There is at least one individual who loves every in-
dividual, the z and the y may take on values which are distinct individuals
but they may also be the same; indeed, this statement will be true only if
there is at least one individual who loves every individual, including that
individual itself (or himself). Still, we should keep in mind that the choice
of variable letter is immaterial so long as the same quantifiers are associated
with the same predicate positions; i e., (3y)(Vz)L(y, =) is an alphabetic vari-
ant of (Iz)(Vy)L(z,y); but (Jy)(Vz)L(y,z) and (Iz)(Vy)L(y, z) would not
be alphabetic variants because the quantifiers are associated with different
positions in the predicate L.

We will return to further details of the use of quantifiers and variables
below, but let us now observe that statements and open statements may be
joined by the connectives ~, &,V, —, and «; for example:

(--1) () ~H(e)
(i) ~H(s)
(iif)  ((Vo)H(z) & L(j,m)
(iv) (~H(s) =~ (Vz)H (z))

Expressions (ii), (iii), and (iv) might translate, respectively, Socrates is
not human, Everything is human and John loves Mary, and If Socrates is
not human, then not everything is human. Formula (i) is not a statement
but an open statement since it contains an unquantified variable, and, not
being a statement, it would presumably not serve as the translation of any
declarative English sentence (perhaps He is not human, where the referent
of he is not specified would come closest).

An open statement, even if internally complex, may always have quan-
tifiers prefixed, so we may, if we choose, convert ~H (z) into (Vz)~H (z)
or (3z)~H(z) (corresponding to Every individual is not human — which
is ambiguous for many speakers, but the intended sense here is that each
individual fails to be human — and At least one individual is not human,
respectively.)
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Now that we have informally introduced the syntax of the language of
predicate logic by illustration and example, we give a precise formulation of
the syntactic rules.

The vocabulary consists of

(7-2) (i) individual constants: j,m,. ..
(ii) individual variables: z,y,2,. (sometimes subscripted)
The individual constants and variables together are called
the set of terms.
(iii) predicates: P,Q,R, .., each with a fixed finite number of
argument places, called its arify.
) the five connectives of the logic of statements: ~,V, &, —, «
(v) two quantifiers: ¥ and 3
) auxiliary symbols: (,) and [,]

The syntactic rules generate the set of formulas of the language of pred-
icate logic. We will define the set of siafements as a proper subset of this
set of formulas.

(7-3) (i) If Pis an n-ary (ie., n-place) predicate and #1,...,%n

are terms, then P({1,. .,{,) is a formula

(i) If ¢ and ¢ are formulas, then ~p, (v & ), (¢ V¥), (¢ — ¥)
and (@ « 1) are formulas.

(iii) If o is a formula and « is an individual variable, then (Ve )¢
and (Jz)¢ are formulas.

(iv) The formulas of the language of predicate logic can only be
generated by finite numbers of applications of rules (i)—(iii).

The fizst rule generates afomic formulas (containing no connectives or
quantifiers) like R(z,y), P(c), K(m,z), and S(z,z,m). Note that connec-
tives may combine formulas with or without quantifiers, and that any quanti-
fier plus variable may be prefixed to a formula, even when that variable does
not occur within the formula (e.g., (Vz)P(y) is well-formed.) The syntax
thus allows “vacuous” quantification. (Some systems do not allow vacuous
quantification, but they pay a price: the set of generative rules is more
complex if quantifier prefixes are allowed only when the quantified variable
occurs inside the formula. We prefer to have a simpler syntax and render
vacuous quantification meaningless or harmless in the semantics.)

If z is any variable and ¢ is a formula to which a quantifier is attached
by rule (iii) above to produce (Vz)e or (3z)p, then we say that ¢ is the
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scope of the attached quantifier and that ¢ or any part of ¢ lies in the scope
of that quantifier. We also refer to the ¢ as the matriz of the expression
(Vz)p or (Iz)p. Some examples are given in (7-4) below, where the scope
of each quantifier is underlined.

(7-4) (1) (3=)P(z)

(i) (y)R(z,y) & P(y)

(i) (Jy)(R(z,y)& P(y))

(iv) (3=)(P(m)& R(j,¥))

(v) (Fe)(vy)(R(z,y) — K(z,z)) (scope of (3z))
(scope of (Vy))

(vi) (32)[Q(z) & (vy)(P(y) — (32)S(z,y,2))] (scope of (3z))
(scope of (Vy))
(scope of (32))

In (ii) note that (3y) was attached to R(z,y), which is therefore the
scope of the existential quantifier, and the result conjoined with P(y), which
is outside the scope of (3y). In (iii), on the other hand, the existential quan-
tifier was attached to (R(z,y)& P(y)), which thereby becomes its scope.
Note that in (iv) a quantifier has the following formula as its scope even if
the quantification is vacuous. In (v) and (vi) we see cases involving quan-
tification of formulas which already contain quantifiers. Thus the scope of
one quantifier may be contained within the scope of another.

This notion of quantifier scope is crucial in the following definition.

(7-5) DEFINITION 7.1 An occurrence of a variable z is bound if it occurs
in the scope of (3z) or (Vz). A variable is free if it is not bound. B

Binding is hence a relation between a prefixed quantifier and an occur-
rence of a variable. For example, in P(z) the z is free, but it is bound in
(3z)P(z). In (7-4)(ii), the y in R(z,y) is bound (by the (3y)) but the y in
P(y) is free. In (iii) both occurrences of ¥ are bound. In both (ii) and (iii)
the z in R(z,y) is free, not being in the scope of a quantifier associated with
z. Similarly, the y in (iv) is free because the only quantification is by (3z).
We now see that what we have called “vacuous” guantification is vacuous in
the sense that it does not give rise to any binding of variables. Note inciden-
tally that constants, e.g., m and j in (iv), are not said to be bound or free;
binding applies only to variables. In (v) and (vi) all variable occurrences are
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bound. Note that a variable which may be free in a subformula may become
bound in a larger formula, e.g., the z and y in S(z,y, 2) in (vi).

Any occurrence of a variable in a formula is either bound or free; there is
no middle ground. A variable may only be bound once, however. We might
wonder, for example, whether the z in the M () of the formula (Vz)(P(z) —
(3z)M(z)) is bound both by the (3z) and again by the (Vz). It is not; it is
bound by the (3z) only, and the z in P(z) is then bound by the (Vz). The
formula would surely be less confusingly written if we had chosen different
variables, thus: (Vz)(P(z) — (3y)M(y)), which is an alphabetic variant of
the original, In general, it is good practice in writing formulas to avoid
using the same variable letter for distinct variables, even in cases such as
this one where the intervening quantification assures their distinctness. We
will return to the subject of alphabetic variants in Sec 7.3.

A statement of the predicate logic is defined as a formula that does not
contain any free variables. Every occurrence of a variable in a statement
is hence bound by some quantifier in the formula, The set of statements is
sometimes called the set of sentences, propositions, or closed formulas of the
predicate logic. A formula with at least one free variable is, as we have said,
called an open formula, or propositional function.

7.2 Semantics

We give here an informal account of the semantics of predicate logic. A more
formal treatment will be presented in Part D (Chapter 13).

As with propositional logic, a statement in the predicate calculus bears
one of the truth values 1 (true) or 0 (false). If the statement is composed of
predicates and terms, and possibly quantifiers also, then its truth value is
determined by the semantic values (which are not necessarily truth values) of
its components. For example, the statement H(s), composed of the one-place
predicate H and the constant s, receives its truth value in the following way:
s has as its semantic value some individual chosen from a set D of individuals
presumed to be fixed in advance. (D is like the domain of discourse of set
theory and is often referred to in that way). Suppose, for example, that D
is the set of all human beings, living or dead, and the individual assigned
to s is Socrates. The predicate H has as its semantic value some set of
individuals from D—let us say, for example, {Socrates, Aristotle, Plato,
Mozart, Beethoven}. The statement H (s) now gets the truth value true by
virtue of the fact that the individual corresponding to s is a member of the
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set cortesponding to H. On the other hand, had H had as its value the set
{Mahler, Proust, Michelangelo}, H(s) would have been false, Socrates not
being a member of this set

We use the double brackets [[@] to indicate the semantic value of the
expression @ Thus, in the preceding example [s] = Socrates , [H] =
{Socrates, Aristotle, Plato, Mozart, Beethoven}, and [H(s)] = 1.

A two-place predicate L has as its semantic value a set of ordered pairs
of individuals from D, ie., a subset of D x D. A statement such as L(j, m)
is true just in case the ordered pair of individuals (z, y) is in this set, where
z is the semantic value of j and v is the semantic value of m. For example,
if [7] is John Donne and [m] is Mary Queen of Scots, then L(j,m) is true if
(John Donne, Mary Queen of Scots) is in the set which is the semantic value
of L; otherwise L(j,m) is false In general symbolic terms, for any two-place
predicate K and terms a and b, [K(a,b)] = 1 iff ([a],[8]) € [K].

Clearly the truth value of any statement in predicate logic will depend on
the domain of discourse and the choice of semantic values for the constants
and predicates. When these are fully specified, we say that we have a model
for predicate logic. More specifically, a model consists of a set D and a
function F which assigns:

(i) to each individual constant a member of D
(ii) to each one-place predicate a subset of D
(ili) to each two-place predicate a subset of D x D
and in general
(iv) to each n-place predicate asubset of DX Dx. .XD

n
(ie., a set of ordered n-tuples of elements from D)

Thus, a statement in predicate logic such as H(s) or L(j,m) is not sim-
ply true or false, but true or false relative to a particular model M. If we
want to emphasize this fact in our notation, we can add the name of the
model as a superscript, thus: [H(s)JM = 1,[s]¥ = Socrates, etc. Certain
statements will turn out to be true or false irrespective of the model chosen,
and such statements constitute the tautologies and contradictions, respec-
tively, of predicate logic. Inasmuch as the conmnectives &, V, etc. have the
same truth tables as in statement logic, it follows at once that an expression
such as H(s) V ~H(s) is a tautology in this system, and H(s) & ~H(s) is a
contradiction. That is, whatever the model, H(s) and ~H(s) will have op-
posite truth values, thus H(s) VvV ~H(s) will always be true, etc. A statement
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such as H(s) or L(j,m), whose truth value varies from model to model, is
contingent. We will shortly encounter examples in the predicate calculus
which are not such straightforward analogs of tautologies and contradictions
in the logic of statements

The semantics of quantified expressions is somewhat more complex than
that of statements composed simply of predicates and terms. We sketch the
basic ideas here informally and defer the detailed formalism to Chapter 13.

A formula in which all occurtences of variables are bound, such as (Vz)
H(z) or (Ay)L(m,y), is a statement and should accordingly be true or false
with respect to the chosen model Such statements, however, are composed
syntactically of a quantifier (plus variable) and an open statement, e.g,
H(z) or L(m,y), which is not a statement and does not, strictly speaking,
have a truth value. In evaluating quantified expressions we nonetheless let
these propositional functions take on truth values temporarily by letting
the quantified variable range over all the individuals in the domain D one
by one and determining the truth value the propositional function would
have for each of those individuals. For example, to determine the truth
value of (Vz)H (z) we let z range over all individuals in D and for each such
assignment of a value to ¢ determine the truth value H(z) would have: true
if [z] is in [H] in the model and false otherwise Then (Vz)H (z) is true iff
[z] is in [H] for all individuals in D. If for some individual, [z] ¢ [H], then
(Ve)H () is false. To put it another way, (Vz)H(z) is true (in a particular
model) iff H(z) is true as « takes on as successive values every individual
in D. Correspondingly, (3z)H (z) is true iff H(z) is true for at least one
individual in D when z assumes that value.

Let us consider a small partial model. Predicates and terms not men-
tioned are also assumed to have values in the model, but for clarity we ignore
them.

(7-6) Let D= {Socrates, Aristotle, Plato, Mozart, Beethoven, Tolstoy}

F(s) = Socrates F(m) = Mozart
F(a) = Aristotle F(b) = Beethoven
F(p) = Plato F(t) = Tolstoy
F(H) = {Socrates, Aristotle, Plato}

F(M) = {Socrates, Aristotle, Plato, Mozart,

Beethoven, Tolstoy} = D
F(L) = {(Socrates, Socrates), (Socrates, Aristotle),
(Mozart, Beethoven), (Beethoven, Mozart),
(Tolstoy, Plato), (Plato, Mozart), {Aristotle, Tolstoy)}



SEMANTICS 145

The reader may now verify that the following statements, among others, are
true in this model:

H(s), H(a), H(p), M(s), M(b), L(s, ), L(t, p)
while the following are false:
H(m), H(b), H(¢), L(a, s), L(m,m)

The statement (Ve )M (z) is true in this model since M (z) is true when-
ever ¢ takes as its value each of the members of D, i.e., M(s), M(a), M(p),
M(m), M(b), and M () are all true The statement (3z)H (z) is true, since
H(z)is true for at least one value of z—in fact, it is true when [z] is Socrates
or Aristotle or Plato (Note carefully that the semantic values z takes are
individuals from the set D and not constant letters s, a, p, etc., of the lan-
guage.) Similarly, it is easy to see that since (Vz)M(z) is true (and the
universe of discourse is not empty), (3z) M (z) is true also.

The statement (3y)L(m,y) is true since there is at least one value of y
(just Beethoven, in fact) such that the ordered pair ( Mozart, [y]) is in the
set dssigned to L, ie, [L]. However, (Vy)L(m,y) is false since { Mozart,
[y]) is not in [L] for every value of y ({ Mozart, Socrates ) is lacking, for
example).

Given the truth values of the statements already mentioned, we can
determine the truth values of complex statements such as (H(s) & H(m)),
((Ve)M(z)VH(a)),and (H(p) — (3y)L(m,y)) in the usual way according to
the truth tables for the sentential connectives, The reader should verify that
these three examples are, respectively, false, true, and true in the assumed
model

Evaluating an expression such as (3z)(H(z) & M (z)) in which the con-
nective les inside the scope of the quantifier is not quite so straightforward.
By the rule for evaluating existentially quantified expressions, we must de-
termine whether there is any value of z in D which makes the complex
propositional function H (z) & M(z) true. Here we must try each individual
in D as a value for z and determine whether both H(z) and M(z) are true
for that value, If at least one such value is found, (3z)(H (z) & M(z)) is true;
otherwise, it is false. In the model given, this formula is true since there are
in fact three individuals—Socrates, Aristotle, and Plato—which are both in
[H]and [M]. On the other hand, (Vz)(H(z) & M(z)) is false; not every indi-
vidual is in both [H] and [M]. We see, however, that (Vz)(H(z) — M(z))
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is true in this model There is no individual which, when assigned to ez,
makes the conditional H(z) — M(z) false; ie, no individual which is in
[H] but not in [M].

Problem: What is the truth value in this model of (Vz)(L(m,z) — H(z))?
of (Ve)(L(m,z) — M(e))?

Expressions containing quantifiers within the scope of other quantifiers
add an extra degree of complexity in the evaluation. The same rules apply,
but the expression is evaluated, so to speak, from the outside in. (Vz)(Jy)
L(z,y), for example, will be true just in case for every possible value of z in
D the expression (3y)L(z,y) is true. When is the latter true? If there is at
least one value of y for which L(z,y) is true, where z has the value fixed in
the previous step. That is, we let z range over all the individuals in D, and
at each value we determine the truth value of (3y)L(z,y) by again letting
y range over all the individuals in D, (Jy)L(z,y) might be true for some
values of z and false for others, but the entire expression (Vz)(3y)L(z,y) is
true only if (Iy)L(=z,y) is true for every value of z. ‘

In the chosen model, (Vz)(3y)L(z,y) happens to be true To see this, let
z be Socrates; then (Jy)L(e,y) is true when y is Socrates or Aristotle. If =
is Aristotle, then (3y)L(z,y) is true when y is Tolstoy, and so on. We find
ultimately that for each value of ¢ we can always find some value of y which
makes L(z,y) true. Or to put it another way, each member of D appears at
least once as first member in the set of ordered pairs assigned to L. Thus,
(Vz)(3y)L(z,y) is true in this model,

Note, on the other hand, that in this model (Jy)(Ve)L(z,y) is false.
For this formula to be true, we would have to find at least one value of y
for which (Vz)L(z,y) is true, i.e, some individual which appears as second
member with every individual in D as first member in the set of ordered
pairs assigned to L. It is easy to see from inspection of [L] that no such
individual exists, so (3y)(Vz)L(z,y) is false in this model.

These last two examples demonstrate that the order in which quantifiers
appear in an expression when one is universal and the other existential can
have semantic significance. That is to say that there may in general be
models, as here, in which one statement is true and the other, with the
order of quantifiers reversed, is false, This is immediately evident if we
choose a slightly less artificial model. Let D be the set of all living persons
and let L = {{z,y) | = loves y}. Then (Vz)(Iy)L(z,y) is true if for each
person there is at least one individual (possibly himself or herself) whom
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that person loves, but (Jy)(Vz)L(z,y) would be true only if there were at
least one person who is universally loved, i.e., loved by everyone. It is easy
to imagine that the former could be true while the latter is false,

We can now see how to translate certain types of English statements into
predicate logic, For All cats are mammals, for example, we will need one-
place predicates, call them C and M, to correspond to is a cat and is a mam-
mal. We can then represent the English statement by (V 2)(C(c) — M(z)),
which we can gloss roughly as follows: for every individual in the universe
of discourse, if that individual is a cat, then it is also a mammal; or more
briefly, everything which is a cat is a mammal (Note, by the way, that in
our predicate calculus rendition the statement is true in case there are no
cats in the universe of discourse, for then C(z) will be false for all values of
z and hence the conditional will always be true.) In the same vein, No cais
are mammals might come out as (Vz)(C(z) —~ M(z)): everything which
is a cat fails to be a mammal Again, this is true in case the universe of
discourse contains no cats, unlike the English statement, which we might
well regard as inappropriate or nonsensical in such an instance. We are once
again in familiar territory where English statements and their nearest logical
correspondents do not match up perfectly.

Some cats are mammals could be translated as (3z)(C(z) & M(z)), which
is true iff there is at least one individual in the domain of discourse which
is both a cat and a mammal. In this case the absence of cats from the
universe of discourse makes the predicate calculus statement false, whereas
we might say that the English statement suffers from presupposition failure
(with whatever consequences attach to this defect). Note that (3z)(C(e) —
M(z)), with a conditional as in the translation of the universal statement,
would not do This statement is true when there are no cats (the antecedent
is always false) or when there is at least one mammal (the consequent is
true). Although we are prepared to accept a certain amount of disparity be-
tween English statements and their logical translations, we would not want
to say that Some cats are mammals gets the same translation as Fither there
are no cats or there is at least one mammal.

The negative existential statement Some cats are not mammals could be
rendered as (3z)(C(z) & ~M (z)), (which is also false when the universe of

discourse contains no cats).
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7.3 Quantifier laws and prenex normal form

Based on this set-theoretic semantics of predicate logic there are a number
of important equivalences, which we may consider as laws of predicate logic.
They will be very useful when constructing proofs and also in recognizing
formulas which are equivalent to translations of English sentences but which
do not resemble them structurally. In the following we write ©(z), ¥(z), etc.
for any formula which contains at least one free instance of the variable z,
e.g. H(z), L(z,z), (Vy)L(z,y),(3y)(H(z) — L(z,y)), etc., and similarly for
(), ¥(y), and so on.

A statement of the form (3z) ~¢(zx) asserts that there is at least one
individual which makes ~@(z) true; this individual therefore makes ¢(z)
false. Thus (Vz)¢(z) could not be true, because the universal quantifier
would require all instances of ¢(z) to be true; therefore ~(Vz)d(z) is true.

This reasoning can also be applied in the reverse direction, and the result
1s the first quantifier law:

(7-7) Law 1 Quantifier Negation: ~(vVz)¢(z) < (Jz)~¢()

A possible pair of English correspondents would be: Not everyone passed the
test and Someone did not pass the test.

Because of the Law of Double Negation, i.e., ~~¢ < ¢, Law 1 could also
be written in the following equivalent forms:

(7-8) Lawl (Vz)d(z) & ~(Fz) ~9¢(z)
Law 17 ~(v2) ~i(z) & (32)0(z)
Law " (V&) ~¢(z) & ~(3z)d(z)

English correspondents for these versions are also easy to construct. For
Law 1", for example, we could have Everyone did not pass the test (ie.,
everyone failed the test) and No one passed the test.

A consequence of Law 1 (and the Law of Double Negation) is that either
quantifier could be entirely eliminated from predicate logic in favor of the
other and the result would be an equivalent system.

The next group of laws are analogs of the Distributive Laws for & and
V in the statement calculus, although we should note that two of those that
follow are only logical implications and not logical equivalences.
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(7-9) Laws of Quantifier Distribution

Law 2 (Vz)(p(e) & ¥(z)) & (Ve)p(z) & (Ve)¥(z)
Law 3 (32)(¢(e) v ¥(2)) & (Fz)e(z) v (32)(z)
Law 4 (Vz)p(e) v (Va)¥(z) = (Va)(p(e) V ¢ (z))
Law 5 (3z)(¢(2) & ¥ (2)) = (3e)¢(z) & (Fz)y(<)

The left side of Law 2 is true iff every individual in the domain of dis-
course makes both ¢(z) and ¥(z) true. The right side is true iff every
individual makes ¢(z) true and every individual makes ¥(z) true. These
are fairly obviously equivalent statements. The similar reasoning involved
in verifying Law 3 is left as an exercise for the reader.

The left side of Law 4 is true iff everything (in the universe of discourse)
makes @(z) true or everything makes ¢(z) true. In such a case it follows
that everything makes ¢(z) or ¥(z) true The reverse implication does not
hold, however. The statement that everything in the universe of discourse is
either male or female does not imply that everything is male or everything
is female Similar reasoning can be applied to Law 5.

Laws 2 and 3 suggest a fundamental connection between the universal
guantifier and conjunction and between the existential quantifier and dis-
junction, (Vz)é(z) is true just in case ¢(a) is true and ¢(b) is true and

., where @, b, ... name all the members of the universe of discourse, Simi-
lazly, (3z)¢(z) is true just in case ¢(a) is true or ¢(b) is true or .... Thus
a universally quantified statement is equivalent to a (possibly infinite) con-
junction ¢(a) & &(b) & . .., while an existential statement is equivalent to the
disjunction ¢(a)V @¢(b) V. ... From this perspective, Law 1 resembles a kind
of generalized DeMorgan’s Law:

(7-10) ~(#(a) & p(b) & ..) & ~¢(a) V ~¢(b) v

The next group of laws pertains to the linear order of quantifiers in
doubly quantified statements. If both quantifiers are universal or both are
existential, their linear order in the statement is irrelevant (Laws 6 and 7).
This much is probably evident from the semantic treatment of the quantifiers
outlined earlier The extension of these laws to cases of three or more quan-
tifiers of the same type is then immediate, For these reasons, a statement
of the form (Vz)(Vy)é(z,y) is often abbreviated as (Vz,y)d(z,y). Similarly,
(3z)(3y)(32)é(=, y, 2) is abbreviated to (Iz,y, z)é(z,y, 2), etc.
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(7~11) Laws of Quantifier (In)Dependence
Law 6 (Vz)(vy)e(z,y) & (Vy)(ve)e(z,y)

)
< (vy)(
Law 7 (3z)(3y)e(z, y) © (3y)(Iz)e(z,y)
Law 8 (3z)(Vy)e(z,y) = (Vy)(Iz)e(z,y)

We have already seen above that reversing the order of existential and
universal quantifiers produces a non-equivalent statement. Yet the logical
implication given in Law 8 holds. If everyone has someone whom he or she
loves, (Vz)(3y)L(z,y), it is not necessarily true that each loves the same
person; i.e., (3y)(Ve)L(z,y) may be false. On the other hand, if there is
someone who is loved by everyone, i.e., the latter statement is true, then
it does follow that the former statement is true: for each person there is
someone whom that person loves—the object of universal adoration, at the
least. The reading with the existential preceding the universal quantifier is
sometimes called the stronger reading of the two, as it excludes situations
which are included by the weaker reading.

In applying these laws to particular closed formulas, it is sometimes

necesssary to make an alphabetic change of variable For example, (Vz) F(z) &
(Vy)G(y) is not of the correct form to be converted to (Vz)(F(z)& G(z))
by Law 2.
It can be put into the required form, however, by replacing the subfor-
mula (Vy)G(y) by the equivalent formula (Vz)G(z) This gives (Ve)F(z) &
(Vz)G(z) for the whole formula, which is then equivalent to (Vz)(F(z)&
G(z)) by Law 2. An alphabetic change of variable is permissible if (1) the
same new letter is substituted for every occurrence of the letter being re-
placed, and (2) the replacements do not change the overall binding configu-
ration of the entire formula. Under these conditions, the new formula, called
an alphabetic variant, is logically equivalent to the original one. Consider
the example just mentioned.

(7-12) (Ve)F(e)& (Vy)G(y) : (Ve )F(2) & (Vo) G(z)

In the formula on the left, the g’s can be replaced by z’s because all
occurrences of variables remain bound to the same quantifier.
Here is another example of alphabetic variants:

(7-13) (vz)((V2)F(z,2) - (3y)H(y,z)) :
(Ve )((Vy) F(z,y) — (3y)H(y,z))

Note that the overall binding configuration is unchanged.
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The following formulas are not equivalent and hence are not alphabetic
variants.

(7-14) (vz)(F(z) = (Fy)C(z,y)) : (Vz)(F(e) - (Fz)G(z,z))
The ¢ in G(z,y) is bound first by the (Vz), afterward by the (3z).
(7-15) (Ye)(F(z) — (3y)G(z,y)) : (V2)(F(2) — (Iy)G(z,9))

z has not been replaced everywhere in the formula (and the z in G(z,y)
becomes free).

It will sometimes be convenient, especially in carrying out the rules of
inference outlined in the next section, to move all quantifier symbols to the
left of the formula. The following laws characterize when a quantifier prefix
may be moved while preserving truth value.

(7-16) Laws of Quantifier Movement

Law 9 (¢ — (Ve)¥(z)) < (Vz)(p — ¥(z))
provided that T is not free in .

Law 10 (¢ — (3z)¢(z)) < (3z)(¢ — ¢(z))
provided that z is not free in ©

Law 11 (Ve)e() — ¥ & (32)(¢(z) — ¥)
provided that z is not free in 1.

Law 12 (32)e(2) — 6 & (v2)(p(z) — ¥)
provided that T is not free in .

These laws are used to find the Prenex Normal Form of any formula,

which is its alphabetic variant with all quantifiers preceding a quantifier-free
matrix, For example, to convert

(7-17) (Fe)F(z) — (Vy)G(y)
to PNF, we apply Law 9 to get
(7-18) (vy)[(3z)F(z) — G(v)]

This is allowed since the variable y in the moved quantifier has no free
occurrences in the antecedent (3z) F(z). The resulting formula is still not in
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PNF because (3z) has only F(z) as its scope. We need to move (3z) from
inside the formula (3z) F(z) — G(y), which we can do by Law 12 since ¢ does
not occur free in the consequent G(y). The result is (Vz)(F(z) — G(y)),
which is equivalent to the bracketed subexpression in (7-18). Thus, the
desired equivalent to (7-17) in PNF is:

(7-19) (v¥9)[(Ve)(F(z) = G(3))]

The square brackets may now be dropped to give

(7-20) (vy)(ve)(F(e) — G(y))

The reader may wish to verify that if Law 12 had been applied to (7-17)
and then Law 9 to the result, we would have obtained (Vz)(Vy)(F(z) —
G(y)), which is of course equivalent to (7-20) (and thus to (7-17) also).

As in the case of other laws, it may sometimes be necessary to replace a
formula by an alphabetic variant before proceeding If (7-17) had been given
in the form (3z)F(z) — (Vz)G(z), for example, we could have applied Law
9 to give

(7-21) (Vz){(3z)F(z) = G(z)]

(Note that z does not occur free in (3z)F(z).) But now when we try to
move (3z) outside the square brackets by Law 12, we cannot do so because
z now does occur free in the consequent G(z). (The fact that it is bound
by the (Vz) outside is irrelevant here; we are working on the subformula
(3z)F(z) — G(z), and in this subformula, ¢ occurs free in the consequent )
The solution is to convert (Jz)F(z) — G(z) to an alphabetic variant, say,
(Fy)F(y) — G(z), and then apply Law 12, legally, to give (Vy)(F(y) —
G(z)). The final result is:

(7-22) (V2)(vy)(F(y) - G(=))

which is, of course, equivalent to (3z)F(z) — (Ve)G(z) (and to (7-20) and
(7-17)).

Given any formula, we can bring it into prenex form by the following
procedure,

1 atomic formulas are already in PNF.
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2. if ¢ is equivalent to ¢’ which is in PNF, then (Vz)p is equivalent to
(vz)¢' which is in PNF.

3. if  is equivalent to ¢’ which is in PNF, then ~¢ is equivalent to ~¢’.
If ©' contains quantifiers, apply Law 1 to ~¢' to obtain a PNF,

4, if the formula is of the form ¢ — 1, the procedure is more complex.
Assume that we have the PNF’s ' and ¢, which are equivalent to
v and v, respectively. Convert to alphabetic variants to make sure
that any variable which occurs bound by a quantifier in either ¢’ or
Y’ does not occur at all in the other. Then we may use the quantifier
movement rules to obtain a PNF equivalent to ¢’ — 7',

This procedure guarantees that there is a PNF for any formula, since we
can define all other connectives and quantifiers in terms of ~and — and the
universal quantifier.

The use of Prenez Normal Forms is primarily to compare the complexity
of the quantificational structure of formulas. But when an ordinary English
sentence is translated into predicate logic, the most natural rendition often
has the quantifiers embedded, since in ordinary English the quantifiers occur
inside NP’s, For example, to translate a sentence such as Some person
likes every book into predicate logic we will have to assume a universe of
discourse which contains both persons and books. Therefore a translation
such as (3z)(Vy)L(z,y) will not do since it is true only if some individual
stands in the L relation to every individual in D, i.e, persons, books, and
whatever else may happen to be included. We need (one-place) predicates
corresponding to ‘is a person’ and ‘is a book,’ say P and B, and then the
most natural translation (for the reading of the sentence in which there is
at least one person who likes all books) would be:

(7~23) (3=z)(P(z)& (Vy)(B(y) — L(=,y)))

This form might serve our purposes very well, but the rules of inference
in the following section are much more conveniently applied if the formula
is first converted to PNF. For example, (7-23) could be converted to PNF
by the following steps:
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(7-24) 1. (3=)(P(e) & (Vy)(B(y) ~ L(z,v)))
2. (3z) ~~(P(z) & (vy)(B(y) — L(z,y))) 1, Double Neg.
3. (3e)~(~P(z) Vv ~(Yy)(B(y) = L(z,y))) 2, DeM.
4. (3z)~(~P(z) v (3y)~(B(y) — L(=,y)))

3, Quant Neg (Law 1)
L(z,y))) 4, Cond.
L(z,y)))
5, Quant. Mvt. (Law 10)
7 (3)(99) ~(P(a) ~ ~(B()  L(z,9)))
6, Quant Neg (Law 1)

B(y) — L(z,y))) 7, Cond.
~~P(z)& ~~(B(y) — L(z,y))) 8, DeM

~ L(z,y))) 9, Double Neg.

-
—

7.4 Natural deduction

We need to add very little to our rules of inference to handle arguments
containing quantified formulas and statements. Remember that valid argu-
ments are characterized by rules which preserve only truth. The main idea
is to introduce rules which strip away the quantifier prefix, then apply the
rules of inference to the remaining matrix and finally introduce quantifiers
back into the formula We require two new rules for removing quantifiers—
Universal Instantiation (U1.) and Ewistential Instantiation (E.I)—and two
for introduction of quantifiers— Universal Generalization (U.G.) and FExis-
tential Generalization (E.G.). To avoid incorrect inferences, some of the new
rules carry additional conditions on application. In these inference rules
(Vz)p(z) and (3z)p(z) are used to indicate explicitly that the variable z
occurs in the arbitrarily complex formula ¢, i.e., the rules cannot be applied
to vacuously quantified formulas.

A universally quantified formula is true if and only if every instantiation
of an object from the universe of discourse for the quantified variable in the
matrix is true. Therefore we can infer from the truth of (Vz)p(z) that some
particular instantiation given by an assignment to the variable z is true.
From a universally quantified sentence All men are mortal, we may hence
infer If John is @ man, he is mortal. The new rule U.I. can be formulated
as:
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Universal Instantiation (U.L)

(Vz)e(z)
)
where ¢ is an individual constant substituted for every free occurrence of z
in o(z) of the premise (and having as its semantic value an object in the
universe of discourse). With U.I. we have all we need to demonstrate the
validity of the argument (5-3). Here is the proof.

(7-25) 1. (Vz)(H(z) — M(=z))
2. H(s)
3. H(s)— M(s) 1, UL
4 M(s) 2,3 M.P.

Since the second premise introduces a particular individual constant s,
and the conclusion mentions the same constant, we use it in this application
of Ul The formula in line 3 is not quantified anymore, and hence the rules
of the logic of statements can be used. Here Modus Ponens detaches the
consequent of line 3, which is the desired conclusion.

To prove that some formula is true of every member of a set, one can
arbitrarily choose an individual from that set and prove that the formula
holds of it. If the proof depends only on the fact that this individual is a
member of that set and not on any additional properties it may have, it
can be validly inferred that the statement holds of all individuals in the set.
This line of reasoning is made precise in the rule of Universal Generalization:
what is true of an arbitrarily selected object is true of every object in the
universe of discourse, We reserve the individual constant v as a special
symbol for such an arbitrarily selected object, indexing it v1,vg,. .., Vn,y.. .
when more are needed. Note that v is an individual constant, so ©(v) is
an atomic statement and not an open formula. Yet v is like a variable in
that it stands for an arbitrary individual, and not for any specific one in the
universe of discourse. U.G. is formulated as:

Universal Generalization (U.G.)
o(v)

This rule is used in the following argument form, of which we give first
the English and then the formal language version.
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(7-26) Every rabbit is a quadruped
Every quadruped is warm-blooded

‘. Every rabbit is warm-blooded

(7-27)  (Ve)(R(z) - Q(2))
(vz)(Q(z) — W (x))
(Vz)(R(z) — W(e))

The proof is as follows:

1. (Vz)(R(z) — Q(=))
3. R(v)— Q(v) 1, UL

The first premise is instantiated by the arbitrarily selected constant v. Recall

that every constant produces a true instantiation of a universally quantified
formula; thus, R(v) — Q(v) is a legitimate instantiation of line 1.

4. Q(’U) — W(’U) 2, U1
Here we have instantiated the second premise with the same constant we
selected in line 3.

5. R(v) — W(v) 3,4,HS.

6. (va)(R(z) - W(2)) 506G
Since v has been arbitrarily selected, the proposition containing it can be
universally generalized to the conclusion in line 6.

Here is another example of the use of U L to remove a universal quantifier
and of U.G. to replace the quantifier afterward.

2%) 1 e(PEEE)
2. (Vz)(R(z) - ~P(z))
3. P(o)& ( v) 1, UL
4. R(v) = ~P(v) 2, UL
5 P(v) 3, Simp.
6. ~~P(v) 5, Compl.
7. ~R(v) 4, 6, M.T.
8 Q(v) 3, Simp.
9. Qv)& ~R(v) 7, 8, Conj.
10.  (vz)(Q(z) & ~R(z)) 9,U.G
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When (c) is true, where ¢ is a constant, it constitutes a true instan-
tiation of the open formula ¢(z). So we may conclude (3z)p(z) from the
true p(c) For example, if we already know (or hold as true) that John is a
human being, we may infer that there is some human being or that a human
being exists. The rule of Existential Generalization is formulated as:

Existential Generalization (E G)
¢(c)
S Gee(e)
The following proof employs E G

(7-29) 1. H(c)
2. (Vz)(H(z) - M(z))
3. H(c) — M(c) 2, UL
4 M(e) 1,3, M.P.
5. (3z)M(=) 4, E.G.

If an existentially quantified statement is true, there is at least one assign-
ment to its variable which provides an instantiation for the matrix There-
fore we can infer from the truth of (3z)¢(z) that o(w) for some constant
w interpreted by an object in the universe of discourse. In general some
instantiations of the matrix may be false, because the object assigned to
the variable is not a true instantiation, and other assignments provide true
instantiations. So w is like v introduced in UL in that it does not refer to
a specific individual, but it is different in that the range of individuals to
which it can possibly refer is not in general the entire universe of discourse,
but a subset of individuals, those that form true instantiations of the matrix
in question. Because of this restriction on w we must be particularly careful
in applying E I. For example, suppose that (3z)p(z) and (Jz)y(z) are two
premises of an argument and that in the proof the former has been instanti-
ated by ¢(w) using EI. Now it is not valid to use w again in inferring ¢ (w),
because we have no guarantee that the same ob ject will verify both matrices.
The correct inference must use two distinct constants, w; and w,, deriving
o(w1) and ¥(w,) from the premises. We therefore impose a restriction on
EI that the constant introduced cannot have occurred previously in the
same proof. The rule EI is formulated as:

Existential Instantiation (E.I)
(3e)e(=)
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(where w is a new constant)

Now @(w) cannot be a basis for universal generalization to (Vz)e(z),
since w has not been selected totally arbitrarily, but rather from a possibly
smaller set of individuals which happen to form true instantiations of the
matrix. Here is a proof involving EI.:

(7-30) 1. (F=)(P(z)&Q(e))
2. P(w)&Q(w) 1,EL
3. P(w) 2, Simp.
4 (3z)P(w) 3,EG.

P(z).

5 Q(w) 2, Simp.
6 (Fz)Q(=) 5, E.G.
7 (32)P(z) & (Fz)Q(=) 4, 6, Conj.

The following proof illustrates an important point about the rules of E.L
and U.l:

(7-31) 1. (3=2)(T(z) & P(z))
2. (Vz)(P(z) — H(z))
3. T(w)& P(w) 1,EL
4. P(w)— H(w) 2, Ul

Since P(z) — H(z) is verified by every individual in the domain of discourse,
it is legitimate to choose w to form the instantiation. The proof would be
technically incorrect if we had first instantiated line 2 as P(w) — H(w) by
U.I and then instantiated line 1 as T(w) & P(w) by E 1. since w would then

have occurred in a previous hine,

5 P(w) 3, Simp.
6. H(w) 4,5, M P,
7. T(w) 3, Simp.
8 T(w)& H(w) 6, 7, Conj.
9. (Fz)(T(z) & H(z)) 8, E.G.

Note that it would have been incorrect to derive (Vz)(T'(z)& H(z)) from
line 8 by U.G. because w was introduced by E.I
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An English counterpart of this argument form is the following:

(7-32) Some toadstools are poisonous.
All poisonous things are harmful.

.’. Some toadstools are harmful.

The following “proof” is erroneous because the restriction on EI. has
been ignored.

(7-33) 1. (F)(C(=) &V (z))
2. (F=)(D(z) & V(2))
3. Clw)&V(w) 1, EI
4. D(w)& V(w) 2, E1 (incorrect)
5 C(w) 3, Simp.
6. D(w) 4, Simp.
7. C(w)& D(w) 5, 6, Conj.
8. (3z)(C(z)& D(=)) 7, E.G.

This argument form is easily seen to be invalid by examining the following
English version:

(7-34) Some cats are vicious.
Some dogs are vicious.

.. Some cats are dogs.

In order for a quantifier to be removed by EI. or Ul it must stand at
the left side of the expression with no other quantifiers or connectives pre-
ceding it, and it must have the rest of the expression as its scope. Thus,
~(Vz)(P(z) & Q(z)) cannot be instantiated as ~(P(v)& Q(v)) by U.L be-
cause the negation sign precedes the quantifier. To instantiate this expres-
sion it should first be transformed to (Jz) ~(P(z) & Q(z)) by Quantifier
Negation, and then E.I can be applied to give ~(P(w)& Q(w)). Similarly,
P(c) — (3z)Q(z) cannot be directly instantiated to P(c) — Q(w) by E.L
because the existential quantifier is not at the extreme left of the expression,
but it can produce this result after being converted to the equivalent state-
ment (3z)(P(c) — Q(w)) by Law 9. Neither quantifier in (Ve)P(z) & (Jy)Q(y
can be removed by instantiation; (Vz) is at the left but does not have the re-
mainder of the entire expression within its scope. The solution is to convert
the expression to PNF and then apply EI or U.L
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In the 1everse process, the quantifier is attached to the left of the propo-
sition being generalized and takes that entire expression as its scope. Thus
P(v)v@Q(v) cannot be generalized to P(v)V(3z)Q(z) by inserting a quantifier
internally, and P(v)VvQ(v) cannot be generalized by U G. to (V) P(z)Vv Q(v)
since the scope of the universal quantifier does not include @ (v).

Recall that the method of Conditional Proof allows us to introduce a
premise P, which is temporarily assumed to be true, and upon deriving @
from P and the original premises to state that P — @ is logically implied by
the original premises Since the truth of P is not asserted but only accepted
provisionally for the sake of deriving P — @ and then abandoned, P may be
any proposition at all. In the predicate calculus, the first line of a conditional
proof can be a guantified formula, eg, (Vz)P(z) or (Vz)(3y)Q(z,y), or
a predicate with constant terms, e.g., P(s) or L(a,b). In particular, the
constant terms v and w may appear, e g, P(v),L(w,v), where, as before,
v is an arbitrarily selected constant and w is a constant that forms a true
instantiation of some existentially quantified expression. In the following
example the conditional proof begins with P(v)

(-35) 1 (Y2)(Pz)V Q=) — R(z))
2. (P(v)v @Q(v)) — R(v) 1,UI
3. | P(w) Aux. Premise
4. | P(v)vQ(v) 3, Add.
5. | R(v) 2,4, M P.
6. P(v) — R(v) 3-5, Cond. Proof
7. (Yz)(P(z) — R(z)) 6, UG

The following is a possible English version of this argument form:

(7-36) Everyone who is polite or quarrelsome is right-handed.

.". Everyone who is polite is right-handed.

The temporarily assumed premise in the following conditional proof is
P(c), where c is a specific constant term
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(37) 1 (#)(Pl) — Q)
2 P(c) = Q(v) 1, Ul
3. | Ple) Aux. Premise
4. Q(v) 2,3, MP
5 | (Vz)Q(x) 4, UG
6. P(c) — (Vz)Q(=) 3-5, Cond. Proof
T (GH(P) - () 5 EC

Note that in line 7 the existential quantifier has the entire conditional as
its scope. To conclude (Fy)P(y) — (Vz)Q(z) from line 8 by E.G. would be
technically incorrect since the existential quantifier binds only the variable in
the antecedent of the conditional. E g, let (Vz)Q(z) be false, and (3y)P(y)
and (Jy)~P(y) both be true. Then (Fy)(P(y) — (Vz)Q(z)) is true, but
(3y) P(y) — (Vz)Q(z) is false.

Compare the following English version of this argument form:

(7-38) If Chauncey is a priest, then everyone is qualified

.". There is someone such that, if he is a priest,
everyomne is qualified.

It would be invalid to conclude: If there is at least one priest, then everyone
is qualified.

The derivation in (7-39) constitutes part of the proof of one of the Laws
of Quantifier Distribution,

(7-39) 1 (Vz)(P(z) & Q(z)) Aux. Premise
2 P(v) & Q(v) 1, UL
3. P(v) 2, Simp.
4. | (Vz)P(z) 3, UG
5 Q(v) 2, Simp.
6. | (vz)Q() 5, UG,
7 (V) P(z) & (ve)Q (=) 4, 6, Conj.
8. (va)(P(z)& Q(z)) — ((vz)P(z) & (V2)Q(z))

1-7, Cond. Proof

This illustrates another aspect of conditional proof, namely, that it may
proceed from no premises except the one that begins the conditional proof.
In such a case the truth of the derived conditional statement is independent
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of any other propositions, which is another way of saying that the conclusion
is tautologous. To see this, recall that for any valid argument form

(7-40) @&
P2

3

the conditional (¢, & w2 & @3...) — ¥ is a tautology. We could think of the
first seven lines of (7-39) not as a conditional proof but as a direct proof of
(Vz)P(z) & (Vz)Q(z) from the single premise (Vz)(P(z) & Q(z)), and thus
(ve)(P(z) & Q(z)) — (V=) P(z) & (Vz)Q(z)) is tautologous. In general, for
every valid argument form (7-40) there is a corresponding conditional proof

(7-41) L | (pr&or&ps& .. ) Aux Premise
2. |y 1, Simp.
3. | 1, Simp
4 ©3 1, Sunp
n |
n+l (1 & pa&psd . .) =2 1-n, Cond. Proof

that takes all the premises as provisional rather than assumed and derives a
tautologous conditional as a conclusion. In both cases the same statement
is being made: The premises 1, ©g, 3, .. . taken together logically imply
the conclusion . The difference is only in whether or not the premises are
assumed to be true,

To prove arguments containing multiply quantified propositions, e.g.,
(Vz)(3y)P(z,y) or (Ve)P(z) — (3y)Q(y), we employ essentially the same
procedure as that used with singly quantified statements: remove the quan-
tifiers by Ul and E.I, apply the rules of inference to the resulting formula,
and then replace the quantifiers by U.G, and E.G. In applying Ul or EL
to multiply quantified expressions, the quantifiers are removed one by one,
beginning with the leftmost quantifier, and, as before, only a quantifier hav-
ing the entire expression as its scope is removable. To this end, it may
be necessary first to convert an expression into one logically equivalent by
means of the laws in Sec 7.3, The complication comes in making sure that
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distinct variables do not become confused during successive applications of
U.I or EI For example, from (Vz)(Vy)P(z,y) we get (Vy)P(v,y) by UL,
but if we further instantiate this by v to get P(v,v), then the informa-
tion that P(z,y) is a propositional function in two variables, not one, has
been lost. P(v,%) could be generalized by U G only to (Vz)P(z,z), not to
(Vz)(Yy)P(z,y), since we cannot bind some occurrences of a variable by one
quantifier and some by another. In instantiating (Ve )(Vy)P(z,y) we could
use two different symbols, v; and vy, say, each representing an arbitrarily
chosen constant, which, by being distinct, preserve the form of the propo-
sitional function P(z,y). Although it is permiited to use distinct symbols
in such a case to instantiate distinct variables, it is not necessary to do so.
P(w,v), for example, is a legitimate instantiation of (Vz)(Vy)P(z,y), and
thus (Vz)(vy)P(z,y) logically implies (Vz)P(z,z). The latter does not im-
ply the former, however, and thus in a proof if distinct variables are allowed
to merge, the original distinction cannot be subsequently recaptured in the
generalization steps.

Consider, for example, the following proof:

(7-42) 1. (Yz)(Yy)(P(e,y) — Q(y,2))
2. (ve)(vy)(Q (, ) — R(z))
3. (V9)(P(v1,9) — Q(y,v1)) 1, UL
4. P(v1,v3) — Q(vz,v1) 3, UL
5. (V¥)(Q(y,v1) = R(w1)) 2, UL
6. Q(va,v1) = R(vy) 5, UL

The instantiations in lines 5 and 6 could have been made with any con-
stants whatever, but the choice of v; and v,, the same constants used in
lines 3 and 4, allows H.S to be applied to lines 4 and 8.

7. P(v,v) — R(vm) 4,6, HS.
8. ( y)( ('Ul!y) — R('Ul)) 7, UG
9. (vz)(vy)(P(z,y) — R(z)) 8 UG

The order in which v; and v, are generalized in lines 8 and 9 is immaterial
since both quantifiers are universal, and, of course, the particular choice of
variable symbols — z for v; and y for vo— is arbitrary The conclusion could
equally well be written (Vy)(vVe)(P(y,z) — R(y)).

If the premises had been instantiated everywhere by v, then line 7 would
have been P(v,v) — R(v), which can be generalized in one step to (Vz)
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(P(z,z) — R(z)). Again, this is a valid conclusion from the premises but a
weaker one than the conclusion actually derived in (7-42)

As another example of an argument involving multiply quantified state-
ments, consider the following

(7-43) Whoever forgives at least one person is a saint.
There are no saints.
*. No one ever forgives anyone.

We represent ‘z forgives y’ by F(z,y) and ‘z is a saint’ by S(z)

(m40) 1 (va)(%9)(Fle.y) - S(a))
2. ~(32)8(z)
3. (Yy)(F(v1,¥) — S(w1) 1, UL
4 F(v,v3) — S(v1) 3, UL
5 (Vz)~S(z) 2, Quant. Neg.
6. ~S(vy) 5, UL
7. ~F(v1,72) 4,6, M.T
8. (Vy)~F(v1,y) 7, UG
9. (Vz)(vy) ~F(=,y) 8, U.G.

Statements containing both universal and existential quantifiers present
a special problem in the order in which the quantifiers are reattached by
E.G. and U. G. Suppose, for example, that (3z)(Vy)L(z, y) has been instan-
tiated first by EI and then by Ul to L(w,v). The quantifiers can now
be replaced, and either order of applying E.G. and U.G. yields a valid con-
sequence, U G. first and then E. G produces the original expression, and
generalizing in the opposite order gives (Vy)(3z)L(z,y), which is logically im-
plied by (3z)(Vy)L(z,y). (There is someone who loves everyone implies Ev-
eryone is loved by at least one individual ) If we instantiate (Ve )(3y)L(z, y),
however, where the universal stands before the existential quantifier, and
then generalize, replacing the quantifiers in the opposite order yields an in-
correct conclusion. (Vz)(3y)L(z,y), Everyone has someone whom he loves
does not logically imply (3y)(Vz)L(z, y), There is at least one individual who
1s loved by everyone. Thus, in order to generalize a proposition containing
both » and w it is necessary to know the order in which these constants
were originally introduced by U.I. and EI If UI came before EI, then the
generalizations must be carried out in the order EG before U.G IfEI was
applied before U I, then either order of E.G. and U G. is permitted. This
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restriction is illustrated in the proof of the following argument:

(7-45) Every human has a father.
All Bulgarians are humans.

.'. Every Bulgarian has a father.

H(z) represents ‘z is a human’; F(z,y), ‘@ is the father of ¥'; and B(z), ‘z
is a Bulgarian’, in the following proof.

(7-46)
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Since v was introduced by UL before w was introduced by EI (lines 3 and
4), they must be generalized in the opposite order.

7. (3=)(B(v) = F(z,v)) 6, E G
8. (vy)(3=)(B(y) — F(z,y)) 7, U.G.

Generalizing in the other order would have given (3z)(Vy)(B(y) — F(=,¥)),
There is at least one individual who is the father of all Bulgarians,

7.5 Beth Tableaux

The Beth Tableaux for statements were designed as a strategy for finding
a valuation or assignment of truth values to the atomic subformulas of a
statement which verifies the premises and falsifies the conclusion and hence
constitutes a counterexample to its supposed validity (truth in all valua-
tions). Now we present an extension of that strategy to quantified formulas,
seeking an assigment to individual variables which falsifies the formula. The
principles remain the same as for the case of statements A quantificational
argument is valid if and only if every (sub)tableau for that argument leads
to closure. To construct tableaux for quantified formulas we need four new
rules, two for each quantifier depending on its occurrence under TRUE or
under FALSE. We will first discuss some examples and then formulate the
rules precisely.
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Consider the (valid) argument with the premise (Vz)(F(z) — G(¢)) and
conclusion (3z)F(z) — G(c).

We know that a true universal statement is verified by checking all as-
signments to its variables, which is a never—~ending task in an infinite universe
of discourse. For that reason it is better to try fizst to come to closure of
the tableau by starting to decompose the conclusion, which we assume to be
false, trying to reason towards an assignment falsifying the claimed validity.
Note that the existential quantifier has only the antecedent of the condi-
tional in its scope. The conditional is therefore the main connective, and we
apply the conditional rule for statements under FALSE. A false conditional
must have a true antecedent and a false consequent, so (3z)F(z) is entered
under TRUE, and G(c) under FALSE If (3z)F(z) is assumed true, then
there must be an object in the domain which has the property F. Let’s call
that object @, and continue the tableau with F(a) assumed true. Now the
only formula left for decomposition is the initial universal premise. As in the
rule of inference U.I. we know that for some arbitrary object the predicate
must be true; so it must be true for a as well. We use ¢ in instantiating the
universal quantifier, obtaining F(a) — G(c) under TRUE. Now the condi-
tional rule for true statements can be applied, which produces a split and
puts G(c¢) under TRUE and F(a) under FALSE, in different subtableaux.
But now the two subtableaux close, since G(¢) occurs under both TRUE
and FALSE, and F(a) occurs under TRUE and FALSE. So we cannot find
an assignment which makes the premise true and the conclusion false; hence
the entire argument is valid, The complete tableau is (7-47):

D = {c, a}
(7-47) TRUE FALSE
1 (Ve)(F(z) = G(c)) (Fz)F(z) — G(c)
2, (3z)F(=z) G(c)
3. F(a)
4 F(a) — G(c)
5. 5, 5, Glc) |5, F(a) |5,

The subset of the universe of discourse we actually checked consists in
this case just of the objects denoted by the individual constants a¢ and ¢,
But since a was arbitrarily chosen we could make exactly the same tableau
for any other constant. This would not have been so had we used ¢ in
instantiating the premise, since that constant is obviously not arbitrarily
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chosen. In constructing tableaux for quantified formulas we keep track of
the set of objects used in the construction by listing them on the side of
the tableau; this is for convenience of reference in case some rule we apply
carries restrictions on the constant we may use in it.

Here is a slightly more complex example of a valid argument. The
premises are (Vz)(F(z) — ~G(z)) and ~(Ve)~F(z) and the conclusion
is (3z) ~G(z). First we try to apply rules for connectives, in this case just
true negation on ~(Vz)~F(z), bringing (Vz) ~F(z) under FALSE Contin-
uing with that formula, since it is a false universal, we know there must be
an object which falsifies the matrix ~F(z); let’s call it a. So ~F(a) is false,
and using the rule for false negation, we bring F(a) under TRUE. Now we
look at the existential conclusion, which, if false, says that there is no object
satisfying ~G(z). Well, then ~G(a) is false, too, and hence G(a) must be
true Next we decompose the first premise, using a as arbitrary object for
instantiation of the universal gquantifier: F(a) — ~G(a) is true. With an
application of the rule for a true conditional, we get a split with F(a) under
FALSE and ~G(a) under TRUE Then we bring G(a) under FALSE, and
obtain closure for both subtableaux.

D = {a}

(7-48) TRUE FALSE

1. (Vz)(F(z) =~ G(z)) (Fz) ~G(z)

~(Vz) ~F(z)

2 (Vz) ~F(z)

3. ~F(a)

4 F(a)

5. ~G(a)

6. G(a)

7. F(a) = ~G(a)

8. 8] SZNG(CL) 81F(CL) 82

This tableau shows us clearly that it is a good strategy to choose con-
stants we have already introduced in the universe of discourse in developing
the potentially falsifying assignment. Had we chosen a new constant in Step
7, we could have continued the tableau without obtaining closure, but we
would have to check all assignments instantiating the first premise, hence
sooner or later we would have checked for ¢ anyway. So it’s best to check
assignments with “old” constants first before introducing new ones. This
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strategy will provide us with the smallest possible counterexample, if there
is one,

The next example shows that even when a tableau leads to closure for a
number of constants, in checking truth or falsity of a universal statement we
have to continue introducing new constants to instantiate the matrix, until
we find a counterexample We can never be sure that no such counterexam-
ple exists, since we can always introduce a new constant. Is the inference
(Fz)F(z) — (Yz)F(z) valid? Obviously not, since if something has a prop-
erty, we can’t conclude that everything has that property Let’s construct a
tableau providing us with a counterexample. The premise (3z)F(z) must be
true, so there is an a such that F(a) is true Now we use a again in instanti-
ating the universally quantified conclusion, and close the tableau. But this
does not mean that we cannot find a counterexample; we have simply looked
at a very special situation, a “world” with only one object, and we have not
yet checked all objects in the domain. So we introduce a new object b and
instantiate the universal quantifier This leads to a counterexample and the
tableau will not close anymore! So the counterexample consists of a model
with the universe of discourse D = {a,b} and the interpretation of F in this
model = {a}.

(7-49)
D = {a,b}
TRUE FALSE
1. (3e)F(z) (Vz)F(z)
2. F(a)
3 F(a)
" R

Note that a universe of discourse with just one element would not con-
stitute a counterexample, and that the smallest counterexample must have
a universe with two elements. You may wonder why we did not introduce
a new object in Step 3 right away. The reason is that we have adopted the
strategy of checking “old” objects before introducing new ones. Although
we can foresee that at first we get closure and then have to introduce a new
object, it is an important property of Beth Tableaux that they provide a
mechanical procedure to prove validity of arguments, and we can’t rely on
“foresight” in mechanical procedures. We are now ready to formulate the
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new rules for quantifiers in Beth Tableaux.

Quantifier Rules for Beth Tableaux
quantifier occurs under quantifier occurs under
TRUE FALSE

universal  instantiate any object in D* instantiate old objects and
then add new objects to D
eristential instantiate old objects and  instantiate any object in D*
then add new objects to D

* If D is empty and we cannot first introduce objects by applying the
rules for false universals or true existentials, then introduce a new
object Also update these quantifiers whenever a new object is intro-
duced

Note the similarity between true universal quantifiers and false existen-
tial quantifiers; these two rules never add a new object to I except when
the domain is empty and we cannot first introduce objects with the other
quantifiers, If D is empty, we introduce an arbitrary object before applying
these rules for true universals and false existentials, In applying them to
non-empty domains, we always check all old objects. But if the other two
rules (false universal and true existential) later introduce new elements, we
have to check again for closure with these new elements, “updating” the
application of true universal and false existential. The other pair of rules
(false universal and true existential) may introduce new objects even after
closure was obtained with all old ones

It is best to apply all connective rules before using the quantifier rules,
and to remember to check all subtableaux for closure when a split occurs.
A subtableau has its own universe of discourse, as potential counterexam-
ples may differ in the cardinality of D). If an argument contains individual
constants, you may start with a universe with the same number of distinct
objects as there are distinct individual constants in the formulas of the ar-
gument, but that will no longer guarantee that you get the smallest possible
counterexample,

We give two more instructive examples, after which you should be able
to construct tableaux for any argument formalizable in predicate logic.
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D = {a,b}

(7-50) TRUE FALSE

1 (3z)(Vy)R(z,y) | (Vz)R(z,z)

237 (Vy)R(a,y)

3-VT R(CL, a’)

dyp R(a,a)

BUT!!

5.vF R(b,5)

6 vr R(a,bd)

We have no more rules to apply, and we obtain a counterexample consist-
ing of the model with a domain D = {a, b}, assignments g(z) = a,¢(y) = a,
and ¢'(z) = b and ¢'(y) = b, and the extension of R = {{a,a),{a,b)} We
assume that anything which is not listed in the extension of a predicate is
in the complement of the predicate. This could have been made explicit
by giving a positive and a negative extension for any predicate, Note that
we“update” the true universal quantifier of 2 in 6, instantiating the newly
introduced b of 5 for the formula in 2.

D= {0'7 e }

(7-51) TRUE FALSE

1. (Ve)(F(z) — ~G(z)) (Jz)~G(x)

~(3z) ~F(z)

2.37 ~F(a)

3vr  (F(a) = ~G(a))

43p NG(CL)

5 ~r F(a)

6.~F G(a)

7. 7”1 7‘2 NG(CL) 71 F(CL) 7‘2

In Sec. 8.3 we will return to some important points of difference between
tableaux for statements and tableaux for quantified arguments.

7.6 Formal and informal proofs

We may apply the principles developed in the preceding section on Natural
Deduction to the proof of statements about sets, Note that A C B, for
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example, is a statement which asserts that a certain two-place predicate,
4s a subset of’, holds of a particular pair of sets, A and B. That this
is customarily written A C B instead of C (A4, B) is merely a notational
convention of set theory. Similarly, z € A is an open statement containing
the variable z in which “€ A” functions as a one-place predicate (3z)(z € A)
is then a statement asserting that A is not empty The Axiom of Extension
(two sets are equal if they have the same members) might be written as
(WX, Y X =Y & (Ve)(z € X 2z €Y))

The following is a proof showing formally that (VX,Y)(X =Y « (X C
Y &Y C X)) (two sets are equal iff each is a subset of the other) follows
from the Axiom of Extension as premise:

(7—52) i (VX,Y)(X =Y & (V:c)(:c ceXozeE Y))
2. i=Vaeo (Ve)(zeViozeVe) 1, UL (twice)
3. i=Vhoo(Vz)((zeVi—zeW)&(zeVr —»zeT))
2, Bicond.
4 Vi=Vao (Ve)(z eV »z e V)& (Ve)(z € Vo — z € T7))
3, Quant. Distr. (Law 4)
5. VEZV2<—-)(V'1 sz&Vz (_:V1) 4, Definition Of(_:

In step 5 we have simply replaced two subexpressions of line 4 by their
abbreviated forms.

6. (VX,Y)X =Y & (XCY&Y CX))5, UG (twice)

Line 6 thus can be added to our stock of true statements about sets in general
(cf. Fig 1-7).

As another illustration of a proof of a set-theoretic proposition we demon-
strate the following (which was asserted without proof in Ch. 1, Sec. 4):

For any sets X,Y, and Z, if X is a subset of Y and Y is
a subset of Z, then X is a subset of Z.

In symbols,
(7-83) (VX,Y,Z) (X CY&Y CZ)—-XC2Z)

Our demonstration uses a conditional proof:
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(7-54) Vi CVa& Vo C V3 Aux Premise
2. {(Ve)z ey >z eV)&(Ve)(z € Vo = z € Va)

1, Def. of C

3. |(Ve)(zeVimeeVh)&(zeVr— 2 €Va))

2, Quant. Distr. (Law 2)

4 ((veVysveW)&(vela—vels) 3,UL

5. [veEV;—=veET, 4, Simp.

6. vEeEVa—oveEV; 5, Simp.

7. vEeEV, - veEV; 5,6, HS.
8 | (Vz)(zeVs >z €Vs) 7, UG

9 | VWEV 8, Def. of C
10. ViCWVa&Va CVs) = V1 CVa 1-9, CP.
1. (vVX, Y, Z2)((X CY&Y CZ)—- X C2)

10, U.G (three times)

7.7 Informal style in mathematical proofs

Mathematicians rarely present proofs in the completely formal style we have
been using since they can assume that their audience is familiar enough
with logical equivalences and rules of inference to require only an outline of
the essential steps. We have already used this style of presentation in earlier
sections (see, for example, Chapter 3, Sec. 6). Such an informal proof should
be easily expanded into a fully formal version that can be checked step by
step if there is any doubt concerning its validity. Thus, the term “informal”,
when applied to proofs, does not mean “sloppy”, only “condensed”.

To llustrate, we give {7-54) as a mathematician might write it:

(7-55) Let X,Y, and Z be arbitrary sets such that X C Y and Y C Z.
Let ¢ be an arbitrary member of X. Because X C Y,z € Y'; and
because Y C Z, z € Z. Therefore, z € X — ¢ € Z, and thus
XCZz

Observe that no explicit mention is made of UI and U G., it being
understood from the context and use of the word ‘arbitrary’ that the result
is true of all sets. In the last two sentences of the proof it is assumed that
the reader knows the definition of C and the inference rule of Hypothetical
Syllogism. The whole is in the form of a conditional proof headed by the
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statement X C Y &Y C Z, but it is left to the reader to draw the conclusion
(X CY&Y CZ)— X C Z and to generalize it universally.

As another example, we state the definition of ‘proper subset’ and give
both formal and informal proofs of a theorem containing this predicate.

(7-56) (VX,Y)X CY & (X CY&X #£Y))

The expression X # Y is an alternative notation for ~(X = Y). Sim-
larly, X € Y, X ¢ Y, and ¢ € ¥ can be written in place of ~(X C Y),
~(X CY),and ~(z € Y), respectively. The predicate C in (7-56) is defined
in terms of the predicates C and =, which can in turn be expressed in terms
of the predicate €, thus:

(7-57) (VX Y)(XCY « ((Vz)(zeX -z €Y)&
~(Vz)(z € X - z€Y)))

We wish to prove:

For any sets X and Y, if X is a proper subset of Y, there
is some member of ¥ that is not a member of X.

That is,

(7-58) (VX,Y)X CY — (Jz)(z €Y &z ¢ X))

(7-59) Proof (formal):

1. |ViCW, Aux. Premise
2 |V CVR&Vy £ V5 1, Def. of C
3. |47 2, Simp
4. | ~(Vi CTR&V, C V) 3, (7-52) above
5. WNWZWhvihgn 4, DeM.
6. |1 CV, 2, Simp.
7. (Va2 5,6,D.S.
8. | ~(Ve)(zeVa—2eN) 7, Def. of C
9. |Bz)~eeVy—-zeW) 8, Quant. Neg.
10. [(Fz)~(z ¢ Vavee ) 9, Cond.
11 | (Zz)(z € Va&kz ¢ 1) 10, DeM.
12. iCVa—(Jz)(z€Vakz ¢gW) 1-11, Cond. Proof

183, WX, Y)Y X CY - (Be)(eeY&ezg X)) 12, UG. (twice)
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(7-60) Proof (informal): Let X and Y be arbitrary sets such that X C ¥
Then, by definition, X CY and X # Y, X =Y if X CY and
Y C X. Therefore, since X #Y and X C Y, it follows that Y € X,
which implies that there is some z in Y that is not in X

As a final example we give formal and informal versions of a proof in-
volving binary relations:

For any binary relation R, R = (R™)"1.

We make use of the result proved in (7-52), ie, for all sets X and Y,
X =Y iff (X CY&Y C X). Thus we first prove R C (R7)72, then that
(R™*)~! C R (This is the customary procedure in showing equahty of two
sets.)

(7-61) Proof (formal):
1| (v, )€V Aux. Premise
[{vy,v2) is an arbitrarily chosen ordered pair in the
arbitrarily chosen binary relation V]
2. | WR)(Vz,y)({z,y) € R < (y,z) € R7?) Def. of inverse
ev-?

3. | (Ve,y){z,y) €V & (y,z) 2, UL

4, | {v1,v2) €V & {vg,v,) € V71 3, U.L (twice)

5 ({vy,v2) EV — {vg,v,) eV 1) & 4, Bicond.
((v2,v1) € V71 = (vy,v2) € V)

6. ('Ul,'Uz> eV — (1)2,'01> € V—‘l 5, SIII'IP

7. | {vg,0y) € V1 1,6, M.P.

8 | (Va,y)({z,y) €V (y2) € (VTH)"T 2,UL
[generalizing line 2 again, this time with respect to ¥V ™?]

9. | (v2,v1) € V7 s (vy,0p) € (V7)1 8, UL (twice)
10, | ({(va,v1) € V71 = (vg,v9) € (V72)71) & 9, Bicond.
E('Ul,'vz> (V—l)"l — (1}2,'01> € V—‘l)

11. vg,v1) € V71— (vy,v2) € (V1)1 10, Simp.

12. | {v1,va) € (V71)72 7,11, M.P.

13, (vy,v2) €V = {(vy,v2) € (V71)72 1-12, C.P.

14, (Vz,9)({(z,y) € V — (z,y) € (V7)) 13. UG (twice)
15. VvV C(v-1)-t 14, Def. of C
16. (VR)RC(RY)7! 15, U.G.

The proof of the other half,ie. (R™?)"! C R, is quite similar and is left
as an exercise for the reader.
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Here is an informal version of the part just proved:

(7-62) Proof (informal): Let R be an arbitrarily chosen binary relation.
Assume (z,y) € R. Then by the definition of inverse, {(y,z) €
R™!. Again, by the definition of inverse, if (y,z) € R™!, then
(z,y) € (R™*)"! Thus, if (z,y) € R,{(z,y) € (R™!)7?, and so
R C (R

In fact, if the proof were intended for readers assumed to be very familiar
with these notions, it might appear in even more condensed form:

(7-63) Proof: Let R be arelation and let (z,y) bein R. Then (y,z) € R™?
and (2,5) € (R1)1. R C (R2)

or even
(7-64) Proof: Obvious.

A proofis in part a demonstration that some statement follows by logical
steps from assumed premises, but it is also an attempt to convince some ac-
tual or imagined audience of this logical connection. Therefore, what counts
as an adequate proof depends to a certain extent on the level of sophistica-
tion of one’s audience. Of course, as a minimal condition it must be valid,
but a proof at the level of detail appropriate for an introductory logic text-
book would strike an experienced mathematician as tedious and pedantic,
whereas condensed proofs omitting many logical steps appear incomprehensi-
ble to beginners.In subsequent proofs in this book we will aim for an informal
level which we hope will be neither condescending nor obscure.

Exercises

1. Translate the following English sentences into predicate logic; choose
your own variables and predicate letters, giving the key. If you think
more than one translation is suitable, give the alternatives and dis-
cuss their differences. Represent as much as possible of the structure
relevant to quantificational arguments.

(a) Everything is black or white.
(b) Either everything is black or it is white.
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(c)
(d)
(e)
(f)
(8)
(h)
(i)
(3)
(k)
M
(m)
(n)
(o)
(p)
(a)
(r)
(s)
(t)
(u)
(v)
(w)
(x)
67)

CHAPTER 7

A dog is a quadruped.

Fido is a dog.

Everybody loves somebody.

Someone is loved by everyone.

There is someone whom everyone loves

If someone loves someone, John loves himself.

No one loves himself, unless it is John

Anyone either loves himself or some woman.

If you love a woman, kiss her or lose her.

If no one kisses John, Mary will,

People who live in New York love it.

If John does not love New York, he does not live there (i e., in it)
If someone does not love New York, he does not know it,
If a tableau closes, there are no counterexamples.

Give him a finger, and he takes the whole hand, (Dutch proverb)
Someone who is noisy annoys everyone but himself.

If someone is noisy, he annoys everybody.

Although no one made noise, John was annoyed.
Someone owns a car but rides his bike as well.

Only drunk drivers under 18 cause bad accidents.

Don’t drink and drive!

Driving is risky, if you are drunk.

All is well that ends well.

. As a translation of the sentence Everyone answered all the questions,

the statement (Vz)(Vy) A(z,y) is not adequate, when A(z,y) translates
‘z answered y’, since, as we saw in Sec 7.3, the universe of discourse
must contain both people and questions We have to represent the two
distinct sets by two predicates in the antecedent of a conditional for-
mula. In the light of this discussion, translate the following sentences.

(a)
(b)

No one answered every question.

For every question there was someone who answered it.
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(¢) Everyone answered at least one question.

(d) Some people didn't answer any questions.

(e) Everyone likes Mary except Mary herself. (use I(z,y) for identity)
(f) Everyone but Fred answered at least one question

(g) Everyone who answered a question attempted some question or
other.

(h) No one answered any question that everyone attempted
(i) Everyone who attempted a question answered it

. In each of the following expressions, identify all bound and free occur-
rences of variables, and underline the scope of the quantifiers.

(a) (V=) z,9)

b) (Vy)(Q(z) — (V2)P(y,z))

(e) (Va)~(P(z) — (3y)(v2)Q(z, vy, 2))

(d) (32)Q(z,y) & P(y,z)

(e) (Vz)(P(z) — (Fy)(Q(y) — (Vz)R(y,2)))

. Each part of this exercise consists of an English sentence followed by a
translation of it in predicate logic and a number of additional formulas.
Indicate which of the formulas are equivalent to the translation and

give the laws or rules necessary to show this equivalence. If a formula
is not equivalent to the translation, give a rendition of it in English.

Ve)P(z) v Q(

~

(a) Everything has a father and all odd numbers are integers.
(Note: While it would be tempting to read the given formula as
everyone has afather .. .’, this would be inaccurate, since we have
not restricted the universe to the set of people and cannot do so if
we want the predicates odd and integer to apply to some elements
in the universe. To render everyone in predicate logic, we would
have to add an antecedent with the predicate person.)
(Vz)(3y)F(y,z) & (¥2)(0(2) — I(2))

(1) (¢ )(Vm)(ﬂy)( (,2) & (0(2) — I(2)))

(2) (V2)(3y)(ve)(F(y,z) & (0(z) — I(2)))

(3) (Va)(V2)(3y)(F(y,z) & (0(2) — I(2)))
If

Adam is a bachelor, then not all men are husbands.

(b)



178 CHAPTER 7

B(a) » ~(Ve)(M(z) » H(z)
(1) (vz)(B(a) = ~(M(z) » H(z)))
(2) (3=z)(B(a) = ~(M(z) - H(z)))
(3) ~(B(a) = (Vz)(M(z) — H(z)))
(4) B(a) - (F=)(M(z) & ~H(z))

(c) If there is anything that is evil, then God is not benevolent

(32)E(z) — ~B(g)
(1) ~((3z)E(z) & B(g))
(2) (vz)(E(z) - ~B(g))

5. Find two equivalent but different formulas translating each of the sen-

tences below, using the predicates given

(a) For every integer, there is a larger integer.

(I(z), L(2,y))

(b) Either every prime number is odd or some integers are even, or

both
(P(z),I(z),O(z))

(c) If there is a prime number which is even, then all prime numbers

greater than 7 are odd.
(P(2),0(z),G(z,y))

(d) If all men are mortal, then Socrates is mortal.
(H(z), M(z))

6. Give the Prenex Normal Forms of these formulas:

(a) ((32)A(z)& (32)B(z)) — C(z)
(b) (vz)A(z) < (3z)B(z)

7. Prove the validity of the following argument forms:

(a)  ~(32)(P(z) & Q())
()& R(z)

R(z) & ~Q(z))
(z) = Q(z))
(2) & ~Q(z))
@ &~PE)

(3

S (3

(b)
(

(

z)(P(z)
)(R(z)
vz)(P(z)
Jz)(R(z)
32)(R(z)
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(d)

(e)

< (3e)(

(£)  (va)(
(ve)(

(vz)(

8. Construct proofs of validity for the following English arguments. ((a)-
(c) are adapted from the author of Alice in Wonderland, Lewis Caroll
[C. L. Dodgson], Symbolic Logic, (1896).)

(a) Babies are illogical Nobody who is despised can manage a crocodile
Dllogical persons are despised. Therefore, babies cannot manage
crocodiles.

(b) Everyone who is sane can do logic. No lunatics are fit to serve on
a jury. None of your sons can do logic. Therefore, none of your
sons is fit to serve on a jury.

(¢) No ducks waltz No officers ever decline to waltz, All my poultry
are ducks. Therefore, my poultry are not officers.

(d) All vowels are sonorants. All stops are obstruents. Nothing is
both a sonorant and an obstruent. Therefore, nothing is both a
vowel and a stop.

(e) No linguist believes in the parity principle. Everyone believes in
the parity principle or is a behaviorist. Every dietician renounces
behaviorism. My aunt is a dietician. Therefore, there is someone
who is neither a linguist nor a behaviorist.

9. Test the validity of the following arguments with Beth Tableaux. Pro-
vide a counterexample, if invalid.
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10.

11.

12.

CHAPTER 7

(a) ~(3z)F(z) = (Vz)~F(z)

(b) (Vz)(3y)R(z,y) = (Iy)(Vz)R(z,y)

(c) () (vVz)R(y,z) = (Vz)(3y)R(y,z)
Give a formal proof of each of the following:

(a) fACBand BCC,then ACC.
(b)) TACBand AZ C,then BZC.

Give informal proofs of each of the following statements:

(a) (A-B)C A

(b) (A-B)U(B-A)=0)if A=B

(¢) B' 2 Aiff A and B are disjoint.

(d) ACBHTAU(B-A)=B

(e) p(A)Np(B) =p(AnB)

(f) p(A)Up(B) C p(AU B)

Give informal proofs of the properties of binary relations in Fig. 3-2

not already proved in the text. (If the property is “not determined”,
give examples which show why this is so )



Chapter 8

Formal Systems,
Axiomatization, and Model
Theory

8.1 The syntactic side of formal systems

In this section and the next, we return in greater detail to the study of
formal systems from syntactic and semantic perspectives. In this section
we focus on the syntactic side, and our aim will be to link together the
notion of recursive definition which we introduced in Chapter 1 as a means
of specifying sets with the closely related notions of inductive proof, new
in this chapter, and of axiomatic system. Some of the close connections
between grammars and formal systems will be illustrated, and various string
operations will be formalized, although grammars as a topic in their own
right will not be taken up until Part E. The discussion in this section will be
purely syntactic (in part so as to illustrate what that means); we will return
to a semantic investigation of some of the formal systems discussed here in
the next section.

8.1.1 Recursive definitions

Consider the set M of all mirror-image strings on {a,b}. A mirror-image
string is one that can be divided into halves, the right half consisting of
the same sequence of symbols as the left half but in the reverse order. For

181
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example, aaaa, abba, babbab, and bbabbabb are mirror-image strings, but babb,
aaab, and bab are not. The following is a possible recursive definition of M.

(8-1) 1 aac M&bbe M
2. (Vz)(z € M — (aza € M &bzb € M))
3. M contains nothing but those members it has by virtue of lines
1 and 2

Line 1, which is called the base of the recursive definition, asserts that
z € M 1is true of the specific string ae and bb. Line 2, called the recursion
step or simply the recursion, says that for any string z if ¢ € M is true, then
it is also true of the strings formed from ¢ by concatenating an a at both
ends or a b at both ends Line 3, the restriction, rules out any true instances
of £ € M other than those covered by lines 1 and 2. Without the restriction,
the definition would specify a class of sets meeting the conditions of lines 1
and 2 but possibly containing other members as well.

The recursion step of a recursive definition is characteristically a con-
ditional in which what is being defined occurs in both the antecedent and
the consequent. This makes recursive definitions look like alleged definitions
that are circular and, consequently, not really definitions at all. For example,
the putative definition of ‘subset’ in (8-2)

(8-2) For any sets A and B, A is a subset of B iff every subset of A is
also a subset of B.

contains a vicious circularity in which the notion ‘subset’ is characterized by
appealing to that notion itself. That is, one could not know what a subset
is until one had already determined what a subset is. If ‘subset’ had already
been adequately defined in the customary way in terms of the predicate €,
then (8-2) would be a perfectly sensible, in fact, true statement; but as a
statement introducing the term ‘subset’ for the first time (8-2) is defectively
circular,

In a recursive definition this circularity is avoided by the presence of
the base, which makes a nonconditional statement about the thing being
defined. Given the base, one can take an appropriate substitution instance
of the recursion step and by Modus Ponens derive the consequent of that
substitution instance. From the base and recursion of (8-1), for example,
the following inference can be carried out:
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(8—3) 1. aaeM&bbe M
2. (Vz)(z € M—(aza € M &bzbc M))
3. aa€ M 1, Simp.
4. aa€ M — (agaa € M &baabe M) 2,UL
5. aaaa € M&baabe M 3,4, M P
6. baabe M 5, Simp.

From this line and another substitution instance of the recursion step
7. baab € M — (abaaba € M & bbaabb € M) 2,U.L

we can derive
8 abaaba € M & bbaabb ¢ M 6, 7, M.P.

Such a series of steps constitutes a proof that certain strings are in M,
given the base and recursion of the recursive definition (8-1) as premises,
The fact that such a proof is possible for every string asserted to be in M
by the definition serves to convince us that this recursive definition really
does define something and is not circular. Without the base, however, no
such proofs are possible. From the recursion step alone one can derive only
a series of conditionals.

(8-4) 1. (Vz)(zx € M — (aza € M &bzbec M))
2. aa€ M — (aaaa € M & baab € M) 1, UL
3. (ea€ M — aaaa € M)& (aa € M — baab € M) 2, Log. Equi
4, aa € M — agaa € M "3, Simp.
5. aaaa € M — (aaaaaa € M & baaaab € M) 1, UL
6. aa€ M — (aaaaaa € M & baaaab € M) 4,5, HS.

The conclusions that can be derived are statements that if certain strings
are in M, then so are certain others. Lacking the base, the definition would
not assert that M contain any strings at all.

We also note that the close connection between sets and predicates allows
us to regard a recursive definition either as defining a predicate, e.g., the
predicate ‘is a member of M’ in the preceding example, or, equivalently, as
defining a set that is the extension of that predicate, e.g., the set M.

A slightly more complex example is the recursive definition of the set of
well-formed formulas (wff’s) in statement logic (cf. Sec. 6.1). The following
definition divides those strings constructed from the alphabet

C:{P:Q:T:&:V:N:—’:*"z(z)}
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that are legitimate expressions in this system of logic, e.g., (p& q)V7) — s),
from those, e.g., (p& — r), which are not.

(8-5) L pisa wff; gis a wff; ris a wff
2. For all @ and 8, if @ and 8 are wff’s then so is

3. Nothing is a wff except as a consequence of lines 1 and 2.

Using this definition we can prove that some particular expression, say

((p&g)vr),is a wff.

(8-6) 1. pisawff &gisa wff (1), S1mp
2. (pisawff&gisawf)— (p&kq)isawff (2a),U
3. (p&q)isawff 1, 2MP
4, risa wff (1), S1mp
5. ((p&q)isawff &risawff) — (2b), U

((p&g)vr)isawff

6. (p&q)isawff &risa wff 3, 4, Conj.
7. (p&g)vr)isa wff 5, 6, M.P.

The definition in (8-5) does not characterize all the wff’s of statement
logic since it allows no more than three distinguishable atomic statements
P, ¢, and r. Of course more symbols could be added to the alphabet and
the base of the recursive definition could be appropriately expanded, but
for any given finite number of symbols for atomic statements there is some
wff in statement logic containing more than this number of distinct atomic
statements. Thus, it would appear that there must be an infinite number
of symbols for atomic statements in the alphabet and that the base of the
definition must consist of an infinite conjunction of the form p is a wff & g is
a wff & ---. This raises anew the problem of specifying the members of an
infinite set—here, the set of conjuncts in the base of the recursive definition.
The solution is to precede the recursive definition of wff by a recursive
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definition of ‘atomic statement’ (more precisely, the set of symbols denoting
atomic statements). One symbol, say p, is chosen and other symbols are
created by adding primes successively: p, p/, p”, p’/, etc. Each such symbol
is considered distinct, designating an atomic statement potentially distinct
from all others. The recursive definition is as follows:

(8-7) 1. pis (or denotes) an atomic statement
2. For all z, if z is an atomic statement, then so is ’
3. Nothing else is an atomic statement

The recursive definition of wff is now as in (8-5) except that the base is
replaced by:

1. Every atomic statement is a wff.

It is also understood, of course, that the definition of wff now applies to
strings on the finite alphabet C' = {p,/, &, V,~,—, <, (,)}.

Nothing essentially new is involved in framing one recursive definition
in terms of another. We have already seen many examples of definitions
in which previously defined concepts appear; for example, the definition of
‘power set’ in terms of ‘subset’ in Chapter 1. If recursive definition is a
legitimate mode of definition, then there can be no objection to using one
recursively defined predicate in the recursive definition of another.

8.2 Axiomatic systems and derivations

Recursive definitions and axiomatic systems have a similar logical structure,
From a finite number of statements given initially an infinite number of
additional statements are derivable by repeated application of a specified
set of rules. The statements assumed at the outset are the arioms, and the
additional statements, called theorems, are derived from the axioms and pre-
viously derived theorems by interated applications of the rules of inference.
The set of axioms, the set of rules of inference, and the alphabet in which
all these are written constitute an ariomatic system. Viewed in this way,
a recursive definition is like an axiomatic system in which the base states
the axioms and the recursion step constitutes the rules of inference. The
members of the set specified by the recursive definition, aside from those
given by the base, comprise the theorems of the system.
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DEFINITION 8.1 An axiomatic system is an ordered triple (A, S, P) in which

1. A is a finite set of symbols, called the alphabet.
2. § is a set of strings on A, called the axioms.

3. P is a set of n-place relations in A*, the set of all strings made from
the alphabet A, where n > 2 (ie, the n-tuples in P must be at least
ordered pairs.) The members of P are called productions or rules (of
inference).

We now indicate how the productions are to be employed in deriving
additional strings.

DEFINITION 8 2 Given an axiomatic system (4, S, P), if

(mb T2, ,Ln-1; mn)
is a production in P, we say that ,, follows from (2,22, . .. ,&n_1). Wealso
use £y,3,. .,Tn-y — T as an equivalent notation for (21,22, .. ,Zn_3, Zy).

DEFINITION 8.3 Given an axiomatic system (A,S, P), a linearly ordered
sequence of strings yi1,¥2,...,Ym is called a derivation or proof of y,, if and
only if every string in the sequence is either (1) an axiom, or (2) follows
one of the productions in P from one or more strings preceding it in the
sequence. If there is a derivation of y in a given axiomatic system, y is called
a theorem of that system. L

We can illustrate these definitions by reinterpreting the recursive defini-
tion in (8-1) of mirror-image strings on {a, b} as an axiomatic system.

(8—'8) A= {a7b}
S = {(aa,d)}
P={(z,y)€ A*x A" |y = azaVy = bzb}

The productions are thus the infinite set of ordered pairs

(8-9) {(e,aa), (e, bb), (a,aaa),(a,bad), (b, aba), (b, bbb), (aa, aaaa),.. }
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or in the alternative notation,

(8—10) {e — aa,e — bb,a — aaa,a — aba,b— bbb,aa — aaaq,...}
In this axiomatic system, we see that the sequence of lines

(8-11) bb, abba,aabbaa

is a derivation of aabbaa since the last string follows from preceding strings
(in fact, from just the one immediately preceding) by the production abba —
aabba; similarly, abba follows from bb by the production bb — abba; and bb
is an axiom Therefore, aabbaa is a theorem of this axiomatic system. The
sequence

(8-12) bb, baab

is not a derivation since baab does not follow from bb by the rules of P. This
does not necessarily mean that the string baab is not a theorem since there
may exist some derivation in the system in which baab is the last line. It
happens in this case that there is, viz ,

(8-13) aa, baab

and thus baab is a theorem.

One consequence of the definition is that the first line of a derivation
must be an axiom since there are no lines preceding the first from which it
could follow. Thus, a sequence such as

(8-14) ab, aaba,baabab

is not a derivation because ab is not an axiom. A derivation may, however,
consist of only one line and, if so, that line must necessarily be an axiom.

The set of productions P in (8-8) is an infinite set of all ordered pairs
of the form (z,aza) and (z, bzb), where z is a variable whose values are all
the strings in A* P, therefore, contains productions such as L(a,aaa) and
(ab, babb) that will never actually be used in the derivation of any theorems
in this system from the given set of axioms Further, because z is a variable
symbol and not a member of the alphabet A, the expressions (z,aza) and
(z,bzb) are not themselves productions but rather production schemata or
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formulas for constructing productions This finite set of schemata specifies
an infinite set of productions in which the variable symbol z is replaced by
any constant string on A*. To be completely formal, we could, of course,
give a recursive definition of the set of productions, thus embedding one
recursive specification within another as we did in (8-5) and (8-7).

The axioms may also be specified by schemata containing variable sym-
bols (or by recursive definition). For example, in the axiomatic system given
in (8-15), whose theorems are all the wff’s of statement logic, S is an axiom
schema specifying as an axiom any string consisting of the symbol p followed
by any number of primes [cf (8-7)]. P is also a schema for the infinite set
of productions of this system.

(8-15) A ={&,v,~,—,+,(,),p,}
S={pzx|ze{}}
P = {(m7N m)7(m5y7(m&y))3(m7 y7(m v y))’(‘U’y’(m « y))} where
z and y are strings in A*

Problem: Which of the following sequences are derivations in the axiomatic
system of (8-15)?

1. p~p,~~p
2.p, 9, (vy), (pve)&p")
3. (pvp), o, @ — (pvp))

4. p,~p ¢

8.2.1 Extended axiomatic systems

From a syntactic perspective, it is not uncommon to extend the definition
of an axiomatic system somewhat to allow two kinds of symbols in the al-
phabet. Specifically, we have a basic alphabet and an auziliary alphabet,
which are disjoint sets, Symbols from both sets may appear in the lines of
a derivation, but the theorems contain only symbols from the basic alphabet.
An axiomatic system with two disjoint alphabets of this sort will be called
an extended axiomatic system (e.a.s.). (Note: We are here dangerously close
to blurring the line between axiomatic systems and grammars; model theo-
rists would probably not countenance these extended axiomatic systems as
genuine axiomatic systems.)
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DEFINITION 84 An extended axiomatic system is an ordered guadruple
(A,B,S,P) where

1. A Is a finite set of symbols, the auxiliary alphabet.
2. B is a finite set of symbols, the basic alphabet; A and B are disjoint.

3. S is a set of strings on (AU B)*, the axioms. S may be specified by a
finite set of axiom schemata

4. P is a set of n-place relations (n > 2) on strings of (A U B)™ called
productions or rules of inference. P may be specified by a finite set of

production schemata If (z1,%3,.. ,Zn-1,&s) Is a production in P, we
say that z, follows from z,,z3, . ,&,-;, which can also be denoted
by 1,23, ..,Zpn_1 — Zp.

| ]

In an e.a.s. we distinguish between a derivation and a proof, since not every
derivation ends in a theorem. The definition of derivation is just as before.

DEFINITION 85 Given an eas. (A,B,S,P), a linearly ordered sequence
of strings, ¥1,Y2,. .,Ym is called a derivation of y,, if every string in the
sequence (1) is an axiom, or (2) follows by one of the productions in P from
one or more strings preceding it in the sequence. ]

DeriniTION 86 Given an e.as (A,B,S,P), a string y is a theorem iff’
(1) there is a derivation of y in (4, B,S,P), and (2)y € B*. Wheny is a
theorem, a derivation of y is called a proof of y. ]

We note that by our definitions every axiomatic system is also an e.a s.
with the null set as the auxiliary alphabet, but not every e.as is an ax-
iomatic system. An ea.s with a nonnull auxiliary alphabet is a proper
e.a.s

An example of a proper ea.s, whose theorems are the mirror-image
strings on a, b, is the following (cf. (8-8)):

(8-16) A= {M}

B = {a,b}
S={M}
aMB — aaMaf
P aMpB — oabMbS | where a and f are any strings
) aMB — aadf on (AU B)*
aMpB — oabbS
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The following sequence of lines

(8~17) M,aMa,aaMaa,aabMbaa

is a derivation of aabM baa but not a proof in this system, since aabMbaa
contains a symbol of the auxiliary alphabet and therefore cannot be a theo-
rem The following is a proof of aabbaa.

(8-18) M,aMa,aaMaa,aabbaa

Two systems having the same set of theorems are said to be eguivalent.
Thus, the e a.s of (8-16) is equivalent to the axiomatic system of (8-8).

The following e.a.s. is equivalent to the axiomatic system (8-15), which
generates the wff's of statement logic.

(8-19) A= {E,F}
B = {&,\/,’V,—%,H)(’)J’),}

S ={F}
aF8 — a~FpB
aF8 — ofF&F)B
aF8 — a(Fv F)
P aFB8 — oF - F)B | where @ and § are any strings
) aF8 — (FHF)ﬁ on (AU B)*
aFf — aFEf
aEB — aFE'B
aEB — apf

(The symbol —, unfortunately, is used for two different purposes in this
system: to signify ‘follows from’ in the production schemata and in the fourth
schema as a symbol in the alphabet of statement logic.)

The following sequence is a proof of ((p' & ") V p) in this system:
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(8-20) 1 F

2. (FVF)

3. ((F&F)VF)
4. (E&E)VF)
5. (E&E)VF)
6. (E&E)VE)
7. (E'&E)VE)
8. ((B'&E")VE)
9. (E'&E")VE)
10. ((P & E")V E)
11 ((P'&p") v B)
12, ((¢'&p") v p)

The axiom set of the e.a.s. in (819) contains only the single symbol
F, not an infinite set of strings specified by axiom schemata. Rather, the
last two production schemata in the list generate the symbols for atomic
statements, p,p’, p",p"", etc. Note that a rather natural interpretation of
this system is possible in which F is a ‘well-formed formula’ and E is an
‘atomic statement’. The production schemata could then be interpreted as
statements such as ‘if F' is a well-formed formula, then so is its negation,’
‘an atomic statement is a well-formed formula,’ ‘p is an atomic statement,’
ete.

Problem: Describe the theorems of the following e.a.s.

(8-21) 4= {0}
B = {a}
S = {aQa}

P { a@Rf — aaQoaaB } where o and S are any strings

aQf — 8 on (AU B)~

8.3 Semi-Thue systems

One way in which axiomatic systems can be classified is according to some
property of their production schemata. One could, for example, distinguish
systems with only binary productions, ie., of the form ¢ — 1, where ¢ and
1) are strings, or one could consider the class of systems in which for every
production zj,2Zs,...,Zp~1 — &, the number of symbols in z, is greater
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than or equal to the sum of the number of symbols in z;,23,. . ,2,-1. Any
formal property of the productions could, in principle, serve as a basis for
such a classification. The systems to which we now direct our attention are
the semi-Thue systems (after the Norwegian mathematician Axel Thue, who
first studied them) These are extended axiomatic systems whose produc-
tions are restricted in a manner specified by the following definition

DEFINITION 8 7 A semi-Thue system is an e.as. (4, B, S, P) in which every
production schema is binary and of the form

arf — ayf

where z and y are strings on (AU B)" and a and 8 are variables taking as
values strings on (A U B)*. |

Thus, the change effected by any production is restricted to the replace-
ment of some fixed string of symbols by another fixed string Of the ax-
iomatic systems we have examined thus far, (8-8), (8-16), and (8-19) are
semi-Thue systems. (In (8-8) each production is of the form ¢ — y, where
both a and B are the null string.) The system given in (8-15) is not semi-
Thue since some of its productions are ternary and not binary. The eas.
in (8-21) fails the definition because in neither of its production schemata is
a fixed string replaced by a fixed string. In a@g8, the variable string a@ is
replaced by ¢, and in a@8 — aa@Qaaaf, the fixed string @ is replaced by
the variable string aQaaa

The fact that all productions in a semi-Thue system are binary allows us
to narrow the definition of ‘derivation’ somewhat.

DEFINITION 8.8 u

Given a semi-Thue system (A,B,S,P), a linearly ordered sequence of
strings ¥y, Y2, . ,¥m is called a derivation of y,,, iff (1) y; is an axiom, and
(2) each string except y; follows from the immediately preceding string by
one of the productions in P.

The definitions of ‘theorem’ and ‘proof’ remain as in an e.a.s.

A Thue system differs from a semi-Thue system in that for every pro-
duction schema azf8 — ayf in P, a Thue system also contains the inverse
schema ayf — azf We shall not be concerned with such systems here.



SEMI-THUE SYSTEMS 193

Although it may appear that the restrictions on the productions of a
semi-Thue system are rather severe, these systems can in fact generate any
set of theorems that can be generated by an arbitrary e a.s. In other words,
there is no loss in generality in restricting e.a s.’s in the manner of semi-
Thue systems because for any e a.s there is an equivalent semi-Thue system,
(The converse is, of course, trivially true, since every semi-Thue system is
an e.a s.) However, a semi-Thue system may be rather more complex than
a nonsemi-Thue e.a.s. to which it is equivalent. To illustrate, we exhibit a
semi-Thue system that is equivalent to the e.a.s. in (8-21). Since all semi-
Thue production schemata are of the same form, it is generally accepted
practice to omit the variables @ and 8 in writing them; thus, we write z — y
instead of azfB — ayf.

(8-22) A={C,D,E,F,G,H}
B = {a}
S ={HFGa}

The schemata in P are numbered for convenience in referring to them.

1. FG — DGaa

2. FD — DF

3. HD — HC(C

4 CD — FC
P= 5 CG — FFGa

6. HF — FE

7 EF — E

8 EG — E

9. Ea - a

(8-23) and (8-24) show the derivations of a and aaaa, respectively

(8-23) HFGa Axiom
EGa by 6.
Ea by 8.
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(8-24) HFGa Axiom
HDGaaa by 1.
HCGaaa by 3.
HFFGaaaa by 5
EFQGaaaa by 6.
EGaaaa by 7
Eaaaa by 8
aaaa by 9.

8.4 Peano’s axioms and proof by induction

Peano’s axioms for the natural numbers, actually due to Dedekind, are not
only one of most well-known axiomatic systems in the history of mathemat-
ics, but they give rise to the Principle of Mathematical Induction and the
technique of proof by induction or inductive proof, a conceptually impor-
tant tool which further helps to highlight the close affinity between recursive
definitions and axiomatic systems.

In this section we introduce Peano’s axioms and the method of proof
by induction; we will come back to Peano’s axioms from a model-theoretic
perspective in 8.5.7.

In Part A, Appendix A, we saw a constructive approach to the natural
numbers, with set theory assumed as a basis. We review that construction
here, putting it in the form of a recursive definition of NN

(8-25) 1.0€ NN
2 Forall X,if X € NN,then X U{X} € NN
3. Nothing else is in NN

The set NN defined in this way has many useful properties which make
it a reasonable, if artificial, set-theoretic reconstruction of the natural num-
bers. Zero is identified with @, 1 with {0}, 2 with {0, {0}}, and so on, each
natural number n being identified with the unique member of NN having
n members. The definition endows the natural numbers with appropriate
structure and can be used as the basis for defining further arithmetical re-
lations and operations and extending the number system as discussed in
Appendix A,

In the axiomatic approach to natural numbers, the aim was rather to set
forth some essential properties of the natural numbers from which all their
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other properties should be derivable as theorems, just as in the Euclidean
axiomatization of plane geometry. In stating the basic axioms, only logical
concepts (including, in this case, equality) are assumed, and a set of axioms
involving two primitive predicates and one primitive constant is given. The
primitives are (1) the one-place predicate ‘is a natural number’ and the
two-place predicate ‘is the successor of’ and (2) the comstant 0. It is to
be emphasized that these are primitives; the only meaning they have is
given to them in the axiomatization The concept of a natural number is,
therefore, implicitly defined by the axioms: they are those things of which,
in some model of the system, the interpretation of the predicate ‘is a natural
number’ is true. Let us write Nz for ‘z is a natural number’ and Szy for ‘z
is a successor of y’. The axioms are:

P1) NO (zero is a natural number)

P2) (Ve)(Nz — (Jy)(Ny& Syz& (Vz)(Sze — z = y))) (every natural

number has a unique successor)
P3) ~ (3z)(Nz & S0z) (0 is not the successor of any number)

P4) (Ve)(Vy)(Vz)(Vu)(Ne& Ny & Szz & Swy & z = w) — z = y) (no two
distinct natural numbers have the same successor

P5) If @ is a property such that

(i) QO (zero has @), and

(i) (Ve)(Vy) (N2 & Qz& Ny & Syz) — Qy), (if a natural number
has @ then its successor has @, ie @ is a ‘hereditary’ property)

then (Vz)(Nz — Qz) (every natural number has Q)

These axioms together characterize the set of all natural numbers in
certain important respects in which they differ from other infinite sets. Al-
though we will not go into the proof here, it can be shown that this axioma-
tization of the natural numbers is also sufficient for proving the equivalence
of the notions ordinary énfinite and Dedekind infinite, which used only the
notion of one-to-one correspondence, defined in Section 4 2.

The fifth Peano postulate is very important. It introduces the notion
of mathematical induction. Intuitively, this axiom says that the natural
numbers are subject to the ‘domino-effect’: whenever you find a property
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that knocks down zero, and makes each number knock down its successor,
you can conclude that all numbers are knocked down. There are no natural
numbers outside this single infinite chain The first four axioms guarantee
the existence of an infinite chain of successors starting at zero, but do not
preclude the existence of additional natural numbers, eg a second infinite
chain unconnected to the first. The fifth axiom precludes the existence of
any more numbers than are required by the first four axioms

Now let us look more closely at the Principle of Mathematical Induction
and its application Let us first restate the principle, i.e. Peano’s fifth axiom,
in a slightly simpler form by (i) suppressing the predicate N and assuming
that our domain of quantification is restricted to just the natural numbers,
and (ii) using the notation S(z) to denote the successor of z, something we
can legitimately do since the first four axioms guarantee that the successor-of
relation is a function.

For any predicate @, if the following statements are both true of @:

(8-26) 1 Q0
2. (Vz)(Qz — Q(S(z)))

then the following statement is also true of Q:
3 (Vz)Qz

The similarity between (8-26) 1 and 2 and the base and recursion step,
respectively, of a recursive definition is readily apparent. The Principle of
Mathematical Induction is not a definition, however, but a rule of inference
to be applied to statements about the integers. A proof that employs this
rule of inference is known as a proof by induction or an inductive proof.

Let us examine the structure of such a proof in more detail. Suppose we
have been given a predicate P(z) such that (827) 1 and 2 hold. These form
the premises of the argument.

(8-27) 1. P(0)
2 (Vz)(P(z) - P(z +1))

From P(0) and a substitution instance of line 2

3. P(0) - P(1) 2, UL
we can derive
4 P(1) 1,3, MP

and from this and another substitution instance of line 2
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5. P(1) — P(2) 2, UL
we can derive

6 P(2) 4,5, M.P
and so on

To prove the statement (V)P (z) would require an infinite number of
steps, and we would ordinarily not want to consider an infinitely long se-
quence of lines a proof, if for no other reason than that it would be impossi-
ble to examine it in order to verify its correctness. Thus, there is no proof of
(vz)P(z) that can be constructed by using only the rules of inference we have
considered up to now. Nevertheless, (8-26) 3 is intuitively a valid conclusion
to draw from the premises (8-26) 1 and 2, and the Principle of Mathematical
Induction is a formal assertion that this inference is legitimate. It should be
noted that the Principle of Mathematical Induction itself is not susceptible
of proof but only acceptance or rejection on the grounds of its effectiveness
in separating intuitively valid from intuitively invalid arguments. With this
additional rule of inference, the proof of (Vz)P(z) is simply as follows:

(8-28) 1. P(0)

(V2)(P(2) — P(z +1))
3 (vz)(P(=)) 1, 2, Math. Ind.

As an example we prove by induction that for every integer n the sum
of the series 0 + 14+ 2+ .. + (n — 1) + n equals [n(n + 1)]/2.

The premises of the argument are the propositions stating all the usual
arithmetic properties of the integers (the commutativity of addition, etc ),
which can be deduced as theorems from Peano’s Axioms. As is usual in
inductive proofs almost all the work comes in establishing the truth of the
statements corresponding to (8-28) 1 and 2, known as the base and the
snduction step, respectively. Once these have been derived, the remainder
of the proof consists of just one inferential step justified by the Principle of
Mathematical Induction. We begin by demonstrating the truth of the base,
ie,that 04+ 14+ ...+ n = [n(n+ 1)]/2 is true for n = 0. In this case the
sequence to the left of the equals sign consists of just 0, and the expression
to the right becomes [0(0 + 1)]/2, which is equal to 0.

The induction step to be established is

n(n + 1)

(8-29)  (Vn) <0+1+.,‘.+n=——§-——-__>

0+1+. . +n+(n+1)=

(n+1)(n+1+1)>
2
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that is, if the equation is true for any integer n, it is also true for n + 1,
the successor of n. To prove (8-29) we use a conditional proof in which we
assume the antecedent of the conditional in (8-29) for an arbitrary integer
k.

k+1
(8-30) 1 0+1+‘,.+k:k—(-2l—) CP.
2. 0+1+ . +k+(k+1)= —(——2———) + (k+1)
1, adding (k + 1) to both sides

E(k+1)+2(k+1)

3 041+ . +k+(k+1)=

2, converting right side to common denominator

k+ 1)(k +2
4. 0+1+w+k+(k+1):_(__i__)§(__t_2

3, factoring (k + 1) in numerator

(k+1)((E+1)+1)

5. 0+1+4.. . +k+(k+1)= 5
4, expressing k +2 as (k+ 1) +1

k(k +1)
krl)
2

041+ . +k+(k+1)=

6. 0+1+. +k=
(k+1)(k+1)+1
2

Since k was chosen arbitrarily, line 6 can be universally generalized to
(8-29). Having now established the truth of the base and the induction step,
the Principle of Mathematical Induction allows us to conclude:

(8-31) (Vn) (0 +14+. +n= __*"("2+ 1))

Proof by induction can be applied not only to theorems about the set
of integers but to theorems about any set that can be put into one-to-one
correspondence with the integers, i.e., the denumerably infinite sets. As an
example of this sort we prove a generalized form of the Distributive Law for
union and intersection of sets,

(8-32) AU(By;NB2N.. NBp)=(AUB;)N(AUB2)N. N(ANB,)
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The form in which the Distributive Law was given in Chapter 2 is a
special case of (8-32) in which n = 2; that is

(8—33) AU (Bl N Bz) = (AU Bl) N (A U Bz)

Equation (8-32) is meaningless for n = 0 and trivial for n = 1 We take as
the base of the inductive proof that (8-32) holds for n = 2, ie., that (8-33) is
true. This is easily shown by expressing the sets in terms of predicates and
applying the Distributive Law of disjunction over conjunction in statement
logic.

To prove the induction step we assume that (8-32) holds for an arbitrarily
chosen integer &:

(8-34) AU(BiNBaN.. NBr)=(AUB;)N(AUBs)N .. N(AUBy)
We wish to show that (8 34) implies (8-35).

(8-35) AU(B1NByN. NBrt1) =(AUB)N(AUBy)N.. . N(AUB)N
(AU Biyi)

The left side of (8-35) can be rewritten by the Associative Law as
(8-36) AU((BinNByn...NBy)N Biy1)
which is equal to
(8-37) (AU(B1NBaN.. . NB))N(AU Bgys)

by an application of the Distributive Law for the case n = 2, which has
already been proved By the induction hypothesis (8-34), expression (8-37)
is equal to

(8-38) ((AUBI)N(AUBy)N .. . N(AUB)IN (AU Bryy)

By the Associative Law we can omit one set of parentheses to obtain the
right side of (8-35). This shows that (8-35) holds if (8-34) does. From this
and the base by the Principle of Mathematical Induction the generalized
form of the Distributive Law is shown to be true for all n equal to or greater
than 2 (or greater than 1 if we include this trivial case).
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In this last example induction is used to prove a theorem about a class
of equations of the form given in (8-32), which can be put into one-to-one
correspondence with the integers. The mapping is between an equation and
an integer n representing its length—specifically, the number of terms in the
expression B; N By N .. N B,,. Proof by induction on the length of a string
is the commonest use of this method of proof in mathematical linguistics

Problem: Prove by induction the following generalized form of one of
DeMorgan’s Laws:

(A;nAyn.. N4, =41U. UA,

8.5 The semantic side of formal systems: model
theory

8.5.1 Theories and models

As we said in Chapter 5, the distinction between syntax and semantics in
the logical tradition is closely tied to the distinction between formal systems
and their interpretations. Model theory, the study of the interpretations of
formal systems, focuses on the relation between theories and models, with
these terms understood in a technical sense which we will now describe.

A set of axioms together with all the theorems derivable from them is
called a theory. Or equivalently, a theory is a set of statements that is closed
under logical consequence, i.e. is such that any logical consequence of any
statement in the set is again in the set.

Finding a model for a theory requires finding some abstract or concrete
structured domain and an interpretation for all of the primitive expressions
of the theory in that domain such that on that interpretation, all of the
statements in the theory come out true for that model on that interpretation.
If a theory has an axiomatic characterization, something is a model for that
theory iff it is a model for the axioms.

Plane geometry is the standard model of the Euclidean axioms; before
the discovery of the non-Euclidean geometries discussed in 5.1 it was believed
to be the only model. The natural numbers are the standard or intended
model of the Peano axioms; we will see some non-standard models in section
8.5.7 below.
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In exploring theories and models, one can start at either end, and math-
ematical discoveries and advances have been made in both directions. One
can start with a given set of phenomena as intended models and try to
write down axioms that will best characterize them - this often forces one
to sharpen up one’s conception of the intended coverage of the theory, and
of course helps to uncover various consequences of one’s initial assumptions
(One can take the whole enterprise of linguistics as trying to formally char-
acterize the class of possible human languages; the starting point is then a
somewhat vaguely specified set of intended models.) One can also start from
a set of axioms and see what sorts of models it has. In the model-theoretic
perspective, these two complementary activities constantly feed each other.
Different axiomatic systems may be discovered to characterize exactly the
same set of models, and hence to be equivalent from a semantic point of view;
or two quite disparate domains may be discovered to have virtually identical
axiomatizations, revealing a hitherto unsuspected structural similarity

A note of warning: the term “model”, especially in the verbal form
“modelling”, has another very different sense as well, one in which it actually
comes closer to what logicians mean by theory than to what they mean by
model, and outside of logic and model theory this other sense may in fact be
more common. When one speaks of modelling some physical phenomenon,
or constructing an abstract model of some biological or cognitive process,
the intent is generally some form of theory building or at least some step in
that direction. One important clue to help resolve the ambiguity comes from
looking at what the model in question is a model of models in the sense
of model theory are always models of axioms or other expressions in some
language, never of concrete objects. Models themselves in model theory may
be either concrete or abstract objects, so the nature of the things modelled
is a more reliable clue to the relevant sense of “model” than is the nature of
the models.

In the remaining subsections of this section, we will first look at some
fundamentally important properties that relate formal systems and theories
to their models, and then look into some examples of axiomatic systems
and models for them, some very simple and some quite rich, illustrating the
interplay between axioms and models as we go. In these sections we take
the logic as a given; in 8.6 we will broach the issue of axiomatizing the logic
itself.
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8.5.2 Consistency, completeness, and independence

A formal system is consistent if it is not possible to derive from its axioms
both some statement and the denial of that same statement. An inconsistent
system cannot have a model, since no actual statement can be simultaneously
true and false; hence one way to show that a system is consistent is to exhibit
a model for it.

It is useful that we have both a syntactic and a semantic characterization
of consistency known to be equivalent, since one is easier to apply in some
cases and the other in others. In particular, when a system is inconsistent,
it’s usually easier to demonstrate that syntactically than semantically. That
is, it’s usually easier to derive a contradiction from the axioms than to prove
by a meta-level argument that the system has no models Conversely, when a
system is consistent, it’s usually easier to show that semantically, by finding
a model, than to demonstrate that it’s impossible to derive a contradiction
from the given axioms. When one doesn’t know the answer in advance, it
may be necesary to try both methods alternately until one of them succeeds.

The term completeness is used in various senses. What all notions of
completeness have in common is that for a formal system to be complete in
some sense, it must be possible to derive within the formal system all the
statements satisfying some given criterion; different notions of completeness
reflect different criteria for the desired statements. Among the most com-
monly encountered notions of completeness is one which is syntactic, since
it is defined in terms of formal systems alone, and one which is semantic,
defined in terms of the relations between formal systems and their models.
A formal system is called formally complete if every statement expressible in
the system, i.e. expressible using only the primitives of the system includ-
ing a given formalized logic, can either be proved or disproved (its negation
proved) in the system Other terms for the same or very similar notions are
deductively complete (Copi), complete with respect to negation (Thomason),
and syntactically complete. A formal system is semantically complete with
respect to a model M, or weakly semantically complete (Thomason), if every
statement expressible in the system which is true in the model M is derivable
in the formal system.

The notion of independence concerns the question of whether any of the
axioms are superfluous An axiom is independent if it cannot be derived
from the other axioms of the system. A whole system is said to be inde-
pendent (a slight abuse of language) if all of its axioms are independent.
That was a syntactic characterization of independence (why?); a semantic
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chracterization is the following: A given axiom is independent of the other
axioms of a system S if the system S’ that results from deleting that axiom
has models which are not models of the whole system S In any reasonably
«yell-behaved” framework, the two notions of independence will be provably
equivalent and one can use whichever one is easier to apply in a given case.
As in the case of consistency, which is easier often depends on whether the
answer is positive or negative. Determining precisely what it takes for a
framework to be sufficiently “well-behaved” for the syntactic and semantic
characterizations of independence to determine the same notion is one kind
of question studied in the metamathematical side of model theory.

The thiee notions of consistency, completeness, and independence are
not all of equal importance. Consistency is of fundamental importance,
since it is obviously a minimal condition of adequacy on any set of axioms
designed to formalize any system that is not meant to be self-contradictory.
Completeness is often of theoretical importance to logicians, but (a) prov-
ing completeness for a system of any complexity generally requires a fairly
high level of mathematical sophistication (and many important formal sys-
tems are provably incomplete); and (b) it is not obvious that completeness
is ever any issue that linguists need to be concerned with. Questions of com-
pleteness will therefore be relatively neglected here. Independence of axioms
is simply a matter of “elegance”; it is generally considered desirable in an
axiom system, but has no significant consequences for the system as a whole.

8.5.3 Isomorphism

The notion of isomorphism, the relation of “having the same structure”, is
of fundamental importance in any attempt to set up a concrete model of an
abstract system or a mathematical theory of a family of concrete systems.
Informally speaking, two systems are isomorphic if some specified part of
their structure is identical and they differ only in interpretation or content
or in unspecified parts of their structure. For example, a paper pattern for
a dress may be said to be isomorphic to the cut-out cloth with respect to
size and shape; they differ only in their material. Japanese and Korean are
sometimes said to be isomorphic with respect to syntactic structure, a claim
which would be true if the two languages differed in their morphemes but sen-
tences could be put into morpheme-by-morpheme correspondence preserving
syntactic configurations and permitting the same syntactic operations.

The formal definition applies to a pair of systems A and B, each consist-
ing of a set of elements on which are defined one or more operations and/or
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one or more relations. {Such systems will be studied in more detail in Part
C, where we will look at them as algebras and see many more examples of
isomorphisms.)

DEFINITION 8.9 An isomorphism between two such systems is a one-one cor-
respondence between their elements and a one-one correspondence between
their operations and relations which satisfies the following conditions:

1. If a relation R holds between two elements of A, the corresponding
relation R' holds between the corresponding elements of B; if R does
not hold between two elements of A, R' does not hold between the
corresponding elements of B

2 Whenever corresponding operations are performed on corresponding
elements, the results are corresponding elements.

If there exists an isomorphism between two systems A and B, the systems
are said to be isomorphic. Note that for two systems not to be isomorphic,
it must be the case that there is no isomorphism between them, not simply
that some particular one-one correspondence fails to be an isomorphism.

{(8-39) Ezamples:

(1) The set 1,2,3,4,5 with the relation “greater than” {>) can be
shown to be isomorphic to the set -1,-2,-3,-4,-5 with the relation
“less than™ (<) by letting each number in the first set correspond
to its negative in the second set, since for any two positive integers
n and n', if n > n/, then —n < —n'.

{2) The set A = {0, 1} with the operation of “absolute value of
difference” defined in the first table below is not isomorphic to the
set B = {0, 1} with the operation of ordinary multiplication, shown
in the second chart.
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Y
A lz—yl] O 1
- 0 0 1
i i 0

Y
B: zy 1] 1
. 0 0 0
i 0 i

Neither of the two possible one-one correspondences between the two sets
can give an isomorphism, since (1) in set A, the result of the operation on
two of the pairs of elements is one element and on the other two pairs is the
other element, while in set B, one element is the result in three cases and the
other in only one; and (2) in set B, the result of operating on one element
and itself (00 and 1 1) is always that same element, while in set A this is
not the case. Either of these reasons alone is actually sufficient to show that
no one-one correspondence can be set up so that the operations performed
on corresponding elements would yield corresponding elements as results.

Isomorphism plays an important role in model theory. If we ask how
many different models there are for a given axiomatic theory, we generally
mean different in the sense of non-isomorphic with respect to relevant struc-
ture; isomorphic models are alike in relevant structure. In the next section,
we will see a model-theoretic application of the notion of isomorphism.

Note that the relation of isomorphism is an equivalence relation in the
sense of section 3.4,

8.5.4 An elementary formal system

The following system is described in Hao Wang’s Survey of Mathematical
Logic, pp. 14-18. The system, called L, consists of a set S and a single
two-place predicate (binary relation) R defined on § The axioms of L are
as follows:

Al: (2)(e=1Ve=2Ve=3)&1 #2&1 #3&2 # 3;ie, S contains
only the three distinct elements 1, 2, and 3.

A2: (z) ~ Rze;ie., R is irreflexive.
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A3: (2)(y)(2)((Rey & Rzz) Dy = z); ie, R is not one-many

Ad: (2)(y)(2z)((Ryz & Rzz) D y = z;1e., R is not many-one. (i.e, A3 and
A4 together require R to be one-one.)

A5: (z)(Jy)Rey; ie, every element of S bears R to at least one element.

A6: R12; 1 bears R to 2.
A model for L must therefore meet the following conditions:

(a) There must be specified:

(1) a non-empty set D of objects
(2) a rule which associates each element of S with an element of D,
(3) a binary relation Rx defined on the set D

(b) The axioms Al-A6 must be true when interpreted according to (1)-(3)
above,

It is quite easy to find a model for L. Let the set D consist of three
persons, Chang, Li, and Yang, sitting around a round table with Chang
immediately to the right of Li, associating them with 1, 2, and 3 respectively.
Let R* be the relation “sits immediately to the right of”. It can be checked
that all the axioms become true statements in this system.

In fact, if we take an arbitrary set D with three objects 1*,2*, 3* which
represent 1, 2, 3 respectively, and choose a relation R* which holds between
the pairs {1*,2%), (2*,3%), {3*,1*) and does not hold between any other pairs,
we will have a model for I Furthermore, it can be shown that every model
for L must have exactly this form. That is, any two models of L must be
isomorphic. If all the models of a given formal system are isomorphic, the
system is called categorical.

Once we assume Al, it is easy to find other axioms which yield a cate-
gorical system. For example, the following axiom can replace all of A2-A6:

»The term “categorical” should not be confused with “categorial”. The former is a term
of long standing, particularly in logic; the latter is a recent coinage applied to a special
type of phrase-structure grammar studied by Curry, Lambek, and others, and perhaps can
also be used as an adjective corresponding to “category”™, although that is the etymology
of the former.
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A2%: R is true of the pairs (1,2), (2,3), and (1,3) and false of the remaining
pairs formed from 1, 2, and 3.

The axioms Al and A2* determine the same interpretations as A1-A6.
Other categorical systems can be constructed analogously.

If in the specification of L we had not given specific names to any of the
elements of S, we could not state A1l and A6. The effect of Al could still be
gotten from the axiom Al

A1": There exist only three distinct things:
(B2)By)32) e £ y&y £ z&z £ z&(w)(w=2zVw=yVw=2)).

But nothing resembling A6 could be expressed in the new system. How-
ever, the system determined by A1’ and A2-A5 is also categorical since as
soon as one pair of elements is specified as having the relation R, the rest
of the structure is determined by the axioms, and all the models must be
isomorphic.

Since the axioms of L specify uniquely (up to isomorphism) the set S and
the relaion R, every expressible statement about R and S is either provable
or disprovable from A1-A6. Hence L is formally complete. It can be shown,
in fact, that every categorical system is formally complete.

If we were to omit certain of the axioms AI-A6, the resulting system
would not be complete or categorical. If, for example, we were to omit
the axiom AS5, then a possible model for the resulting system could be con-
structed by letting Chang, L¢, and Yang sit on the same side of a rectangular
table with Chang at the far right and L¢ in the middle, associating them
with 1, 2, and 3 as before and keeping Rx as “sits immediately to the right
of”. This model is not isomorphic to the original one; the new system is not
complete, since R23 and R31 are neither provable nor disprovable in it.

8.5.5 Axioms for ordering relations

Various kinds of orderings were defined in Chapter 3 in terms of such prop-
erties of relations as transitivity, antisymmetry, etc. These definitions can
be very easily formalized as axiomatic systems, with each relevant property
specified by an axiom. What we gave as “examples” of the different kinds of
orderings in 3.5 we can now redescribe as models of the corresponding axiom
systems.
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Any ordering relation is a binary relation R on a set §. We assume as part
of the “background theory” ordinary set theory, including the representation
of binary relations on S as sets of ordered pairs of members of S, and we
specify the particular axioms that must be satisfied by particular kinds of
orderings.

DErINITION 8 10 R is a weak partial order on S iff:

1. Transitivity: VeVyvz((z € S&y € S&z € S§) — ((Rey& Ryz) —
Rzz))

2. Reflexivity: Ve(z € S — Rra)
3. Antisymmetry: VeVy((z € S&y € S) — ((Rzy & Ryz) — = = y))

Alternatively, we need not explicitly assume set theory or use the lan-
guage of set membership, but can simply take the domain S as the universe
over which the quantified variables in the axioms range. In that case, the
previous definition would be recast as follows:

DeriniTIiON 8.11 R is a weak partial order on S iff:
1. Transitivity: VeVyVz((Rzy & Ryz) — Rez)
2. Reflexivity: Ve(Rex)
3. Antisymmetry: VeVy((Rzy & Ryz) — ¢z =y)

One will also encounter axiomatizations in which the wide-scope universal
quantifiers are omitted and open formulas are understood as universally
quantified. We will not take that further step here; but it is worth noting that
the prevalence of “pure universal” axioms like those above is not simply an
accident. The study of model theory has shown that pure universal theories,
all of whose axioms are pure universal ones like those above, have a number
of nice relations to their models.

In Chapter 3 it was noted that generally each weak ordering, obeying the
axioms of reflexivity and antisymmetry, could be paired with a corresponding
strong ordering, with those axioms replaced by irreflexivity and asymmetry.



THE SEMANTIC SIDE OF FORMAL SYSTEMS: MODEL THEORY 209

DEFINITION 8.12 R is a strict partial order on § iff:

1. Transitivity: VeVyVz((Rzy & Ryz) — Rzz)
2. Irreflexivity: Ve(~ Rar)
3 Asymmetry: VzVy(Rezy —~ Ryz)

The relations Ry, Ry, and Rz diagrammed in Section 3.5 are all models of
the axioms for weak partial orders, and Sy, S5, and S3 are models of the
axioms for strict partial orders. Another model of weak partial orders is the
subset relation on any collection of sets; the ‘proper subset’ relation provides
the corresponding strict order.

What about the relations ‘is at least as old as’ and ‘is older than’ on
H, the set of humans, assuming there do exist various pairs of people who
are the same age? Intuitively, one might suppose that ‘s at least as old as’
would be a weak partial order on humans, much as ‘is a subset of’ provides
a weak partial order on a set of sets. But while ‘is at least as old as’ on the
set of humans does satisfy the axioms of transitivity and reflexivity, it fails
antisymmetry. For let a and b be two individuals of the same age: then Rab
and Rba, but a # b.

Note carefully the role of identity here: a # b because a and b are two dis-
tinct members of the set H; being the same age makes them equivalent with
respect to the relation R (and ‘is the same age as’ is an equivalence relation),
but it doesn’t make them equal in the sense required by the antisymmetry
condition

A relation like ‘is at least as old as’ which satisfies transitivity and re-
flexivity but possibly fails antisymmetry is called a preorder or sometimes a
quasi-order; we could axiomatize it by writing down just the first two of the
three axioms for a weak partial order. Where there’s a preorder on S there is
always the possibility of defining an order on a suitable partitioning of § In
this example, for instance, intuitively we want to count people of the same
age as identical or indistinguishable; the formal technique for achieving that
is to define the ordering not directly on the set of all people but on the set
of equivalence clases formed under the relation ‘is the same age as’, in which
all the people of a given age will be grouped together in a single equivalence
class. In fact, when we step back and look at these equivalence classes, we
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can see that one might even consider analyzing our talk of ordering people
by their ages in terms of ordering people’s ages.

What about ‘is older than’? Does that similarly fail to be a strict partial
order on the given set of humans? Actually, no; it does satisfy all three
axioms of Transitivity, Irreflexivity, and Asymmetry But unlike the corre-
sponding order on ages, or the apparently similar relation ‘is greater than’
on the numbers, it is not a linear order, since it is not connected;? see the
following definitions,

Note: in examples such as those we have just been discussing, it is not
so important to try to learn to remember the names and definitions of par-
ticular kinds of orderings or which examples satisfy which axioms; you can
always look up the technical details in this or other books when you need
them, and details of terminology are not all uniform among different research
communities anyway The important thing to focus on in this chapter are the
illustrations of how changes in the axioms relate to changes in the models,
and how the interesting properties of a formal system can be explored from
both syntactic and semantic perspectives, often most fruitfully by looking
at both together,

Linear orderings, both weak and strict, were defined and illustrated in
Section 3.5. If we recast them axiomatically, they come out as follows.

DEFINITION 813 R is a weak linear (or total) order on S iff:
1. Transitivity: VeVyVz((Rzy & Ryz) — Rzz)
2. Reflexivity: Va(Rzz)
3. Antisymmetry: VeVy((Rzy & Ryz) — z = y)
4. Connectedness: VzVy(z # y—(Rey V Ryz))

Given that the first three axioms above constitute the definition of a
weak partial order on §, we can abbreviate the definition above as follows.

2The relation “is at least as old as’ is connected, but neither asymmetric nor antisym-
metric. It is an example of what Suppes (1957) defines as a weak ordering, a relation
which is transitive, refiexive, and connected, i.e a connected preorder. This is not a kind
of ordering that is standardly singled out; but one is free to define and name whatever
kinds of formal systems one thinks will prove useful for one’s purposes.
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DEFINITION 8 14 R is a weak linear (or total) order on S iff:

1. R is a weak partial order on S

2. Connectedness: VeVy(z # y—(Rzy v Ryz))

]
We give the definition of strict linear order in analogous fashion.
DEFINITION 8.15 R is a strict linear (or total) order on S iff:
1. R is a strict partial order on S
2 Connectedness: VzVy(z # y—(Rzy V Ryz))
]

Among the models for these axioms systems, the relations Rz and S3
given in Section 3.5 are models of weak and strict linear orderings respec-
tively.

The reader may have noticed a certain degree of systematicity in the
relation between the names chosen for various kinds of ordering relations
and the selection of axioms used in their definitions. Such systematicity
is most prevalent (and most desirable) in contexts where the emphasis is
on contrasts among closely related axiomatic systems, as is the case here.
Shorter names are often used when differences among similar systems are not
at issue; so, for instance, an author may omit the adjectives weak and strict
and talk simply of partial and total orderings if all her orderings are weak
or if all of them are strict; definitions usually accompany initial uses of such
terms when there could be any doubt. In the case of orderings, watch out
for the use of the adjective strong, which is used as an antonym sometimes
of weak and sometimes of partial The lack of perfect standardization in
nomenclature is a perfectly reasonable side effect of the useful versatility of
axiomatic definitions; be prepared when in doubt to check a given author’s
definitions.

The definition of well-ordering was also given in Section 3.5: a set S is
well-ordered by a relation R if R is a total order and, further, every subset
of § has a least element in the ordering relation. If we try to write down
this further condition as an additional axiom to add to the axioms for total
orderings, we come across an important difference between it and all the



212 CHAPTER 8

other axioms we have introduced in this section: it cannot be expressed in
first-order predicate logic

If we give ourselves the full expressive power of set theory, including the
possibility of quantifying over sets, we can write down the axioms for well-
ordering in the same form we used for the first version above of the definition
of weak partial orderings.

DEFINITION 8 16 A relation R is a well-ordering of a set S iff

1. R is a total ordering on S.

2. Every subset of S has a least element with respect to the order R:
vS'((S'C S) — Jz(z € S'&Vy((y € S'&z # y) — Rzy)))

But we cannot omit the set theory talk this time as we could before. We
can recast it so that we are quantifying over one-place predicates instead
of over sets, which we do in Section 86.7 where we discuss higher-order
logics. But what we cannot do is express the second axiom just with ordinary
individual variables ranging over the members of the domain §

The well-ordering axiom, axiom 2 above, turns out to be quite powerful
and subtle. Iflogicians could have found a way to replace it with a first-order
axiom having the same effect, they surely would have. What has been proved
is that the well-ordering axiom is equivalent to each of several other non-first-
order axioms, including Peano’s fifth axiom, the induction axiom, which has
already been introduced and to which we will return in Section 8 5.7 The
relations among these higher-order axioms are discussed in Section 8.6.7.
Properties which like transitivity and reflexivity can be expressed by first-
order axioms are called first-order properties, but the modifier is used only
when the contrast with higher-order properties is relevant

Ordering relations and their axiomatic characterizations provide a rich
round for exploring the syntactic and the semantic side of formal systems
and their interrelations. Once one sees that each property like reflexivity or
antisymmetry can be characterized by an axiom, the possible combinations
to be explored become endless. Can an ordering be both asymmetric and
antisymmetric? Does the answer to that question vary with the other axioms
in the given system? Are there axioms that will force the set ordered to be
infinite? To be finite? Are there informally describable kinds of orderings
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that cannot be characterized by a finite set of axioms? Is that last question
well-defined, and if it is not precise, can it still be fruitful?

The rich realm of axiomatizations of ordering relations also leads one to
wonder whether there is some single most general characterization of order-
ings such that all the well-known kinds of orderings are gotten by adding
various axioms to some common core of shared axioms. Different authors
have different degrees of tolerance on this question; the natural desire for a
most general notion of ordering is in conflict with the fact that the standard
kinds of ordering relations are required to be, besides transitive, either re-
flexive and antisymmetric or irreflexive and asymmetric and there seems to
be no non-ugly way to say just that. Suppes (1957), noting that transitivity
is the one property they all share, makes transitive relations the most general
case in a diagram displaying the inclusion relation among several different
kinds of ordering relations (an ordering of ordering relations.) Most authors
decline to attempt a single most general definition of ordering relations. A
wealth of syntactic and semantic arguments establishing various properties
of orderings can be found in Suppes (1960).

8.5.6 Axioms for string concatenation

In this section we will axiomatize a very simple structure, the structure of
string concatenation. A string concatenation system consists of a set A
of strings of symbols from some alphabet together with the operation of
concatenation, which is an operation that applies to two strings and consists
simply of writing the second down after the first so as to combine them into
a single longer string. In order for the system to be well-defined, the set A of
strings must be closed under the concatenation operation; that is, the result
of concatenating any two strings in A must itself be in A.

There are two formally different kinds of string concatenation systems,
differing in whether they include an empty string among the strings of the
system or not We can show how that difference corresponds to a difference
of one axiom in otherwise identical axiom systems.

For concatenation systems without an empty string, we can axiomatize
them as shown below; structures with a binary operation satisfying these
axioms are called semigroups

DEFINITION 8.17 A system consisting of a set A and a binary operation
on A is a semigroup iff:
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1. A is closed under ™ : VaVy((z € A&y A) » 2" ye A)

2. The operation " is associative: VavyVz((z y) z=2" (v 2))

To write these axioms in pure predicate logic form, we would need
to eliminate the operator notation “z” y”. (Similar conversions must be
made in going from the function-oriented programming language LISP to
the predicate-logic-based language PROLOG.) We can do that by using the
notation Czyz with the intended interpretation “z” y = z”. That would
also force us to stipulate more carefully the existence and uniqueness re-
quirements implicit in the operator notation. The revised first axiom would
read as follows:

DEFINITION 818

1. A is closed under C: VeVy3z(Cryz & Vw(Cryw — w = 2))
2. ...

Axiom 2 of our earlier definition would also have to be revised, of course,
but it merely becomes more complicated and harder to read, so we refrain
from carrying out the revision.

An example of a concatenation system of this kind, i.e. a model of the
above axioms where the set A is indeed a set of strings and the operation
" is interpreted as concatenation, is the set of all strings of a’s, b’s, and c’s
whose total length is even: A = {aa,ab,ac,ba,bd,. .., abaa,abad,abac, ...,
cbeeab, ...}, The set A is closed under concatenation and the concatenation
operation is associative.

The set A’ which is just like A above except that all the strings in A’
have odd length, together with the operation of concatenation, would not
form a model of the axioms, because it does not satisfy Axiom 1. (Why
not?)

Turning now to systems that include the empty string, the first question
is what that means. The empty string, like the number zero or the empty
set, has more formal than intuitive motivation. It has length zero; it is a



THE SEMANTIC SIDE OF FORMAL SYSTEMS: MODEL THEORY 215

substring of every string; and it has the property that when concatenated
with any string it yields that string itself. This last is its defining property
in the axiomatic characterization of concatenation systems with the empty
string: letting e designate the empty string, e = z, and ¢” z = =z, for
any string . The empty string therefore satisfies the definition of being
an identity element with respect to concatenation, just as 0 is an identity
element for addition, 1 is for multiplication, and the empty set is for set
union

A concatenation system with empty string therefore satisfies both of the
earlier axioms plus an axiom specifying the existence of an identity element;
structures that satisfy these axioms are called monoids. A monoid is there-
fore characterizable in general as a semigroup with an identity element

DEFINITION 8.19 A system consisting of a set A and a binary operation 7
on A is a monoid iff:

1 Ais closed under " VaVy((z € A&y e A) »z " y€ A)
2. The operation " is associative: VaVyVz((z " y) z=2" (y" 2))
3. A contains an identity element e: JeVz(z e =" z = z)

Both monoids and semigroups are examples of kinds of algebras. We
will return to them in Chapter 10 in the context of group theory and other
related algebras. Some parts of the study of algebras relate closely to the
study of model theory, since algebras are usually characterizable with a small
set of simple axioms whose models can be shown to share rich and significant
structural properties. (Among the algebras to be studied in Chapters 9-12,
lattices, Boolean algebras, and Heyting algebras have played a particularly
important role in model theoretic investigations.)

8.5.7 Models for Peano’s axioms

Peano’s axioms, repeated below, were introduced in section 8.4, where we
showed their connection to the important concept of proof by mathematical
induction. In this section we return to them from a semantic perspective, to
consider some of their models in addition to the intended model, the natural
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numbers. In Section 86.7 below we will discuss the relation of Peano’s
famous fifth axiom to the well-ordering axiom mentioned in 8 §.5 The first
four axioms are first-order; the fifth is not.

(8-40) Peano’s azioms. There are two primitive predicates, N and S
(The intended interpretation of N is ‘is a natural number’ and that
of § is ‘is the (immediate) successor of’.) There is one primitive
constant, O, whose intended interpretation is the natural number
zero.

g

1

P2) Ve(Nz — Jy(Ny& Syz &Vz(Szx — z = y)))

g

P4) VaevyVaVw((Ne & Ny & Sze & Swy & z = w) — 2 = y)

) N
) v

3) ~ Jz(Nz & S0x)
)

P5) If Q is a property such that

(a) Q0
(b) Vevy((Nz & Qz & Ny & Syz) — Qy),

then Vz(Nz — Q=)

Peano, like Euclid, conceived of the primitive terms of the system as al-
ready having known meaning, and of the axioms as the smallest set of true
statements about the natural number series from which its other properties
could be derived. But if we look at the system in the purely formal way
described above, we find that other meanings can be given to the primi-
tives, and each of these interpretations would impart another meaning to
derived statements about the natural numbers. Russell gives some instruc-
tive examples:3

(1) Let ‘0’ stand for 100 and let ‘natural number’ be taken to mean the
integers from 100 onward. All the axioms are satisfied, even the third; for
although 100 is ordinarily the successor of 99, 99 is not a ‘natural number’
in this interpretation

(2) Let ‘0’ be 0 but let ‘natural number’ be interpreted as ‘even number’

This is part of an interesting discussion in Waismann, Chapter 9. See also his Chapter
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and let the ‘successor’ of a number be that number obtained by adding 2 to
it. The number series will now read

0,2,4,6,8,. ..

and again all five of Peano’s axioms are satisfied

(3) Let ‘0’ be 1, let ‘natural number’ be any number of the sequence
1,1/2,1/4,1/8,1/16,. .

and let ‘successor of’ mean ‘half of’. All five axioms also hold on this inter-
pretation,

By contrast, we might consider some interpretations of N and S which
do not satisfy all five Peano axioms.

(4) Let ‘0’ stand for 0, ‘successor’ for successor, and let ‘natural number’
be interpreted as ‘natural number less than or equal to 100°. Then axioms
P1, P3, P4, and P5 hold, but P2 does not, because 100 does not have a
successor in this interpretation. Similarly, no finite set can satisfy all of the
Peano axioms.

(5) Let ‘0° stand for 0, let the ‘successor’ of any number be the number
gotten by adding 1 to it (as in the standard interpretation), but let the
‘natural numbers’ be 0, 0.5, 1, 15,2, 2.5, 3, 3.5, .. Axioms P1, P2, P3, and
P4 hold; for instance, the unique successor of 1.5 is 2.5, and of 1 is 2; the
unique predecessor of 7 5 is 6.5, and of 8 is 7. No fractional number is the
successor of any whole number, and vice versa. The only axiom violated by
this interpretation is P5, the induction principle A property @ could satisfy
(i) and (ii) of P5 and still fail to hold of all the ‘natural numbers’ by failing
to hold for 0 5, 1.5, 2.5, . , which will be missed by the “domino attack”
of (i) and (ii).

8.5.8 Axiomatization of set theory

The primitives of set-theory are of course the notions ‘set’ and ‘member’.
What are the axioms of set-theory, the assumptions from which we may
derive all we know about sets and their members? There are a number of
different axiomatizations, characterizing distinct set-theories, but the best
known one, which we give here, is known as the Zermelo-Frankel axiomati-
zation (abbreviated ZF). This axiomatization appears to be quite successful
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in that its axioms are very intuitive, simple truths about sets, and no contra-
dictions can be derived from them. One axiom, the axiom of extensionality,
says that a set is uniquely determined by its members The other axioms
either state that a certain set exists or that a certain set can be constructed
by application of an operation. These axioms provide the foundation from
which we may derive theorems about sets or set-theoretic concepts and, for
instance, prove the exact relationships between properties of relations, and
properties of their inverses or complements. Notationally we do not distin-
guish between sets and members, as we did with upper and lower case letters
in the previous chapters,i.e , w, z, y, z are arbitrary set-theoretic objects, but
anything enclosed in braces is a set The membership relation holds between
a member and the set it is a member of, but z € z is not excluded

(8-41) The Zermelo-Frankel Axioms of Set Theory
Axiom 1. Extensionality If z and y have the same elements,
r=y
Axiom 2. Regularity For every non-empty set ¢ there is y €
such that z Ny = 0.
Axiom 3. Empty set There i¢s a set with no members
Axiom 4. Pairing If ¢ and y are sets, then there is a set z such
that for all w, w € z if and only if w =2z orw = y.
Axiom 5. Union For every ¢ there is a y such that z € y if and
only if there is a w € ¢ with z € w.
Axiom 6. Power set For every ¢ there is a y such that for all 2,
ze€y ifand only if 2z C .
Axiom 7. Infinity There is a set ¢ such that 0 € ¢ and whenever
y€z, thenyU{y} ez
Axiom 8. Replacement If P is a functional property and z is a
set, then the range of P resiricted to x is a set; i.e., there is a set
y such that for every z, z € y if and only if there is a w € z such
that P{w) = z.

The axiom of Regularity says that, if we are collecting objects into sets,
we may stop at any stage and what we have then collected is a set. It
is perhaps not really ‘self-evident’ that this is true, but at least it can be
proven to be consistent with all the other axioms, and it is a very power-
ful axiom in constructing simple and direct proofs of other theorems. The
Empty-set axiom implies together with Extensionality that there is exactly
one empty set. Pairing guarantees that for every z and y the set {z,y}
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exists Union and Power-set assert existence of these sets formed from arbi-
trary z. Infinity proves to be essential in representing the natural numbers
as sets. Replacement is the one axiom that Frankel added to Zermelo’s ax-
jomatization, instead of his axiom of Separation, which says that a definable
subset of a set is also a set, i.e. if = is a set and P is a property then there
is a subset y of ¢ which contains just the elements of # which have prop-
erty P. Separation follows from Replacement, but Replacement does not
follow from Separation. There are also statements which cannot be proved
from the axioms 1-7 with Separation, but which are provable from 1-7 with
Replacement.

These axioms are sufficient as foundations of mathematics, and note that
the only primitive relation is membership Yet there are statements which
cannot be proved or disproved from this axiomatization. One in particular
is often assumed as an additional axiom: the Axiom of Choice. Let A be a
set of non-empty sets. A chosice-function for A is a function F with domain
Aand F(X) € X for each X € A The function F “chooses” an element in
each X € A, namely F(X).

(8-42) Axiom of Choice Every set of non-empty sets has a choicefunc-
tion.

This axiom is often used in set theory, and has a variety of guises. It is
not provable from axioms 1-8 as Paul Cohen proved in 1963; it is consistent
with them, and no contradiction is derivable from it with 1-8, which Gédel
proved in 1938, Yet its acceptance is not universal, and there are theorems
which admit of simpler proofs with it but which also have more complicated
proofs without using the Axiom of Choice. The results of Godel and Cohen
are milestones in the foundations of mathematics, producing innovative and
fruitful proof techniques with wide new applications. For our present pur-
poses it suffices to know that the Axiom of Choice is not universally accepted
and granted equal status with the other axioms of set theory, although in
the sequel we will implicitly rely on it as an additional axiom. (Axioms 1-8
+ the Axiom of Choice are abbreviated to ZFC.)

8.6 Axiomatizing logic

8.6.1 An axiomatization of statement logic

There are a number of axiomatizations of the system of statement logic we
introduced in Chapter 6 that equally meet the criteria of completeness and
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independence. We present here the axiomatization of Hilbert and Acker-
mann, which was obtained by deleting one non-independent axiom from the
system of Whitehead and Russell’s Principia Mathematica (1913).

Remember that we use p,q,7, .. as variables for atomic statements and
P,Q, R,. . as variables for statements of arbitrary complexity. Ounly two
connectives are taken as primitives, namely ~ and V. The other connectives
are introduced by the following definitions:

P - @ is an abbreviation for ~ PV @
P& Q is an abbreviation for ~ (~ PV ~ Q)

P « Q is an abbreviation for (P — Q)& (@ — P)
ie,for ~(~(~PVQ) ~(~QVP)

Whenever the three defined conmectives occur below, they are to be in-
terpreted as abbreviations for the equivalent expressions with just negations
and disjunctions.

(1) Axioms

p—(pVQq)
(pva)—(aVp)
(p—=q) = ((rvp)—(rva)

(
(2) Rules of Inference

(a) Rule of Substitution: For a statement variable in any statement @
we may substitute a statement P, provided that P is substituted
for every occurrence of that statement variable in Q.

(b) Modus Ponens: From P and P — @ infer Q.

Bear in mind the following important distinction between proofs in this
formal system and proofs within statement logic. In the latter, any tautology
could be used to obtain a conclusion from given premises; in the formal
system, the tautologies are what we are trying to prove from the four axioms.
So we cannot use a tautology in the proof of a theorem unless it is one of
the axioms or has been proved earlier to be a theorem.
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Not only is it possible to derive theorems in this system, but we can also
derive new rules of inference which make the derivations of other theorems
more convenient. Derived rules of inference are simply coded shortcuts in
proofs For instance, the first derived rule below says that if PV P is a
theorem, then P is a theorem. The proof of the derived rule consists simply
in showing how, whenever a theorem of the form PV P has been established,
axioim (a) and the Rule of Substitution can be used to derive a theorem of
the form P, Having shown that, we are free in the future to skip straight
from PV P to P, justifying the step by the derived rule Since rules of
inference are all of the form ‘If .. is a theorem, then . is a theorem,”
the method of establishing rules of inference is closely related to the rule of
conditional proof (see Chapter 6).

(8-43) Derived rule I If PV P is a theorem, then P is a theorem

Proof:
1 PVP Premise
2. (pvp)—0p Axiom (a)
3 (PVP)—> P 2, Substitution
4 P 1, 3, Modus Ponens

Derived rule II: If P is a theorem, and ¢ any statement, then PV Q
is a theorem.

Proof:
1. P Premise
2.p— (pVq) Axiom (b)
3. P (PVQ) 2, Substitution
4 (Pv@Q) 1, 3, Modus Ponens

Derived rule III: If P v @ is a theorem, then @ V P is a theorem.

Derived rule IV: If P — @ is a theorem and R is any statement,
then (RV P) — (RV @) is a theorem.

The proofs of derived rules III and IV are similar to the proofs for I and
II (cf axioms (c) and (d)).

Two theorems are proved below to illustrate the general method of proofs
within axiomatic systems. Each theorem may be used along with the axioms
and original and derived rules of inference in proving successive theorems.
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(8-44) Theorem 1 (p— q) — ((r = p) — (r — q))
Proof:
L(p—=q)—((rvp) —(rvy)) Axiom (d)
2 (p—=qg)—=((~rvp)>(~rvq) 1,Subst. ~r/r
3.(p—=qg)=((r—p) — (r—q)) 2, Def. —

The substitution in line 2 perhaps deserves mention. The Rule of Sub-
stitution allows any complex statement to replace any atomic statement as
long as the substitution is made uniformly throughout the entire formula.
The atomic statement replaced is » of line 1. It is of no significance that the
same symbol occurs again in the replacing statement ~ r. We could as well
have taken ~ s, and then the resulting theortem would have had s instead of
r

(8-45) Derived rule V: If (P — @) and (@ — R) are theorems , then
(P — R) is also a theorem.

Proof:
1 (P-Q) Premise
2. (@ = R) Premise
3.(p—=q)— ((r—p)—(r—4q) Theorem 1
4 (@Q—=R)-»((P->Q)—»(P— R)) 3, Subst.
5 (P—Q)— (P — R) 2,4, M P
6. (P— R) 1,5, MP.

In general, there will be a derived rule of inference obtainable from any
theorem which has the form of an implication.

(8-46) Theorem 2. ~pVp

Proof:
1 p—~(pVva) Axiom (b)
2. p—(pVvp) 1, Subst.
3.(pvp)—p Axiom (a)
4 p—p 2,3, DRV.
5 ~pVp def —

8.6.2 Consistency and independence proofs

Above we noted that consistency can be proven most easily by specifying a
model, and independence by showing semantically what effect dropping the
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axiom tested for independence has on the set of models of the entire system
The proofs given here of the consistency and independence of the Hilbert
and Ackermann axiomatization of statement logic illustrate the possibility
of giving syntactic proofs of consistency and independence. The difficulty of
finding semantic arguments for the special case of axiomatizing logic itself
stems from the difficulty of giving a non-trivial model A model is anything
of which the axioms are true when primitive terms are translated in some
specified way; but the axioms in this case are tautologies, hence “true of”
anything

(i) Consistency

Hilbert and Ackermann’s consistency proof is a proof that there is no
way to derive within the system both a statement and its negation. It is a
syntactic argument since it involves only the formal properties of the axioms
and rules of inference Superficially it looks semantic in that it appears to be
introducing a model, but this “quasi-model,” it must be emphasized, is not
something of which the axioms are “true”. It simply serves to isolate certain
formal characteristics of the axioms and rules of inference

In this “quasi-model” the statement symbols p,q,r,. are not variables
for statements, but for the numbers 0 and 1. Disjunction is taken to represent
multiplication:

0v0o=0 1vo=0

OvV1i=0 1vi=1
Negation is defined as follows:

~0=1 ~1=0

Since the other connectives are defined in terms of these, they are defined
now similarly by these numerical equations.

It can be shown now that given this numerical encoding, (1) the axioms
all have the value 0 for all values of statement symbols occuring within
them, and (2) starting from statements which have the value 0 for all values
of their components and applying the rules of inference can only lead to
other statements which have 0 as value for all values of their components.
It follows that no formula can ever be derived which has value 1. But from
the definition of negation, it is clear that if P is 0 then ~ P is 1. Hence,
since we can never derive a statement with value 1, we cannot derive both
a statement and its negation in the statement logic axiomatization. The
system is therefore consistent

To show that axiom (c), for example, has value 0 for all values of its



224 CHAPTER 8

components, we let p and g each take on the values 0 and 1 and examine
each case

Axiom(c): (pV q)—=(gVvp)ie, (~(pVq)V(¢VDp)

p=0,g=0:(~(0Vv0)V(OVO)=~0VvV0=(1V0)=0
p=0,g=1:(~0VI1)Vv(IVO)=~0v0=(1VvV0)=0
p=1,¢g=0:(~(1v0)Vv(OVI1)=~0VvV0=(1V0)=0
p=1l,g=1:(~(1Vv1)v(Ivi)=~1vi=(0v1)=0

The other axioms can be handled similarly.

To show that the rules of inference permit only statements whose value
is always 0 to be derived from statements whose value is always 0, we can
proceed as follows:

Rule of Substitution: A statement p whose value may be 0 or 1 is substi-
tuted for some variable whose value can be 0 or 1, if the formula into which
p is substituted has the value 0 for either value of the variable p, it will still
have the value 0 for either value of p.

Rule of Implication: Assume that P—@ and P have the value 0 for all
values of their components. P—@Q is an abbreviation for ~ P V Q. Since P
has value 0, ~ PV @ has value ~ 0V (valueof @),ie, 1V (value of @) But
for 1V (value of @) to equal 0, as given, the value of Q must be 0 Hence if
P and P—(Q have value 0 for all values of their components, so does Q.

(ii) Independence
The question of independence of the given set of axioms has been solved
by Hilbert and Ackermann and independtnly by Paul Bernays, who first
showed that the fifth axiom included by Whitehead and Russell was not
independent. Hilbert and Ackermann provide a syntactic proof of indepen-
dence for each axiom, again using quasi-arithmetical models; one example is
included here:
Independence of Axiom (b): p—~(pV q);ie, ~pV (pVq)
Let 0VO=0V1iI=0v2=0Vv3=0
Ivi=1iv2=1v3=1
2v2=2Vv3=2
3v3=3
and let V be commutative (Thus pV ¢ is always the minimum of p and ¢.)

~1:0 ~3:2
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It can be shown that axioms (a), (¢), and (d) always have the value 0 or
2. It can also be shown that from formulas with value 0 or 2, the rules of
inference allow derivation only of other formulas with values 0 or 2.

But if we let p = 2 and ¢ = 1, axiom (b) has the value 1. Therefore
axiom (b) cannot be derived from the other three; it is independent.

In each proof of independence of an axiom, a different interpretation of
the whole system is required, since in each case we must find a property
which is posssessed by all but one of the axioms and which is passed on by
the rules of inference,

8.6.3 An axiomatization of predicate logic

First-order prodicate logic has a particularly pleasant property: it allows
for axiomatizations that are complete and sound. Completeness means here
that all valid formulas (i.e formulas that are true in allinterpretations) are
derivable from the axioms using the rules of inference. Soundness of axioma-
tization is the inverse property: all derivable formulas, i e. all theorems, are
valid. Together these two properties mean that all and only valid formulas
are derivable from the axioms.

There are a number of axiomatizations of first-order predicate logic that
are complete and sound. The following one is particularly simple in its
formulation as it uses only two connectives and two rules of inference. The
other connectives can be defined in a way similar to the definitions in 8.6.1.
The existential quantifier (3z) is defined as ~(Vz) ~. However, instead
of a rule of substitution, this axiomatization uses axiom-schemata. Thus,
according to the first schema, any wif of the form ¢—(%—¢) is an axiom,
where ¢ and @ are arbitrary statements of first-order logic, i.e. formulas
without free variables. As before in Section 7 3 we write ¢(z), ¢(z) etc.
for any formula which contains at least one free occurrence of the variable
z. We write a for an arbitrary individual constant, ¢(a) for the statement
obtained from ¢(z) by replacing all free occurrences of z by a, and ¢(y) for
the formulas obtained from ¢(z) by replacing all free occurrences of = by y.
In the latter case it is understood that ¢(z) does not contain occurrences of
the variable y.

Axiomatization of Predicate Logic

Axsoms



226 CHAPTER 8

Al) (= (¥ — )

A2) (p =~ (¥ = X)) = (g = ¥) — (¢~ X))
A3) (v o=~ g) = (¥ = 9)

Ad) (Vz)p(z) — ¢(a)

Rules of inference

R1) From ¢ and ¢ — v, derive ¢ (Modus Ponens)

R2) From ¢ — v(a), derive ¢ — (Vz)i¢(z) provided that a does not occur
in ¢

The first three axiom-schemata, together with the rule of inference Modus
Ponens provide anther axiomatization of statement logic, different from the
one given in 8 6 1, since it uses axiom-schemata Predicate logic is hence an
extension of statement logic. We illustrate this axiomatization of predicate
logic with the proofs of three theorems.

(8-47) Theorem 1. (Vz)p(z) — (Yy)p(y) is derivable for any statement
(Va)p(z) of predicate logic

Proof:
1. (Vz)e(z) — o(a) Axiom-schema 4
where a does not occur in (Ve )p(z)
2. (Vz)p(e) — (vo)e(y) 1, R2 =

This theorem shows that alphabetic variants are equivalent, and hence
that the choice of individual variables is arbitrary.

(8-48) Theorem 2. ¢ — ¢ is derivable for any statement ¢ of predicate
logic.
Proof:
L (= ((p=) =)= (= (p— )= (p—¢))
Axiom-schema 2

2. p—=((p—p)—¢p) Axiom-schema 1
3. (p—=(p—¢))=(p—p) 1,2, Modus Ponens
4. p—(p—¢) Axiom-schema 1

5 p—p 3, 4, Modus Ponens ®



AXIOMATIZING LOGIC 227

As is evident from this proof, to write down actual derivations in this
axiomatic system is rather cumbersome We will use theorem 2 in the proof
of the law of the excluded middle for predicate logic.

(8-49) Theorem 3. (Vz)(p(z) V ~p(z))

Proof:
1. ~p(a)—~p(a) by theorem 2
2. p(a) V ~p(a) 1, definition of disjunction
3. (p(a) V ~p(a) = ((¥— (=) —(p(a) V ~p(a))))

Axiom-schema 1

4. (= (—e))—(p(a) V ~p(a))) 2, 3, Modus Ponens

5 (9 (mh)) = (v2)(p(z) V ~(2)) 4 B2

6 (Yv—(v—1v)) Axiom-schemata 1

7. (Ve)(p(z) V ~o(2))) 5, 6, Modus Ponens |

8.6.4 About completeness proofs

This axiomatization of first-order predicate logic is complete, ie., all and
only valid formulas are provable. Although this claim itself has been proven
formally by Kurt Gddel and later also by Leon Henkin, these proofs are
quite technical and not directly useful for any linguistic purposes. But the
notion of completeness is an important meta-theoretical concept and to get
an impression of its value we discuss the main ideas of Henkin’s proof semi-
formally here.

The main stages of Henkin’s completeness proof are the following three
claims:

(1) if a formula ¢ is not provable in predicate logic, then the singleton set
{~ ¢} is consistent,

(2) every consistent set of statements M is contained in a maximally con-
sistent set M~

(3) every maximally consistent set M/~ has an interpretation making ex-
actly all statements in 3* true.

We explain the three claims and the notions used in them non-technically:
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ad 1) Suppose that ¢ is not provable in predicate logic. We reason in a
reductio ad absurdum argument If {~ ¢} is inconsistent, then, according to
the definition of inconsistency, we can derive some formula v and its negation
hence also the contradiction (~ % & ¢) from it. In that case one can show
that ~ ¢ — (~ 1 &) is provable, and that therefore ~ (~ ¥ & ) — ¢ is
provable. Since ~ (~ 1 & ) is provable as well, it follows by Modus Ponens
that ¢ is provable after all, which contradicts the initial assumption that ¢
is not provable in predicate logic So the additional assumption that ~ ¢ is
inconsistent cannot be right, so ~ ¢ is consistent.

ad 2) A set of formulas M~ is mazimally consistent if M~ is consistent
and for every arbitrary formula ¢ not in M*, M~ U {¢} is inconsistent This
means that there is no formula which can be added to M~ while keeping it
consistent Any consistent set of formulas M can be extended to a maxi-
mally consistent set 1/ which contains all formulas of M. We enumerate the
formulas o1, @2, 3, . in M according to their length and by equal length al-
phabetically and enumerate also all the individual constants. Take Mgy = M
and form My, for arbitrary n from the set M, by adding the formula
¥(a) — (Ve)ip(z) if epy1 is of the form (Ve )y(z); where a is the first indi-
vidual constant in the enumeration which does not occur in ¢p+1 nor in any
of the formulas in M,,. If ¢4 1 is not of the form (Vz)y¢(z) then M, 11 = M.
This procedure produces sequence of consistent sets My, My, M, .. Let M*
be the set consisting only of all elements of any M, Then M, is consistent,
since there is no finite subset which is inconsistent. M ™ is maximal since any
formula not in M™ is excluded because it would make it inconsistent by the
procedure.

ad 3) Every consistent set of formulas has a model in which all formulas
are true. We should describe this precisely for any form of formula, but the
details are not particularly illuminating In case the formula is universally
quantified, the procedure of constructing M guarantees that all assignments
to the quantified variable give formulas which are still in M™.

Now if ¢1,.. ,¢n — 1 is valid in predicate logic, then the proof of
from premises ¢;, .., must exist in our axiomatization of predicate logic,
For if ¢1,...,¢n — v is valid, then ¢1 — (2 — . (pn — ¥)) . ) is true
and hence provable. With Modus Ponens applied n times we prove ¢ from
1y 3 Pn

This sketch of Henkin’s completeness proof may give you a taste of one
of the most important results in predicate logic. It shows that you may
safely switch back and forth between model-theoretic arguments and proofs,
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since they are simply semantic and syntactic counterparts Perhaps the most
important and startling “side effect” of the research on completeness was the
discovery of negative results showing the incompleteness of some systems
To that topic we turn briefly in Section 8 6.6

8.6.5 Decidability

We have seen already that finding a proof for a formula with natural de-
duction rules often requires ingenuity and insight. There is no foolproof
procedure we can prescribe which yields a proof for any provable formula,
In the semantics of the statement logic, however, there is the mechanical
truth table method which always answers the question whether a statement
is a tautology or not In predicate logic truth tables do only part of the
semantic job but we have to consider assignments to variables on possibly
infinite domains as well There is no general procedure which yields a defi-
nite yes/no answer to the question whether a predicate-logical statement is
valid or provable. No success in finding a proof may mean either that we
have to try harder or that the statement is not a theorem, but we never
know which is the case!

If you understand the workings of the Beth Tableaux for predicate logic,
you have seen that the construction of some tableaux may just never come to
an end by closure or counterexample, Neither can we tell from the form of a
predicate-logical statement after how many steps we will either find a coun-
terexample or obtain closure. All we know is that if the statement is valid it
will eventually end in closure This is why the tableau method, even though
it is more mechanical than natural deduction, does not constitute a general
procedure answering ‘ves’ or ‘no’ to the question whether an arbitrary stat-
ment of predicate logic is a theorem. The fact that membership in the set of
theorems of predicate logic cannot be decided for every arbitrary formula by
such a mechanical procedure is called the undecidability of predicate logic.
The statement logic, however, is decidable, because of the existence of the
mechanical procedures of truth tables or tableaux which characterize the
valid statements. Another subsystem of first-order predicate logic, monadic
predicate logic, where predicates can take only one argument, is also decid-
able. The proof of the decidability of monadic predicate logic is based on
two facts: (1) that any monadic formula can be transformed to a special
prenex normal form in which all existential quantifiers precede the universal
quantifiers (see below on Skolem Normal Forms) and (2) that a tableau for
such formulas always ends after a finite number of steps in closure or in a
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counterexample by enumerating the domain. Both claims can be proven,
but to do so here would lead us too far afield.

The set of theorems of predicate logic is not decidable, but it is enu-
merable in a systematic way. The Beth Tableaux method piovides such
an enumeration, since we know that every valid theorem eventually leads
to closure The method does not produce a yes/no answer for any arbi-
trary formula, but it does produce “yes” answers for all valid theorems We
say that this constitutes an effective enumeration of the set of theorems of
predicate logic. Of course, the complement of this set, ie., the set of all
non-theorems or invalid arguments, is not effectively enumerable. For if it
were, we would have a decision procedure saying “yes” to all theorems and
“no” to all non-theorems. The completeness theorem is not in any conflict
with the undecidability of predicate logic, for if an argument is valid, there
is a finite proof of it, but we have no general method of finding such a proof.
‘We return to the relations between decidability, effectively enumerable sets,
different kinds of functions, and computability in Part E.

8.6.6 Godel’s incompleteness theorems

The Peano axioms form the foundation of mathematical number theory We
may wonder whether it is complete with respect to its intended interpreta-
tion, In 1931, just after proving the completeness of predicate logic, Kurt
Goédel proved the startling theorem that Peano arithmetic is incomplete; ie
there is a true statement about natural numbers which is not provable from
the Peano axioms!

The proof of what is known as Gédel’s first incompleteness theorem con-
stitutes one of the most sophisticated proof techniques in logic. Godel’s
first incompleteness result concerned the incompleteness of Peano arithmetic.
His second incompleteness result stated that any consistent axiomatization
which is strong enough to contain number-theoretic representations of proofs
does not yield a proof of its own consistency. The result is shocking when
one realizes that it means that the proof of the consistency of arithmetic is
as questionable as its consistency itself.

The first incompleteness theorem uses the natural numbers simultane-
ously as an object-level system and as its own metalanguage in constructing
a number-theoretic representation of a statement which says about itself
that it is false. The intutitive background stems from the ancient Cretan
paradox of the liar, which is easily expressed in natural language by the self-
referential statement, I am a liar. Anyone making such a statement runs into
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semantic paradoxes, for if the statement is true, he is not a liar and hence
what he says is false, but if the statement is false, then he cannot be a liar
and what he saysis true. The vicious circularity resides in using a semantic
truth predicate (being a liar = not speaking the truth) in the statement
as well as in applying it fo the statement itself The formal proof of the
incompleteness theorem is too intricate to even outline here; the interested
reader is referred to Hofstadter (1979) for a generally accessible exposition
or to Bell and Machover (1977), Enderton (1972), or any other textbook in
mathematical logic for all necessary details,

Another surprising consequence of the incompleteness theorem is that,
since ZFC is effectively axiomatizable, complete with respect to negation
and thought to be consistent, its supposed consistency can never be proven.

Even though the Gd&del results deeply shook the foundations of math-
ematics and logic, mathematical practice never took much notice and pro-
ceeded as usual We may take their metaphysical implications as saying that
mathematical reality is too rich ever to get completely captured in a con-
sistent and complete axiomatization; or we may conclude more soberly that
formalizations have their limits too, and we had better be aware of them

8.6.7 Higher-order logic

There are different ways in which we may enrich the language of first-order
predicate logic by admitting quantification over predicates or functions. The
system we introduced contained quantifiers restricted to individual variables,
which constitute the first-order quantification. But there are many nouns
and verbs in natural language which are not properties of individuals, but
rather properties of properties of individuals. If this vase is blue and blue
is a color, we cannot infer that this vase is a color, but rather that this
vase if of a color The predicate ‘is a color’ cannot properly be applied to
ordinary individuals, but can be applied to properties of them. Properties
and relations of these first-order objects are second-order objects, and so on.
A logical system is an n-order logic when it contains at least one n-order
variable (free or bound). Note that an n-order logic may contain quantifiers
of lower order as well as relations mixing arguments of different orders. The
interpretation of second-order quantifiers must consider all or some assign-
ments of subsets of a domain to the second-order variables, since a first-order
predicate is interpreted by a subset of the domain. The interpretation of ‘is
a color’, for instance, is a set of subsets of colored objects. The semantics of
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second-order quantifiers must hence employ the full power-set of the domain
of the model We will not develop a full-fledged syntax and semantics of
higher-order systems here but discuss some aspects of second-order logic of
interest in linguistic applications

Two examples of familiar notions illustrate the expressive power of second-
order logic.

(1) A well-ordering is an ordering relation in which every non-empty set
has a least element. This is expressed in second-order logic by

(VXN (Fw)Xw — () (Xy& (V2)(Xz& 2z # y) — y < 2)))

(2) The induction axiom in Peano’s axiomatization of artithmetic can be
translated into a second-order formula It says that a set of natural numbers
which contains 0 and is closed under the successor function, constitutes the
set of all natural numbers. In a second-order formula, where X is a second-
order variable and S is the successor-relation, a relation between a set and
a natural number, this is expressed as

(vX)(X(0) & (vy(X(y) — S(X,y)) = (v§)X(¥)))

Any first-order formula can be translated to alogically equivalent second-
order formula which has a special form: it is prenex and all existential n-
order quantifiers precede universal first-order quantifiers. This is called its
Skolem Normal Form (SNF) after the logician Skolem who proved the gen-
eral theorem that such a normal form exists for any first-order formula. We
discuss some examples as illustration of the method. The value of Skolem
Normal Forms lies in their explicit representation of quantificational depen-
dencies of assignments to variables The simplest example is the equivalence
of (Ve)(3y)R(z,y) <= (IF)(Vz)R(z,F(z)). The individual variable y is
assigned a value by a function F depending on the assignment to the uni-
versally quantified z.

To see that (3F)(Vz)R(z, F(z)) implies (Vz)(3y)R(z,y), suppose we
have an interpretation M with an assignment g which verifies (Vz)(3y)R(z,y).
We know that for any a in the domain of 3/ there is at least one b such that
[R(z,y)]™9 is true. We obtain a function f on the domain of M by choosing
one such b for each a and taking f(a) = b. This uses the Axiom of Choice.
Then [(Vz)R(z, F(z))[™* is true where ¢' is exactly like g with f substi-
tuted for . This function f is called a Skolem function, or a choice-function,
for the formula (Vz)(Jy)R(z, y) in the interpretation M. This illustrates the
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general method: an existential first-order quantifier is translated to an ex-
istential second-order function quantifier, which binds a function taking as
arguments all individual variables bound by universal quantifiers preceding
it. One more example of this procedure may suffice as illustration. Suppose
we have a formula

(Fy)(va)(32)(Vu)(vy)(3w) R(y, 2, w)

(presumably other variables occur in the matrix, but they are irrelevant for
the present example). The first existential quantifier precedes the universal
quantifiers, so is already in SNF. Consider the remainder of the formula:

(ve)(3z)(Vu)(vv)(Jw) R(y, z, w)

The second existential quantifier (3z) depends on (Vz), and we translate
the formula to

(3F)(v2)(Va)(Vo)(3w) R(y, F(z), w)

What remains is

(va)(Vu)(Yv)(3w) R(y, F(z), w)

This is logically equivalent to

(3G)(Vz)(Vu) (Vo) R(y, F(z), G(z, u,v))

Here G is a Skolem function with three arguments The original formula is
hence equivalent to the SNF

(Fy)EF)(EEG) (Ve )(Vu)(Vo) R(y, F(=),G(z, u,v))

Linguistic applications of Skolem-functions have been primarily in the se-
mantics of question-answering A multiple question like “Which student got
which grade?” is interpreted as a set of statements which constitute true an-
swers to it, which must give a specific grade for each student. The answer to
the wh-quantifier “which grade” depends on the answer to “which student”.
This dependency can be captured by a Skclem-function and implemented in
a Montague style semantics or in other model-theoretic frameworks
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The same considerations which showed that first-order predicate logic
is undecidable apply to higher-order logics which contain first-order logic.
There cannot be a procedure which answers ‘no’ in every case in which a
formula is not a theorem. But we have seen that the Beth Tableaux method
provided a procedure to enumerate the valid thecrems No such effective
enumeration exists for the theorems of higher-order logics, however. For
if there was such an enumeration, it could be turned into a ‘no’-answering
procedure for first-order logic by replacing names and predicate constants by
appropriate variables, universally quantifying these and negating the entire
second-order formula We know first-order logic is undecidable, so there
cannot be such a ‘no’-answering procedure. So there is no tableau method
for second-order logic, no effective procedure identifying all theorems.

Second-order logic, and hence any higher-order logic, is incomplete. The
proof cannot be discussed here, but it is based on the fact that an incom-
plete fragment of arithmetic can be represented in it, showing that Gddel’s
incompleteness result may be applied to higher-order logics. This means
that there are valid theorems which cannot be proven from any axiomatiza-
tion of higher-order logic. It is an interesting open question just how much
higher-order expressive power can be admitted into first-order logic while
preserving its completeness.

Type theory is the system of logic with quantifiers and variable of any
order. Montague Grammar is based on a type theory but usually employs
only a limited fragment with third-order quantification in the interpretation
of natural language. New research is developing more flexible forms of type
theory which may have important applications in linguistics and computer
science.

Exercises

1. Give a recursive definition of the well-formed strings in the statement
calculus in Polish parenthesis-free notation (Chapter 6, Exercise 13).
Give a proof CENApppp is a well-formed string using your definition.

2. Let f be a function that maps eachnin Z = 0,1,2,3,. .. into 2%"; e.g.,
f(1) = 22 = 2?2 = 4 Given a recursive definition of f, and use it to
compute the value of f(4).

3. Suppose we were to take the successor of any positive number ¢ as
being = + 2. Show that the four Peano Axioms (Section 8 4) would
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then specify the set of natural numbers as the set of even numbers
0,2,4,6,8, ... Would the Principle of Mathematical Induction still be
a reasonable rule of inference when defined over this set?

. Prove by induction that the power set of a set with n members has 27
members, for any finite positive integer n.

. Prove by induction the generalized distributive law of multiplication
over addition; i.e, for all n,a X (by + b6, + . +b,) = (a X by) + (a X
b2)+ +((1an).

. What is wrong with the following inductive proof that all horses are of
the same color? For a set containing only one horse, the base clearly
holds, since that horse has only one color Now assume that all sets of
n horses contain only horses of the same color. We show that it follows
that the same is true of all sets of n + 1 horses Choose a set of n 4+ 1
horses and select any n of them, disregarding the extra horse for the
moment. By assumption, these n horses are all of the same color. Now
replace one of the n horses by the extra horse, forming a new set of
n horses These again, by assumption, are all of the same color, and
so the extra horse is the same color as all the others. Therefore, all
horses are of the same color.

. Consider the following axiomatic system. The “alphabet” consists of
all well-formed formulas in the statement calculus plus the symbols
—,(, and ). There are three axioms:

(A1) p— (¢ —p)
(A2) (p—(g—=r) = ((p—=q) = (p—r))
(A3) (~p—~q) = (g—p)

and two rule schemata:

(R1) From any two expressions of the form A — B and A, we can
derive B (A and B are variables ranging over the wff’s of the
statement calculus).

(R2) From any expression A we can derive B, where B is the result of
substituting a wff = for every instance of some atomic statement,
ie., p,q,retc., in A,
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The following is a proof of p — p in this system:

L (p=@@=r)-((p—>9—(p—r)) (A2)
2 (p~{g—=p) =)= ((p=(@—p)—(p—r))
1, (R2) (Substituting (g — p) for ¢)
3. (= la=P 1)~ p—>(2-7p)~(p—p)
2, (R2) (Substituting p for r)
4 p-(g—p) (A1)
5 p—((g—p)—p)
4, (R2)(Substituting (¢ — p) for q)
6. (p~(g—p)—(—p 3,5, (R1)
7. p—p 4, 6, (R1)

Construct a proof of ~p — (p — ¢) in this system. Hint: Begin by
substituting (~ ¢ —~p) — (p — ¢) for p and ~p for ¢ in Al Tt
can be shown that the theorems of this system are all and only the
tautologous wff’s of statement logic [see, for example, Massey (1970,
pp. 125-159)]. The connectives & and V, which do not appear in this
system, can be defined in terms of ~ and —.

. Reformulate the recursive difinition in Exercise 1 as an axiomatic sys-

tem having the wff’s n Polish notation as its theorems. Find an equiv-
alent semi-Thue system

Construct an extended axiomatic system whose theorems are all strings
in {a}* of length divisible by 2 or by 3. For example, aa, aaa, aaag,
aaaada, aaaaaada are theorems, but ¢, aaaaa aaaaaaa are not. Can
you see why there is no equivalent axiomatic system without an aux-
iliary alphabet?

Prove in the axiomatization of predicate logic given in Section 6.3
the following theorems. You may assume that all predicate logical
tautologies are provable in this axiomatization.

(a) P(a) - (3=2)P(z)
(b) from premise (Vz)(¢ — P(z))) that (¢ — (Vz)P(z)) if = does

not occur in ¢

(¢) from premise (Vz)(P(z) — Q(z)) that (Vz)P(z) — (Vz)Q(z)

If the deletion of a certain axiom from a negation complete system
malkes it not negation complete, then the axiom is independent. Why?
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The following systems all satisfy Peanc’s axioms under appropriate
interpretations. For each case state what interpretation must be given
to ‘07, ‘is a natural number’, and ‘is a successor of’.

(a) 0,~1,-2,-3,. ..
(b) 5,10,15,20,25, ..
(c) +1,-2, 44,8, +16,~32, .

Consider the following formal system W,

Primitives: set P of objects called “points”, a set L of objects called
“lines”.

Azxioms:

(1) every line is a set of points; i.e. L € p(P)

(2) there exist at least two distinct points

(3) if p and ¢ are distinct points, then there is one and only one line
of which p and ¢ are both members.

(4) if I is a line, there exists a point not in {

(5) if  is a line, and p is a point not in I, then there exists one and
only one line containing p and disjoint from 1.

(a) Find a model for W in which P has exactly four objects.

(b) Prove from the axioms that every point is in at least two distinct
lines

(¢) Prove that the empty set cannot be a member of L.

(d) Show that there can be no model for W in which P has exactly
two members.

(e) If we added as sixth axiom “every line contains exactly one point™
would the resulting system be consistent?

Give the Skolem normal forms for the following formulas:






Appendix B-I

Alternative Notations
and Connectives

The logical language we have studied in this chapter is the best known
classical system of logic of statements. There are various alternative symbolic
notations for the connectives we introduced, the most common of which are

listed below.

Alternative notation for connectives

our symbol | alternative(s)
negation ~ -, -, P
conjunction | & A, e
conditional | — D (called ‘horseshoe’)
Table BI1.-1:

Furthermore, there are two connectives which we have not introduced, as
they are not part of the system most commonly used. One, called “Quine’s
dagger”, | is sufficiently powerful to be the only connective in a system
equivalent to the one given. Its truth table is shown in (B II.-2).

239
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PIlQ|PLQ
1]1] o
1{0] o0
0oj1] o0
0o} 1
Table B.1-2:

Its nearest English correspondent is neither ... nor. As an interesting ex-
ercise one can show that negation can be defined in terms of this connec-
tive, and then that disjunction can be defined in terms of negation and this
connective. We have already proven (Chapter 6, Exercise 7) that the five-
connective system can be reduced to one containing just V and ~. Therefore
| suffices alone for the five connectives

Similarly, there is another connective, written as |, which is called the
“Sheffer stroke”, whose by the truth table is as follows:

PIQIPIQ
11| 0
o1 1
110 1
oo 1

Table B.1.-3:
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Kleene’s Three-valued Logic

The logic of statements and the predicate logic are two-valued, since there
are but two truth values and every formula is either true or false. This is
based on the assumption that the semantic assignments used in an inter-
pretation are total functions. In some linguistic applications and especially
in computational contexts, that assumption seems much too strong, since it
requires that there is a clear semantic procedure which decides for any given
z whether [i(z)] is true or false for any arbitrary . But if we allow a partial
interpretation function of predicates, such a procedure may not always exist
since its value on ¢(z) may be undefined for some z. Kleene developed a
semantics for predicate logic with such partial functions which yield values
true or false when defined, but which may also be undefined. Since it has
certain linguistically useful aspects, we discuss it here briefly.

In case a partial function is undefined for an argument it may be because
we lack information, or we may take it to mean that we disregard its value
as it is does not matter to our interpretation. The following truth tables
represent the strong Kleene semantics for the connectives, where 1 is ‘true’,
0 is ‘false’ and * means the truth value is undefined.

241
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pi~pllpla|p&kq|pPVaip—glpeog
17 0 1)1 1 1 1 1
0y 1 ji1j0} 0 1 0 0
* | % 1] x * 1 * *
011} O 1 1 0
001 O 0 1 1
01 % 0 * 1 *
x| 1 * 1 1 *
x| 0 0 * * *
x| x * * *

From this table we can see that if sufficient information is available to
verify or falsify a statement, the undefined part does not alter it But if the
value of a part must be known to determine the value of a complex statement,
the latter remains undefined until we know the value of its parts This means
that the value of a complex statement may be determined even when we do
not know the value of all of its parts For instance, as soon as we know
that the antecedent of a conditional is false, we know that the conditional
is true, irrespective of what the consequent may be Kleene’s operations
are monotonic in the sense that any valuation function preserves its initial
assignments when the domain is extended and new objects are added to
the interpretation of the partial predicates If we understand the undefined
cases as arguments of which we have not yet determined the value, it is
an unnatural consequence of these truth tables that a classical tautology
such as p V ~ p remains undefined until we know the value of p There
are ways to escape such consequences and preserve the classical tautologies
and contradictions in a partial truth definition, but we cannot go into such
systems here.

Three-valued logics have primarily been applied in linguistics in semantic
theories of presuppositions There is a lively controversy surrounding the
analysis of presupposition in philosophy and linguistics, which cannot be
surveyed here. For illustration we define this notion in semantic terms:

Any statement pis a presupposition of a statement ¢ iff if p is not true
(but false or undefined), ¢ is undefined.

The truth of a presupposition p is in some sense an assertability condi-
tion for ¢. In our everyday use of natural language we rely uncommonly
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often on such presuppositions. We use names to refer to people under the
assumption that they exist; we use definite NPs like the students who passed
their ezams with the common understanding that we mean to say something
about a particular non-empty set of students. We also presuppose that it is
raining, when we say John knows it is raining or Jane does not regret that it
is raining. Characteristic of presuppositions is that if p is a presupposition
of g, p is also a presupposition of ~ ¢. This means that presuppositions are
preserved under negation, and this is captured in the fact that * is preserved
under negation according to the truth tables above. It is a major research
question how the presuppositions of complex sentences are to be charac-
terized in terms of the presuppositions of its component sentences and this
is called the projection-problem of presuppositions. Kleene’s system goes a
long way, since it recognizes that the presuppositions of a complex sentence
may not be just the sum of the presuppositions of its parts. Presuppositions
of sentences may for example be cancelled in sentences of which they are a
constituent. Consider for instance the conditional If there is a president of
the U.S., the president is elected. This sentence contains two sentences (1)
There is a president of the U S, and (2) The president is elected (1) is a
presupposition of (2), since if (1) is false, (2) must be undefined, because
it does describe anyone in that case. The Kleene interpretation of the con-
ditional captures this nicely, since p — ¢ is true even when ¢ is undefined
and p is false. So the entire conditional sentence does not have (1) as pre-
supposition. But Kleene’s interpretation can be seen to lead to problems in
the following sentence (3) If revolutions are unconstitutional, the president
is elected. Now (1) does seem to be a presupposition of (3), since if (1) is
false, the consequent of (3) is undefined and hence (3) must be undefined

The antecedent may, however, very well be false, when (1) is false, since they
are independent. If the antecedent is false, (3) is true. But if there is an
assignment making (3) true and (1) false, (1) cannot be a presupposition of
(3). This seems wrong and not in accordance with our intuitions. Generally
speaking, in a conditional with a contingent antecedent whose truth value is
independent of the presuppositions of its consequent, the presuppositions of
the consequent are incorrectly cancelled in the Kleene interpretation of the
connectives., There are ways to mend this problem, but none has yet found
general acceptance. The suggested further reading for this chapter contains
some main references to the literature on presuppositions.






leview Exercises

1. Suppose that P «— @ is true, what is P v ~Q?

(@) » (b) pog
q u~qgVDp
(p&q)Vr

() p—(g—r~~r) (d) pvy
p&’VT var
..Nq Nq

Sar

(e) p&(q—»(rwas)) (f) N(pVNq)

q rvp
Sop&(svr) cog&r
2. Prove:

(8) pP—yq (h) r— (pVs)
p—(g—r) g—(svi)
g— (r—s) ~ s

S.p— s So(vp & ~t) o (v &

(i) p-q (G) »pvg

Nq&r T&Np

Jo~p S g
(k) pe(~g—r)

3. Show that the following set of statements is inconsistent

(a) r&(pVvy)
(b) ~(p&r)
(c) ~(g&r)
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Does conjunction distribute over conditionals? Le.,is (p& ¢) — (p& r)
equivalent to p& (¢ — r)?

Translate the following expressions to predicate logic.

(a) All horses are quadrupeds, but some quadrupeds are not horses.
(b) Distinct utterances must have distinct phonemic transcriptions.
(c) Not all trees are deciduous

(d) Some politicians are honest men

(e) No ducks are amphibious

(f) Every cloud has a silver lining

(g) Only Rosicrucians experience complete happiness

(h) Everything I like is immoral, illegal or fattening

(i) I like anything that is immoral, illegal or fattening

(j) Everyone wants everyone to be rich

(k) Everyone wants to be rich

For each of the following formulas give an interpretation in a model
which makes the formula false.

(2) ((3=z)F(z) & (=)G(z)) — (3=)(F(z) & G(z))
(b) (Vz)(3y)(V2)H (z,y,2) — (3y)(Va)(V2)H(z,y,2)

Formalize and prove with natural deduction

(a) All linemen for the Green Bay Packers weigh at least 200 pounds.
Mathilda weighs less than 200 pounds. Therefore, Mathilda is
not a lineman for the Green Bay Packers.

(b) All cabdrivers and headwaiters are surly and churlish Therefore,
all cabdrivers are surly.

Construct Beth Tableaux for

(a) [(3=)F(z) — (Vo)G(z)] = (V2)(F(z) — G(=))
(b) *(Ve)(G(z) & (~ F(z} v H(z))) == (Ve)(G(z) & (I=)(F(z) —
(Vo) H(<))
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Chapter 9

Basic Concepts of Algebra

9.1 Definition of algebra

An algebra A is a set A together with one or more operations f;. We may
represent an algebra by writing

(9‘1) A:<A7 fl? f2: ”-'afn>
or by using particular symbols for the operations, such as
(9-2) A=(4,+ x)

The set A may finite or infinite, and there may be either a finite or an infinite
number of different operations. However, each operation must be finitary,
ie unary, binary, ternary .... Each n-ary operation must be a well-defined
operation, i.e. defined for all n-tuples of elements of A and yielding a unique
element of A as a value for each n-tuple (cf. the mapping condition for
functions in Section 2.3).

These requirements on the operations can be stated in the form of two
axioms which each operation in an algebra must satisfy. For simplicity, the
axioms are stated in terms of a binary operation o; their generalization to
arbitrary n-ary operations is straightforward.

Axiom 1. Closure: A is closed under the operation o, i.e. for any a,b € A
there is an element ¢ € A such that aob = c.
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Axiom 2. Unigueness: Ifa=a' andb =1 thenaob=a ob.

Closure and uniqueness in appropriate sets are ordinarily considered the
minimal requirements for well-behaved operations. Admitting partial op-
erations in an algebra is common in universal algebra and category theory,
which are beyond the introductory scope of this book. (See Goldblatt (1979),
Gratzer (1971), MacLane and Birkhoff (1983) and for discussion in the con-
text of Montague grammar especially Janssen (1983).) We shall not be
concerned with operations that do not satisfy closure and uniqueness Vari-
ous kinds of algebras can be obtained by adding further axioms to these two
basic requirements. We will study a number of such algebras in this chapter.

We have already encountered many structures which are algebras in this
sense. The syntax of the logic of statements, for instance, can be represented
as an algebra based on the set of well-formed statements (S) and the con-
nectives as operations: A = (5, ~, &, V, —, « ). Similarly, the semantics
of the logic of statements can be considered as an algebra, based on the set
of truth values and the truth tables, interpreting the connectives as opera-
tions: B = ({0,1}, ~, &, V, —, « ), where the connectives are understood
as operations on truth values, not as syntactic symbols. We will see below
that there is an important connection between the syntactic algebra and the
semantic algebra of such formal languages, which serve as models for the
syntax and semantics of natural languages.

DEeriniTION 9.1 An algebra B is a subalgebra of an algebra A =
(A, ff, f&, ..., f2) if B satisfies the following conditions:

B= <B3 lea f2B3 -:an>; where
(i) BC A

(ii) For every i, f? = fA[B; ie., fP yields the same values as fA when
restricted to elements of B.

(iii) B is closed under all operations fP

9.2 Properties of operations

In Section 1.8 a number of properties of operations on sets were introduced.
We repeat certain of these definitions here as properties of operations in
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algebras for easy reference and add a number of properties of operations
which are frequently encountered in algebraic operations

An operation o from Ax A to B is associative if and only if for all a, b, ¢ in
A, (aob)oc =ao(boe). In an associative operation it is immaterial in what
order repeated applications of it are made. Set-theoretic umion and inter-
section and function composition are associative, as are logical conjunction
and disjunction Examples of non-associative operations are set-theoretic
difference and division of real numbers.

An operation o from A x A to B is commutative if and only if for all a,b
in A, aob=boa Familiar commutative operations are logical conjunction
and disjunction; set intersection and union; and addition and multiplication
of real numbers Some non-commutative operations are subtraction, division
and function composition

An operation o from A X A to B is idempotent if and only if for all a
in A, aoa = a. Set-theoretic union and intersection are idempotent, as
are logical conjunction and disjunction. But most of the operations we have
encountered are not: addition, multiplication, subtraction, division, relative
complementation and function composition are not idempotent operations.

For two operations o7 and oy both from A X A to B, o distributes over oy
if and only if for all a,b,¢in 4, a0y (boge) = (ao01b) 02 (acyc). We have seen
that set-theoretic union distributes over intersection and vice versa. But,
although arithmetic multiplication distributes over addition (a X (b + ¢) =
(a x b) + (a x ¢)), addition does not distribute over multiplication, since in
general a4 (bx ¢) £ (a+0b) x (a+¢).

9.3 Special elements

The next three notions are special properties which certain members of a set
may have with respect to some operation defined on the set.

Given an operation o from A X A to B, an element ¢; is a left identity
element of o if and only if for all a in A, ¢; 0 a = a. Similarly, e, in A is a
right identity element of o if and only if for all a in A4, aoe, = a. As we
saw in Section 24, for a function F' : A — B, if the operation o denotes
function composition, then idg o F = F and F oidg = F. Thus for the
operation of composition of functions the identity functions idg and id4 are
respectively a left and right identity element. Subtraction defined on the set
of integers and zero has a right identity element, namely zero itself, since
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for all », n ~ 0 = n. But there is no left identity element; i.e., there is no
element m in the set such that foralln,m—n=mn

For commutative operations, every left identity element is also a right
identity element, and vice versa. To see this, consider a left identity ¢; . By
definition (Va € A)(e;oa = a). Because the operation is commutative, ¢;0a =
aoe =a,forall a € A, and so ¢ is also a right identity element. Similarly,
every right identity is also a left identity for commutative operations. An
element that is both a right and left identity element is called a two-sided
tdentity or simply an identity element. While commutativity of an operation
is a sufficient condition for every right or left identity to be two-sided, it is
not a necessary condition; a two-sided identity may exist for some operations
that are not commutative. An example of this is found in the operations of
composition of functions defined on some set of functions ¥ = {F,G, H,.. },
each being a function in A If id4 is one of these function, it is a two-sided
identity, since for each ¢ € F, idg oz = ¢ o id4 = 2, but the operation of
composition of functions is not in general commutative. For addition the
two-sided identity is 0, but for arithmetic multiplication it is 1, since for
aln,n+0=04+n=nandnx1l=1xn=mn Given some collection
of sets, the identity element for intersection is U, the universal set, and for
union it is the empty set (verify!). Relative complementation has §§ as a right
identity but in general it has no left identity. It is provable that if for a given
operation a two-sided identity exists, then this element is unique

Given an operation o from 4 X A to B with a two-sided identity element
e, a given element a in A is said to have a right inverse a, if and only
if aca, = e. A given element a in A is said to have a left inverse a; if
and only if gjoa = e If a7} is both a left and a right inverse of a, ie.
aloa=aca"! =e,then a™! is called a two-sided inverse of a. When the
term ‘inverse’ is used without further qualification, we mean that it is two-
sided. Note that inverses are always paired in the following way: b is a right
inverse of a if and only if a is a left inverse of b, since both statements follow
from aob = e. One should observe also that the question of the existence of
an inverse can be raised with respect to each element in the set on which the
operation is defined. In contrast, an identity element, if it exists, is defined
for the operation as a whole. To illustrate, let addition be defined in the set
Z of all positive and negative integers and zero. As we have seen, 0 is the
two-sided identity element for this operation. Consider now the number 3,
and let us ask if it has an inversein Z. Is there an element z in Z that when
added to 3 yields 0? The number —3 is such an element, and, furthermore, it
is both a right and a left inverse, since 3+ (—3) = (~3) 43 = 0. From this it
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also follows that 3 is a two-sided inverse of —3. For addition, every member
of Z has an inverse, since to each integer z, except 0, there corresponds a
negative integer —z, such that z+(—z) = 0. The number 0 is its own inverse,
since 0 + 0 = 0.

Given an operation o from A x A to B, an element 0; is called a left
zero of o if and only if for all a in A4, 0; 0 a = 0; Similarly, 0, is called a
right zero of o if and only if for all ¢ in A, a 00, = 0,. An element that
is both a left and a right zero is called a two-sided zero, or simply a zero
This terminology derives from the fact that the number zero functions as
a zero element in arithmetic multiplication, There is no zero element for
subtraction or division. The empty set is a zero element for set intersection
and the universal set I/ is the zero element for set union.

9.4 Maps and morphisms

Relations between algebras may be described by functions mapping one al-
gebra in another; F : A — B. Such a map is injective if some function
F: A — Bis one-to-one, ie. F(a) = F(b) impliesa =b F: A — Bis
surjective (or onto) if {F(a)|a € A} = B. And F: A — B is bijective if F
is both injective and surjective (or one-to-one and onto). A morphism is a
mapping F : A — B conceived of dynamically as a transformation process
of AintoB T A =(A,fi,...,f.) and B = (B,g91,...,9n) then A and B
are isomorphic if and only if there is a one-to-one correspondence between
their operations (we will assume for simplicity that the correspondence is
f; < 9;) and a one-to-one and onto function ¢ mapping A onto B such that
forallz,y,2, ..,in Aandalli<n

gi(w(z)s0(¥),p(2),. ) = p(filz,y,2,. ).

A homomorphism is a correspondence between algebras with all the prop-
erties of an isomorphism except that the mapping from A to B may be
many-to-one; the set B may be smaller than the set A.

An automorphism of an algebra A is an isomorphism of A with itself.
The identity mapping (¢(z) = &) always provides an automorphism for any
algebra (the “trivial” automorphism); the question generally asked of a given
algebra is whether it has any other (“non-trivial”) automorphisms.

For instance, let A = (5,~,&,V,—,« },and B = ({0,1},~,&,V,—, < ),
as defined above in 9.1.
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Any assignment of truth-values to the statements in S is a homomor-
phism F: A — B. ie distinct statements p,¢ may be mapped to the same
truth-value, but

Fp&kq) = F(p)& F(q)
F(pvg) = F(p)V F(q)
F(p—gq) = F(p)— F(q)
F(pe—gq) = F(p)« F(q)
F(~p) = ~ F(p)

Construction of truth tables for complex statements can now be under-
stood as based on the fact that, given an assignment to the atomic state-
ments, the composition preserves the homomorphism from the syntactic al-
gebra to the semantic one. This can be considered to be the algebraic coun-
terpart of the Principle of Compositionality, often also espoused in one form
or another for the syntax and semantics of natural languages. The principle
requires the meaning of a complex expression to be a function of the mean-
ing of its constituent parts and the way in which they are put together (See
also Ch 13). Homomorphisms can, of course, relate semantic algebras, e g.
by embedding a given interpretation into an extension of that interpreta-
tion. Extensive applications are made of these embeddings, for instance, in
semantic theories based on dynamic interpretations and in Kripke semantics
(see Ch 12).

A simple example of an algebra A’ which is isomorphic to A4 is a syntax of
the statment logic which uses instead of p, ¢, r etc for statements, a different
alphabet, say the Greek letters ¢, ¥, x etc , and possibly alternative symbols
for the connectives If alphabetic variance is the only difference between two
logical systems they are isomorphic from an algebraic point of view.

Throughout the remainder of this part of the book we will encounter more
interesting mathematical examples of homomorphisms and isomorphisms.

Category theory, a relatively recent and flourishing development of alge-
bra, studies properties of algebras that can be expressed in terms of mor-
phisms. It provides a very abstract and universal perspective on the foun-
dations of set theory, algebra and logic, in which cross-fertilization yields
many new insights and results. The interested reader is referred to Gold-
blatt (1979) for an introduction.
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Exercises

1. Consider the operation of intersection defined on some arbitrary col-

lection of sets.

(a) Is there a two-sided identity element?
(b) Which sets have an inverse element?

2. Given an arbitrary collection of sets, what elements, if any, have in-
verses with respect to the operation of a) union and b) symmetric

difference?

3. If for a given operation in an algebra a two-sided identity exists, it is
unique Prove this for the operation of set-theoretic union.






Chapter 10

Operational Structures

10.1 Groups

A group G is an algebra which consists of a set G and a single binary
operation, which we will usually write as o, but which may sometimes be
written + or X : G = (G, o). To be a group, G must satisfy the following
conditions, the group axioms:

G1: G is an algebra (i e. o completely defined and G closed under o).
G2: o is associative.

G3: @ contains an identity element,

G4: Each element in G has an inverse element.

Note that a group operation does not have to be commutative, A group
whose operation is commutative is a commutative or Abelian group.
We are already acquainted with some models of these group axioms.

a. The positive rational numbers with multiplication form a group: (G1)
the product of any two positive rationals is a unique positive rational,
(G2) multiplication is associative, (G3) 1 is the identity element, and
(G4) every positive rational p/q has an inverse g/p. Furthermore this
group is Abelian since multiplication is commutative.

b. The integers {0,1,2,3} form a group with the operation of addition
modulo 4. (The sum of ¢ and y modulo 4 is the remainder after
dividing ¢ + y by 4; eg. 3 + 7 = 2 (modulo 4) ) The verification of
this will be left to the reader.

257
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c. The set of all even integers under addition forms a group, but the set of
all odd integers does not, since it does not contain an identity element,
and it is not closed under addition,

d. The group of ‘symmetries of the square’ is an example of a different
sort, since the elements of the set for this group are not numbers but
the following rigid motions of a square:

R - a90° clockwise rotation about its center O
R’ - a 180° clockwise rotation about its center O
R" - a 270° clockwise rotation about its center O
I - a 360° clockwise rotation about its center O
H - areflection in the horizontal axis through O
(ie fiipping the square about the horizontal axis)
V - areflection in the vertical axis through O
D - areflection in the diagonal in quadrant I and III
D' - areflection in the diagonal in quadrants I and IV

The group operation is the successive performing or composition of any
of these motions: eg. Ro R = R'. This group is not commutative, since, for
instance, R o H = D while H o R = D',

The best way to compute the products of this group is to cut out a
square of paper and label its sides so that the manipulations can actually be
performed. First consider the front of the square:

D A

Figure 10-1.

Performing the operation defined as R will give the orientation shown in
Figure 10-2:
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Figure 10-2.

Starting from the original orientation and performing R’ gives the orien-
tation shown in Figure 10-3; if we instead perform R', the result is as shown
in Figure 10-4.

A D D C

Figure 10-3. Figure 10-4.

Performing the operation I from the original starting point of Figure
10-1, or from any other configuration, does not change the orientation at
all; in fact 7 is the identity operation for the group. The simplest way to
keep track of these operations is to label the front of the square as in Figure
10-5.

RI

Figure 10-5.
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At this point, the reader can verify such products as RoR = R/, RoR' =
R',RoR =1

To label the back of the square, perform each of the reflections, starting
each time from the I position, and label the side that comes out on top with
the name of the operation. The relevant axes are as shown in Figure 10-6:

for V
L for D
I
——1for H
for D'
Figure 10-6.

The back of the square will then be labelled as in Figure 7, with V" labelling
the back of the same side that I labels on the front:

v

H

Figure 10-7.

Then the rest of the products can be verified;eg, HoR' =V ,VoD =
R. Note that when you have, for instance, performed V' and then want to
perform D, you must find what is then the appropriate diagonal axis and
reflect the square (ie., turn it over) through that axis; the product is R,
since the two operations in succession lead to the same orientation that R
leads to directly.

It is recommended that such a square actually be constructed since this
example recurs in several subsequent illustrations and problems.

From the group axioms we can prove the following elementary theorems.
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TugoREM 10.1 In any group, the equations xoa = b and aoy = b have the

unique solutions ¢ = bo a™! and y = a™! o b respectively [
Proof:
(boal)oa = bo(a'oa) associativity
bo(aloa) = boe def inverse
boe = b def identity

Hence (boa™')oa=b,s0 z = boa™! is a solution of z ca = b. 1t is also the
unique solution, since

z=gzoe=zo(aca!)=(zoa)oa’

Soif zoa = b, substitute b for (zoa) in the last member of the equality above
and observe that = b 0 a~!, Similarly for the unique sclution y = a o b
toaoy =b. =

The theorem provides an answer to the following general question: Con-
sider any two elements of a group, a and b (they need not be distinct); will
it be possible to find in the group more elements z such that z 0 a = 5?7
The theorem says that there will always be exactly one such an element,
namely whatever element is obtained by performing the operation on b and
the inverse of a.

The first part of the proof shows that 5 0 a=! is indeed such an z, by
putting o ™! in for z in the product z o a@ and showing from the group
axioms that the result must indeed be 5. But this does not show that boa™
is the only such z. The second part of the proof does this, in an indirect way.
First it is established that for any element z of a group, = = (z 0 a) o a™!.
Now consider an arbitrary element z for which z 0 @ = b. (We know already
that there is at least one such element, but so far there could be more than
one ) Then since z = (z 0 a) c a™! for any z, if we have an z for which
zoa = b, we see that for such an z we can deduce z = boa™!; ie., any
solution of z 0@ = b must be identical to the original solution, namely boa™!,
which is to say that the solution is unique.

Cororvary 10.1 A group has only one identity element. =

Proof: By the group definition, there is at least one solution to eoz = e,
ie. £ = e. By Theorem 10.1, this is the only sclution. [
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COROLLARY 10.2 A group has only one inverse a~! for each elementa ®

1

Proof: By the group definition, there is at least one solution ¥ = a™* to

aoy = e. By Theorem 10 1, this solution is unique. [}

THEOREM 10.2 A group with 4 or fewer elements must be commutative B

Proof:
case (i): 1 element - trivial
case (ii): 2 distinct elements e and a,

eoa=aoce = a (identity)
case (iii): 3 distinct elements e, a and b,
eoa=aoe= a (identity)

eob=boe=>b (identity)

But ac b # a because then b would equal e; and ao b £ b because then a
would equal e; hence ac b = e. Similarly for boa henceaocb=boa=c¢.

case (iv): 4 distinct elements e, a, b and ¢,
eca=aoe=a,eob=boe="band eoc=coe=c (identity)

Consider any two non-identity elements, e.g. a and b The product aob
cannot be either a or b, as above. If aod = ¢, then 6 = a™! and hence
boa = e also. If aob = ¢, then boa cannot be a or b (violation of uniqueness
of identity element), or e; in the last case b would be the inverse of a, so
aob = e, but we already have ao b = ¢, Hence bo a = ¢ also. In either case
the group is commutative. [ |

From the fact that the theorem only mentions up to 4-member groups,
it should not be inferred that groups with 5 or more members may be non-
commutative. In fact, it is provable, but tedious, that all 5-member groups
must also be commutative. Groups with 6 or more members need not be
commutative, however.

The operation on a finite group is often given by a matrix. Rows and
columns are labelled with members of the set. The value of a0 b is placed
in the cell at the a** row and the b** column. Because of its similarity to
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the multiplication table of the natural numbers less than 10, such a matrix
is generally referred to as a ‘multiplication table’. Finding the value of a0 b
is called ‘multiplying a by 5’ even when the operation bears no resemblance
to the operation of multiplication A word of caution: when constructing
an example of a finite group by its multiplication table, it is quite easy to
check for closure, the identity element and inverses by direct inspection of
the table. It is also straightforward to tell from the table whether a group
is commutative or not, i.e the table is symmetric around the diagonal. But
a group operation must also be associative, and there is no simple way to
check associativity by inspection of the table; rather, one has to check each
instance of the operation

10.2 Subgroups, semigroups and monoids

We define a subgroup G’ as a subalgebra of G which is itself a group We
give the following examples of subgroups as illustration.

a. The group of even integers with addition is a proper subgroup of the
group of all integers with addition.

b. The group of all rotations of the square ({I,R,R', R"},0) where o is
composition of operations as described above, is a subgroup of the
group of all symmetries of the square as in Example (d) above.

c. The system ({I, R, R'},0) is not a subgroup of the group of all symme-
tries of the square; it is not a group and it is not even a subalgebra of
the original group, because the given set {I, R, R'} is not closed under
the operation o.

d. The set of all non-negative integers with addition is a subalgebra of the
group of all integers with addition, because the non-negative integers
are closed under addition. But it is not a subgroup because it is not
itself a group: it is associative, and has an identity element (0), but all
of the members of the set except 0 lack inverses.

The order of any group G is the number of members in the set G. An
important theorem of group theory states that the order of any subgroup
exactly divides, ie. without remainder, the order of the parent group. For
instance, only subgroups of order 1, 2 and 4 are possible for a 4-member
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group, these being the integral divisors of 4. The theorem does not guarantee
that every subset having the proper number of members will give rise to a
subgroup - only that if a subgroup exists, its order is a divisor of the order
of the group. An immediate consequence of this theorem is that a group
G of order 5 has only the trivial subgroups of order 1 (the identity element
itself) and of order 5 (itself) as subgroup, since 5 has no other divisors.

A second theorem, of which we omit the proof since it uses notions that
are not introduced here, states that if a group is finite, then all its non-empty
subalgebras are also subgroups The practical consequence of this theorem is
that in checking whether a given system is a subgroup of a finite group, one
only needs to verify that the given subset is not empty and is closed under
the group operation, ie. is a subalgebra. If these two conditions are met,
there will necessarily be an identity element and inverses for each element.
Example (b) above is such a case, Example (d) above shows the failure of a
subalgebra to be a subgroup in an infinite case.

A third theorem about subgroups will be proven here.

THEOREM 10.3 The intersection G' N G" of two subgroups G’ and G” of a
group G is itself a subgroup of G. [

Proof:

(i) If a,b are in G' N G, they must both be in both G’ and G”. G’ and
G’ are groups, so ao b is in both, hence ao bis in G' N G”.

(i) faisin G' 0 G, it is in both G’ and G”. G’ and G" are groups, so
1

a~! is in both, hence G’ N G” must contain a=*.
iii) Since G' an are groups, they both contain e; hence must
(iii) Since G’ and G” groups, they both contain e; h G'nGg"

contain e. =

There are some useful algebraic structures which are weaker than groups
and satisfy only some of the group axioms.

A semigroup is defined as an algebra which consists of a set and a binary
associative operation (G1 4 G2). There need not be an identity element nor
inverses for all the elements.

A monoid is defined as a semigroup which has an identity element (G1;
G2, G3). There need not be inverses for all the elements. An Abelian monoid
is a monoid with a commutative operation.



SUBGROUPS, SEMIGROUPS AND MONOIDS 265

Given these definitions, any group is a subgroup of itself, and a semigroup
and a monoid as well. Every monoid is a semigroup, but not vice versa. Here
are some telling examples.

a. The set of all non-negative integers with addition is an Abelian monoid.

b. The set of all positive integers (excluding zero) with addition is a semi-
group but not a monoid.

Since both ordinary addition and ordinary multiplication are associative,
it can be deduced that addition and multiplication modulo any n are also
associative. Therefore any systemn with addition or multiplication, either
ordinary or modulo some n, is a semigroup if it is closed and is a monoid if
it also contains the appropriate identity element 0 or 1.

c. The set of all positive even integers with ordinary multiplication is a
semigroup but not a monoid, since 1 is missing.

d. The set of all positive odd integers with ordinary multiplication is a
monoid. (Closed since multiplication of odd integers yields only odd
integers)

e. The set {0,1,2, 3,4} with multiplication modulo 5 is a monoid.

f. The set of all multiples of 10 which are greater than 100, i.e.
{110,120,130,...}
with ordinary addition is a semigroup, but not a monoid.

None of the above examples are groups; in each example, one or more
elements lack inverses. Note that where multiplication (modulo n) is involved
no system which contains 0 can be a group, since 0 has no multiplicative
inverse.

Submonocids are defined analogously to subgroups. M is a submonoid of
the monoid M’ iff M is a monoid and its identity element is the same as
in M. The stipulation that the identity elements must be the same is not
necessary for subgroups, since there it is an automatic consequence. It is
possible to find subsets of a monoid that themselves form monoids, however,
but with different identity elements.
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10.3 Integral domains

An integral domain D is an algebra consisting of a set D and two binary
operations called ‘addition’ and ‘multiplication’, written @ 4+ b and a - b,
respectively; D = (D, +, }, which satisfies the following axioms:

D1: D is an algebra.

D2: The set D with the operation + forms an Abelian group with identity
0.

D3: The set D with the operation - forms an Abelian monoid with identity
I,and 1+ 0

D4: (Cancellation Law) If ¢ £ 0 and ¢-a =¢ b, then a =b.

D5: (Distributive Law) For all a,b,¢in D, a (b+¢) = (a - b) +(a ¢).

The assumption in D3 that 1 # 0 eliminates the ‘trivial’ case of the set
containing only 0, which would otherwise be an integral domain under ordi-
nary addition and multiplication. Axiom D4, which says that multiplication
obeys the cancellation law except in the case of the additive identity 0, in
effect recaptures a great deal of the structure lost by not requiring multi-
plicative inverses. In fact, whenever D is a finite set, Axiom D4 insures that
every element except 0 has a multiplicative inverse

Note that the distributive law is not symmetric between - and +; it will
not in general be tiue that a4+ (- ¢) = (a+ b) (a+ ¢). Aside from the
requirement that 1 £ 0, the distributive law is the only axiom which requires
there to be some connection between the two operations. Because integral
domains have two operations, we need to introduce some new notation for
inverses. In a group, where there is only one operation, a! unambiguously
designated the inverse of a with respect to the given operation. For integral
domains, we will use a~! to designate the multiplicative inverse of a (if
it has one; since not all elements need have inverses, this notation can be
used only where it can be shown that an inverse exists). We will introduce
the notation ~a to stand for the additive inverse of a, which by D2 always
exists. Thus by definition —a is the element which when added to a gives 0.
For all of the infinite models mentioned below, this notation corresponds to
our ordinary use of the minus sign, but it would be advisable to regard that
correspondence as accidental (although clearly it is not) and throughout this
section simply read ‘—a’ as ‘the additive inverse of a’.

In integral domains, as in ordinary arithmetic, the minus sign is also
used as a binary operator, corresponding to the operation of subtraction:
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We can define b — a as that element z such that x + @ = & By Theorem
10.1 for groups the equation z + a = b has the unique solution b + (—a), so
the operation b — a is well defined. Thus the two uses of the minus sign are
closely related We could also have defined subtraction first, and then define
—a as 0 —a There is never any ambiguity, since subtraction is a binary
operation, whereas the sign for the additive inverse is always prefixed to a
single element

The standard model of an integral domain is the set of all integers, pos-
itive, negative and 0, with ordinary addition and multiplication. Other ex-
amples of infinite integral domains are the set of all rational numbers and
the set of real numbers, again with ordinary addition and multiplication. A
less obvious model is the set of all rational numbers whose denominator is 1
or a power of 2. Still other models can be constructed. None of these sets
form a group with multiplication, because there is no multiplicative inverse
for 0 in any of them, i.e no number which when multiplied by 0 gives 1. In
the domain of the rationals or of the reals, 0 is the only element without a
multiplicative inverse; in the domain of the integers, however, none of the
elements except 1 itself has a multiplicative inverse.

In Section 8 5.5, we introduced an axiomatic characterization of several
types of orderings for sets in general. Here we will show a different approach
to a linear or simple ordering which can be used only for integral domains,
since it makes use of the notions of addition and multiplication. The relation
< as defined below is a simple linear ordering, although we will not prove
that assertion here.

Not all integral domains can be ordered; thus the ordered integral do-
mains are a much more restricted class of systems that the integral domains.
More restricted still are the ordered integral domains whose positive ele-
ments (to be defined below) are well-ordered. These integral domains in fact
turn out to be isomorphic to the set of all integers with ordinary addition
and multiplication and, of course, to each other. For this reason, these no-
tions of ordering are of central importance in characterizing axiomatically
our ordinary system of arithmetic with integers,

DeriNiTiON 101 An integral domain D is said to be ordered by a relation
< if the following axioms hold:

(i) Addition law. For alla,b,c andd ifa<bandec < d,thena+c<b+d

(ii) Multiplication law. fa<band0<e¢, thena c¢<b-c
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(iii) Law of trichotomy. For any a and b, one and only one of the following
holds: a < b, a=b, or a > b (also called connectedness).

We have already shown that subtraction can be defined in any integral
domain: b~ ais equal to b+ (—a). We now make use of subtraction to define
the properties of being positive o1 negative for elements of ordered integral
domalins,

DEeFINITION 10.2 An element a of an ordered integral domain is positive
if and only if a > 0; a is negative if and only if a < 0. The three basic
axioms for the ordering relation < are reflected by three similar properties
of positive elements:

() Addition. The sum of two positive elements is positive.
(if') Multiplication. The product of two positive elements is positive.

(iif ) Trichotomy. For any given element a, one and only one of the following
holds: a is positive, a = 0 or —a is positive,

The proof of these is left to the reader.

As remarked above, not all integral domains can be ordered. Among
the integral domains which can be ordered are the familiar infinite ones:
the set of integers, or the set of all rational numbers, or the set of all real
numbers, all with ordinary addition and multiplication and < interpreted
as ‘less than or equal to’ in the usual sense. If we add to the axioms for
ordering a further axiom for well-ordering for positive elements only, we will
have a formal system all of whose models turn out to be isomorphic to the
integers with respect to addition, multiplication and <.

DEeriNITION 103 A subset S of an ordered integral domain is well-ordered
if each non-empty subset §' of S contains a smallest element, i.e. an element
a such that a < ¢ for every z in §'. =

The new axiom for well-orderings, which depends on the prior introduc-
tion of the axioms for orderings and on the definition of ‘positive’ already
given, can be stated as follows:



INTEGRAL DOMAINS 269

Well-ordering axiom: The positive elements are well-ordered.

To illustrate the use of the well-ordering principle, we prove that in any
well-ordered integral domain, there is no element between 0 (the additive
identity) and 1 (the multiplicative identity) For the standard model, namely
the integers, the theorem may seem obvious, but it is not so obvious how to
prove it from the axioms for the well-ordered integral domains

THEOREM 10.4 There is no element between 0 and I in any well-ordered
integral domain. =

Proof: Assume, for a reductio ad absurdum proof, that there is at least one
element ¢ with 0 < ¢ < 1, ie. the class of such elements is not empty.
By the well-ordering axiom, there is a least element m in this class, and
0<m<1l,s00<mand0 < (1-m). By the multiplication law for positive
elements of an ordered integral domain, 0 < m (L -~ m),ie 0 < m — m?,
so m* < m. By the same axiom, 0 < m m, ie 0 < m? Then by the
transitivity of <, 0 < m? < m < 1. The m? is another element in the class
of elements between 0 and 1, which is, moreover, smaller than m. But m was
by definition the minimum element in the class, (contradiction!). So there
is no element between 0 and 1. [}

THEOREM 10.5 A set S of positive integers which includes 1, and which
includes n + 1 whenever it includes n, includes every positive integer. =

Proof: We will prove by reductio ad absurdum that the set S, consisting of
those positive integers not in S, is empty. Assume that §’ is not empty, then
it contains a least element m. But m # 1 by hypothesis. By Theorem 4
there is no positive integer smaller than 1, so m > 1. That means m — 1 is
positive. Since m is the smallest positive integer not in the set S, m — 1 is
in the set S, since m ~ 1 < m. Then, by hypothesis, (m — 1)+ 1 is also in
S,but (m~1)4+1 =m, so minin §. Contradiction! =

We can now prove directly that Peano’s fifth postulate (see Sections 8.4
and 8 5.7) holds for the positive integers.

Principle of Finite Induction. Associate with each positive integer n a
statement P(n) which is either true or false. If (i) P(1) is true, and (ii) for
all k, P(k) implies P(k + 1), then P(n) is true for all positive integers n.
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Proof: The set of those integers k for which P(k) is true satisfies the hy-
pothesis, and hence the conclusion of Theorem 10.5. [}

To illustrate the application of the principle of finite induction in proofs,
we will use it to prove one of the laws of exponents in integral domains, for
which we first need to give a definition.

DEerFINITION 104 A positive power a™ of a in any integral domain D s

defined recursively by (i) a* = a, (ii) a™™! = a™ - a. =

Using this definition, we can prove by induction that in any integral
domain (@ )™ = a* b* for all n. First of all, we view the statement of the
theorem as expressing a property of n; P(n) = (a- 6)® = @™ b™. This is the
first step in setting up any proof by induction, but it is often left implicit,

The proof itself has two parts: first we prove P(1), and then we prove
that for arbitrary k, P(k) implies P(k + 1).

(3 P(1):

(a b} = ab by definition
= a B by definition
(i2) P(k) - P(k+1):

(a b)Y = do* b* cond. premise

(a b = (a-b)* (a b) by definition
= {(a*-t*) (a b) cond. premise

= a* (- (a b)) associativity

= a* ((b*-a) b) associativity
= a . ((a- ) b) commutativity

= a* (a-(b* b)) associativity

= (a*F-a) (b*-b) associativity

= gktl.pktl by definition

[(a-b)* =a* 8] - [(a B)*! = aF*! . p*!] cond proof

From (i) and (ii) it follows by the principle of finite induction that P(n)
is true for all positive integers n, i.e. that for all positive n, (a b)* = a™ b".

We have introduced here the well-ordering principle, and hence induction,
for the positive integers. An alternative approach is to state both the well-
ordering principle and induction for the non-negative integers, in which case
the first step in an induction proof would be for the case of n = 0. The two
approaches are interdefinable.
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10.4 Morphisms

Since the notions of homomorphism and isomorphism are defined for algebras
in general, it is possible to define a morphism between algebras of different
sorts, as long as they have the same number of operations. Here we give
an example of a homomorphism between a monoid and a group, and then
discuss some group isomorphisms and an isomorphism between two integral
domains.

Consider the monoid M = (N, 4) consisting of all the non-negative inte-
gers with the operation of ordinary addition M is not a group because of the
absence of inverses. Let the group G = (G = {0,1,2,3,4}, + mod 5). We
can define a homomorphism from M to G by the function #(n) which maps
each non-negative integer in N onto the element of G which is congruent
with it modulo 5 (Numbers which are congruent mod 5 leave the same re-
mainder after division by 5 ) For example, F(16) = 1, F(23) = 3, F(45) = 0,
etc. The function F establishes a homomorphism, since F(z) + F(y)
((mod 5)) = F(z +y). The kernel of a homomorphism F is defined as the
set of elements of the domain of ' which are mapped onto the identity ele-
ment in the range of F In this example, the kernel of the homomorphism
F:M — G is the set of all non-negative multiples of 5: {0,5,10,15,.. }.

The definition of isomorphisms for groups is a direct application of the
definition of isomorphisms for algebras in general. Since a group has only
one operation, we can say simply that an isomorphism between two groups
G = (G,0) and G’ = (G, ¢’) is a one-to-one correspondence between their
elements which preserves the group operation, which may be distinct oper-
ations in the two groups. Ie., if a is mapped to a/, and b to b’ and vice
versa, then a o b is mapped to a’ o/ ¥ and vice versa. Putting it more for-
mally, an isomorphism between two groups G = (G,0) and G’ = (G’,0)
is a one-to-one correspondence F : G — G’ such that for all z,y in G,
F(z)o' F(y) = F(z oy). Here are two examples of such group isomorphisms.

Ezample 1. The group of integers {1,2,3,4} under multiplication mod-
ulo 5 is isomorphic with the group of the integers {0,1,2,3} under addition
modulo 4, with the correspondence

1—0,2¢—>1,33,4+«—— 2

This is best illustrated by the group tables
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+ (mod4)|0 1 2 3 x (mod5)|1 2 4 3
0 01 23 1 12 4 3
1 1230 2 2 43 1
2 2 301 4 4 3 1 2
3 301 2 3 31 2 4

Ezample 2: The group of integers {0,1,2,3} under addition modulo 4 ig
also isomorphic with the group of rotations of the square: let

0e—I,1+— R,2«— R 3« R"

We can prove that isomorphisms are equivalence relations on the set of
all groups.

THEOREM 10.6 The relation ‘is isomorphic to’is a reflexive, symmetric and
transitive relation between groups. [ |

Proof: The reflexive property is trivial, since every group is isomorphic to
itself by the identity mapping As for the symmetric property, let F be an
isomorphic correspondence between G and G’. Since F is one-to-one, it has
an inverse F~! which is an isomorphism of G’ onto G Finally, if Fy maps
G 1scmorphically onto G’, and F» maps G’ isomorphically onto G”, then the
composition of Fy o Fy, the function whose value for a given argument a is
the value of F, applied to Fi(a), is an isomorphism of G with G”. ]

An isomorphism between two integral domains D and D’ is a one-to-one
correspondence of the elements a of D with the elements a’ of D', which
satisfies for all elements a,b in D the conditions

1) (a+b)Y =da +¥
2} (¢ by =a' ¥

For an example of an isomorphism between two integral domains, let us
start from the following facts about reckoning with even and odd numbers.
even + even = odd + odd = even
even + odd = odd + even = odd
even - even = even + odd = odd + even = even
odd - odd = odd
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We can regard these identities as definitions of operations of ‘addition’
and ‘multiplication’ in a new algebra of the two elements ‘even’ and ‘odd’.
This algebra is isomorphic to the finite integral domain Iy of integers mod-
ulo 2, with ordinary addition and multiplication modulo 2, under the corre-
spondence even «—— 0 and odd «— 1.

Exercises

1. Show that the integers 0,1,2, and 3 form a group with the operation
of addition modulo 4, ie. show that each of the four group axioms is
satisfied. You need not give a full demonstration of associativity—just
2 or 3 examples.

2. Which of the following are groups?

(a)
(b)
(c)

(d)

()
(8)

(h)

The integers 1,3,5,7,8 under multiplication modulo 11,
The integers 1,3,4,5,9 under multiplication modulo 11.
The system described by the following multiplication table:

ocla b ¢ d
ala b ¢ d
b|b a d ¢
cle d a a
dld ¢ b b
The system described by the following table:
ocla b ¢ d
alb d a ¢
bld e b a
cla b e d
dic a d b

The set of all subsets of § = {z1,z2} with the operation of set
union.

The same set S as in (e) with the operation of set intersectiomn.

The set of rigid motions of a square {I, H#,V, R’} and the operation
of performing them successively.

The set of rigid motions of a square {I, D, R} and the operation
of performing them successively.
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{a) Draw the group operation table for the group of symmetries of
the square {I,R, R, R",H,V,D,D’}

{b) There are three different subgroups having exactly four elements,
Find them and draw their group operation tables

(¢) There are five different subgroups having exactly two elements,
Find them and draw their tables.

{d) Show which of the subgroups in (b) are isomorphic
(e) Show a non-trivial automorphism for one of the subgroups of (b).

(f) Show a homomorphism of one of the subgroups of (b) with one
of the subgroups of (¢).

. Prove that the set consisting of the identity element alone is a subgroup

for any group

{(a) Does the set {1,2,3,4,5} form a group with multiplication mod-
ulo 67 Justify your answer

(b) Show that the set {1,2,3,4,5,6} forms a group with multiplica-
tion modulo 7.

(c) Find three different proper subgroups of the group in (b).

(d) Find a set of integers which forms a group with addition modulo
some n which is isomorphic to the group in (b).

{e) Can you find a general condition on n which will identify all those
n‘s for which the set {1,2,...,n — 1} forms a group with multi-
plication modulo n? Prove your assertion if possible, otherwise
explain why you think it is correct.

. Prove that if S is a subgroup of §' and 8§’ is a subgroup of §”, then S

is a subgroup of S”.

(a) The set R of all strictly positive rational numbers with multipli-
cation forms a monoid which is also a group. Find a sub-monoid
Ry of R such that Rg is not a group.

{b) Is the set of all rational numbers with multiplication a semigroup?
A monoid? A group?

Determine whether the set-theoretic operation ‘symmetric difference’ is
commutative, associative and idempotent. Is there an identity element
for this operation? What sets, if any, have inverses? Given the set
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{a,b} what sort of operational structure is formed by the power-

set of A with the operation of symmetric difference?

Let A = {a,b} Show that (p(4),U) and (p(A),N) are both semi-
groups but not groups Find an isomorphism between them

(a)

(b)

Prove that if a, b and ¢ are any elements of an integral domain D,
then a4+ b = a + ¢ implies b = ¢. (Hint: make use of the fact that
a has an additive inverse.)

Prove that for all ain D, ao0 = O0ca = 0. (Hint: Use a+0 = aand
the distributive law to prove that ao(a+0) = aca and ao(a+0) =
(aca)+ (ao0) Note: ois used here for ‘multiplication’.)

Justify each step in the following proof of (—a) o (=b) = acb.
(Note: —a and —b are names given to the additive inverses of a
and b).

(1) [aob+ao(=b)]+(=a)o(~b) = aob+[ao(~b)+(~a)o(~b)]
(2) laob+ao(~b)]+(~a)o(~b)=aob+[at(~a)lo(~b)
(3)  [acb+aoc(=b)]+(~a)o(~b)=aob+00(~b)
(4) [a0b+ao(~b)] +(~a)o(~b)=aobh

(5) [aob+ao(=8)] +(~a) o (~b) = ac[b+ (~b)] + (~a)o (~b)
(6) laob+ao(~b)+(~a)o(~8)=aoc0+(~a)o(~b)
() lachtao(-8)]+(~a)o(~b) = (~a) o (~b)

(8) (=a)o(=b)=ach

11. Prove the law of transitivity for < in an ordered integral domain, i.e.

for any a,b, and ¢, if a < b and b < ¢ then a < e
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12. Using the definition of positive elements, deduce the three basic laws
of positive elements, (i'), (ii’) and (iii") in Def 10.2, from the laws for
<.

13. The definition of any positive power a” of ¢ in any integral domain D
is given by:

al = a

att = d*oa
(a) Prove by induction that a™ o @® = a”*" in any integral domain.
(Hint: Use induction on n; in the second part of the induction,
assume that a™ o a® = a™*" for all m and for » = k and prove

that it must then hold for all m and for n = k + 1).

(b) Prove by induction that in any integral domain (&™) = (a™)™.
(Hint: You will probably want to make use of the theorem that
@™ o b™ = (a0 b)™ which was proven in this chapter )
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Lattices

11.1 Posets, duality and diagrams

In the previous chapter we have seen that the arithmetical properties of ele-
ments of formal systems may be described in operational structures. Opera-
tions may serve to generate new elements from a given set of basic elements,
and thus we may view an operational or an algebraic structure naturally as
a syntactic system which generates elements in a formally precise way. The
relation of this dynamic conception of such systems and the linguistic notion
of a grammar which generates strings as elements of a natural or formal lan-
guage will be explored in much more detail in Part E The present chapter
is concerned with certain ordering relations between elements of systems or
domains of objects and the order-theoretic or ‘topological’ properties of such
ordered structures. We will see that the concepts introduced in this chapter
provide a universal perspective on set theory and algebra in which impor-
tant correlations between the two mathematical theories can be insightfully
described. Recently linguistic applications of lattices have been made pri-
marily to semantic topics such as plural NPs, mass terms and events, using
the ordering relations to structure the domains of an interpretation of a lan-
guage. The potential usefulness in linguistics of syntactic applications of
lattice theory is explored in research on feature systems, for instance In
this chapter we will introduce lattice theory without paying attention to any
particular linguistic applications or motivations.

In Chapter 3 we pointed out the set-theoretic importance of partial or-
derings on sets, ie. sets of objects ordered by a reflexive, anti-symmetric
and transitive relation Here we will call any partially ordered set A together

277
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with its ordering <, i.e. (4,< ), a poset, often writing just A and tacitly
assuming the intended partial ordering, which is widely accepted practice.

A poset which also satisfies the property of linearity (for all a,b € 4 :
a <borb < a)is called a chain, or a fully or linearly ordered set. Addi-
tional properties and operations may be defined on posets which constitute
a stronger structure. Thus the real numbers form a poset, but also a chain,
disregarding the arithmetical operations,

If Ais a poset and a,b € A, then a and b are comparable elements or
comparable objects if a < bor b < a If a and b are not comparable, they are
incomparable, written as a || b In a chain there are of course no incomparable
elements.

In an arbitrary poset A we define an upper bound of B C A as an element
a € A, if it exists, such that for all b € B, b < a. An upper bound a of B is
the least upper bound of B (abbreviated to lub of B) or the supremum of B
(abbreviated to sup B) if, for any upper bound ¢ of B, we have a < c. We
often write a = V B, or a =sup B, since by antisymmetry of the ordering
relation we know that if B has a least upper bound, this is a unique least
upper bound.

If (A,< ) is a poset, then inversion of the partial ordering preserves
the poset characteristics, i.e. writing a > b for b < a in the given poset we
have defined a new poset (4, > ). Verification of the three requirements on a
partial order in this new poset (A4, > ) is straightforward: e.g., antisymmetry
holds since if @ > b and b > a, the definition of > gives us b < a and a < b,
and we know that in (4,<) in that case a =5 We call (4,> ) the dual of
(A, <), which is obviously a symmetric relation between posets. This notion
will come in handy in proving statements about posets, since it allows us to
replace all occurrences of < in a true statement S by >, thus obtaining the
(equally true) dual §' of S, without actually carrying out the entire proof
for the inverse of the partial ordering.

To appreciate the importance of this duality in posets, we define the dual
of an upper bound of B C A, called a lower bound of B C A, as an clement
a € A such that for all 6 € B, b > a which is equivalent to a < b A lower
bound a of B is the greatest lower bound of B (abbreviated to glb of B) or
the infimum of B (abbreviated to inf B) if, for any lower bound ¢ of B we
have a > ¢. We write a = A B, or a = inf B. Supremum and infimum are
thus duals; hence whatever we may prove about one of them holds alsoof
the other. For instance, we proved above that if a subset B in a poset has
a supremum, it has a unique supremum, so we know by duality that the
infimum of B, if its exists, is unique.
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Partial orderings may be represented visually by so called Hasse dia-
grams The diagram of a poset (A,< ) tepresents the elements or objects
by o, and if the ordering relation holds between two elements, they are
connected by a line, reflecting the order from bottom to top in the represen-
tation

For instance, writing out the ordering set-theoretically, let the poset
A =1{(0,0),(0,a),(0,8),(0,1),(a, a),{a,1), (6,6),(b,1),(1,1)}. Assuming re-
flexivity and transitivity of the connecting lines, we represent A by the dia-
gram in Figure 11-1 (cf. the immediate successor diagrams of Section 3-5)

1
Q

Figure 11-1: The diagram of a poset
A={{0,a,6,1}, <)

We call a diagram planar or flat if it does not contain any intersecting
lines, as in Figure 11-1. In general greater clarity of representation is ob-
tained if the number of intersecting lines is kept as small as possible. From
Figure 11-1 we can read off that 0 < 1 since we assumed transitivity of the
connecting lines, and also we generally know that ¢ < 2 for any arbitrary
element z.

We say that a covers b (or that b is covered by a) if a > b and for no
c:a>e¢>b (Recall that @ < b means a < b and a # b.) By induction on
the length of chains, we may prove that the covering relation determines the
partial ordering in a finite poset.

Diagrams usually represent finite posets, but infinite posets are sometime
partially represented by diagrams and need further explanation in the text.
Note that the real and the rational numbers, despite their essential order-
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theoretic differences, are represented by the same linear diagram, due to the
‘paverty’ of the covering relation which determines the diagram. Dualization
of a given poset turns the diagram upside down, but preserves the connecting
lines,

Set-theoretic inclusion induces a natural partial order on the power set
of a given set A, ie, p(4) is a poset. We represent this inclusion relation
on the power set for the set 4 = {a,b,¢} in Figure 11-2.

{a,b,¢}

{a,8} {a,c} {b,¢}

@ (e

0

Figure 11-2: The diagram of the poset p(A4)
for A = {a,b,c}.

Intersecting lines may not define an element In Figure 11-3 a poset is
represented in which all pairs of elements have an upper and lower bound,
but these are not always unique. E.g., both ¢ and d are upper bounds for
{a, b}, but neither ¢ nor d is a supremum for {a,b}.

11.2 Lattices, semilattices and sublattices

There is a special class of posets, called lattices, which have proven to be very
important in the general study of a variety of mathematical theories includ-
ing analysis, topology, logic, algebra and geometry. They have led to many
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Figure 11-3: The diagram of a poset with
non-unique upper and lower bounds

fruitful interactions and new results in various theories and to a productive
development of universal algebra and more recently category theory. Lin-
guistic applications of lattice theory are currently being developed in syntax
and semantics.

There are two ways of defining lattices, one from a given poset and
the other, more in line with the group-theoretic definitions, by requiring
properties on operations We present the two definitions in this order.

A poset (A, <) is a lattice if sup{a, b} and inf{a, b} exist for all a,b € A.
We will introduce two new operations a A b = inf{a,b}, calling a A b the
meet of a and b, and a vV b =sup{a,b}, calling a vV b the join of @ and b. In
lattices the operations of meet and join are always binary, i.e., we may view
them dynamically as maps from A x A to A. This allows us to characterize a
lattice as an algebra,ie. as anon-empty set with two operations with certain
algebraic properties. The four properties characteristic of lattice operations
are:

(L1) aha=a,aVa=a idempotent law
(L2) aAb=bAa,aVb=bVa commutative law
(L3) (anb)re=ahn(bAc) associative laws

(avd)ve=aVv(bVe)

The important fourth property of lattice operations conmnects the two
operations. Note first that if a < b, then inf{a,b} = a,ie. aAb = a, and
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dually, if @ > b, then sup{a,b} = a,ie,aV b = a Since a < aVb by
definition of sup{a,b}, we let aV b substitute for b in the first equations to
derive a A (@ V b) = a. Similarly, since a > a A b by definition of inf{a, b},
we derive from the second equations @ V (a A b) = a. Thus we have the two
absorption laws:

(L4) an(aVvd)=a absorption law
avV(aAb)=a

Any algebra with two binary operations that have these four properties
(L1)-(L4) constitutes a lattice. It will often be very useful to view lattices
as algebras, since all that we know about algebraic structures can readily be
transferred to lattices. In fact, we often make use of the following theorem,
provable from (L1)-(L4), about the connection between lattices represented
as posets and lattices represented as algebras.

THEOREM 11.1

(i) Let the poset A = (A,< ) be a lattice. Set aAb = inf{a,b} andaVb =
sup{a,b} Then the algebra A% = (A, A,V) is a lattice.

(ii) Let the algebra A = (A,A,V) be a lattice. Set a < b ifaAb = a.
Then AP = (A,<) is a poset and the poset AP is a lattice.

(iii) Let the poset A = (A, <) be a lattice. Then (A2)P = A,
(iv) Let the algebra A = (A,A,V) be a lattice. Then (AP)2 = A,

Proof. (i) We leave it to the reader to verify that the meet and join operations
as defined in (i) satisfy (L1)-(L4). Absorption becomes a = sup{a,inf{a,b}},
which is clearly true since inf{a, b} < a.

(i) From a A a = a follows a < a (reflexive). If @ < b and & < a then
aAb=aand bAa = b; hence a = b (anti-symmetry). fa<band b<¢
thenaAb=aandbAc=b,soa=arb=ar(bArc)=(arb)Ac=alc
hence a < ¢ (transitivity). Le., < is a partial order on A, To show that this
poset is a lattice we verify existence of sup and inf for any a,b in A, From
a=ah(avb)andb=>bA(aVb)folowsa<aVbandb<aVb SoaVd
is an upper bound of both a and 5. We now want to show that it is a least
upper bound, ie., if for some ¢, a < ¢ and b < ¢, then a VvV b < ¢, Suppose
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a<cand b < cthenaVe= (anc)Ve=cand similarly for bV e = ¢,
so(avVe)Vv(bVve)=cVe=c Hence (aVb)Ve=c Absorption gives us
(avb)he=(avb)A[(avb)Vve] = aVb,ie avb<c ThusaVb=sup{a,b}.
Dual reasoning gives us a A b = inf{a, b}

(iii) and (iv) check to see that the orderings in (A%)P, A and (AP)? are the
same. =

These facts guarantee a smooth transition between lattices as posets and
as algebras. We may choose whatever perspective is most convenient for our
purposes, while knowing that all results will be preserved when the same
lattice is represented differently

Duality in lattices as algebras is simply obtained by exchanging the two
operations in any statement about lattices.

Next we consider parts of the structure of a lattice and we will see that
the algebraic definition and the order-theoretic definition of a lattice show
some discrepancy concerning their substructures.

If L is a lattice and L’ is a non-empty subset of L such that for every
pair of elements a,b in L’ both a A b and aV b are in L' (where A and Vv
are the lattice operations of L), then L’ with the same operations restricted
to L' is a sublattice of L. If L' is a sublattice of L, then for any a,b in L’
a<bisinL'iff a < bisin L. But note that for a given lattice L there may
be subsets which as posets are lattices, but which do not preserve the meets
and joins of L, and hence are not sublattices of L. An example is given in
Figure 11-4 where L = ({a,b,¢,d,e},< ) and L’ = {{a,¢,d,e}, <’ ), which
is a lattice as poset but which is not a sublattice of L, sincein Levd =15
whereas in L' eV d = a

In the next section we will come to understand the reason for defining
the sublattice notion algebraically, rather than on the poset representation
of a lattice. For the present it suffices to note that the algebraic sublattice
notion is stronger than the sub-poset which is also a lattice. It is important
to realize that the above theorem about the equivalences between poset
representation and algebraic representation of a lattice may break down
once we have to consider parts of their structure. There are lattice-theoretic
structures which are ‘weaker’ in the sense of representing just parts of a
lattice with less of its structure. The following notions are special cases of
sublattices called semilattices A poset is a join semilattice if sup{a, b} exists
for any elements a, b. Dually, a poset is a meet semilattice if inf{a, b} exists
for any a,b. In a diagram, conventionally, a join semilattice is represented
top-down, and a meet semilattice bottom-up. There are again equivalent
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Q

Figure 11-4: The sub-poset
L' = {{a,c,d,e},< ) is a lattice, and a
subalgebra, but not a sublattice.

algebraic definitions: If (4, c) is an algebra with one binary operation o, it is
a semilattice if o is idempotent, commutative and associative. Theorem 11-1
for poset and algebraic representations of lattices holds with the appropriate
modifications for both kinds of semilattices.

THEOREM 11.2

(i) Let the poset A = (A,< ) be a join semilattice Set aV b =sup{a,b}.
Then the algebra A® = (A,V) is a semilattice.

(ii) Let the algebra A = (A4,0) be a semilattice. Set a < b iff acb = b.
Then AP = (A,< ) is a poset and the poset AP is a join semilattice.

(iii) Let the poset A = (A4,<) be a join semilattice Then (A®)P = A.

(iv) Let the algebra A = (A,V) be a semilattice. Then (AP)? = A.

The proof is deferred to the exercises,
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a a
b d e b d e b d e
f f \:>f/o
g

g

Figure 11-5: A lattice with examples of join
and meet semilattices.

11.3 Morphisms in lattices

Mappings from one lattice to another compare their structures, algebraically
or order-thecretically.

Two lattices Ly = (L;,A,V) and Ly = (La,A,V) are {algebraically)
1somorphic if there is a bijection F from Lj to Lg such that for every a,b
in L1

(i) F(avb)= F(a)V F(b), and
(i) F(anb)= F(a)A F(b)

If two lattices are isomorphic, F is called the lattice isomorphism. Note
that F~! is also a lattice isomorphism, if F is, and that if F : Ly — Lg
and F': Lg — Lg are lattice isomorphisms, then their composition F'o F :
L; — Lg is also a lattice isomorphism.

Isomorphism of lattices as posets is defined by requiring the bijection to
be order-preserving. If P; = (P;,< ) and Py = (P, <) are two posets and
F : Py — Pg, F is called an order-preserving map if F(a) < F(b) holds
in Py whenever a < b holds in P;. Sometimes an order-preserving map is
called a monotone or an isotone mapping.

TrEOREM 11.3 Two posets which are lattices Ly = (L;,< ) and Ly =
(Ly, <) are (order-theoretically) isomorphic iff there is a bijection

F : Ly — Ly such that both F and F~! are order-preserving.
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Proof: (=) If F:Ly — Lg is an isomorphism and a < b holds in Ly then
a=aAb,so F(a) = F(aAb) = F(a) A F(b), therefore F(a) < F(b), and F
is order-preserving. Dually, the inverse of an order-preserving isomorphism
is also order-preserving.

(=) Let F:Lj — Ly and its inverse F~! be order-preserving. If a,b in
L;thena<aVvband b<aVb, so Fla) < F(avb)and F(b) < FlaVb),
therefore F(a) v F(b) < F(aV b). Suppose F(a)V F(b) < ¢, then F(a) <e¢
and F(b) < ¢, and then a < F71(¢) and b < F~1(c), so (aVd) < F~1(¢) and
therefore F(aV b) < e It follows that F(a) Vv F(b) = F(a Vv b) Dually, it is
provable that F(a) A F(b) = F(aAb). =

The diagrams can represent such order-preserving mappings clearly. Fig-
ure 11-6 shows an order-preserving bijection F(a) = a,..., F(d) = d from a
lattice to a chain which is not an algebraic isomorphism.

a
i a
b b

d

Figure 11-6: An order-preserving bijection
which is not an isomorphism

The following notions are weaker than isomorphisms, and often suffice to
characterize the structural similarity between two domains, especially when
the mappings are intended to represent information-preserving relations.

A homomorphism of the semilattice S; = (S;,0) into the semilattice
Sy = (S2,0) is a mapping F : S; — Sy such that F(aob) = F(a)c F(b).
Since any lattice consists of a join and a meet semilattice, this homomor-
phism notion is split into a join homomorphism and a meet homomorphism.
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A (full) lattice homomorphism is a map that is both a join and a meet
homomorphism, ie. a map F such that F(a vV b) = F(a) vV F(b) and
F(aAb)= F(a)\ F(b).

Note that lattice homomorphisms and join and meet homomorphisms
are order-preserving, but the converse is not generally true. In Figure 11-7
the three diagrams show the distinct notions; (11-7 1) is an order-preserving
mapping that is neither a join nor a meet homomorphism (cf Figure 11-
6), (11-7.2) a join homomorphism that is not a meet homomorphism and
(11-7.3) a (full) lattice homomorphism.

(7.1) (72) (7.3)

Figure 11-T: An order-preserving mapping,
a join homomorphism and a lattice
homomorphism

Finally we define an embedding of a lattice Ly into a lattice Lo as an
isomorphism F from Lj into a sublattice of Ly. If such an embedding exists,
Lg contains a copy or an vmage of Ly as sublattice. This notion will be useful
in determining whether a given lattice has a special structure, as we will see
below in Section 11 5.

11.4 Filters and ideals

In a lattice we may construct various special subsets with nice properties
based on their closure under the ordering relation and the operations.

An ideal I of a lattice L is a non-empty subset of L such that both of
the following hold:

(i) ifacI,be Land b<a,thenb el

(i) if @,b € I, then (aV b) €
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An ideal I is proper if I # L and I is mawimal if it is not contained in
another proper ideal of L.

Dualizing these notions, we define a filter F of a lattice L as a non-empty
set of L such that both of the following hold:

(i) ifac F,b€ Land b> a,then b€ F
(i) if @,b € F, then (aAb) € F

A filter is proper if F # L and F is maximal if it is not contained in another
proper filter of L. Maximal filters are often called ultrafilters.

The set of ideals and the set of filters of a lattice are closed under finite
intersection, and under arbitrary intersection in case the intersection is not
empty (proof is an easy exercise). This finite intersection property guaran-
tees existence of the least ideal generated by any non-empty subset X C L,
written as (X If X is a singleton {z} C L, then we often write (z] and call
this a principal ideal. (Dually, the filter [X) generated by X C L, etc ).

If L is a lattice and I(L) the set of all ideals in L, then I(L) is a poset with
set inclusion and constitutes a lattice, called the ideal lattice. Together with
the (provable) claim that any non-empty subset of I(L) has a supremum,
which makes I(L) a complete lattice, we may prove that L can be embedded
in I(L) by an embedding function G(z) = (z]. Sometimes the image of
this embedding G is called the ideal representation of a lattice (dually, filter
representation). The proof appeals to a form of the axiom of choice but
Tequires no ingenuity and can be found in any standard reference on lattices
(e.g. Gratzer (1971)).

To illustrate this notion of an ideal representation, consider the following
simple lattice L = {{a,b,¢,d}, <) in Figure 11-8,

The set of all ideals in L, I(L) , consists of {a,b,¢,d},{b,¢,d}, {6, d}, {e, d}
and the principal ideal {d} (Why is e.g. {a,b,d} not an ideal?) L can be
embedded into I(L) by the following embedding function: G : L — I(L)
such that

Gl{a) ={a,b,e,d}

G(b) ={b,d}

G(e) ={c,d}

G(d) ={d}
The ideal representation of L is {{a,b,¢,d}, {b,d}, {e,d}, {d}}.

The following notions provide ‘bounds’ to alattice in a very general way.
An element a of a lattice L is join-irreducible if @ = bV ¢ implies that a = b
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d

Figure 11-8,

o1 a = ¢; dually, a is meet-irreducible if @ = b A ¢ implies that a = bor a = c.
We call a lattice L = (L, A, V,0,1) a bounded lattice if

(i) (L, A, V) is alattice

(i) A0=0and z V1 =1, for any arbitrary element =,

These notions will again be useful in Chapter 12
The following is an important theorem establishing a connection between
join homomorphisms and ideals.

THEOREM 11.4 [ is a proper ideal of the lattice L ifl there is a join homo-
morphism G from L onto the two element chain C = ({0,1}, <) such that
I=G-1(0),ie I ={z]|G(z)=0} ]

Proof: (==)I is a proper ideal and let G be defined by G(z) = 0if z € |
and G(z) = 1 if z ¢ I, which obviously is a join homomorphism.

(<=)I G :L — C is a join homomorphism and I = G~!(0), then for any
a,bel, Gla)= G()=0. So GlaVvb) = G(a)V G(b) =0V0 =0, hence
(avb)yel Maclandz € L with z < a, then G(z) < G(a) =0, ie
G(z) = 0, so z € I. Furthermore, G is onto, so I # L, ie I is proper [ ]

Of course Theorem 11.4 may be dualized for proper filters.
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11.5 Complemented, distributive and modular lat
tices

In this section we will discuss some particularly well-known lattices which
have additional properties and operations providing more structure.

In a bounded lattice L we call the least element a, ie a < b for any
b € L, the bottom or zero of L, conventionally writing it as 0. Similarly,
the greatest element in a bounded lattice is called the top or wnit of L,
conventionally written as 1. A bounded lattice L = (L, A, V,0,1) is said to
be complemented if for each a € L there is a b € L such that

(Cl) avVb=1
(C2) anb=0
and b is called the complement of a. In general an element in a lattice may
have more than one complement or none at all. A lattice L is relatively
complemented if for any a < b < c in L there exists d in L with
(RC1) bAd=a
(RC2) bvd=c
and d is called the relative complement of b in the interval [a,c]. A lattice L
is distributive if it satisfies either one of the distributive laws
(D1) an(bvc)=(anb)V(ahc)
(D2) av(brc)=(aVb)A(aVc)
Since (D1) entails (D2) and vice versa (see exercises), satisfaction of
either one suffices for a lattice to be distributive.
It is important to realize that any lattice already satisfies the two lattice
inequalities
(LI1) [(anb)V(arc) <[an(bVc)
(L12) [av(bAc) <[(aVb)A(aVc)
Hence to check for distributivity of a lattice it suffices to check the in-

verses of these inequalities, which together entail (D1) and (D2)
A lattice L is modular if it satisfies the modular law

(M) a<b—-lav(bArc)=bA(aVc)]
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Again since any lattice satisfies a < b — [bA(aVe) < aV(bAc)] checking
the inverse inequality suffices to demonstrate modularity in a lattice.
The following theorem is straightforward.

THEOREM 11.5 Every distributive lattice is modular [

Proof: If a < b, aV b = b and use this in (D2). [

Non-modularity and non-distributivity of a lattice can be verified by
embedding two special five element lattices into it, represented by the dia-
grams NM (Non-Modularity) and ND (Non-Distributivity) in Figure 11-9.
These results belong to the core of lattice theory, and are due respectively
to Dedekind and to the founder of lattice theory, Birtkhoff

d ZE NN
(¢

D

Figure 11-9: Diagrams for non-modularity
and non-distributivity

TaeorEM 11.6 (Dedekind) L is non-modular iff diagram NM can be em-
bedded into L L

Proof: (<=)In NM a < b, but it is not the case that aVv (bAc) = bA (aV c),
so L contains a copy of a non-modular lattice and hence cannot itself be
modular.

(=) Suppose L does not satisfy the modular law, then we will construct
a diagram isomorphic to NM as sublattice. For some a,b,c in L we have
a<bbutaVv(brc)<ba(ave) Leta;=aV (bAc)and by =bA(aVc)



by

o

cAb

Thench by =chAl[bAr(aVc)
[cA(cvVa)]Ab commutative, associative laws

I

=cAb absorption

andcVa; =cViaVv(bAc)]
=[cV(bAc)]Va commutative, associative laws
=cVa absorption

Since cAb < a; < b; wehave cAb < cha; S cAb =cAb, so
cAhay =cAb; =cAb Similarly for ¢ Vb =cVa; =cVa Itiseasyto see
that the above diagram is isomorphic to and hence a copy of NM [}

TeEOREM 11.7 (Birkhofl) L is a non-distributive lattice iff ND can be
embedded into L |

Proof. (<==)aV (bAc)=(aVb)A(aVc)does not hold in ND, so if ND can
be embedded in L, it cannot be a distributive lattice

(==) Suppose L is non-distributive,ie for some a,b,c € L, [(anb)V(aAc)] <
[an(bVec)]. Assume also that L does not contain a copy of NM as sublattice,
ie, L is modular. Define the following elements, in order to construct a
sublattice in L which is isomorphic to ND.

d = (anb)V(arc)V(bAc)
e = (avblA(aVe)r(bVec)
a; = (ane)vd
by = (bre)vd
¢; = (che)vd

Now d < a1,b1,¢1 <e
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€

al/ bl\Ocl

d

With absorption we derive from (a A e) = a A (bV c), that
and=ah((anb)V(anc)V (bAc))
Modularity allows exchanging a and (a A b)V (aAc)

=({(anbd)V(anc))Vv(an(brc))
=(aAb)V(ahc)

Now it follows that d < e To show that the above diagram is a copy of ND
in L, we prove a; Aby = a; Acy =b; Acg =dand a; Vb; = a3 Ve =
by ver = d

We prove this here for one case only, the others are similar.

ay Aby = ((ane)vd)A((bAe)vd)

((ane)A((breyvd)vd modularity
((ane)r((bvdineivd modularity
((aneyrnen(bvd))vd comm. assoc,
((aneya(dbvd))vd idempotent
(an(®Ve)n(bv(anc)))Vvd absorption
(an(bvbvec)ranc)))vd modularity
(an(bV(ahrc)))vd anhc<bVe
(ane)v(bra)vd modularity

d

The following theorems indicate clearly the force of complementation in
distributive lattices and correlate it to the weaker notion of relative comple-
mentation,

THEOREM 11.8 In a distributive, complemented lattice each element a has
a unique complement a”. H



204 CHAPTER 11

Proof. Suppose there were two complements a* and b~ of a, then a* =
aAl=a"A(aVb™)=(a"Aa)V(a"Ab") =0V (a"Ab") = a” Ab”; similarly
b*=a*Ab",s0a" = b". [

THEOREM 11.9 In a distributive lattice relative complements are unique, if
they exist [

Proof Let L be a distributive lattice witha < d <cin L If d and d' were
both relative complements of b in the interval [a,c], then

d= dAc
dn(bv d)
(dAbyV(dAd)
(dnd)

Similarly, & = (dA d'),s0 d = d'

THEOREM 11.10 In a distributive lattice, if a has a complement, then it has
a relative complement in any interval containing it. [

Proof: Take b < a < ¢ and let d be the complement of @ and z = (dV b) Ac
the relative complement of @ in [b,¢]. To prove aAz =band aVz =c,

ahz=ah((dVvb)rc)=((arnd)V(arnb))hc=(0Vb)Ac=b,

avVez=aV((dVb)rc)=(avdVb)r(aVe)=1A(aVc)=c

THEOREM 11.11 In a distributive lattice, if @ and b have complements a*
and b*, respectively, then a A b and a V b have complements (a A b)* and
(aV b)*, respectively, and the de Morgan identities hold:

(i) (anb)" =a Vvob*

(ii) (aV b)* = a” A b
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Proof: By Theorem 11 .8 we only need to prove (i) by verifying
(arnb)A(a”vb)=0and (aAb)V(a“Vb)=1

(anb)A(a V) =(anbAa™)V(aAbAb)=0V0=0,
(and)v(a"Vvb)=(aVa " VE)A(bVa VB )=1A1l=1

The proof of (ii) is an exercise
Exercises

1. Which of the posets in the diagrams of figures 11-1, 11-2 and 11-3 are
lattices?

2. (i) Which of the following sets of sentences can be formally repre-

sented as posets (each name corresponds to an element):

(a) Alan is a descendant of Bob and Carol Carol is a descendant
of David and Eliza. Bob is a descendant of Fred and Gladys

(b) as in (a) adding: Fred and Eliza are descendants of Henry
and Isabella.

(c) as in (a) adding: Everyone is a descendant of Adam.

(d) David and Eliza, who told Fred about it, were told by Bob
and Carol, after Alan told them both.

(e) Jane told Jim and Joseph, who either told Jenny directly or
she heard from Julius who had heard from them.

(ii) Draw diagrams for the posets in (i) and indicate which are semi-
lattices and/or lattices.

(iii) For the lattices in (i) compute all meets and joins

3. Describe the poset formed by the power set of a four-element set and
draw its diagram, What corresponds to the set-theoretic operations in
an algebraic representation of this lattice? Check whether they satisfy
(L4).

4. Formulate and prove the dual of Theorem 11.2 for meet semilattices.

5. Draw a diagram for a meet homomorphism which is not a join ho-
momorphism from a four-element lattice to a four-element chain and
prove it does not represent a lattice homomorphism.
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6. Prove that the distributive laws (D1) and (D2) are equivalent,

7. Prove that in a complemented distributive lattice a = (a”)*.

Go

. Prove the second of the de Morgan identities of Theorem 11.11.

©

. Supply the laws used for each of the proofs of Theorems 11 .8~11 11



Chapter 12

Boolean and Heyting
Algebras

12.1 Boolean algebras

In this chapter we discuss two well-known algebras as specially structured
lattices and prove some of their properties as well as present some semantic
interpretations of these structures,

A Boolean lattice BL = (L, A, V, *, 0, 1) is a complemented distribu-
tive lattice. A Boolean algebra is a Boolean lattice in which 0, 1 and x (com-
plementation) are also considered to be operations;ie BA = (B, A, V, x,
0, 1) where V and A are the usual binary operations, = is a unary operation
and 0 and 1 are taken to be nullary operations, which simply pick out an
element of B. For easy reference, we repeat and relabel the laws which a
BA = (B, A, V, % 0, 1) obeys:

(B0O) BA is an algebra
(B1) Associative Laws
(i) arn(bAc)=(anb)Ac
(ii) av(bve)=(aVvbd)Vvec
(B2) Commutative Laws
(i) (anb)=(bAa)
(ii) (avb)=(bVa)
(B3) Distributive Laws
(i) aAn(bve)=(anb)v(ahc)

297
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(i) av{(bAac)=(aVb)A(aVc)
(B4) Top and Bottom Laws

(i) aAl=aandaA0=0

(ii) av0=qandavl=1

{B5) Complementation Laws
(i) anax=0
(i) aVax=1

Often in the literature a special two-element Boolean algebra, called BOOL
or 2 is used to represent the two truth values ‘false’ and ‘true’ where 0 < 1,
0 =1xand 1 = 0%

In a BA an element a is called an atom when a covers 0. The dual notion
is less frequently encountered, but defined as an element a which covers 1,
called the dual atom. A BA is called an atomic BA when it contains an
atom a for each of its non-zero elements z such that a < . Any finite BA
is atomic and an atomic BA may not be dually atomic.

We prove some central theorems about B A which illustrate their power
and structural elegance,

THEOREM 12.1 In a BA an element is join-irreducible iff it is an atom. W

Proof: (<) If @ is an atom then a = bV ¢ means that b =aor b= 0;if 6 =0
then a = 0V ¢ = ¢; so a is join-irreducible.

{=) Suppose a is not an atom or 0, then a > z > 0 for some element z.
Whenz < g, a=aAl =aAr(zVex)=(are)V(arex) =zV(aAzx).
Since aAhex < aand aAex = awouldimply e =aAz =aAexAze =0, we
know a A ¢ < a, hence a would be join-reducible. |

The definitions of ideals and filters in a lattice given in Chapter 11 carry
over directly to ideals and filters in B A, but note the additional fact that in
a BA 0 is an element of every ideal and 1 is an element of every filter Due
to the strong notion of complementation and the universal top and bottom
element in any BA we have the following strong correlation between ideals
and filters.

THEOREM 12.2 In any BA (i) for any I C B, I is an ideal iff I'x is a filter;
(ii) for any F C B, F is a filter iff Fx is an ideal. u
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Proof- (i) Note that 0 € T iff 1 = Ox € Ix Take a,b € I thena Vb € I iff
(a\/b)*:a*/\b*ef* Ifaecl, weknow b < aiff ax < bx;so b € I iff
b+ € I*. The proof of (ii) is obtained dually. ]

TuEOREM 123 If F is a filter in a BA, then F is an ultrafilter iff for each
b€ B eltherbe Forbxe F B

Proof (<) Suppose for any b € B either b € F or bx € F and take F' to
be a filter which properly contains F, ie there is some ¢ € F/ — F. Since
c@ F,ex € F CF' So F'is not proper Hence F is a maximal proper
filter, an ultrafilter.

(=) Let F be an ultrafilter and take b ¢ F. Set F' = F U {b} which is
not proper since F is already maximal So F' U {b} does not have the finite
intersection property and for some finite subset X of F, inf(X}Ab=10 So
inf(X) < bx. Inf(X) is in F and hence bx € F. ]

The following theorem is proven with a form of the axiom of choice, and
shows the existence of a rich class of ultrafilters in any BA.

TueorREM 124 (The Ultrafilter Theorem) Each filter in a BA can be ex-
tended to an ultrafilter. B

Proof: Let F be the non-empty class of all filters in some BA, partially
ordered by set-theoretic inclusion. We want to show that every chain in this
ordering in F has an upper bound. Let C = {C; : i € I} be a chain in F
and let C = UsesCi. e,y € C, then for some {,7 € I,z € C; and y € C;.
Since C'is a chain, either C; < C; or C; < Cy; take C; < C; Thenz,y € Cj
and since Cjis afilter e Ay € C; € C. Ifbe Bandz < bthenbe C; € C.
Since 0 g C; forany i € I, 0 € C So C is a filter, which is the upper bound
for C in F. With a form of the axiom of choice (called Zorn’s Lemma) we
derive that for any filter F, BA must contain a maximal filter extending
that filter. B

There is an important connection between ultrafilters and homomorphisms,
as indicated by the following theorem.

THEOREM 12,5 Let BA{ and BAg be two Boolean algebras and consider
a homomorphism F : BA; — BAy If U is an ultrafilter of BAg, then
F~Y(U) is an ultrafilter of BA ;. ]

The proof of Theorem 12.5 is not given here, since it requires a number of
algebraic concepts which have not been introduced.
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12.2 Models of BA

The Boolean laws may already have reminded you of the properties of set-
theoretic operations, and, indeed, sets provide simple models of Boolean
algebras Starting from any non-empty set X a model for BA can be con-
structed as follows:

e Let B be p(X), the power set of X

Let V be set-theoretic union U

Let A be set-theoretic intersection (1

e Let x be set-theoretic complementation / relative to X
e Let 1 be X

e Let 0 be §

We may verify that all Boolean laws are true under this interpretation.

(12-1) Let X = {a,b,c} then B = {{a,b,c}, {a, b}, {a, c}, {b,c}, {a}, {b},
{c}, 8} Union and intersection are as usual and the complements
are: {a,b,c}x =0, {a,b}x = {c}, {a,c}x = {b} and {b,c}x = {a}.

Note that by starting from a set with n elements, we construct a BA with
2" elements. Thus for every positive power of 2 there is a Boolean algebra
whose set has exactly that cardinality. It can be proven, although we will
not do so, that every finite BA has a cardinality of 2" for some positive n.
In Section 3 we will prove that every finite model of BA is isomorphic to
a particular set-theoretic model based on the construction described above.
Thus this family of models is particularly important. For infinite models the
situation is not so simple. Every infinite set leads to a model for BA by the
given construction, but not every infinite BA is isomorphic to one of these
models There are, for instance, Boolean algebras of cardinality No, but No
is not the cardinality of the power of any set, as we know from Cantor’s
Theorem (see Section 4 4).

We can also show that the logic of statements familiar from Part B
constitutes a model of BA. Let L be the logical language whose syntax
was defined in Section 2 1, and S be the set of statements generated by its
syntactic rules For s and s’ € § we write s ~ s’ when s and s’ are provably
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logically equivalent in this logic of statements Now ~ is an equivalence
relation on § For each s € S we define the equivalence class
[s]={s'eS|s~s}
Let B be the set of all such equivalence classes of logically equivalent state-
ments. Define a partial ordering on B by
[s] < [s'] iff (s — ') is valid

Then ( B,< ) is a Boolean algebra called the Lindenbaum algebra of L. The
Boolean operations on B are defined by

[sIA[sT =Ts & s'T, [s]V[sT=1[svs], [s]%=][~s].

Top and bottom are then respectively

1 = [s] for any tautology s

0 = [s] for any contradiction s

An ultrafilter in the Lindenbaum algebra of L can be identified with a
maximally consistent set of statements, which would constitute the first step
in proving the completeness of L through its ultrafilter representation. Such
topics belong to more advanced model theory and are beyond the scope of
this book (Reference: Bell and Machover (1977)).

12.3 Representation by sets

The first example we gave of a model of BA was the power set algebra of
a set. In this section we show that each Boolean algebra is isomorphic to a
subalgebra of a power set algebra, or, in other words, each Boolean algebra
may be reprsented as a subalgebra of a power set algebra. This important
theorem is due to ML.F Stone and is called Stone Representation. We first
need to define two new notions:

DEFINITION 121

(1) A ring of sets is a family of subsets of a set X which contains for any
two subsets A and B of X also AU B and AN B.
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(2) A field of sets is a ring of sets which contains X and the empty set §
and the complement A’ of any subset A C X

From these definitions it is easy to see that a field of subsets of X is a Boolean
subalgebra of the Boolean power set algebra of X, but that a ring of subsets
is a sublattice of the power set algebra of X, considered as a distributive
lattice, We will prove that any finite distributive lattice is isomorphic with a
ring of sets and that any finite Boolean algebra is isomorphic with the field
of all subsets of some finite set. (The proof follows essentially Birkhof and
MacLane, 377-380).

From Section 12.1 we need Theorem 12.1 and we define a set S(a) = {z |
z < a and z covers 0} of join-irreducible elements z for an element a in any
finite lattice L. Consider the mapping F which assigns each element a its
S(a).

LemMA 121 In any finite lattice L, F' carries meets in L into set-theoretic
intersections: S(aAb) = S(a)N S(b). ]

Proof. By definition of a A b we know that for any join-irreducible element
z, e <aAbife<aandz <b ]

LEMMA 12.2 In any finite distributive lattice L, F' carries joins in L into
set-theoretic unions: S(aVb) = S(a) U S(b). ]

Proof Take any join-irreducible z, then z is contained in a Vb iff ¢ =
zA(avb)=(zAa)V(zAb). NoweAra=zorzAb==2 So(aVbd)
contains z iff $(a) contains  or S(b) contains @. The converse is obvious in
any lattice. B

These two lemmas show that F is a homomorphism from L onto a ring
of subsets of the set X of join-irreducible elements of L. Together with the
result of Exercise 3 at the end of this chapter we know that F is also a
one-to-one onto homomorphism. So we know

THEOREM 12.6 Any finite distributive lattice is isomorphic with a ring of
sets. B
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In the case of a finite Boolean algebra we know from Theorem 12.1 that each
element a is the join of the atoms ¢ < a. With the above two lemmas we

know
S(a)n S(a') = S(anax)=S5(0) =90

S(@)uS(d)=S(avax)=S(1)=J

where J is the set of all join-irreducible element of L. So [S(a)]x = S(a')
and F as defined above is an isomorphism from any Boolean algebra to a
field of subsets of join-irreducible elements of L. We still need to prove that
this field contains all sets of join-irreducible elements of L.

THEOREM 12 7 Any finite Boolean algebra is isomorphic with the Boolean
algebra of all sets of its join-irreducible elements ]

Proof We need to prove that for any two distinct sets of join-irreducible
elements of L the joins of each set are distinct. The claim that the join of
all elements in such a set contains all the join-irreducible elements of that
set and nothing else follows from

LEMMA 123 If A is a set of join-irreducible elements, and there is some
join-irreducible element a such that a < \/{z |z € A}, then a € A. B

Proof a =aAV{z |z € A} = V(a A z) and since a is join-irreducible for
some such ¢ € A,aA 2z =a,s500< ¢ < a Butthena==z. B

The significance of Stone Representations for representing information
and structuring models for the semantic interpretation of natural language is
discussed in Landman (1986). The mathematical import of Boolean algebras
can be illustrated further by relating them to certain topological structures
and so called Boolean spaces, but the interested reader should consult the
exposition of such topics in Gratzer (1971) or Bell and Machover (1977)

12.4 Heyting algebra

Besides Boolean lattices and algebras which are used to represent such log-
ical systems as the classical logic of Part B, there are other, weaker lattice
theoretic structures and corresponding algebras which represent constructive
reasoning based on a stricter notion of proof by rejecting any use of reductio
arguments. In the semantics of natural language attention has recently been
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Figure 12-1.

refocused on theories of meaning based on verification/falsification condi-
tions, or more generally, assertability conditions, which subsume the classical
truth conditions and analyze the informative content of an expression in the
context of use, Although an account of the philosophical and mathemat-
ical foundations of such constructivist logics and their potential linguistic
applications is outside the scope of this book, it is useful to present some of
the basic syntactic and semantic concepts to develop an initial understand-
ing of more epistemically flavored formal systems. We need to define one
additional lattice-theoretic notion.

In a lattice L the (relative) pseudo-complement of an element a relative
to b is the greatest element ¢ in L such that aAc < b. Note that this pseudo-
complementation involves only the meet operation It is easy to see that ¢
is the pseudo-complement of a relative to b precisely when

(12-2) forallzin L,z <ciffarz<b

e.g., in the power set lattice with the inclusion ordering, { g(A4), < ), for any
sets X, Y € p(A), X'-Y is the pseudo-complement of X relative to Y.
(See Fig. 12-1.) In general, we write a = b for the pseudo-complement of a
relative to b, and we say that a lattice L is relatively pseudo-complemented
iff @ = b exists for every @ and bin L.

A relatively pseudo-complemented lattice { H,A,V ) is called a Heyting
lattice (or a pseudo-Boolean lattice) if it contains a bottom element 0. Define
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ax by setting ax = a = 0 and note that a* is the lub of {z | anz = 0},ie ax
is the pseudo-complement of g (relative to 0). The dual of a Heyting lattice is
called a Brouwerian lattice, which is studied in McKinsey and Tarski (1946).

Correspondingly, an algebra {H, A, V, =, 0, 1) is a Heyting algebra
(HA) and it has the following properties:

(H1) (H,A,V) is a distributive lattice
(H2) aAO0=0andavl=1

(H3) a=>a=1

(H4) (a=>b)Ab=b;ar(a=>b)=aArb

THEOREM 12.8 A Heyting lattice is distributive. B

Proof In every lattice, b < bVcand ¢ < bVe,soaAb< an(bVe)
and aAc < aA(bVe). Hence (anb)V(aAe) < an(bVe) Weknow
aAb < (aAb)V(aAc),soin a Heyting lattice if b < a, then b < (aAb)V(aAic)
and ife < a, then ¢ < (anb)V(ane) SoifbVe < athen (bve) < (anb)Vv(ance),

thusaA(bve)<(anb)V(anc),ie,an(bVe)=(aAb)V(ahec). ]

The notion of a filter in a Heyting lattice can be characterized as follows:

THEOREM 12.9 A subset F C H is a filter of a Heyting lattice H iff (i) F
contains 1 and (ii) ifa € F and a = b then b € F. ]

Proof (<) Suppose 1 € F and since in a relatively pseudo-complemented
lattice @ < b = (a A b), we have a = (b = (a Ab)) =1 I a,b € F then
b=>(anb) € FandaAbe F Ifac Fanda<bthena=>b=1€ F,so
b € F. This proves F is a filter.

(=) Suppose F is a filter, then 1 € F. If a € F and @ = b € F then
aAb=aA(a= b) € F,since aA(a = b) < b (by substituting a = b for cin
the definition of a relatively pseudo-complemented lattice) and b < a = b.
Sobe F. B

The notion of a filter in a Heyting lattice is used to capture closure of a
set of statements under their implications, as we will see in the following
section on the semantics of Heyting algebras. We can define a pre-ordering
(reflexive and transitive) on the elements of a filter in a Heyting lattice by

a<pbiff (a=b)eF
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Logically equivalent statements a ~ b for which a <p b and b <g a form
again an equivalence class determined by the filter . A lattice ordering
may be defined on elements of such an equivalence class by la] < || iff
(a = b) € F and it is provable that the lattice obtained from this ordering is
also relatively pseudo complemented Details can be found in Rasiowa and
Sikorski (1970), among others.

12.5 Kripke semantics

In 1965 Saul Kripke published a semantic interpretation of intuitionistic logic
based on Heyting algebras as a corollary of his semantics for modal logics
(see Chapter 15). Because some fruitful notions for a theory of meaning
for natural language based on information conditions may be related to this
Kripke semantics we sketch this semantics here informally without entering
into the axiomatization or metatheory of intuitionistic logic

The core idea of Kripke semantics is to relativize the truth of a statement
to temporal stages or states of knowledge. So a statement is not simply
true but rather true at a stage or in a state of knowledge, which we will
generally call an information-state We take these information-states to
be ordered temporally, ie. assuming a partial order which represents the
different alternative ways in which we may gradually acquire and extend
our knowledge and information. So the set of information-states does not
just contain the past stages of information gathering but also all possible
future states to which we may get from what we now actually know. We
also assume that we share such information-states as a community of (formal
or natural) language users rather than thinking of them as internal mental
representations as the founder of intuitionistic logic, L. Brouwer, suggested.

A sentence which is true at an certain information-state will always be
true at later states, since once we have verified a statement we never lose
that information (this is the idealization of the language user in seman-
tics!). Hence we require that truth of a statement at an information-state
persists through all consecutive information states. More formally, the set
of information-states in an interpretation forms a poset under the temporal
order called a Kripke-frame P = ( P,<). The interpretation of a statement
corresponds to the subset of information-states at which the statement is
true. Persistence of truth is tantamount to requiring such subsets to be
filters on P or hereditarily closed under the temporal ordering.

The collection of filters on P will be written P*. We define a Kripke-
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valuation to be a function from the set of statements to the set of filters
V:S5— P, assigning to each statement s € S a filter V(s) C P, ie. the
information-states at which s is true. A model based on a Kripke-frame is a
pair M = {P,V) where V is a Kripke-valuation. Now we define recursively
the notion of truth at an information-state for all complex statements (we
leave the syntax of the statements implicit as it is essentially the syntax of
the logic of statements in Chapter 6).

We define a notion M| =, s which is to be read as ‘the statement s is
true at information-state p in the model M.’

(1) M| =, s for s an atomic statement iff s € V(s).

(2) M| =ps& s"iff M| =, s and M| = &'

(3) Ml=psVsif M|=,50r M| =, s

(4) M| =p~ s iff for all p’ such that p < p' not M| = s

(53) M| =psw— s iffforall p/, p< p' if M| =ps s then M| =p s’

Thus at information-state p the negation of a statement s is true when the
statement can never become true or verified at any later possible stage.
A conditional statement is true when at all later stages which verify the
antecedent the consquent is verfied as well The advantage of introducing
information-states is that they are used to quantify over possible extensions
of the actual information-state in defining verification of negative statements
and conditionals.

Unrelativized truth can be defined as truth at all information-states and
a statement is valid on a Kripke-frame if it is true on all models based on
that frame.

If we extend this definition of truth at an information-state to the full
predicate loige including the universal and existential quantifiers, we need
to put some further conditions on the clauses for statements as well. If
we analyze the internal structure of statements, we can only verify such
quantificational statements when we know ‘what they are about,’ i.e., when
we know the reference of the terms that occur in such quantified statements.
More informally speaking, we do not know how to verify (or falsify for that
matter) an English sentence John is old when we do not know to whom John
refers or who John is.

For similar reasons we require that (i} each information-state is assigned
a non-empty set of objects which act as ‘referents’ for individual constants
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and variables, and (ii) successive states only add referents. Then clause
(1) above is extended to incorporate the requirement that V(s) picks only
objects from this ‘referent’-set as interpretations of the individual variables
and constants occurring in s (an atomic formula of a predicate logic} For
disjunction we require that all terms of both disjuncts are interpreted by
objects from the referent-set at the stage of evaluation of the disjunction
and similarly for conditionals and negations. The quantifier clauses to be
added are defined as follows:

(6) M| =, (Va)p iff for every p’ such that p < p’ M| =, ¢(z/t) where t
is an object from the referent-set of p'.

(7) M| =, (3z)p iff M| =, @(z/t) where t is an object from the referent-
set of p,

From these recursive clauses we can see that the law of double negation, al-
though valid in classical logic, is not valid in a Kripke semantics. Note how-
ever that verification of a formula entails verification of its doubly negated
form but not vice versa (if M| =, s then M| =p~~ s), and a negative for-
mula is equivalent to its triply negated form (M| =,~ s iff M| =p~~~ s).
Also the classical law of excluded middle (every formula or its negation is
true) does not hold in Kripke semantics.

On the basis of a syntactic specification of the intuitionistic logical sys-
tem and this Kripke semantics we can prove the important completeness and
soundness theorems, and Kripke semantics can also be formulated by seman-
tic tableau rules (as it originally was) We will not discuss such metatheo-
retic issues of intuitionistic logic here, but rather point out the connection
between Kripke semantics and Heyting algebras.

Since the intersection and union of two filters are filters too, the poset
Pt = (P*, <) based on the set of filters with inclusion is a bounded dis
tributive lattice with meets and joins given by intersection and union, PT
is indeed a Heyting algebra such that for any A, B € PTA = B is the
pseudo-complement of A relative to B. We have for all filters F',

F<A=>BH#fAnNF<B

and
A"=A=(

Now a Kripke-valuation V : § + P for a Kripke-frame P is also a valuation
for the Heyting algebra P*. This connection can be used to show that
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Kripke-validity on the frame P is the same as validity in a Heyting algebra
Pt

For a semantics of natural language Kripke semantics may have to be
extended beyond its verification conditions to include recursive falsification
conditions defining falsity of a formula in an information-state. This would
allow for a more interesting treatment of positive and negative facts, as
well as a more adequate analysis of conditionals An important current
research question is how modal verbs and conditionals may be analyzed
as constraining the set of possible extensions of a given information-state
as rules or constraints which determine patterns of information growth or
restrictions on possible ways of gathering new information. The interested
reader will find further references in the suggested further reading for this

chapter
Exercises

1. Prove that in any Boolean algebra if aAb = 0 and a vV b = 1 then
a= b

2. Prove the idempotence of the meet and join operations from the other
Boolean laws.

3. Show that in a finite Boolean lattice every element is the join of some
join-irreducible elements. (Hint: you need induction on n» when n is
the number of elements ¢ < a for given a, and the base of the induction
is the bottom element).

4. Prove for any join-irreducible element a of a distributive lattice, if
a<bvecthena<bora<e

5. Prove for any relatively pseudo-complemented lattice with a top ele-
ment 1 that
(i) a=a=1
(ii) e<bifa=b=1
(i) b<a=1b
6. Prove that any finite lattice is a Heyting lattice

T. I (B, A, V, *, 0, 1) is a Boolean algebra then for any a,b € B define
a > btobe a*Vvb Showthat (B, A, V, —, 0, 1)is a Heyting algebra.






Review Exercises

1. Following the procedure used in Theorem 10 1 prove that in a group,
y = a”! o b is the unique solution of a oy = b.

2. Construct a commutative group with five elements.

3. Let the operation ¢ y be defined as ¢ + (y — 3). Show that the set G
of all integers forms a group with respect to this operation and that 3
is the identity element of this group. What is the inverse element for
an integer z?

4. (a) List four different subgroups of the group of all integers under
ordinary addition.

(b) For each of these subgroups, state whether it is isomorphic to the
original group. If so, prove it and if not explain why not

5. Determine all the possible isomorphisms between the group of the in-
tegers {0,1,2,3} with addition modulo 4 and the group of rotations of
the square {/,R, R', R"}.

6. Let A = {a,b,c} Find all the distinct one-to-one correspondences
from A onto A. Construct composites of all pairs of these one-to-one
correspondences and express your results in the form of a multiplication
table, What sort of mathematical configuration is represented by this
multiplication table?

7. Let A™ be the set of all strings formed from some finite set A For all
strings ¢ and y in A* = is said to be a conjugate of y iff there are
strings v and v such that ¢ = uv and y = vu.

(a) Show that conjugacy is an equivalence relation and describe the
partition it induces on A*. For a string ¢, of length n what are
the maximum and minimum number of strings in the equivalence
class containing z,?

311
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(b) Prove that if ¢ is a conjugate of y there is a string z such that
Tz = zy,

(c) Let T = {Ty, T», T3, T4} be the set of functions each of which
maps a string in A of length 4 into one of its conjugates, e.g., T}
maps a1dya3adq into a1 azaszas and T» maps a;azazaqs into azazaqsa;.
Show that the operational structure consisting of T’ and the op-
eration of composition of functions is an Abelian group

8. Each of the following is a system of the form A = (4,®,®) consist-
ing of a set and two binary operations For each system, answer the
following questions:

(a) Which of the group axioms are satisfied by ( 4,8 )?
(b) Which of the group axioms are satisfied by ( 4,0)?
(¢) Is A an integral domain? If not, which axioms are not satisfied?
(1) A = the set of all integers
@ = ordinary addition
® = ordinary multiplication
(2} A = the set of all non-negative integers
@ = ordinary subtraction
® = ordinary multiplication
(3) A=10,1,2,...,24}
@ = addition modulo 25
® = multiplication modulo 25
(4) A={1,2,3,..,9,10}
@ = addition modulo 11
(® = multiplication modulo 11
(5) A= {1,5,7,11}
@ = addition modulo 12
® = multiplication modulo 12
(6) A = the set of all rational numbers p/q with 0 < p/g< 1
@ = ordinary addition
® = ordinary multiplication
(7} A = the set of all integers
@ = ordinary addition
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® defined bya®b=0forallg,bc A

Prove the following laws for integral domains. (You may use the results
of previous problems as well as the axioms and theorems from the text.)

(a) (a+b)-(c+d) = (ac+ be)+ (ad + bd) for all a,b,¢,d.
(b) ~0 =0 (Note: —z stands for “additive inverse of ”, ™! stands
for “multiplicative inverse of ")

(c) fa b=0,theneithera=0o0rb=20.
(d) ~(~a) = a

The following correspondences are many-one mappings of the multi-
plicative group of all non-zero real numbers on part of itself. Which
are homomorphisms? For those which are not, show why not. (*For
those which are, prove that all the requirements are satisfied.)

(a) z+ 2|
(b) ¢ —z
(¢) 2+ 2z
(d) e~ 1/z

(e) &+ z2

Which of the following relations R are equivalence relations? For those
which are, describe the equivalence classes.

(a) Gis a group, S is a subgroup of G, and R is the set of all ordered
pairs (a,b) with a,bin G such that ™! -b € S.

(b) J is the integral domain of all integers and R is the set of all
ordered pairs (a, b) with a,b in J such that a + (—b) is even.

(¢) J is the integral domain of all integers and R is the set of all
ordered pairs (a, b) with a,b in J such that a + (-b) is odd.

(a) Construct a group of symmetries of an equilateral triangle anal-
ogous to the group of symmetries of the square (There should be six
elements altogether).

(b) Find all subgroups of that group.
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(¢) Construct a homomorphism between the whole group and one of
its proper subgroups.

13. Prove using the axioms of Boolean algebras that the set of elements of
a Boolean algebra cannot form a group under the union operation.
14. Prove in a relatively pseudo-complemented lattice
(a) a=biffazb=1=b=a
(b)) 1=>b=0b
(¢c) a<b=(anbd)
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Chapter 13

Basic Concepts

Richard Montague was the first to seriously propose and defend the thesis
that the relation between syntax and semantics in a natural language such
as English could be viewed as not essentially different from the relation
between syntax and semantics in a formal language such as the language of
first-order logic While Montague’s claim was and is a controversial one, both
the perspective he offered and the technical apparatus used in developing it
have transformed the study of natural language semantics, In this section
we focus first on the principle of compositionality and its central role in
articulating the relation of semantics to syntax in a formal language. The
principle is also known as Frege’s principle, and Montague took himself to be
formalizing a basically Fregean viewpoint in adopting it. The second topic of
this chapter is the lambda calculus, invented by Alonzo Church in the 1930’s
but introduced to linguists mainly through Montague’s work. The lambda
calculus has no intrinsic connection to the principle of compositionality, but
it has proved to be one of the most important and fruitful tools in the formal
semanticist’s toolbox, and without it, it would be much harder to make a
plausible case for the compositionality of natural language semantics. For
a linguist interested in semantics, we would suggest that a familiarity with
the basics of the lambda calculus could be as important as a familiarity with
first-order predicate logic.

13.1 Compositionality

The term “semantics” is used in a variety of ways in a variety of fields; prob-
ably the only common denominator among these is that semantics must

317
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be concerned with meaning, but “meaning” is if anything an even vaguer
term Among logicians, however, the term “semantics” has had a relatively
precise usage, at least in the dominant Western tradition reflected, say in
Donald Kalish’s article in the Encyclopedia of Philosophy, and it is out of
that tradition that Montague’s work came. If you remember the discus-
sion of syntax and semantics in Part B: Logic especially the presentation
of the syntax and semantics of statement logic in sections 6.1 and 6 2, and
of predicate logic in 7.1 and 7.2, you might have noted that both systems
ate syntactically disambiguated, i.e , no wellformed formula has more than
one derivation. Quantifiers and connectives in formulas always have a de-
terminate and fixed scope Furthermore, the semantic interpretation of any
statement or predicate logical formula is obtained via a systematic semantic
procedure interpreting its parts and the logical symbols connecting them,
The correspondence between the syntactic structure of a formula and its se-
mantic interpretation is in fact very tight, as we will see in this section The
principle of compositionality, or Frege's principle, is a way of articulating
the relevant notion of correspondence.

The Principle of Compositionality. The meaning of a complex expres-
sion is a function of the meanings of its parts and of the syntactic rules by
which they are combined.

Construed broadly and vaguely enough, the principle is neatly uncontro-
versial, but Montague’s precise version of it places rather severe constraints
on admissable systems of syntax and semantics. As the wording given above
suggests, the exact import of the compositionality principle depends on how
one makes precise the notions of meaning, of part, and of syntactic rule, as
well as on the class of functions permitted to instantiate the “is a function
of” requirement.

In the specification of formal languages, the compositionality principle
is generally satisfied in the following way: the syntax is given by a recur-
sive specification, starting with a stipulation of basic expressions of given
categories, and with 1ecursive rules of the following sort:

Syntactic Rule n: If o is a well-formed expression of category A and 8 is a
well-formed expression of category B, then v is a well-formed expression of
category C, where v = Fi(a, ).

In such a rule, F; is a syntactic operation such as concatenation; we will
give illustrations of such rules below
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The semantics is then given by a parallel recursive specification, including
a stipulation of the semantic values for the basic expressions and for each
syntactic rule a single semantic rule of the following form:

Semantic Rule n: If o is interpreted as o and 8 is interpreted as 8/, then v
is interpreted as Gi(o/, 8).

In such a rule, G is a semantic operation, examples of which we will see
below.

Note the distinction between syntactic and semantic rules as schematized
above and syntactic and semantic operations, the F;, G} that appear within
the rules. When the compositionality requirement is taken as a constraint
on the correspondence between rules, as it is here, it does not by itself im-
pose any correspondence requirement on the operations that occur within
the rules. One might, for example, formulate a rule of Yes-No Question For-
mation for English utilizing a complex syntactic operation built up out of a
combination of Subject-Aux Inversion, Do-Support, and the imposing of an
appropriate intonation contour, deriving a yes-no question from its declara-
tive counterpart. The task of giving a uniform semantic interpretation rule
corresponding to such a syntactic rule is obviously very different from the
(presumably impossible) task of giving a uniform semantic interpretation
of the operation of Subject-Aux Inversion (which occurs in a semantically
heterogeneous variety of constructions in addition to Yes-No Questions.)

13.1.1 A compositional account of statement logie

Toillustrate, let us recast a part of the syntax and semantics of the statement
logic of Chapter 6 and the predicate logic given in Chapter 7 in a form which
makes the semantics explicitly compositional

The syntax of SL, the language of statement logic originally presented in
Section 6.1, is restated below,

(13-1) The primitive vocabulary of SL consists of the following:

(i) a denumerably infinite set of atomic statements which we des-
ignate by the letters p, ¢, r, s, with primes or subscripts added
when necessary.

(i) the following logical constants: ~, &, V, —, « The same
symbols are used in the metalanguage to designate these sym-
bols in the object language.
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(iil) the punctuation symbols (,}. These are also used as names of
themselves in the metalanguage.

(183-2) The set of wifs of SL is defined recursively as follows:
(1) Basic Clause: Every atomic statement is a wif.
(2) Recursive Clauses:

(2.1) If ¢ is a wff, then the result of prefixing ~ to ¢ is a wff,

(2.2) If ¢ and 9 are wifs, then the result of concatenating (,
#, &, ¢, and ) in that order is a wiff.

(2.3) If ¢ and ® are wifs, then the result of concatenating (,
&, V, ¥, and ) in that order is a wif

(24) If ¢ and ¢ are wifs, then the result of concatenating (,
&, —, 1, and ) in that order is a wif.

(25) If ¢ and ¢ are wifs, then the result of concatenating (,
¢, <, ¥, and ) in that order is a wif.

The somewhat pedantic way of stating the recursive rules above is in-
tended to emphasize that the operations which apply to wifs to produce
larger wifs include the introduction of logical constants and punctuation
marks. Given this syntax, the only relevant parts of a complex wif are its
constituent wifs. In this syntax, the logical constants are not assigned to any
syntactic category; the only category employed in the syntax is the category
of wifs. The semantics will be stated accordingly, assigning semantic val-
ues to complex wifs as functions of the semantic values of their constituent
wits and of the rules by which they were constructed. (The same language
could be given a different syntax in which the logical constants (but not
the punctuation marks) are indeed assigned to categories (e g. ‘one-place
connective’ and ‘two-place connective’) and receive semantic values (which
will be truth-functions); the semantic rules would then treat the connectives
as well as the wifs as parts of complex wifs and the semantic rules would
be stated in a correspondingly different way See Dowty, Wall, and Peters
(1979) o1 Gamut (1982, vol. 1) for explicit illustration and discussion of this
contrast.

The semantics of SL, as stated in Section 6 1, assigns to every complex
wif a truth value, either 1 (true) or 0 (false), based on the truth values of
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its constituent wifs and the syntactic rules by which they were assigned A
specification of the semantics that meets the compositionality requirement
must therefore include a specification of semantic values (in this case truth
values) for the atomic statements and a recursive semantic rule correspond-
ing to each of the recursive syntactic rules. Such a semantics can be stated
as follows.

(13-3) Assignment of semantic values to atomic statements: Let f be a
function which assigns to each atomic statement of SL one of the
two truth values 0 and 1.

(13-4) The semantic interpretation of the set of all wffs of SL, given an
initial valuation f for the atomic statements, is defined recursively
as follows

(1) Basic Clause: If ¢ is an atomic statement, then the semantic

value of ¢ is f(&).
(2) Recursive Clauses:

(2.1) (unabbreviated) The semantic value of the result of pre-
fixing ~ to ¢ is 1 iff the semantic value of ¢ is 0.

(2.1) (abbreviated) The semantic value of ~ ¢ is 1 iff the
semantic value of ¢ is 0. (The remaining rules will be
written in their abbreviated form )

(2.2) The semantic value of (¢ & v) is 1 iff the semantic values
of ¢ and ¢ are both 1.

(2 3) The semantic value of (¢ V ) is 1 iff the semantic value
of ¢ is 1 or the semantic value of ¢ is 1.

(2 4) The semantic value of (¢ — ) is 1 iff the semantic value
of ¢ is 0 or the semantic value of ¢ is 1

(2.5) The semantic value of (¢ < %) is 1 iff the semantic value
of ¢ is identical to the semantic value of ¢.

Each of the recursive semantic 1ules specifies an operation which applies
to the truth values of the constituent wifs to determine the truth value of
the resulting wif The operations are those familiar from the truth tables of
Section 6.2, although here they are defined implicitly rather than explicitly
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It is clear from the statement of the syntactic rules and of the unabbre-
viated form of the first tecursive semantic rule that plain English makes a
rather cumbersome metalanguage and some succinct special-purpose nota-
tion could prove useful. Notation in this area is not as standardized as in
some other parts of mathematics and logic, but we will introduce some fairly
common notational practices below

The syntax in (13-1) and (13-2) can be used in assigning each SL state-
ment a unique derivation tree similarly to the syntactic trees in a Phrase-
Structure component of a grammar of a natural language The semantic
rules in (13-3) and (13-4) will then give each tree a compositional interpre-
tation, following the derivation node by node from the bottom up Here we
only illustrate the kind of tree for this syntax of SL and its semantic inter-
pietation, and defer further discussion and alternative syntaxes to SL to the
exercises of this chapter.

The derivation of the statement ~ (p Vv q) is as in (13-5). The tree is
annotated with the number of the (sub-) rule used in constructing each
node. The compositional interpretation of (13-5) is as given in (13-6), where
it is assumed that the truth value of the atomic statements is given: false
for p and true for ¢ Note that the annotation remains exactly the same due
to the rule-by-rule compositionality of SL.

Strictly speaking the semantics could either be defined on wifs the way we
did in (13-1) and (13-2) with bracketing for disambiguation, or we could do
without the auxiliary bracketings and have the syntax generate the derivation:
trees. These kinds of derivation-trees would then constitute an equivalent
but different way of disambiguating a formal or natural language and the
compositional semantics would have to take trees rather than formulas as
the objects to be interpreted

(13-5)
~(pVveg) 21

(pvg) 23
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(13-6)
0 21
I
1 23
VN
0,1 1,1

13.1.2 A compositional account of predicate logic

The syntax and semantics of predicate logic introduce several complexities
related to the greater expressive power of predicate logic compared with
statement logic. We have to recognize the distinct categories of predicates,
terms, and formulas, the distinction between constants and variables among
the terms, and the semantics of variables and of the binding of variables by
quantifiers, The last of these was presented in a somewhat informal manner
in Section 7.2, with the detailed formulation deferred to this chapter. It
is interesting to reflect on the fact that the category of closed formulas,
or statements, plays no essential role in the compositional semantics. It is
an insight that can be traced back to Frege that we can compositionally
define semantic values for formulas from semantic values for formulas (and
predicates and terms), and then define semantic values for statements by an
extra step, but that it is impossible to give a compositional semantics for
statements using just statements as the recursive category. We return to
this issue after presenting the explicit syntax and semantics below,

The syntax of PL, the language of predicate logic presented in Section
7.1, is restated in a different form below.

(13-7) The primitive vocabulary of PL consists of the following:

(i) A set of individual constants, which we designate in the meta-
language by the letters a, b, ¢, with and without primes. (Dif-
ferent object languages have their own particular sets of con-
stants, which may be finite or denumerably infinite. )
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(i) A denumerably infinite set of
individual variables, zg,21,22, . The individual constants
and the individual variables together constitute the terms.

(iii) A set of predicates, each with fixed arity, which we officially
designate in the metalanguage by P (for the ith n-ary pred-
icate) but more frequently represent as P,Q, R with primes
or subscripts as needed and the arity clear from context As
in the case of the individual constants, particular object lan-
guages will have their own particular choices of predicates.

(iv) The logical connectives of SL: ~, & ,V, —, < .
(v) The quantifier symbols V, 3.
(vi) The parentheses ), (, [, |.

Together these symbols form the vocabulary of PL; more precisely, we
should think of PL as a family of languages, one for each choice of individual
constants and predicates (the non-logical constants ) Each such language is a
language of predicate logic; when we speak of the language of predicate logic
we mean the form that all these languages share, assuming some arbitrary
and representative set of individual constants and predicates. (Note that
while different languages may use different symbols for the individual vari-
ables, this is merely an alphabetic variation. All languages of predicate logic
have a denumerably infinite set of individual variables, and their semantics
is fixed by the recursive rules of the semantics, not stipulated language by
language as the interpretation of the non-logical constants is )

Given the vocabulary, the set of formulas of PL is defined recursively as
in (13-8) below. In the metalanguage for talking about the syntax of PL, we
need variables that range over expressions of various categories to use in the
1ecursive rules, As in the statement of the syntax of SL, we use ¢ and ¢ as
variables over formulas We use P as a variable over predicates, ¢, possibly
with subscripts, as a variable over terms (including both individual constants
and individual variables), and v as a variable over variables. (We don’t need
to introduce any variable over individual comstants in our metalanguage
because there are no rules that apply only to individual constants ) Also
in our metalanguage for writing syntactic rules, instead of writing out the
syntactic operations explicitly with mention of concatenation, prefixing, etc.,
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we follow the common convention already illustrated in Chapters 6 and 7 of
indicating the syntactic operation by writing its result.

(13-8) The set PL of formulas of predicate logic is the smallest set satis-
fying conditions (1)-(8) below: (Note: This “smallest set” locution
is equivalent to adding a condition (9) which says that nothing is
in the set except by virtue of a finite number of applications of

(1)-(8)))

(1) If P is an n-ary predicate and t,,.. ,t, are all terms, then
P(t1,.. ,tpn) is a formula (These are the atomic formulas,)

2) If ¢ is a formula, then ~ ¢ is a formula.
3) If ¢ and 9 are formulas, then (¢ & 1) is a formula.

4) If ¢ and ¢ are formulas, then (¢ Vv ¢) is a formula.

(

( (
( (
(5) If ¢ and 4 are formulas, then (¢ — %) is a formula.
(6) If ¢ and ¢ are formulas, then (¢ « %) is a formula.
(
(

7) If ¢ is a formula and v is a variable, then (Yv)¢ is a formula.

8) If ¢ is a formula and v is a variable, then (3v)¢ is a formula,

The definition just given is nearly identical to that given in Section 7.1
and yields exactly the same set of formulas; the only difference is that we
have expanded what was stated as one rule into the five rules (2)-(6) and
another rule into the two rules (7) and (8) We did that in order to be able
to follow the letter of the compositionality principle and have one semantic
interpretation rule for each syntactic rule. We couldn’t literally do that if,
for instance, rules (2)-(6) were collapsed into one rule, since each of those
operations yields a distinct interpretation In practice it is more common
than not to collapse such rules anyway, and only if the compositionality of a
certain grammar is challenged or uncertain is it necessary to be very precise
about the individuation of the syntactic rules and their correspondence with
the semantic rules,

Now we turn to the semantics of PL, which was given in Section 7.2 but
not fully formally.

Remember that a model M for predicate logic consists of a domain D
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of entities or individuals and F' an assignment-function which provides the
interpretation of the primitive non-logical constants of the language, ie. a
function which maps each individual constant to an individual in D and
each n-ary predicate to P™ to a set of n-tuples of individuals. (Note that
the domain may be indicated by other capitals; in 13.2.2 we use A, and
E is also commonly found.) Besides the interpretation of the non-logical
vocabulary, we need a separate function assigning individual variables, call
it g : VAR— D, The reasons why a separate variable-assignment is needed
is that the recursive manipulation of these assignment functions plays a
separate and distinctive role in the compositional semantic interpretation
of quantified formulas. In effect, we generally have to consider all possible
assignments to the variable in a formula in arriving at the truth conditions
for the whole formula. Hence the semantic rules need to be able to refer
to and change the variable-assignments in the course of the interpretation.
Any element of the descriptive vocabulary, on the other hand, is interpreted
once and for all independently of anything else in the formula in which
it occurs, hence they are truly descriptive constants for individuals or for
predicates The interpretation of the entire language of predicate logic can
now be formulated compositionally as a rule-by-rule mapping defining the
denotation of an arbitrary complex formula relative to a given model and a
given variable-assignment

The denotation of an ezpression a relative to a model M and an assign-
ment g, symbolized [a*/9, is defined recursively, in parallel to the syntactic
rules given in (13-6) above, as follows:

(13-9)  (0) (a) If a is a non-logical constant in CON%, then [aM¥ =
F(a).
(b) If @ is a variable in VAR,, then [a]9 = g(a).

(1) If P is an n-ary predicate and t;,t, are all terms, then
[P(t1, )19 = Liff ([0, [ta1M9) € [PTMe

If ¢, € ME;, then:
(2) [~¢IM9 =1 i [¢[M9 =0
(3) [ & YJM9 = 1iff [¢]M9 =1 and [¢]M9 =1
(4) [¢V o9 = 1iff [¢]M9 =1 or [¢]M9 =1
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(5) [¢ — 9]*9 = 1iff [¢]*9 = 0 or [¢]*9 =1
(6) [¢ — Y]*9 = 1iff [¢]¥9 = [p]M9

(7) If ¢ is a formula an v is a variable, then [vvg¢]*9 = 1 iff for
alld € D, [¢]M9"" =1

(8) If ¢ is a formula an v is a variable, then [3v@]¥9 = 1 iff there
diu

is at least one d € D such that [¢]*9"" =1

The rules just given define semantic values for formulas compositionally
in terms of the semantic value for their parts; in order to accomplish this,
the semantic values for formulas were taken to be truth with respect to
a model and an assignment. Having done that, we can now define truth
with respect to a model (independent of assignment) for closed formulas,
or statements. The easiest way to do it will define truth with respect to a
model for all formulas, but it is for the closed formulas that we have the
clearest idea of what results the definition shall give. (See exercise 4 for an
alternative definition to (13-10) which gives different results for some of the
open formulas.

(13-10) (1) For any formula ¢, [¢]M (ie ¢ is a true simpliciter with
respect to M) iff for all assignments g, [¢]M9 = 1.

(2) For any formula ¢, [¢]M = 0 iff it is not the case that [¢]M =
1.

When working out the semantic interpretation of a formula, then, one
first proceeds compositionally through the derivation, using rules from (13-
9); then the last step is the application of the rules of (13-10)

Since the semantic rules of (13-9) match one-onto-one with syntactic
rules we now have a rule-by-rule compositional semantics of Predicate Logic,
Let’s see how some simple examples of derivations and their compositional
interpretation work out,

We will analyze the following three examples:

(i) Mary is reading a book.
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(ii) Every student is reading a book.

(iii) No student is reading a book

Keeping the quantifier prefixes as close as possible to their corresponding
predicates, their translations to predicate logic are:

(i) (3z)(book(z) & read(m, z))
(i) (Yy)[student(y) — (3z)(book(x) & read(y,z))]
(i) ~ (3y)[student(y) & (3z)(book(z) & read(y, z))]

The derivation tree for (i) according to the syntax in (13-8) is as in (13-
11), annotating each node with the number of the rule used in constructing
the expression on that node (the lowest nodes are all elements of the primitive
vocabulary given in (13-7)).

(13-11)

(3z)(book(z) & 1ead(m, z)), 8
T
z (book(z) & read(m,z)),3
T
book(z),1 read(m,z), 1
/N /N

book = read M T

Given this derivation the interpretation of the formula proceeds from
the bottom up the tree, determining the interpretation of each higher node
by the semantic rule corresponding to its syntactic counterpart. Let us
assumme we are given the following model M and variable-assignment g for
the interpretation

M = (D, F), where D = {mary, jane, MMiL}
F(m) = mary
F(student) = {mary, jane}
F(book) = {MMiL} (i.e. this book you are reading)



F(read) = {{mary, MMiL)}
g(z) = jane
9(y) = mary

Starting at the bottom we determine according to rule (0) in (13-9) that
[book]™# = F(book) = {MMiL}, and [2]™*¢ = g(z) =jane Furthermore,
we can determine [book(z)]M#¥ = 0 according to the semantic rule (1) in
(13-9), since jane is not an element of the denotation of book. Next we
proceed to the interpretation of [read]M® = F(read) = {(mary, MMiL)},
[m]M9 = F(m) =mary, and []™¢ = g(z) =jane. Applying rule (1) once
again we have [read(m,z)]M¥ = 0, since (mary,jane) is not in [read]M9,
Now we have two false formulas each with a free variable = as input to
the next node where they are conjoined, and by rule (3) we determine that
[(book(z) & read(m, z))]M9 = 0 too.

The interesting part of the compositional interpretation of this formula
comes in the final node, where the variable is bound existentially by an appli-
cation of rule 8. According to its semantic counterpart rule 8 [(3z)(book(z) &
read(m, z))[M* = 1 just in case we can find an assignment to the variable
z of an individual in D such that the matrix (book(z) & read (m,z)) with
that individual assigned to the variable ¢ is true. It is clear that the given
variable-assignment g does not fulfill these conditions, since we already found
out that it makes the matrix false. So now we are instructed to look be-
yond the given variable- assignment g that comes with the model, and search
among all possible assignment-functions for an alternative ¢’ to ¢ which as-
signs to z another individual which is a book and is read by Mary. We call
a variable-assignment function g’ an z-alternative to g if it is identical to ¢
with respect to all variables other than @, differing from g if at all only in
the value it assigns to ¢. Fortunately our simple model makes the search
for such an z-alternative of g in this case easy. We choose g(z) = MMIiL
and determine subsequently that [(book(z) & read(m,z))JM = 1, since ¢’
assigns MMil to ¢ and MMil is an element in the denotation of book, and is
paired with mary in the denotation of the relation read. So by rule (8) we
now have [(3z)(book(z) & read(m,z))]M¥ = 1, since we have shown that
there is an z-alternative of g, namely g’, which makes the subformula (book
(2) & read (m,z)) true.

Once we finish working up the tree, however, we still have to apply
(13-10) to establish a truth value for the whole formula independent of the
assignment. According to (13-10), the formula (3z)(book(z)& read(m,z))
is true with respect to M iff it is true for every assignment function. One can
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show (with a lot of tedious work; it is mote common to just convince oneself
and then assert it) that the choice of starting assignment had no effect on
the outcome in this example. So, since it came out true for our original g,
we can be confident that it will indeed be true for all other possible starting
choices of assignments as well. So we conclude that our formula (which is
indeed a closed formula} is true with respect to M.

This concludes the compositional interpretation of (i). Note at this point
that although we initially used the given variable-assignment g, in the end
it did not play any role in the determination of truth-value of the entire
formula. We will return this remarkable fact below.

The second example we want to consider is
(ii) Every student is reading a book

Despite the syntactic similarity of the English sentences (1) and (ii), their
translations to predicate logic are structurally different This difference is
primarily due to the fact that universal quantifiers require a conditional
matrix. Of course, these differences will have their consequences for the
interpretation of the formula.

(13-12)

(Vy)lstudent(y) — (3z)(book(z) &read(y, z))],7
/‘\\
y student(y) — (3z)(book(z) & ready(y,z)),5

/\

student(y),1  (3z)(book(z) & read(y,z)),8

TN

student Y ¢ (book(z)&1ead(y,z)),3
/\

book(x),1 read(y,z),1
N AN
book @ read ¥ =

We will use the same model and variable-assignment as for (i) for the
interpretation of (ii). The style of presentation is slightly more compact here
as an example of how lay-out may make it easier to follow the compositional
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interpretation procedure. Answering the exercises relating this material,
you will have an opportunity to develop your own style and improve on this
illustration

Compositional interpretation of (13-12):

(1) like (13-11): [book]M:9 = F(book) = {MMil}, and [e]™*9 = g(z) =jane.
(2) Rule (1): [book(z )JM:9 = 0, as jane is not in denotation of book.

(3) Let [y]™* = g(y) =mary, [read™* = F(read) = {(mary, MMiL})}

(4) Rule (1): [read(y, )M = 0, as (mary, jane) is not in Jread]M:9

(5) from steps (2) and (4), rule (3) gives 0

(6) Let g'(z) = MMIL, then [(3z)(book(z) & read(y, 2))JM9" =1,

(7) [student]™9 = F(student) = {mary,jane}

(8) by rule (1), [student(y)]™M¥ = 1 since g(y) is in [ student]™

(

9) from steps (8) and (6), rule (5) gives [student(y) — (3z)(book(z)
&read(y,z)) M9 =1

(10) Rule (7): [(Vy)[student(y) — (3z)(book(z) & read(y, z))]JM = 0.

Let g/(y) = jane, then [student(y)]M#" = 1, and given ¢'(z) = MMiL and
ﬂbook(m)ﬂM’g' =1, [read(y, 2)]™9" = 0, and no e-alternative to g’, keeping
jane the referent of y, gives a book read by jane. Hence the formula is false
in the given model,

(Notes: (1) There is nothing against assigning the same individual to
two distinct free variables—functions may be many-to-one! (2) To evaluate
a formula containing a ‘there is’ within the scope of a ‘for all’ you need to
have access not only to all alternatives of the given assignment, but also
to all alternatives to any of those. Although in small domains as in our
example this remains still feasible, for larger domains the search can get
rapidly more complex, but for infinite domains the search may never end. In
fact, on infinite domains even the evaluation of a simple universal quantifier
may never end, as derivation by exhaustion is impossible, i e., as long as you
have not yet found a counterexample you may be in one of two situations;
either a counterexample is still to come, or there is no counterexample. But
you never know which situation you are in.)

The final example we will discuss here in detail is (iii) No student is
reading a book. The syntactic derivation is given in (13-13)
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(13-13) ~(3y)[student(y) & (Jx)(book(z) & read(y, z))], 2

T
/ \\

~ (Jy)[student(y) & (3z)(book(z) & read(y, z))},8
\\
y student(y) & (3z)(book(z) & ready(y, z)),3
/\\
student(y),1  (3z)(book(z) & 1ead(y,)),8
/\ /\\\
student Y z  (book(zx)&read(y,z)),3

/\

book(z),1 read(y, z),1
AN /N
book = read ¥ ¢

Using the same model and starting variable-assignment as before:
(1) [book(z )& read(y,z))JM+* = 0
(2) Let () = MMil, then [book(z) & read(y,z))[M<" = 1, so [(3z)(book(x)

& read(y, :c))ﬂM'g =1
(3) [student(y)]M*9 = 1
(4) Rule (3): [student(y) & (3z)(book(z) & read(y,z))[M9 = 1.
(5) Raule (8): [(Fy)[student(y) & (3z)(book(z) & read(y, z))]M9 = 1.
(6) Rule (2): [~(3y)[student(y) & (3z)(book(z) & read(y, z))JM9 = 0.

(Note: the logically equivalent formula (Vy)[student(y) —~ (Jz)(book(z)
& read(y,z))] would require more interpretation steps, since here we need
to consider all y-alternatives to ¢’ to see whether they all falsify the formula
in the scope of this universal quantifier (one of them will not, but the others
will)., From a semantic point of view it is in general simpler to evaluate
formulas where the negation has widest scope, which can be obtained by
applying the quantifier laws given in (7-7) through (7-16).)

We have seen now that in interpreting a quantified formula you first
work with the given variable-assignment, but then you are often required
to search for an alternative of it for a particular variable. This interpretive
procedure requires not only that all alternatives for any variable to the given
assignment are in some direct way available, but whenever the formula con-
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tains n successively nested quantifiers, an equal number of distinct levels of
alternatives to alternatives needs to be accessed. Despite the compositional
formulation we gave this Predicate Logic, in the course of an interpretation
you may change what you had, if the given variable- assignment did not
give you the right value in the first place (e.g. the application of rule 8 in
the interpretation of (i)). It is clear that rule-by-rule compositionality seems
at first to be a very strong requirement on the relation between the syntax
and the semantics of a formal system. Yet it seems to allow information
which is gained first, to be lost later. In other words, it does not require by
itself that the meaning of the parts is still a recognizable part of the final
result This seems almost a flagrant contradiction of the Fregean Principle
of Compositionality, if it is interpreted in a static way as adding primitive se-
mantic objects to compose the meaning of the whole without any interaction
between the parts. Compositionality can be understood more dynamically
as a requirement on the process of interpretation, stating that the syntac-
tic structure will guide the semantics, while having access to all possible
variable-assignments, Current research in semantic theory explores various
forms of interpretation processes which are compositional in different ways
to different degrees.

To conclude this subsection we should return to Frege’s insight men-
tioned at the beginning. We have seen in detail now how the compositional
interpretation of Predicate Logic defines the denotation of any quantified
formula in terms of the denotations of a set of formulas in which the rele-
vant variable is free. At a time that Aristotelian syllogistic logic was still
the best available theory of quantification on the market it constituted a
tremendous innovation that universal and existential noun-phrases could be
treated semantically on a par, if they were ‘decomposed’ into a variable and a
quantifier prefix and the crucial but small difference of the conditional versus
the conjunction in the matrix. The conditions for this new understanding
were created by the mathematical development a more abstract concept of
a function and the fundamental separation of the syntax of a formal system
from its semantic interpretation.

13.1.3 Natural language and compositionality

When it comes to natural languages such as English, there are obvious prima
facie obstacles to compositionality that make it not surprising that both
linguists and philosophers before Montague doubted that English could be
given a compositional semantics, One of the most obvious obstacles is the
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phenomenon of quantifier scope ambiguity in English: the semantic intep-
pretation is certainly not uniquely determined by the syntax if we take the
relevant syntactic structure to be surface structure (much less deep structure
or D-structure.) Indeed the treatment of quantifier scope has been one of
the most controversial issues within and across theories of syntax and se-
mantics from the time of the generative-interpretive semantics split in the
late 1960°s down to the present. Some theories posit a distinct syntactic
level (such as the LF of May (1877) or the underlying representations of
generative semantics) on which quantifier scope is disambiguated and on
which a compositional semantics could potentially be defined (see Cooper
and Parsons (1976)). Montague’s rule-by-rule version of the compositional-
ity requirement makes possible a treatment in which the syntactic derivation
rather than any level of representation disambiguates quantifier scope (see
Partee (1975), Dowty, Wall and Peters (1981).) Other theories (e.g Cooper
(1983)) opt for a more nearly context-free syntax and a weakening of the
compositionality requirement. We mention these issues to give some indi-
cation of the complexity and controversy surrounding the application of the
compositionality principle to natural language semantics.

The mathematical formulation of the compositionality principle in Mon-
tague’s version of it involves representing both the syntax and the semantics
as algebras and the semantic interpretation as a homomorphic mapping from
the syntactic algebra into the semantic algebra The technical working out
of this idea in the general case is somewhat complex; the details are given in
Montague (1974) and explications can be found in Halvorsen and Ladusaw
(1979), DWP (1981, Chapter 8), Link (1979), Janssen (1983). For the logic
of statements, whose syntax and semantics are quite simple, the relevant
algebras and homomorphism can be specified quite straightforwardly.

(i) The syntaz algebra: A = {A,Fy,. .,Fs) is defined as follows: Let X,
be the set of sentential constants {p,q,r,p’,¢',...}; and let Fy, . ,Fy be
syntactic operations defined as follows:

*

Fola) = ~a

Fl(a7ﬂ) = a&ﬂ
F2(a7ﬂ) = a\/ﬂ
FS(a>ﬂ) = a—p
F4(a7ﬂ) = aHﬂ

(Note: Here a and 8 are variables in the metalanguage for sentential con-
stants. These operations should be read as e.g. ’take a sentential constant
and execute Fy by prefixing it with the negation-symbol’, etc.)
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Then the set A, the set of all well-formed expressions of the logic of state-
ments, is defined as closure of the set Xy under the operations Fy,...,F,.
Note that this gives exactly the same effect as the corresponding set of five
recursive rules, one for each of the operations. This language is particularly
simple by virtue of containing only one syntactic category, that of sentences,
and in having a one-one correspondence between syntactic rules and syntac-
tic operations that allow us to conflate the two notions.

(is) The semantic algebra B = (B,Go, ,G4) is defined as follows: B =
{0,1}, the set of truth values. Go, .. ,G4, the semantic operations corre-
sponding to the syntactic operations Fy,..., Fy, are the unary and binary
functions from truth values to truth values defined by the usual truth ta-
bles for the respective operations Fp,...,Fs. So Go, for example, is the
function from {0,1} to {0,1} defined by (13-13), and G; the function from
{0,1} x {0,1} to {0,1} defined by (13-14).

(13-14) Go(1) =0
Go(0) = 1

(13-15) G1

3

i

(1,1)
G1(1,0)
G1(0,1)
G1(0,0)

3

i
el e

(#t) Semantic interpretation as a homomorphism from A to B: An
interpretation for the statement logic must assign a truth value to each
sentential constant, and must recursively assign truth values to complex
statements on the basis of their syntactic structure, Let f be an assignment
of truth values to the constants, ie. a function from Xy to {0,1}, and let g
be the interpretation function defined as follows:

If ¢ is a sentential constant, then g(¢) = f(4).

g(~ ) = 1 iff gl¢) = 0

9g((o&y)) = 1 iff g(¢) = landg(s) = 1
gllove)) = 1 iff g(¢) = lorg(y) = 1
(E¢~>¢)) = 1 if g(¢) = Oorg(y) =

(=) = 1 iff g(¢) = g(¥)
We can then see that g is indeed a homomorphism from A to B every
formula in A is mapped by g onto a truth value in B, and the mapping is
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structure-preserving with respect to all the corresponding operators, G; in
B corresponding with F; in A; this is established by showing that (13-15)
and (13-16) below are valid.

(13-16) g(Fo(9)) = Go(g(@)) for every formula ¢

(13-17) g(Fi(¢,%)) = Cilg(¢),9(¥)) for i = 1,...,4 and all formulas $,4)

The homomorphism requirements (13-15) and (13-16) may also be schema
tized by a pair of diagrams as in (13-17) and (13-18), where g x g in (13-18)
stands for the function mapping pairs of formulas (¢, ¥) onto the correspond-
ing pairs of truth values (g(¢),g(%)).

(13-18)
A o A
g g
{0,1} - {0,1}
0
(13-19)
Ax A 5 A
gXxXg g

{0,1} x {0,1} p {0,1}
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A further important property of grammars that conform to the composi-
tionality principle in this strong homomorphism sense is that it is possible to
think of such grammars as generating expressions and their interpretations
in tandem; one need not conceive of the syntax generating an entire expres-
sion “before” the semantics interprets it, The small piece of a schemaitic
interpreted derivation tree in (13-20) illustrates this point,

(13-20)

(Fo(Fo(Fs(a,8)),7), G2(Go(Galg(a),9(8))), 9(7)))

<Fo(Fs(a,ﬂ));GoI(Gs(g(a):g(ﬂ))»
<F3(a7ﬂ)7 G3(g(a)79(ﬂ))>
VAN
{a,g())  (B,9(8)) {(v,9(7))

Returning to the issue of compositionality in natural languages, we con-
clude this section with an informal, intuitive discussion of a core example of
quantifier-scope ambiguity and the way in which it is connected to anaphoric
binding in discourse. The purpose is here merely to illustrate the importance
and extent of the issue, rather than to legislate on the best possible solu-
tion. It should be clear from Chapter 7 and this chapter that the syntactic
structure of a logical formula determines the set of possible interpretations
in which it is true, given an interpretation to the non-logical constants. But
syntactically different formulas may have some models, though not all (un-
less they are logically equivalent), in which they are true in common. For
instance, consider (i} and (ii)

(i) (v2)(3y)(P(z)— E(z,y))
(i) (By)(ve)(P(z)— R(z,y))

In a model in which there is at least one variable-assignment to y such that
every ¢ which is a P bears the relation R to it, both (i) and (ii) are verified
(cf. exercise 3). Of course, (i) is true in other models as well, since (ii) entails
(i) but not vice versa. So (i) leaves in a manmner of speaking more open or
undetermined as to what the model has to look like for it to be true, whereas
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(ii) is more demanding. If we use an English sentence corresponding to (i),
e.g Ewvery student loves someone (domain : People), we may well mean that
every student loves the same person, although we could have expressed that
also with The students all love the same person or something like this, We
should consider it a virtue rather than a vice that natural language allows
us different ways of describing the same situation, especially since further
context often provides a clue as to which kind of situation is intended For
instance, we could continue with Maria is her name Now we understand
that the students must all love the same person, since both the proper name
and the possessive pronoun dependent on it require a unique referent. (Let’s
forego the far fetched interpretation in which Maria could name any woman
loved by a student as if it was used as a generic proper name for student-
loved women) So it is this second sentence that serves to *disambiguate’ the
first, and from a semantic point of view cuts down the set of possible models
in which just (i) is true to the subset in which (ii) is true as well

Now we could require that the first English sentence should be repre-
sented as the logical formula of (ii), if it is followed by this second sentence.
This would mean that the first simple English sentence would be translated
to two distinct logical formulas If we also want to adhere to compositional
semantics for English, this would have as a consequence that there should
be two distinct syntactic derivations of this English sentence. This option is
taken by quite different contemporary theories of quantifier scope e.g. May
(1985) and Montague (1974), but not by e g Cooper (1983). We should,
however, realize that this syntactic disambiguation of English sentences is
really a syntactic reflection of a semantic process, namely determining the
set of models in which a sentence is true or the set of situations which can
be correctly described by the sentence. Quantifier scope can be encoded
syntactically in the order of the quantifiers in the prefix or by coindexing in
various ways, but it is the choice of variable assignments which do the real
work of characterizing the dependencies between individuals.

13.2 Lambda-abstraction

13.2.1 Type theory

The lambda-operator, A, was introduced by Alonzo Church (Church (1941))
to permit the construction of expressions which unambiguously and composi-
tionally denote functions, Without the A-operator, function names can only
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be introduced by contextual definition, as in “Let f be the function from
R to R such that f(z) = 22 + 3" There also tends to be equivocation in
ordinary notational practice, using expressions like f(z) or 2 + 3 to denote
cither a function or its value at argument z, an equivocation that is hard to
avoid without a systematic way of building descriptive names of functions.
In the A-calculus, the function f such that f(z) = z2? 4+ 3 would be denoted
by the expression Az.z? + 3 (or Az[z? + 3] or (Ae(z? + 3)); notation is not
uniform), and the application of that function to an argurment z would be
expressed as (Az.2? + 3)(z), which as we shall see below is equivalent to the
expression z2 + 3.

What has made A-abstraction so valuable a tool in contemporary seman-
tics is the recognition that many of the most basic syntactic constructions of
English can be interpreted compositionally as involving function-argument
application, and that many of the apparently less basic constructions can be
given a compositional semantics involving A-abstraction. We will illustrate
some of the linguistic applications at the end of this section.

As a preliminary, we need to introduce some basic notions of type theory,
(There exist both typed and untyped versions of the lambda calculus, but it
is the typed version that has become familiar to linguists from Montague’s
work.) A type system is a system of semantically motivated categories de-
signed so that restrictions on well-formedness stated in terms of types can
guarantee that any well- formed expression will be semantically well-defined.
Russell introduced the notion as a way of regimenting the language of set
theory so as to make the paradoxical “sets” mentioned in Chapter 1 unex-
pressable. The type theory we introduce here is just one among many, but
is a common basic one.

The set of types is defined recursively as follows:
(13-21) (1) eis a type.
(2) tis a type.

(3) If a and b are types then (a,b) is a type.

Sometimes rule (3) in the formation of types is replaced by the more
general rule (3'):

(3YIf a1,...,an and b are types, then (a1,...,a,,b) is a type.
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Since functions of more arguments can be reduced to unary functions, the
type (a1, .,@n,b) may be replaced by (a1,{as, (.. {an,b))...)) and there-
fore one does not need to postulate types for such n-ary functions explicitly.

A typed language is a language each of whose well-formed expressions is
assigned a type by a compositional syntax whose semantics conforms to the
following principles, where D, stands for the set of possible denotations of
expressions of type a.

(13-22) Let A be a given domain of entities Then
(1) Do = A
(2) D = {0,1}, the set of truth-values

(3) D<a’b> = the set of functions from D, to Dy

In case an m-ary type is defined, its intended interpretation is:

D(a,,.«,an,b> = the set of functions from D, X . X D,, to Dy

In other words, expressions of type e denote individuals, expressions of
type ¢ denote truth values, and expressions of type {a,b) denote functions
whose arguments are in D, and whose value is in Dy,

Ezamples:

(1) Suppose A, and hence De, is the set of real numbers. Then the
expression mentioned in the previous section, (Az(z? + 3)), is of type (e, e),
since it denotes a function from numbers to numbers.

(2) Sets in a typed language are identified by expressions denoting their
characteristic functions. Consider, for instance, the set of numbers greater
than 7. Its characteristic function f is defined by (13-23).

life>7
ﬂ”‘{0ﬁm<7

In A-notation, f can be expressed as (Az(z > 7)). Since f is a function from
numbers to truth-values, the type of the expression is (e, t); this is the type
for any expression denoting (the characteristic function of) a set of entities.

(13-23)
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(3) The predicate calculus can be given as a typed language; individual
constants and variables are of tyvpe e, formulas are of type ¢, one-place pred-
icates (which denote sets) are of type (e,t), two-place predicates are of type

(e, {e,t)), etc.

18.2.2 The syntax and semantics of A-abstraction

The A-operator and the rule of A-abstraction give us a means for forming
compositionally interpretable names of functions Compare, for example, the
schematic letter name f with the structurally descriptive name (Az(z? +3)).
Now, how in general does one form an expression like the latter? Start with
an expression that denotes the wvalue of the desired function for a variable
argument: in this case, (z? + 3) To form the name of the function which
applies to an arbitrary number z and gives as value the number (z? + 3),
we “abstract on” the argument variable # and form the A-abstract (Az(z? +
3)), consisting of the prefixed A-operator Az and the body (z? + 3). More
generally, we have the syntactic formation rule in (13-24).

(13-24) X-abstraction, Syntaz.
If 4 is a variable of type a and a is an expression of type b, then
(Mua) is an expression of type (a,b).

The A-operator, like the quantifiers, is a variable-binding operator. And
like the quantifiers, its semantics makes crucial appeal to variable assign-
ments

But note that the A-operator can change the type of its argument, e.g
from t to some functional type, whereas quantifiers take formulas to make
formulas and hence do not change their argument-type.

(13-25) A-abstraction, Semantics:
Given u of type a, a of type b, [(Auc)
D, to Dy such that:

JM9 is that function f from

for any object k in D, f(k) = [a]™M9,
where ¢’ is just like g except that g/'(u) = k.

To take our earlier example, [(Ae(z? + 3))[M9 is that function f such
that for any number n in D., f(r) = [(2? + 3)]M9'. That is, we find the
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value of the function for a given argument n by evaluating the body of the
A-abstract with respect to an assignment that assigns n to . Supposen = 5,
Then f(5) = [(z? +3)]]M’9', where g'(z) = 5; supposing the expressions in the
formula have their standard semantics, the value of the expression (:1:2 +3)
on the assignment of 5 to  will be the number 28, where g’ is the variable-
assignment which assigns exactly the same values to all variables other than
z as g does, but assigns the number n to z.

The process we have just illustrated is called lambda-conversion: it com-
putes the value of the lambda-expression for the argument the function is
applied to It is important to realize that lambda-conversion is fundamen-
tally different from the syntactic process of substituting a constant for a
variable in a formula, The former is a semantic and computational process
of executing an algorithm for a given argument, the latter should be viewed
as a syntactically defined transformation’ on formulas or a rule of inference
which supposedly guarantees that truth is preserved in a particular deductive
system. Lambda-abstraction gives us the important means to distinguish a
function from the set of its values, which has proven tremendously useful for
linguistic applications, especially where intensional aspects of meaning play
a crucial semantic role (cf. section 13.2.5).

There is an important restriction on lambda-conversion that should be
adhered to for (Aua)(8) to be logically equivalent to o', where a' is just like
o but with the assignment of § to the variable v. We have to make sure that
in case § contains any free variables of some type, they do not accidentally
get bound by any quantifiers occurring in o For instance, we cannot convert

(A¢Jz(P(z)& ¢))(Q(2)

to
Je(P(z)& Q(z))

The reason why this conversion would not always be logically equivalent is
that Q(z) is interpreted by the given variable assignment in the first formula,
but could be interpreted by an z-alternative to it in the second formula re-
sulting in different truth-conditions. Of course, to avoid accidentally binding
free variables one seeks recourse to logically equivalent alphabetic variants
of the argument the lambda-term is applied to (cf. section 7 3 for the notion
of alphabetic variants). Similar restrictions apply when the formal language
contains operators which have quantificational force, as the intensional lan-
guage defined in Chapter 15. But we will not discuss these any further
here.
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Less accurately but quite mnemonically, one can say that (Aua) denotes
a function with u as argument and [a] as value.

13.2.3 A sample fragment

Drawing together the notions we have introduced thus far, we present the
syntax and semantics of a sample formal language-schema TL, a schema for
typed languages whose logical constants include all those of the predicate
calculus with equality, plus the lambda operator Particular languages L
falling under this schema differ in the choice of (non-logical) constants and
their interpretation

I. Syntax of TL (13-26) The set T of types of TL is the smallest set such t
(i) e,t €T
(i) If a,b € T, then (a,b) €T

(13-27) The primative vocabulary of TL consists of the following:
(i) The connectives ~, & ,V,—,
(ii) The quantifiers V, 3
(iii) The lambda-operator A
(iv) The equality symbol =
(v) The parentheses ), (, [, ]
)

(vi) For every type a, a denumerably infinite set VAR, containing
variables vy, , for each natural number n

(vii) For every type a, a (possibly empty) set CONE of (non-
logical) constants of type a

Note: the symbols introduced in (i)-(iv) are called logical constants; their
meaning is fixed for all languages in the family TL. The non-logical constants
of (vii) are language-particular, and their interpretation must be specified in
a model for a particular language L.
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(13-28) Syntactic rules of TL
The set ME, of meaningful expressions of TL of type a is defined
recursively as follows:

(i) For each type a, every variable in VAR, and every constant
in CONg is in ME,

(ii) For any types a and b, if o € ME<a,b> and 8 € ME,, then
a(ﬂ) € ME,.

(iii) For any types a and b, if u is a variable of type a and @ € ME;,
then (Aua) € ME<a )

(iv) If ¢ and ¢ are in M E; (are formulas), then the following are
also in ME;: ~ ¢,(¢& ), (¢ V ¥}, (¢ — ¥), (¢ < ¥).

(v) For any type a, if ¢ € ME; and u is a variable of type a, then
Yu¢ and Ju¢ are in ME;.

(vi) For any type a, if & and § are both in ME,, then (a =) ¢
ME;.

As a particular instance of this schema which we will use for examples
in the text and in the exercises, let TLA (“typed language of arithmetic”)
be syntactically defined by the following choice of constants:

(13-29) Constants of TLA.
conTIA = (5,1,3,  }

CON€€;4 = {even, odd, prime}
TLA _

CON(E,(Q,t)) = {gr}

CON€€;4 = {succ}

CONg;I(’i» = {plus}

Note that, e.g, 0 is a syntactic name, not a number. In (13-35) these
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names are assigned their natural referents.

In practice it is common to drop outermost parentheses, and to drop
other parentheses where there is no danger of ambiguity We will also follow
a common practice in using the following, more readable, variables in place
of the official ones:

(13-30) Variable conventions
Type | Variable

e z,y, z (also with subscripts or primes)
(e,t) PQ

(e,{e,t)) | R, S

(e,e) f

Examples of well-formed expressions of various types of TLA follow.

(13-31) Ezpression Type
i) | odd(z)V even(z) t
(i) | succ(suce(z)) e
(i) | gr(3) (e.1)
(iv) | gr(3)(z) t
(v) | (Azgr(3)(z)) (et
(vi) | (Aegr(3)(z))(suce(3)) ¢

In order to parse a complex A-expression, it is often helpful to construct
a tree that displays its derivation according to the syntax, just like the
derivation trees in 13.1.1 and 13 1.2 for the two logical languages Such a
tree structure is sometimes called a derivation tree or an analysis tree. A
derivation tree for (13-31) is given in (13-32).

In the derivation trees for TLA, it is useful to annotate each node first
with the type of the expression on that node and, second, with the number of
the rule that we applied in constructing that expression. The construction of
such a derivation tree can also be valuable aid in working out the semantics
of complex expressions, since the semantic interpretation rules correspond
rule-by-rule to the syntactic derivation rules. We give the semantics for TL
in general below, followed by the language-particular interpretation of the
constant of TLA,
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(13-32) (Az gr(3)(z)), (e,t), 3

II. Semantics of TL

(13-33) Given a non-empty set A, the domain of entities, the set D, of pos-
sible denotations of expressions of type a is given by the following
definition:

(i) D.=A
D; = {TRUE, FALSE (or 1 and 0 conventionally)}

(ii) For any a,b € T, D<a b) = D(?“, ie. the set of all functions
from D, to Dy,

The denotation of an expression of a language L of the family TL is
defined relative to a model M and an assignment g of values to variables.
A model for L is an ordered pair M = (4, F), such that A is a domain of
entities and F is a function which provides an interpretation to the primitive
non-logical constants of L, i.e. a function which maps each constant of type ¢
onto a denotation in D,. An assignment g of values to variables is a function
which assigns to each variable v, , a value from the set D,.

(13-34) Semantic rules of TL
The denotation of an expression a relative to a model M and an
assignment g, symbolized [a]*9, is defined recursively, in parallel
to the syntactic rules given in (13-28) above, as follows:

(i) (a) If @ is a non-logical constant in CON%, then [a]*9¢ =
p
F(a).
(b) If @ is a variable in VAR,, then [a]9 = g(a).

1

() « € MEy, aad § € ME, then [a(8)]"
[oJ*e(18]*9).
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(iii) = the A-rule given in (13-25).

(iv) If ¢,9 € ME;, then:
[~ g™ =1 iff [¢]*# = 0
[¢& ]9 = 1 Hf [¢]*9 = 1 and []M9 =1
[ v ]9 = 1iff [4]*9 = 1 or [¢]M9 =1
[p — v]™9 = 1iff [0 = 0 or [y]*9 =1
[¢ < wI™9 = 1iff [p]*9 = [y]*<

(v) If ¢ € ME,, u € VAR, then
(a) [Vug]™9 = 1 iff for all d € D,,[¢]M9"" =1
(b) [Zug]™9 = 1 iff there is at least one d € D, such that

[ = 1.
(vi} ¥ a,8 € ME,, then [a = B9 = 1 iff [a] M9 = [B]M9.

diu

Note that the only language-particular part of the interpretation of a lan-
guage L of the family TL resides in the choice of a model M, i.e. in the choice
of a domain A of entities and an interpretation F' of the language-particular,
ie. non-logical, constants. The specification of the set of constants and their
interpretation F' can be thought of as the lezicon of the language. Given the
model, the semantic interpretation of the infinite set of expressions of the
language is fixed by the recursive semantic rules, which are the same for all
typed languages of the family TL.

The semantics for the sample language TLA is fixed by the following
specification of a model:

(13-35) A model M for TLA
M = (A, F), where A = the set of natural numbers {0,1,2,3,...}
and F' is specified as follows:

(i) F(0) = 0, F(1) = 1, etc.

(ii) F(even) = (the characteristic function of) the set of even
numbers
F(odd) = (the characteristic function of} the set of odd num-
bers,
F(prime) = (the characteristic function of) the set of prime
numbers.
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(iii) F(gr) (“greater than”) is that function f such that f(a)(b) =
1 iff b is greater than @ Note that f(a) = the (characteristic
function of the) set of numbers greater than a.

(iv) F(succ) = the successor function

(v) F(plus) is that function f such that f(a)(b) = a+b; f(a) by
itself is a function which takes a single argument and adds ¢
to it.

We can now determine the denotation of the expressions given as exam-
ples in (13-31); this we do in (13-36). Denotations must be relative to model
M and an assignment g; M was given in (13-35), and for g we will choose,
arbitrarily, an assignment which assigns the number 2 to every variable.
Details are left as an exercise to the reader.

(13-36) Ezpression Denotation [a]™9
(i) | odd(z) Vv even(z) TRUE, independent of assignment
(11} | succ(succ(z)) 4
(iii) | gr (3) the set of numbers greater than 3
(iv) | gr (3)(z) false, since 2 is not greater than 3
(v) | (Az gr (3)(=)) the set of numbers greater than 3
(vi) | (Mz gr (3)(z))(succ (3)) TRUE, since 4 is greater than 3

13.2.4 The lambda-calculus

The pure lambda-calculus is a theory of functions as rules. It was devel-
oped around 1930 to serve as foundation for logic and mathematics in its
type-free version, in which any function may be its own argument. (In
Zermelo-Fraenkel set-theory such self-application was ruled out by the ax-
iom of foundation.) Despite the paradoxes that arose in such unrestricted
type-free systems, a consistent part of the theory has turned out to be ex-
tremely useful as a formal theory of (partial) recursive functions. It has
more recently been successfully applied in computer science for instance in
the semantics of programming languages. In linguistics it is not the entire
system of lambda-calculus, but rather its operation of lambda-abstraction
and conversion that have proven extremely useful as we will discuss in more
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detail in the next section. The present section contains a very elementary ex-
position of the lambda-calculus itself, illustrating how fundamental a theory
of functions it really is.

The syntax of the lambda-calculus is very simple. The set A of lambda-
terms and formulas of the lambda-calculus are defined in (13-37) recursively.

(13-37) Syntax of the lambda-calculus

Lexicon: z, y,‘ . -variable
-lambda-abstractor

) -parentheses

( )
Rules: (i)z €A
(i) if M € A then (Azlf) € A (abstraction)
(iii) if M, N € A then (MN) € A (application)
(

iv) if M, N € A then M = N is a formula

The axiomatization of the theory is given in (13-38). Here M, N and Z
are arbitrary lambda-terms,

(13-38) Axiomatization of the lambda-calculus

(i) (MeM)N = M’ which is M with every occurrence of @ re-
placed by N (conversion)

(ii) = is reflexive, symmetrical and transitive

(iii} if M = N then MZ =NZ

(iv) if M = N then ZM = ZN

(v} if M = N then (AzM) = (AzN)

If M = N can be proven from these axioms, we say that M and N
are convertible. It must be noted that there is a certain asymmetry in for
instance the equation expressed in (13-39).

(13-39) (Azsuce(z))(3) =
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The statement in (13-39) can be interpreted as “4 is the result of com-
puting the successor of 3”, but not vice versa. This asymmetry is expressed
overtly by calling the computation a reduction of (Azsucc(z))(3) to 4. One
of the central theorems of the lambda-calculus, called the Church-Rosser
theorem, says that if two terms can be converted, then there is a term to
which both can be reduced There are many more notions of conversion and
reduction definable in the lambda-calculus than we introduced here OQur
rule (13-25) is sometimes called #-conversion.

The lambda-calculus it itself not a logical, inferential system, but we can
define the usual predicate logical concepts in lambda-terms as in (13-40).
We give here the definitions from Henkin (1963), which are also presented
in Gallin (1975) Here we use a typed language merely for convenience and
coherence with the previous sections: ¢ and v are variables of type t, i.e,
formula-variables, and f is a variable of type (¢,t).

(13-40) TRUE =g; ((Ad9) = (Ad4))
FALSE =4+ ((A¢9) = (A¢TRUE))
~ =get (AY(FALSE= ¢))
& =ges (APAV(Mf(f(4) = ¢) = Af(f(TRUE))))
= =gf (AMAY(d& Y = ¢)
V =gef (ApAY(~ ¢ — 1))
20 A =g (Mo A = Az, TRUE)
J2, A =geg ~za ~A

In (13-40) the definitions of the disjunction and the existential quantifier
are already quite familiar from Chapter 7 In developing an intuition for
what the other definitions do, we can understand for instance the definition
of conjunction as the operation of assigning the truth-value TRUE to both
formulas and of the conditional as stating that the information that ¢ is true
is already contained in the information that ¢ is true.

Church showed that the part of the lambda-calcidus which is concerned
only with functions provides a good formalization of the intuitive concept of
‘effectively computability’ as lambda-definability. Alan Turing in 1937 ana-
lyzed the notion of machine-computability, which came to be called Turing-
computability, and proved its equivalence to lambda-definability It is re-
markable that despite the very simple syntax of lambda-calculus the system
is strong enough to describe all computable functions. This makes it in facta
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paradigmatic programming language, laying out the applicative behavior of
the computational procedures in their barest form But it is for most prac-
tical purposes not a very handy programming language, exactly because of
its completely transparent structure. Yet several well-known programming
languages have some features which resemble the lambda-calculus. In LISP,
for instance, procedures can be arguments of procedures, as well as output
of procedures.

Due to the fact that functions could take themselves as arguments, ie.
the type-free character of the pure lambda-calculus the question arose what
models of the theory could look like A set X was needed into which the
entire function space X — X could be embedded, which was impossible in
ordinary set-theory due to Cantor’s theorem (cf. Chapter 4). Dana Scott in
1969 developed models of the type-free lambda-calculus by taking only the
continuous functions on X Only then did it become clear how a denotational
semantics of programming languages could be constructed. This has opened
a vast area for innovative research in the common aspects of the semantics
of programming and natural languages. The interested reader is referred to
Barendregt (1984) for a complete introduction to the mathematical aspects
of lambda-calculus and Scott domains.

13.2.5 Linguistic applications

In this section we will briefly discuss a few of the many applications to natu-
ral language semantics that have made lambda-abstraction a basic toolin the
development of formal semantics. In general, lambda-expressions provide a
means for giving compositionally analyzable names to functions of arbitrary
types. This can be richly exploited in giving a compositional semantics for
natural languages like English which have a large number of syntactic cat-
egories and quite a variety of recursive mechanisms that end up embedding
expressions of one category in expressions of another or the same category.
Lambda-expressions can make explicit how the interpretation of a relative
clause is a function of the interpretation of a corresponding open sentence,
how predicate negation or conjunction is related to sentential negation or
conjunction, how the meaning of a passive verb can be defined in terms of
the meaning of a corresponding active verb, etc. Lambdas can also be used
to make explicit the interpretation of various grammatical morphemes or
function words, such as reflexive clitics and other “argument-manipulating”
devices, logical determiners such as every and no, the comparative mor-
Pheme -er, etc We will illustrate just a few of these applications below;
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for other illustrations and references to more, see Montague (1973), Cress-
well (1973), Partee (1975), Williams (1983), Dowty, Wall and Peters (1981),
Dowty (1979), Janssen (1983), and in fact much of the formal semantics
literature since the mid-1970’s Lambdas became widely known to the lin-
guistic community through the work of Montague, but Montague was not
their inventor (Alonzo Church was: see Church (1941)), and one does not
have to be a “Montague grammarian” or even a formal semanticist to find
them useful

What does it mean to give compositionally analyzable names to func-
tions? The contrast is similar to that between proper names like John and
definite descriptions like the oldest student in the semantics class. In much
common mathematical practice, and in most of this book, functions are re-
ferred to with proper names, either coined on the spot or established names
like Meet or +, or with typical variables in place of names, like f and ¢ In the
language TL and other such typed languages that include lambda abstrac-
tion, we have not only the possibility of including as many proper names
of functions as we wish but also the possibility of building up structured
function- denoting lambda-expressions for which the semantics specifies just
what function each such expression denotes.

I. Phrasal conjunction

Omne very simple and elegant application of lambda-abstraction which
Montague exploited in PTQ is its use in defining the interpretation of “Boolean
phrasal conjunction, disjunction, and negation in terms of sentential conjunc-
tion, disjunction, and negation respectively. (The term “Boolean” phrasal
conjunction refers, for reasons the reader will appreciate, to the kind of
phrasal conjunction illustrated in the examples below, as opposed to e.g the
group-forming NP conjunction illustrated by “John and Mary are a happy
couple”, or the irreducibly phrasal conjunction of adjectives in “a red and
white dress”.)

To illustrate this application, we give below a few syntactic rules in sim-
ple phrase-structure-rule form together with corresponding schematic trans-
lation rules We will comment on the nature of such rules after illustrating
them.

Syntactic Rule Translation Into TL
S— Sand$§ S{& S)
S—SorS S1v S
VP — VP and VP Az (VPi(z) & VPy(z))

NP — NP or NP AP (NP} (P)VNPL(P))
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First a note on the NP interpretations presupposed here: as we will
discuss later in this subsection, we interpret NPs as generalized quantifiers,
of type {{e,t),t). We use P and @ as variables of type (e, ?).

Second a note on the nature of these rules: The syntactic rules are given
in familiar phrase-structure form, but could easily be recast in the recursive
format specified earlier When dealing with simple context-free grammars, it
is straightforward to convert a grammar of one form to one of the other. The
translation rules are not semantic interpretation rules as defined above, since
they specify expressions in TL as their output rather than model-theoretic
objects The first rule, for instance, says that the translation into TL of any
expression formed by application of the first syntactic rule will be formed
by taking the translations of the two parts and putting an & between them.
(We subscript the S’s in the translation simply to distinguish occurrences )
The resulting formula of TL will itself be semantically interpreted according
to the semantic rules of the language TL, which we do not repeat here (see
Section 13.2.3). As Montague showed, as long as the translation rules are
compositional and the semantic interpretation of the intermediate language
is compositional, the intermediate language could in principle be eliminated
and a compositional model-theoretic semantic interpretation given directly
to the source language (in this case a fragment of English.) But the use of an
intermediate language is at least convenient; whether such an intermediate
language plays a role in capturing “linguistically significant generalizations”
is a point of some debate,

In any case we will continue to use the conventions illustrated above in
giving short versions of rules, including the convention of using primes (') to
indicate the translations of the parts.

In order to illustrate the workings of the 1ules above, we need to combine

them with a few other rules for simple sentences; these follow Montague’s
treatment in PTQ except for supressing intensionality.

S — NPVP NP(VP)
NP — some/a CN AP.(3z)(CN'(z) & P(z))
NP — every CN AP.(Vz)(CN'(z)— P(z))
NP — John, Mary, .. AP.P(3), etc.
VP  —  walks, talks, ...  walk/, talk/, ...
CN — man, woman, .. man', woman', ..

Using these rules and lambda-conversion, the reader can verify equivalences
and non-equivalences like the following,
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(13-41) (a) John walks and talks is equivalent to:
(b) John walks and John talks

(13-42) (a) Some man walks and talks is not equivalent to:
(b) Some man walks and some man talks

Before linguists had learned to exploit lambdas, Boolean phrasal conjunc-
tion was treated syntactically by positing some kind of “conjunction reduc-
tion” transformation or schema, which would, for example, derive (13-41a)
above from the full conjoined sentence (13-41b) But as (13-41) and (13-
42) together illustrate, syntactic conjunction reduction sometimes preserves
meaning and sometimes does not It is now widely appreciated that the
actual distributions of forms and meanings in such cases of Boolean phrasal
conjunction can be more systematically explained by directly generating the
phrasal conjunctions syntactically and using semantic rules like those for-
mulated above with lambdas to interpret them It thus appears that the
intuition that phrasal conjunction is derivative from sentential conjunction
is best regarded as based on semantic 1ather than syntactic generalizations.
Direct syntactic generation combined with compositional semantic interpre-
tation can, if all goes well, capture the scopal interactions of conjunction
with other scopally relevant parts of the interpretation, without any special
stipulations.

Further linguistic research has been and continues to be concerned with
exploring the limits and generalizability of such an approach to Boolean con-
junction as well as analyzing the various sorts of non-Boolean conjunctions
(mentioned above) and their intertelations. One major generalization ex-
plored by Keenan and Faliz (1985), Gazdar (1980), and Partee and Rooth
(1983) centers on the observation that the particular translation rules given
above for VP-conjunction and NP-disjunction should not have to be stip-
ulated: it should be possible to predict them just by knowing (i) the in-
terpretation of sentential conjunction and disjunction and (ii) the semantic
types associated with the syntactic categories VP and NP, Partee and Rooth
propose a schema for generalized conjunction, recursively defined, which has
those properties, and which replaces the individual explicit rules given above,
so that the lambdas no longer play an overt role. But the functions that are
denoted by those lambda-expiessions are playing the same central role in
the resulting account, and the lambda notation for denoting them composi-
tionally helped to make the relevant generalizations findable
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1I. Relative clauses

Another construction whose semantics has been much better understood
since the introduction of lambdas into the linguist’s toolbox is the relative
clause. While many open problems remain concerning both the syntax and
the semantics of relative clauses of various kinds in various languages, we
can at least give one very straightforward account of one very basic kind of
relative clause construction as another good sample application of lambda-
abstraction The account is probably approximately correct for some real-
life cases and at least suggestive of how to proceed for others We will stick
to the syntactically simplest sorts of examples so as to be able to concentrate
on the central aspects of the compositional semantics of the construction.

There are two parts to the account of relative clauses: their internal
syntax and semantics, ie how they are formed and interpreted, and the
syntax and semantics of the construction through which they come to modify
nouns or noun phrases. Let’s look at these in turn.

What we call relative clauses are modifiers which play an adjectival sort of
role but which are formed in some sense from sentences Lambda-abstraction
provides an explicit way to say exactly that, as long as we assume that the
1elevant “underlying sentences” are open sentences, i.e, sentences whose in-
terpretation contains a free variable in the “relativized position” (a position
which may end up occupied by a gap or a resumptive pronoun depending on
the construction) So, for example, we might take all the relative clauses in
(13-43b) and (13-44b) below to be derived from something like the sentences
(or almost sentences) in (13-43a) and (13-44a). If the translations of the sen-
tences are as given in (13-43c) and (13-44c), the translations of the relative
clauses can be derived by lambda-abstraction on the relativized variable, as
shown in (13-43d) and (13-44d). One can read the expression in (13-43d)
in quasi-English, a bit loosely, as “the property of being an x3 such that
Mary loves #3 ” (This is loose because “property” is normally an intensional
notion and the literal interpretation is just the characteristic function of a
set; but when talking about the model-theoretic interpretations in English,
explicit set-talk simply tends to be cumbersome, and the misrepresentation
is harmless as long as the context does not allow 1eal misinterpretation.)
(13-43) (a) Mary loves e3
b) who(m) Mary loves; that Mary loves; such that Mary loves him
¢) love'(m, z3)

d) Azs.love'(m,z3)

o~ —
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(13-44) (a) ey hates John
(b) who hates John; whoy e; hates John;
such that he/she hates John
(c) hate'(zs,7)
(d) )\132 hate'(mg,j)

The semantic type of the open sentences is ¢, so when we do lambda-
abstraction with respect to a variable of type e, the type of the resulting
expressions in (13-43d) and (13-44d) is (e,t), the type of functions from
entities to truth values, ie. the type of characteristic functions of sets of
entities So (13-43d) denotes the set of entities that Mary loves, and (13-44d)
the set of entities that hate John This is the same type that is assigned to
simple predicative adjectives like purple or carnivorous Lambda-abstraction
on open sentences gives us an infinite stock of such predicates.

Note that we have not actually given explicit syntactic and semantic
rules for forming relative clauses but have simply specified what the effects
of the rules should be. This is for two reasons. The obvious one is to avoid
descriptive complications and maintain theoretical neutrality as regards the
syntax of relative clauses; the less obvious one is that in the immediately
preceding example it was important to be explicit about the interpretation
of NPs as generalized quantifiers, while in this example that would just
present extraneous complications (though no substantive problems), so we
have presented the translations in the form they would have after some steps
of lambda conversion had 1eplaced the original translations of the proper
names and the gaps or pronouns by expressions of type e The one addition
to the previous fragment that does need to be mentioned is the addition of
the gaps or pronouns: the simplest way to add them for our purposes (though
this is an area rife with competing approaches) is to assume that the syntax
(via the lexicon) contains among its NPs an infinite supply of indexed gaps
(here represented as ey, e, etc.) and/or pronouns (hey, hey, etc ), whose
translations are just like the translations of the proper nouns John, Mary,
etc., given in the previous fragment except containing variables like z, 3,
etc. instead of constants like j,7. The relative clause formation rule has to
be sensitive to a choice of relativized variable, since an underlying sentence
might contain more than one, and the rule would not be compositional if
with the same input it could give us two non-synonymous outputs — it would
then not be possible to determine the meaning of the whole as a function of
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the meanings of the parts plus their syntactic mode of combination Aside
from that, the only complications in the rule are the syntactic ones, the
semantics being simple lambda- abstraction

Now how do relative clauses combine with nouns or noun phrases? This is
also an area of controversy and possibly of typological diversity as well But
as discussed in Partee (1973), one can make the case that compositionality
requires that relative clauses combine with common noun phrases to form
common noun phrases in order for a determiner like no, every, or most to
have the relative clause as well as the head noun within its scope. While
this claim can be challenged as well, we will assume that the basic external
syntax of relative clauses is as given in (13-45a); the corresponding semantic
interpretation rule is then just a kind of predicate conjunction, as given
in (13-45b) The semantic type of both constituent expressions and of the
result is (e, ).

(13-45) (a) CN — CN REL
(b) Mz (CN'(z) & REL'(z))

We can illustrate the combined 1esults of the relative clause formation
rule and the rule in (13-45) by putting the relative clause in (13-44) together
with the CN woman to form the CN phrase woman who hates John. The
structure is shown in (13-46a) and the translation in (13-46b). The expres-
sion (13-46b) is of a form to which lambda-conversion can apply; applying
it gives (13-46¢c) as an equivalent but simpler expression

(13-46) (a) [[woman] [who hates John]]
(b) Az (woman'(z) & Az, (hate(z2,7))(z))
(c) Az (woman/(z) & hate'(z,7))

Since (13-46¢) cannot be simplified further, it is an example of what is
meant by a “reduced translation”: an expression logically equivalent to the
actual translation but simplified as much as possible by applying lambda-
conversion (and any other relevant simplifying rules the given system may
contain). Whether there is always a unique reduced form is a question that
can be remarkably difficult and which depends in any case on what the full
power of a particular system is.

Other constructions exhibiting unbounded dependencies also appear quite
generally to have interpretations which include lambda- abstraction on the
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position corresponding to the gap or pronoun introduced in the construc-
tion (if there is one) Ome such construction is WH-questions (see especially
Groenendijk and Stokhof 1989) As a first step toward an interpretation,
we might say that the question in (13-47a) is translated as in (13-47b); of
course (13-47b) itself does not specify an interpretation until one provides
an interpretation for the expression which man Much of the debate about
the semantics of interrogatives concerns that last point; most theories agree
on the aspects of the interpretation represented by (13-47b) (with important
differences, however, concerning the possible scope interactions between op-
erators inside the body of the question and expressions that are part of the
wh-phrase)

(13-47) (a) Which man does Mary believe that Susan wants to marry e;?
(b) (which man)'(Az; (Mary believes that Susan
wants to marry z1)')

Other unbounded dependency phenomena for which analyses using lambda
abstraction have been proposed include focus phenomena, the comparative
construction (Cresswell 1976), topicalization (Gazdar et al 1985). and the
pseudocleft construction (Partee 1984). Partee (1979) suggests the following
generalization:

(13-48) All and only unbounded syntactic rules are interpreted semantically
by rules that bind variables which were free in one or more of the
input expressions.

The generalization as proposed allows that such variable binding may be
either by quantification or by lambda-abstraction; in terms of primitiveness,
it is worth noting that it is possible to have lambda-abstraction as the only
primitive variable-binding operator and define the quantifiers in terms of it
(see (13-40)), but not vice versa Although the generalization is too the-
ory dependent to admit of direct confirmation or refutation, its plausibility
suggests that lambda-abstraction can provide a valuable tool for capturing
important semantic generalizations

I1I. Generalized quantifiers

Generalized quantifiers will be the topic of the next chapter; here we just
introduce them briefly as one of the linguistically very important innovations
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that is crucially dependent on having higher types available than are found
in predicate logic. Lambda abstraction provides a good way of giving the
explicit semantics for generalized quantifiers and for the determiner meanings
that may go into building them up

As indicated implicitly in earlier examples, we can treat NP’s as forming
a semantic as well as a syntactic constituent within a typed logic like Mon-
tague’s, and this was one of the most influential of Montague’s innovations in
his classic paper “PTQ” (Montague 1973). The NP’s every man, some man,
John, and Mary given in the earlier fragment are interpreted as generalized
quantifiers; the reader should convince herself that their type is ({e, £)t) (e.g
by drawing a derivation tree for the logical expression which translates each
of them and labelling each node with the type of the expression.)

Given those interpretations of every man and some man, it is possible
to abstract on the CN position and get back a statement of the meaning of
the Det We do this for some in (13-49a-b) and for every in (13-50a-b).

(13-49) (a) some CN: AP.(3z)(CN'(z)& P(z))
(b) some: AQ AP (3z)(Q(z) & P(z))

(13-50) (a) every CN: AP (Vz)(CN'(z)— P(z))
(b) every: AQAP.(Vz)(Q(z)— P(z))

The reader should immediately verify that applying the determiner mean-
ing given for some or every to a CN translation like man’ will indeed give
an expression equivalent to the specified translation for some man or every
man One lambda-conversion step should show the equivalence

We can now replace the two earlier rules which introduced every and
some syncategorematically (i.e. without assigning them to any category) by
the single rule “NP — Det CN” together with lexical entries for the specific
Dets. More members of the category Det will be discussed in Chapter 14

We will go through the translation and simplification via lambda conver-
sion of the sentence Some man walks, whose syntactic structure is given in
(13-51).
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(13-51)
S
/\
NP VP
/\ \
Det CN walks
l l
(13-52) ((1% some: AQ /}P(Bm)(Q(m) & P(z))
(iii) some; man: AQ.AP (3z)(Q(z) & P(z))(man')
(reduce by lambda conversion before continuing:)
AP.(3z)(man'(z) & P(z))
(iv) walks: walk’
(v) some man walks: (AP.(3z)(CN'(z)& P(z)))(walk’)
(reduces to:) (3z)(man'(z) & walk'(z))

We see from the last line that the translation of Some man walks in
this system ends up, after lambda conversion, the same as its translation in
predicate logic. The difference is not in the interpretation but in whether
or mnot that interpretation is arrived at compositionally on the basis of a
reasonable natural language syntax In predicate logic there is no way to
view the interpretation of the NP as a constitutent; in a more richly typed
system there is. The treatment of NPs as generalized quantifiers has turned
out to yield a very fruitful domain of research; some of the work in this area
is reported in Chapter 14.

IV. VP-deletion

Yet another early recognized application of lambda-abstraction was in the
analysis of VP-deletion, and in particular to capture the distinction between
the so-called “strict identity” and “sloppy identity” readings of sentences
like (13-53).

(13-53) John believes he’s sick and Bill does too.
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The first step in the analysis is to recognize that the first conjunct, re-
peated in (13-54), is ambiguous even excluding the possibility of he refer-
ring to someone other than John, an ambiguity involving a bound variable
reading of the pronoun, as represented in (13-54a), vs a “pragmatic” or
scoreferential” reading of the promoun, represented in (13-54b) by simply
translating the pronoun as the constant j Although (13-54a) and (13-54b)
yield the same truth conditions, they involve differences in what corresponds
to the VP believe he’s sick that do lead to truth-conditional differences in
VP-deletion sentences like (13-53).

(13—54) John believes he’s sick.
(a) (Az.believe'(z,sick'(z)))(j)
(b) believe'(j,sick'(j))

The corresponding pair of interpretations for the VP believe he’s sick
are given in (13-55a-b). In effect, the VP in the interpretation in (13-55a)
denotes the property of believing oneself to be sick, while that in (13-55b)
denotes the property of believing John to be sick.

(13-55) believe he’s sick
(a) Az believe'(z,sick’(z)): call this Py
(b) Az believe'(z,sick'(7)): call this Py

The ambiguity in the original sentence (13-53) is then accounted for by
the ambiguity of the antecedent VP, as represented in (13-55a-b), together
with the principle that the missing VP is interpreted as semantically iden-
tical to the antecedent VP. The reader is invited to work out that lambda-
conversion yields the two appropriate readings for Bill does too from the
representations in (13-56).

(13-56) Bill does too
(a) A(b)
(b) Py(b)

It has been noted by many semanticists, including Dahl, McCawley, and
Keenan in the early 1970’s, that the term “sloppy identity” is a bit of a
misnomer resulting from the early syntactic approaches to the problem (the
term was coined by J.R. Ross) and the possibility of gender differences in
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examples like John finished his homework before Mary did and that in fact
the syntactically “sloppy” identity is a reflection of strict semantic identity.

The semantics of VP-deletion is basically just identity of VP interpreta-
tion; lambdas simply help articulate the relevant VP interpretations.

V. Passive

Lambdas are also very useful for expressing the interpretations of various
rules or operations which manipulate the argument frames of verbs or verh
phrases and other predicates The passive construction makes an interesting
example, since it was generally regarded as a transformation of a sentence
structure within transformational grammar but within contemporary formal
semantics the debate is more over whether passive is a phrasal or a lexical
operation. We will illustrate first the phrasal passive analysis of Bach (1980)
and then compare it with the lexical approach of Dowty, Bresnan and others.

In order to focus on the relevant issues, we should make one simplification
and remove one earlier simplification. The simplification we will make is to
treat all NP’s as of type e, and restrict the NP’s in examples to proper nouns
so that no harm can be done by the simplification. The earlier simplifica-
tion that we should now undo was never introduced officially but appeared
in examples: in examples like (13-43), (13-44), and (13-45) we followed the
practice of predicate logic in representing transitive verbs as two-place rela-
tions that combine with an ordered pair of arguments. Here we will follow
Montague and other semanticists in interpreting a transitive verb as a func-
tion which applies to the interpretation of the direct object to yield another
function which applies to the interpretation of the subject to yield a truth
value. So transitive verbs will be treated as of type (e, {e, t)} (still assuming
that we are treating all NP’s as being of type e.) The rule for combining
them with their object to make a VP is given in (13-57)

(13-57) VP — TVP NP Translation: TVP'(NP)

A syntactic derivation tree for the simple sentence John loves Mary is
given in (13-58a); a corresponding semantic derivation tree with its nodes
labeled with the corresponding types and translations is given in (13-58b).
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(13-58) (a)
John loves Mary ; S

N

John ; NP love Mary ; VP

T~

love ; TVP Mary ; NP

(b)
love'(m)(5);t
/\
jie love'(m); (e, t)

/\

love’; (e, (e, t)) m;e

Note that what is represented in predicate logic as love'(j,m) is now
written love’(m)(j), reflecting the order in which the function is combined
with its arguments rather than the order of the NP’s in the English sentence.
It is customary in Montague grammar to retain the former notation as a
conventional abbreviation of the latter, however.

Now we can state the phrasal passive rule which derives a passive verb
phrase from a transitive verb (phrase) as proposed by Bach (1980). The
operation written EN in (13-59) is the operation which puts the first verb of
its argument into the passive participle form, and adds a be before it. Since
the passive rule is not a simple phrase structure rule, we have stated it in
a form closer to the standard recursive format of the earlier sections of this
chapter.

(13-59) Phrasal passive rule for agentless passives
Syntax: If @ is a TVP, then EN(a) is a PVP (Passive VP).
Semantics: If a translates as o', then EN(a) translates as

Az (3y)( (z)(y))

The passive verb phrase be loved is then translated as shown in (13-60)

(13-60) be loved: Az (3y)(love'(z)(y))

In the example just given, the TVP was a lexical transitive verb, love.
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The rule is also intended to apply to what Bach analyzes as phrasal transitive
verbs (meaning phrases which function as transitive verbs, not phrases which
contain transitive verbs), such as the italicized (discontinuous) TVP’s in (13-
61).

(13-61) Phrasal TVP’s: give a book to John
giwve John a book
persuade John to leave
buy this book to read to the children

A competing hypothesis is that passive is a lexical rule, as proposed by
Dowty (1978) and Bresnan. The statement of the rule could be identical in
its syntax and its semantics to the phrasal rule given above, but restricted to
apply only to lexical items. The difference between the lexical and phrasal
versions of the rule is subtle, much less than the difference between a syntac-
tic and a lexical treatment of passive in earlier transformational approaches.
The lexical rule in its most basic form does not apply to the phrasal verbs
illustrated in (13-71). But it is not difficult to extend it to a schema applying
to lexical verbs of all categories TVP/X, i.e all categories of verbs which
take some kind of complement to form a transitive verb (phrase). The basic
strategy for doing this is similar to the strategy used in defining phrasal
conjunction in the beginning of this subsection (In the terminology ome
encounters in the literature on categorial grammar and type-changing oper-
ations, we would want to “lift” the passive operation from an operation on
TVP-type interpretations to an operation on functions that have TVP-type
interpretations as their values. To write this out explicitly in detail is a bit
too complicated to do here in this case, since TVP’s are already of a slightly
complicated type, the semantics of the basic passive operation is slightly
complex, and the various complements and adjuncts that enter into phrasal
TVP’s are of types we have not discussed.)

Whether phrasal or lexical, lambdas help provide an explicit and per-
spicuous statement of the semantics of the passive construction

VI. Meaning postulates and lexical rules

Dowty (1978, 1979) discusses a wide variety of other governed rules which
he proposes to treat as lexical rules, and lambdas figure prominently in the
semantics. In discussing lexical rules, we should discuss meaning postulates
at the same time, since the two are often closely related in form, and the
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choice of which is more appropriate to use in a particular case is generally
an empirical linguistic issue.

Among the phenomena that have been analyzed in terms of meaning
postulates and/or lexical rules are causative verbs, detransitivization, mor-
phological reflexives, adjectival un- prefixation, object raising, “dative move-
ment”, the relation between seek and try to find and that between want and
want to have, and many of the more semantically regular parts of deriva-
tional morphology. The best general reference, and the starting point for
much work in this area, is Dowty (1979).

We will discuss just one of these phenomena, causative verbs, and use
that discussion to illustrate both meaning postulates and lexical rules and
the relation between them. This will also give us a good opportunity to show
how lambda-expressions are arrived at by specifying what one wants them
to do.

Counsider the (much-discussed) relation between transitive and intransi-
tive break in English. There are differences of opinion as to just what the
semantic relation between the two is. Many linguists believe (I) that it is
at least true that (13-62a) entails (13-62b) Some believe (II) that (13-62a)
and (13-62b) entail one another, ie are logically equivalent. Others are
doubtful about claim (II) but believe (III) that a similar claim holds true,
but with an abstract and possibly universal causative operator “CAUSE”
whose interpretation is not exactly identical to that of the English word
cause Some believe neither (II) nor (III) but believe that (I) (or a variant
of I with CAUSE in place of cause) is the strongest generalization that can
be made; that is, that (13-62b) captures part of the meaning of (13-62a) but
does not exhaust it.

(13-62) (a) John broke the window.
(b) John caused the window to break.

In stating the relevant translations of these sentences, we will use break
for the transitive verb and break] for the intransitive; we translate the window
simply as an e- type constant w; and we will introduce without motivating it
an operator THAT which applies to a formula to give a proposition- denoting
expression. (Discussion of such an operator would need notions that will
be introduced in Chapter 15; but nothing relevant in the present example
depends on the occurrence of this operator in it.) Then we can translate
(13-62a) (uncontroversially) as in (13-63a) and (13-62b) (controversially) as
in (13-63b). We ignore tense throughout.
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(13-63) (a) breaks(w)(7)
(b) cause’(j, THAT (break}(w)))

Now we can state the three claims (I), (II), and (III) in terms of three
alternative “meaning postulates” one could write. (See Carnap (1947) for
the introduction of the term and Partee (1975) for its use to describe what
Montague introduced as restrictions on possible interpretations.}) One way to
think of these meaning postulates is as capturing explicitly some aspects of
the lexical semantics of the elements mentioned in the postulates; the cases
linguists are generally most concerned to make explicit are those in which
the given aspects of the lexical semantics play a crucial role in some general
inference patterns, especially where whole families of lexical items participate
in common inference patterns (as is the case with causative verbs)

(13-64) MP I. (Vz)(Vy)breaky(y)(z) — cause'(z, THAT(break)(y)))]
MP II: (Vz)(Vy)lbreaky(y)(z) « cause'(z, THAT(break; (v)))]
MP II: (Vz)(Vy)[breaky (y)(z) « CAUSE(z, THA T(break;(y)))]

With respect to the relationship between meaning postulates and lexical
rules, the most important difference among the three meaning postulates
above is that between MP I and MPs II and III: only the latter two, involv-
ing full equivalence between the two sides, can be turned into lexical rules
defining transitive break as the causative of intransitive break.

We will use MP II to illustrate how the conversion from meaning pos-
tulate to lexical rule can be done in such cases. First note that there is
an asymmetry in the 1oles of break, and break| in the meaning postulate:
the postulate implicitly gives us a definition of break in terms of break] but
not straightforwardly vice versa To see how to turn the meaning postulate,
already an implicit definition, into an explicit definition of break}, lock at
break,, as a function which applies to two arguments in turn. The right-hand
side of the equivalence tells us what the value of that function is given in:
terpretations of cause¢’ and of break]. But that means the right-hand side is
already perfectly suited to be the body of a lambda-expression; all we have
to do is abstract in the right order on the two argument variables of break}.
Which order? Well, since the transitive verb applies first to its direct object
argument (the y argument in MP II), that should be the argument the first
lambda-operator binds, (I e. “first argument first” in the lambda-notation
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we are using. Be careful, since this is not always uniform across different
notational versions of the lambda-calculus.) The result is the definition in
(13-65).

13-65) break, = Ay.Az cause’(z, THAT(break; (¥
( 2

All we then need to turn this into a lexical rule is to abstract away from
the specific lexical items break;, break; and cast this into a rule applying
to a certain class of intransitive verbs to derive a causative transitive verb
from them, with the similarly generalized form of (13-65) providing the cor-
responding interpretation rule

(13-66) Lexical Rule For Causative Verb Formation (Assuming MP II)

Formation Rule: If a is an intransitive verb with such-and-such
properties, then F(a) is a transitive verb. (F in
English is mostly the identity function.)

Semantic Rule: The translation of the derived verb F(«a) is
Ay.Az.cause' (z, THAT(a'(y)))

The reader is invited to go back to the earlier applications of lambda
abstraction mentioned in this subsection and try to see where the lambda-
expressions come from. For the passive, for instance, it might be instructive
to write down a biconditional statement stating the equivalence of the agent-
less passive sentence to a corresponding active, and then see how the form
of the lambda abstract given in the translation rule in (13-59) can be fig-
ured out from there. (Do not be discouraged if lambdas seem difficult and a
bit mysterious at first; like many powerful tools, it takes time and practice
before they feel natural to work with.)

Exercises

1. (a) Given the derivation tree for the following statements of SL ac-
cording to the syntax given in (13-1) and (13-2).

(i) ((~r&q)Vvp)
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(i) (~(p&q) Vv p)
(iii) ~((p&q) vp)

(b) Give the compositional semantic interpretation of the three trees
of (1a), assuming that both atomic statements are true.

2. Assume the alternative syntax for SL, which has, besides the category

for atomic statements, two other categories for connectives: Neg for
negation which combines with only one statement at a time, and Conn
for all four other connectives which combine with two statements at a
time

(a) Write the two new syntactic rules for this syntax of SL

(b) Give the derivation tree for the three statements given under la.

To give SL with this syntax a compositional semantics we first have to
interpret the connectives according to their truth tables as functions
taking either one o1 a pair of truth values, which is/are the value(s)
of their constitutive statement(s), and assigning a truth value. For
instance, conjunction is interpreted by the following function:

(a) Give the interpretations of the other connectives of SL as such
functions.

(b) Write the two compositional semantic rules for SL with this syn-
tax. Hint: use the convention of [P] standing for the semantic
interpretation of P.

(c) Show how each of the statements of (1a) is interpreted composi-
tionally according to the three trees you gave in (2b)).

3. (a) Give the trees and compositional interpretation of the following

formulas of Predicate Logic, according to (13-8) and (13-9) given
in section 13.1.2. Define your own model with two individuals
and a non-empty interpretation of the predicates to use in the
interpretation throughout this exercise which makes (i)-(iv) true.

(i) (v2)(39)(P(z) — R(z,y))



EXERCISES 369

(i) (3y)(ve)(P(z) — R(z.))
(iii) (3y)(P(y) — (Vz)(&(z,¥))
(iv) (v2)(3y)(P(y) — R(z,y))
(b) Formulate four English sentences corresponding to (i)-(iv) which
would best express their scope differences.

4. In (13-10) we define a formula or predicate logic as true in ¢ model M
if it is true for all assignments in M, and false otherwise. A common
alternative definition is given in (13-10") below.

(13-10') (1) For any formula ¢, [¢]™M =1 (i.e. ¢ is true simpliciter
with respect to M) iff for all assignments g, []M#=1.
(2) For any formula ¢, [¢]™M = 0 iff for all assignments g,
[e]™e' = 0.
(3) Otherwise, [¢]M is undefined.

The two definitions give the same results for all closed formulas, but
they give different results for some open formulas.

(a) Find an open formula which comes out true under both defini-
tioms.

(b) Find an open formula which comes out false under both defini-
tions.

(¢) Find an open formula which comes out false according to (13-10)
but undefined on this alternative (13-10").

(d) Are there any other cases, or does (c) exhaust the ways in which
the results of the definitions can differ? State your reasomns.

5. Give the derivation tree according to the SL syntax in (13-2) corre-
sponding to the ‘algebraic’ tree in (13-20) and show its compositional
derivation which makes it true in a simple model of you own choice.

6. Assume the following constants and variables

Type Variables Constants

€ m? y? Z7 j? m

(e, t) pQ walks, man
(e,{e,t})) R loves

{{e,t),t) P someone, everyone

Check whether the following expressions are well-formed expressions
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of TL If so, specify their type. Draw derivation trees for at least three
of the wellformed ones.
Sample: (i) AzP(z) - yes, type {e,t)
(i) loves (m) - yes, type (e, t)
(i) AP walks (P) -mo
Derivation tree for (i):
AzP(z), (e,t),3

N

Z,¢e P(m),t,?

N

P, e,t) z,e

(a) Az loves (m)(z)

(b) ARR(m)()

(c) someone(walks)

(d) APP(j)

(e) Az someone(z)

(f) Az(P(z)& Q(z))

(8) AP(P(j)& P(m))

(h) (APP(j5))(walks)

(1) Az3y loves (z)(y)

(3) AP(VP(P(P) « P(5)))
((3) has extra parentheses, do not judge it illformed on that ac-
count)

7. Using the same variable-conventions as above, and the constants and
semantic interpretation of TLA given in 13 2.3, specify for each of the
following the type and a description of the semantic value for M and
g as given in (13-36).

Optional abbreviations: Plus(a, b) for Plus(b)(a)
gr(a,b) for gr(b)(a)

Sample: (Azgr(z,5))(8) - type: t, value: TRUE

(a) (Azgr(z,5))
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(b) (Az(odd(z)& gr(z,5))(8)
(c) (AzPlus(z,3))(4)

(d) (Az(Aygr(y,z)))(5)(8)
(e) (Az(Aygr)y, z))(5))(8)
(f) Az3Jy(Plus(y,y) = z)

(8) (APP(8))(Azgr(z,5))

Hint: one of (d) and (e) is true, the other false.






Chapter 14

Generalized Quantifiers

14.1 Determiners and quantifiers

The universal and existential quantifiers of predicate logic introduced in
Chapter 7 are in two major respects inadequate for the semantic analysis of
the rich variety of quantification in natural languages. First of all, as we have
seen in translating from English to predicate logic and as was pointed out
again in Chapter 13, the syntactic structure of quantified formulas in pred-
icate logic is completely different from the syntactic structure of quantified
sentences in natural language. Quantifying expressions of natural language
are typically full NPs, where the noun (CN) and possibly additional relative
clauses provide essential restrictions on a quantifier. Not just the determiner
or specifier of an NP binds dependent arguments or pronouns, but from a se-
mantic point of view the appropriate scope-defining and binding category is
the entire NP It will prove useful for linguistic purposes (too) to distinguish
between quantifying over domains and binding arguments of predicates —
two jobs conflated by the two standard first-order quantifiers of predicate
logic. Secondly, many forms of quantification in natural language are not
expressible or definable in terms of the first-order logical quantifiers. For
instance, the NP more than helf of the CN is not expressible in terms of just
first-order quantifiers, since its interpretation requires a one-to-one mapping
between two finite or infinite sets dependent on a well-ordering by cardinality
(see Barwise and Cooper (1981) for a complete proof).

These serious limitations of the analysis of quantification in any semantic
framework restricted to a first-order language can be overcome by general-
izing the notion of a quantifier to a higher-order concept: a generalized

373
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quantifier is a family of subsets of the domain of entities. Richard Mon-
tague initiated this higher-order analysis of quantification, as presented in
the fragment of Chapter 13, for the logical quantifiers in his famous paper
“The Proper Treatment of Quantification in Ordinary English’ (Montague
(1974), p. 247-270), and recent research in model theoretic semantics has
developed his insights considerably for linguistic purposes Also genuinely
new insights on the logical properties of quantifiers have been obtained, e.g.,
a new notion of first-order definability (see van Benthem (1986)). In this
chapter the main linguistic results of the theory of generalized quantifiers
are presented as an introduction to a very fruitful area of linguistic seman-
tics where the mathematical methods of the previous chapters have found
extensive empirical applications.

In the fragment of Chapter 13, NPs are defined categorially as terms, and
they are interpreted in the semantics as generalized quantifiers. The seman-
tic type of any term or NP is {{e,t),t), hence they all denote functions from
sets of individuals to truth values. The fragment in Chapter 13 contained
only the determiners every and some, translated in the formal language with
lambda abstraction respectively as

AQAPz[Q(z) — P()]]

and

AQAP[3z[Q(z) & P(=)]]

In this functional perspective the subject NP denotes a function taking the
interpretation of the VP in the sentence as argument For instance, every
man walks is true iff the set of walkers is a member of the family of sets
interpreting every man.

Alternatively we may view the interpretation of this sentence in a ‘flat-
tened’ version as a 1elation between sets, ie., of type ({{e,t), (e,t}),t). A
determiner is then analyzed as a relation between the set of individuals in-
terpreting the CN of the subject NP and the set of individuals interpreting
the VP. This leads to the following general definition:

DEFINITION 14,1 A determiner is a function D in a model M = (E,[ ])
assigning to the domain of entities F a binary relation between subsets A
and B,

[Det[CNT[V P]lg = [Det(A,B)]g = DgAB
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In the following we first present the main notions in their flattened rela-
tional versions for ease of exposition, and discuss the relational analysis of
quantifiers further in Section 4. Switching back and forth between a hier-
archical functional perspective and a flattened relational analysis will prove
heuristically useful since many of the results of the theory of relations of
Chapter 3 can be brought to bear on generalized quantifier theory.

The methodological objectives and linguistic goals of the theory of gen-
eralized quantifiers are threefold:

(1) to provide a semantical characterization of the class containing all and
only the possible determiners of natural language as a proper subset of
the logically possible determiness, including a linguistically adequate
classification of types of natural language determiners

(2) to explain distributional data of NPs in various contexts by notions
definable in terms of properties of generalized quantifiers

(3) to analyze conditions on binding, scope-dependencies, inference and
other informational dependencies between NPs and other categories as
semantic constraints on the process of model theoretic interpretation
as a formal model simulating human information processing with its
cognitive constraints

The theory of generalized quantifiers proves to be a new framework for
the semantic explanation of linguistic data which have been studied exten-
sively in syntactic theory.

14.2 Conditions on quantifiers

In constructing generalized quantifiers as families of sets of entities or in-
dividuals in a domain there are four universal conditions which set initial
restrictions on a linguistically useful notion of a quantifier. Although not
all natural language quantifiers meet these conditions, they serve us here to
carve out an initial domain of study, providing the foundation for a semantic
analysis of quantification. Extensions of the simple cases to more complex
forms of quantification, including context-dependent or intensional determin-
ers, can be obtained by dropping one or more of these initial methodological
assumptions.
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For the interpretation of an NP the domain of entities E is never entirely
relevant to the determination of its value, but rather just certain subsets of
E are. For instance, when we want to check whether every man runs in a
given model, we are not interested in the women o1 the books in that domain
of interpretation. To express this rather obvious condition on the subsets
which are relevant in verification of NPs we define a first general condition
on determiners in generalized quantifiers:

C1. Conservativity (the ‘live-on’ property)
If A,B C E then DgAB « DgA(ANB)

A determiner that meets this condition is called conservative or is said
to ‘live on’ the set A. Subsets of the domain that contain no members of A,
no things with the property interpreting the CN in the subject NP, ie any
{X — A) C F, hence fall outside the interpretation of an NP,

English examples that illustrate this notion are the following equivalences

Many men run < Many men are men who run
Few women sneeze < Few women are women who sneeze

John loves Mary « John is John and loves Mary

The English expression only, for instance, which is sometimes (we think
erroneously) considered to be a determiner, fails to be conservative In eval-
uating for instance the sentence Only athletes runin a domain E we do have
to consider the entire power-set of E, since the sentemnce is verified or falsified
after we have determined of everything else in E whether it runs. This is
an argument against treating only as a determiner, which finds additional
support by the fact that other determiners may precede it, as in the only
boy. The relatively free distribution of only in a sentence also sets it apart
from the category of determiners. Comnsider

(14-1)
Only athletes run / Every athlete runs
Athletes only run / *Athlete every runs
Athletes run only / *Athlete runs every
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But note that some determiners may “float” more easily, eg. all.

The second general condition on the class of generalized quantifiers that
form our object of study is the requirement that extensions of the domain
should not affect the interpretation of the determiner For instance, if we
know that some men walk in a given model, then adding more books to the
domain of that model will not have any semantic effect. This condition on
determiners is defined as:

C2. Eztension (Constancy)
If A, BC EC E'then DgAB < Dg:AB

Determiners that satisfy this condition are called eztensional or constant
determiners In principle the interpretation of a determiner may vary with
the extension of the domain of interpretation, but Extension says that in
evaluating an NP the entities which fall outside the interpretation of the CN
and outside the interpretation of the VP can be left out of consideration.
This means that the determiners under consideration have to be independent
of the size of the domain; they are insensitive to domain-extensions In
natural language there are, however, determiners which measure relative
cardinalities and show an important dependence on the size of the domain;
they are the context-dependent determiners like many or more than half
Although we return to context-dependent determiners below in section 5, it
is easily seen that, for instance, there is at least one interpretation of many
men welk which means that the number of men who walk exceeds the number
of other things in the domain that walk. Under such a globally proportional
interpretation of many men, addition of more things to the domain may
change the truth value of the original sentence

The two conditions Conservativity and Extension together permit sup-
pression of the parameter E in the interpretation of an NP, which is defined
as:

C1'. Strong Conservativity
If A,B C F then DgAB < D4A(ANB)

Strong conservativity tells us that the only sets which are relevant to the
evaluation of a determiner are the CN-interpretation and the VP-interpretatio
For a proof of the equivalence of conservativity plus extension to strong con-
servativity see Westerstahl (1985a).

The third universal condition on quantifiers requires that only the num-
ber of elements in the relevant sets determine the interpretation of a quan-
tifier. To evaluate in a model M, for instance, whether several men walk we
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only need to know how many men there are and how many of them walk,
It is not relevant who they actually are, since the interpretation of that sen-
tence should not be affected if we were to substitute other men for the given
ones. No quantifier hence may depend on a specific or particular choice of
individuals in the domain, i.e. the quantifiers under consideration are ‘topic
neutral’. This condition is formulated as:

C3. Quantity (Isom.)
If F is a bijection from Mj to Mg, then D, AB « Dg, F(A)F(B)

Quantity requires sameness of interpretation up to isomorphic models. The
requirement may be weakened to insensitivity to any permutation = on F or
automorphism F : My — My of the domain of a given model, formulated
as:

C3'. Weak Quantity (Perm.)
If 7 is a permutation of E, then DgAB « Dg(x(4))(x(B))

If we assume Constancy, then Quantity and Weak Quantity prove to be
equivalent conditions (for a proof see Westerstahl (1985a)) Hence in the
following we disregazd this difference and assume Quantity as a constraint

A quantifier D(A) which meets Quantity is said to be a quantitative
quantifier. Note that there is some potential terminological confusion here.
Some authors (a.0. van Benthem) reserve the term ‘quantifier’ for those
NP-interpretations that are conservative, extensional and quantitative, and
others (a.0 Westerstahl) call this class the ‘logical’ quantifiers. We call
here any NP-interpretation a (generalized) quantifier and use the universal
conditions as properties of subsets of quantifiers,

Again there are expressions in English which are commonly considered to
be determiners, but which fail to meet Quantity. This is not surprising, since
in our ordinary use of language reference to specific objects and particular
things often matters a great deal In logic it is customary to obliterate
all that is specific, and in setting the stage for the study of generalized
quantifiers we chose to simplify matters first by disregarding specificity for
the moment as it brings in complex contextual parameters.

Typical specific determiners which are sensitive to the choice of particular
objects and let the interpretation of NPs vary across isomorphic models
are the possessive determiners such as John’s, every man’s. Omne of the
problems to solve in the interpretation of possessives is the fact that John’s



CONDITIONS ON QUANTIFIERS 379

book should be interpreted equivalently to the book of John but every man’s
book should not necessarily be equivalent to the book of every man. See
for more discussion van Benthem (1986), Keenan and Faltz (1985), Partee
(1984).

The fourth and final universal condition on determiners requires that
determiners must be active in the sense that they must have a detectable
effect on different domains. The ‘universal’ determiner, which is true on any
domain for any two sets, and the ‘empty’ determiner, false in every domain
and every two sets, are excluded as trivial This condition is formulated as:

C4. Variation

For each domain E there is a domain £’ such that £ C F', 4, B and
C C E', such that Dg:AB and ~ D AC

Variation says that, when you add entities to the domain, a set C can be
found which is not related to A by the determiner. Hence natural language
excludes determiners that just arbitrarily relate any or every two sets. A
weaker condition may be called for when we do not want to exclude the
interpretation of, for instance, at least two CN in a domain with only one
single object.

C4'. Non-trimality

For non-empty domains E and E’ there exist A,B C E and A',B' C E/
such that DgAB and ~ Dg/A'B’

Again the difference between C4 and C4' may be disregarded for our
purposes as both exclude the trivial quantifiers, and the precise strength of
the conditions concerns primarily logicians who want to make the weakest
possible general assumptions to obtain maximal proof-theoretic elegance.

Conservativity, Extension, Quantity and Variation together define a class
of determiners which exhibit linguistically interesting semantic properties.
We will study these properties in the next section of this chapter As was
already remarked above, these four conditions together require that the de-
terminers under consideration depend only on the cardinality of two sets 4
and B, respectively the CN-interpretation and the VP-interpretation. If we
assume finite domains, this allows tree-like representations of these deter-
muners, called number-theoretic trees, which are outlined here just briefly,
while relegating most results to the exercises Letting z = |A — B| and
¥y = |AN B, the tree is built by pairs {z,y) as in Figure 14-1.
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z+y = 0 0,0
= 1 1,0 0,1
= 2 2,0 1,1 0,2
3 3,0 2,1 1,2 0,3
etc.

Figure 14-1: The number-theoretic tree of
determiners

To illustrate the use of such number-theoretic trees briefly we can see
directly that every man walks is true only on all right-most pairs on each
line, since, for instance, if z + y = 3 all three elements must be in AN B, ie,
they all are men and walk. The same argument applies inductively to any
number z + y. There are many other properties of determiners expressible
in this number-theoretic tree, but these results make good exercises

14.3 Properties of determiners and quantifiers

Assuming the four universal conditions of Conservativity, Extension, Quan-
tity and Variation, we now turn to some linguistically useful semantic char-
acterizations of the types of determiners which the NPs in this class may
contain. Recent research has uncovered a host of interesting properties of
determiners and quantifiers, and we can present here only some of the fun-
damental results.

The role of determiners and quantifiers in inferences is one of the cen-
tral explananda of the theory of generalized quantifiers, The fundamental
question here is how information expressed in natural language in inferential
patterns is preserved or lost by manipulating models. The first property
of determiners is based on increasing or decreasing the number of entities
in the relevant sets A (CN-interpretation) and B (VP-interpretation). If
we have the information that some men walk, adding more walkers to the
interpretation will not change the initial assignment. But if we have the
information that no man walks, adding more walkers to the interpretation
may very well change it, because some of the walkers may turn out to be
men. Similarly, in the first case, if we add more men we still maintain the
information that some men walk. But, in the second case, if we add more
men, the information that no man walks is not preserved. These facts are
described by attributing to the determiners that allow such addition in either
A or B the property of being respectively left monotone increasing (in A) or
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right monotone increasing (in B) The counterpart to increasing determiners
are monotone decreasing determiners, again in either A (left) or B (right).
For instance, if few men walk, and we restrict the set of men to a subset, it
is still true that few men walk, since only fewer do walk then; so fewis left
monotone decreasing And if we assume that no men walk, and take a sub-
set of the walkers, that set cannot contain any men, so the information that
no men walk is preserved and no is right monotone decreasing. The intu-
itive linguistic tests that discriminate the four different types of determiners
are then the following entailments in which the determiner is the same in
antecedent and consequent but either the CN- or the VP-interpretation is
increased or decreased.

(1) left monotone increasing
If D CN; VP, then D CNy VP (where CN; C CN»)
e g. If several women with red hair run, then several women run

(2) right monotone increasing
If DCN VP, then D CN VP, (where VP CVP,)
e g If every man walks fast, then every man walks

(8) left monotone decreasing
If D CN; VP,then D CN, VP (where CN; C CN;)
e.g If all women run, then all women with red hair run

(4) right monotone decreasing
If D CN VP, then D CN VP, (where VP, CV P;)
e g. If no man walks, then no man walks fast

These four related properties of determiners are captured in the following
set-theoretic definition.

P1. Monotonicity
left monotone increasing: (DAB&AC A')—~ DA'B
right monotone increasing: (DAB& B C B') — DAFB'
left monotone decreasing: (DAB& A’ CA) — DA'B
right monotone decreasing: (DAB& B'C B) — DAB'
Note that left monotone increasing determiners are also called persistent,
and the left monotone decreasing ones anti-persistent.
A syntactically simple determiner which is increasing in the left argu-
ment (A) is increasing in the 1ight hand argument (B), ie, left monotone
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increasing simple determiners are also right monotone increasing. But left
monotone decreasing simple determiners are not always also right mono.-
tone decreasing This may be verified easily by considering the following
entailments:

Some bald men walk fast — Some men walk

All men walk 4 All bald men walk fast

The monotonicity properties of determiners provide a fundamental clas-
sification of inferential patterns. It in fact explains the power of the Square
of Opposition of Syllogistic Logic (a pre-Fregean form of predicate logic)
with the four traditional logical quantifiers every, some, not every and no
(see van Eijck (1985)).

A simple linguistic constraint on coordination of NPs with conjunction
and disjunction may now be formulated as follows:

Constraint on Coordination: NPs can be coordinated by conjunction
and disjunction iff they have the same direction of monotonicity.

Coordination of a decreasing determiner and an increasing one is hence
excluded on semantic grounds, which conforms to the intuitive unacceptabil-
ity of, e.g.,

*John or no student saw Jane

*All the women and few men walk.

Of course, coordination with the connective but requires NPs of differ-
ent direction of monotonicity, but note that this coordination, contrary to
conjunction and disjunction, does not allow iteration freely.

John but no student saw Jane
All the women but few men walk

*All the women, few men but several students walk

Conjunction preserves monotonicity, if it is interpreted as intersection of
the two CN-sets. But disjunction does not preserve monotonicity, e.g., all
or no is not monotone. Complex determiners are expressible equivalently as
conjunctions of monotone determiners, even though they might themselves
not be monotone, e.g., the non-monotone ezactly two is equivalent to the
monotone at least two and at most two,
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To obtain a semantic universal stating that all syntactically simple natu-
ral language determiners (in the class meeting the four universal conditions
on quantifiers) are characterized by a certain semantic property, we need
a property which all right monotone determiners share with numerical de-
terminers interpreted as ezactly n  Such a weaker property is Continuity,
formulated as:

P2. Continuity
_DE A Bl and .DE A Bz (WhEI‘e B1 Q B g Bz) — _DE AB

Conjunction still preserves Continuity (the proof is an easy set-theoretic
exercise). Now we can state the first empirical semantic universal of natural
language determiners:

S1. Universal on simple determiners (van Benthem (1984))

Every simple determiner in a conservative, extensional and quantitative
NP of any natural language is continuous.

The methodological role of such semantic universals is to demarcate the
class of determiners that are realized in natural languages from the much
wider class of all logically possible determiners. Semantic universals are
hence of a genuinely empirical nature and make falsifiable linguistic claims

We can state a general relation between increasing and decreasing deter-
miners if we define external and internal negation of quantifiers as follows.
Here Qg is an abbreviation for Dg(A4).

DeriNiTION 14.2 I Qg is defined in a model M with domain E, then:
~ Qg ={X CE|X ¢ Q}(external negation)

Qg ~={X CE|(E - X) € Q}(internal negation)
|

External negation of an NP prefixes negation on the NP, eg., Not one man
runs. This should not be confused with full sentential negation, e.g , It is not
the case that one man runs Internal negation corresponds to VP-negation,
e.g, One man did not run

Now we can see that either kind of negation reverses the monotonicity
direction of a quantifier Ie., if @ is monotone increasing, then ~ @ and
@ ~ are monotone decreasing, and if Q is decreasing, then ~ @ and Q ~ are
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increasing. To see that this is true, assume that ¢ is monotone increasin

and suppose that ¥ € (@ ~)and X CY Then (E-Y)€ Q@ and (F~Y) C
(E~X),s50 (E~X) € Q, hence X € (@ ~) Now suppose ¥ € (~ Q)
and X CY. ThenY ¢ Q@ so X ¢ @ so X € (~@Q) The proof of the
reversal of monotone decreasing quantifiers is similar. Also, as we may expect
from the set-theoretic definitions, it is provable (a simple exercise!) that
Q = ~~Q = @ ~~ From this correlation we may conclude that any
decreasing simple quantifier is a negated form of an increasing simple one,
This result may provide an explanation for the fact that not all NPs can be
negated, e.g., acceptable external negations are:

(1) not every man
(2) not many men

(3) not a (single) man
whereas unacceptable are:

(4) *not few men
(5) *not no man

(6) *not John

Note first that only right monotone increasing quantifiers allow external
negation Instead of (4) and (5) one could as well use the simpler monotone
increasing many men and some men 1espectively. To explain the unaccept-
ability of (6) we define the new notion of a dual of a quantifier.

DEeFINITION 14.3 The dual of a quantifier Qg Is the quantifier Q% = {X C
EV(E-X)EQ} IfQ = @~ then Q is called self-dual.

The NP every man turns out on this definition to be the dual of some
man. We call determiners D and D™ duals if the quantifiers in which they
occur are duals. Furthermore foranya € E, {X C E | a € X} is self-dual, so
proper names, for instance, are self-dual Now we can formulate the second
semantic universal:

S2. Universal on negation (Barwise and Cooper (1981))

If a language has a syntactic construction whose semantic interpretation
is to negate a quantifier, then this construction is unacceptable with NPs
with monotone decreasing or self-dual determiners.
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This accounts for the unacceptability of (6) Another linguistic illustra-
tion of this duality between quantifiers in natural language is the following,
For instance, not many men did not leave is often taken to be paraphrased
by quite a few men left Hence quite a few CN should be the dual of many
CN. To show that this is untenable in general, we first prove a theorem of
generalized quantifier theory

TaeoREM 14 1 (Barwise and Cooper (1981)) If D is right monotone in-
creasing, and DAB and D~ AC, then BN C # 0. - |

Proof. (1eductio) Suppose BN C = §. Then B C (E — (), so, by mono-
tomicity, DA(E — C). But then (D ~)AC, so not ~ (D ~)AC, resulting in
a contradiction with the assumption D~ AC B

Many is right monotone increasing (on a non-context-sensitive, ie ex-
tensional, interpretation); now in some model M, let B = [voted for Bush]
and C = [voted for Dukakis] If many men voted for Bush and quite a few
men voted for Dukakis, then by Theorem 14.1 we must accept that at least
one man voted for Bush and for Dukakis! This shows that many and quite
a few cannot simply be duals. Possibly a more context-sensitive notion of
duality could solve this problem

Duality is a fundamental aspect of both formal and natural languages
The familiar negation laws of predicate-logical quantifiers are a simple case
of reversal of monotonicity direction, which we also call polarity-reversal
But in natural languages the correlation between negation and duality is
much more pervasive Negative polarity expressions, for instance, occur
in various syntactic contexts, yet these prima facie disparate and almost
stylistic phenomena can be given a universal semantic explanation (due to
Ladusaw (1979)). The determiner any has been a notorious problem for
semantic analysis, since it is sometimes equivalent to the universal every,
which is called the free choice any as in Any book is readable. But there are
contexts where it is not equivalent to universal quantification and in other
contexts it is simply unacceptable Closer scrutiny with a semantic eye of
the acceptable contexts where it is not equivalent reveals that they can be
all interpreted by monotone decreasing sets Comnsider the data in (8)

(8) (a) John did not read any books
(a') *John read any books
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(b) At most ten students who read anything passed
(b') *At least ten students who read anything passed
(c) It is difficult to find any book

(c') It is easy to find any book

(d) Before anyone enters, he must bow
(d") *After anyone enters, he must bow
(e) Never may anyone touch it!

(e") *Always may anyone touch it!

(£) If anyone can do it, (then) you can!
(f) Anyone can do it, so you can! (free choice ‘any’)
(g) John left without any books

(g') *John left with any books

(h) John left without having read any books

(h') *John left (with) having read any books

(i) Not reading any books makes life boring

(i') *Reading any books makes life boring

The data in (8) demonsirate polarity reversal across various categories,
the first case of negative polarity and the primed case of positive polarity.
We see that contexts that admit negative polarity items (n.p.) should be
interpreted as monotone decreasing sets based on:

a) verbs for n.p. object NP

b) head NPs for relative clauses withn.p NP

¢) adjectival phrases for object n.p. NP in infinitival phrase
d) locating temporal adverbs for n.p. subject NP

e) frequency temporal adverbial for n.p subject NP

f) conditional for n.p. subject NP

g) preposition for n.p NP in PP

h)
i)

i) negation for n.p. NP in nominalization

preposition for n.p. NP in gerund

Note that in (8f) the negative polarity of the conditional antecedent
conveys that if it can be done at all, you certainly can do it, i.e., the task is
difficult to do; whereas the positive counterpart (8f') admits the free choice
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any but changes the meaning drastically to express that since everyone can
do it, you can, ie. the task is a very easy one These facts show that
monotone decreasing sets serve in the interpretation of expressions from all
these different categories in a compositional model theoretic semantic theory,
but it would lead too far for our present purposes to develop a fragment in
detail

There is another important semantic property of determiners which has
been the subject of much 1ecent linguistic research, i e, the contrast between
definite and indefinite NPs. The following definition captures a relevant
semantic property:

DEFINITION 14 4

(i) A determiner D is positive strong if for every model M and every
AC E if D(A) is defined then DAA

(ii) A determiner D Is negative strong if for every model M and every
A C E if D(A) is defined then ~ DAA

(iii) If D is not positive or negative strong, it is weak.

Examples of positive strong determiners are every, all, both, mosi, the n;
negative strong is neither, and weak are a, some, at least n, many, several,
a few, few, no. A simple linguistic test for strength of a determiner is to see
whether a sentence of the form

isa CN
DC
N { are CN's
comes out logically valid, contradictory or contingent In the first case, the
determiner is positive strong, in the second case negative strong and in the
third case weak.

There is a simple theorem of generalized quantifier theory which shows
that positive strong determiners always include the entire domain E.

THEOREM 14 2 (Barwise and Cooper (1981)) If D is a determiner in a
conservative quantifier D(A), then DAA iff DAE. |
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Proof. Since D(A) is conservative, DAE iff DA(ENA),but ENA = 4, and
we know DAA. R

This theorem can be used to explain why only NPs with weak determin.
ers are acceptable in so-called existential contexts with pleonastic subjects
there is/are NP For any positive strong determiner this context makes ap
uninformative tautology, whereas for negative strong ones it gives contradic-
tions Furthermore, only weak determiners can be used when we deny the
existence of something with there is not/are not NP.

But, as was pointed out in Keenan (1987), it is not straightforward to
extend Definition 144 of strong and weak determiners to n-place determin-
ers, since it apparently makes the indefinite two-place determiners as many
CN as CN, more CN than CN and fewer CN than CN strong (e g as many
students as students are students is tautologous, more students than students
are students contradictory) Nor does this analysis account for the fact that
There is every student is plainly ungrammatical, whereas Every student ez-
ists may be trivially true but not ungrammatical A more explanatory notion
is the following (Keenan’s work presents generalized quantifiers algebraically:
for any two properties p, ¢, a determiner is interpreted as a function F from
properties to sets of properties, i e., DAB is written g € F(p). Intersection is
meet and union is join in a Boolean algebra of properties, We limit ourselves
here to extensional properties and give Keenan’s definition in our notation.
It is an interesting research question whether there are empirical arguments
for or against using either set-theoretic or algebraic methods).

DEFINITION 14.5 A determiner is existential iff either it is a basic existential
determiner (i.e., DAB iff D(AN B)E is true) or it is built up from basic
existential determiners by Boolean combinations, composition of adjectives
or the exception determiner operator but NP. |

This notion accounts for the acceptability of the following sentences:

There are fewer cats than dogs in the yard
There are just as many female as male cats in the yard
There is no cat but Felix (a cat) in the yard

Note also that determiners which do not meet Variation may be used ironi-
cally or with special meaning in such existential contexts, e g. in:

There are fewer than zero solutions to the problem



PROPERTIES OF DETERMINERS AND QUANTIFIERS 389

Look, there is either no or else at least one solution to the problem

Even though tautologies or contradictions may not by very informative from
a logical point of view, a linguistic theory cannot ignore the fact that they
can be used very meaningfully in perfectly acceptable sentences (see Keenan
(1987)).

The relation discussed above between simple decreasing determiners and
their positive simple counterparts can be specified here more precisely: there
is a syntactically simple monotone decreasing determiner D iff there is a
syntactically simple weak non-cardinal monotone increasing determiner D’
(Barwise and Cooper (1981)). From this general correlation between simple
decreasing and increasing determiners we may predict that no language will
have syntactically simple determiners interpreted as not most, not every, not
the or mot two, since most, every and the are strong determiners and two is
a weak cardinal determiner.

Furthermore, only NPs with existential or weak monotone increasing
determiners seem acceptable antecedents of unbound anaphora which escape
c-command domains, and can be unselectively bound by other quantifiers,
as illustrated by the following sentences (see Heim (1982) and Reuland and
ter Meulen (eds ) (1987) for recent research on indefiniteness):

(9) (a) Pedro owns many/several/some donkeys He beats them.
(a') *Pedro owns every donkey He beats it.
(b) If Pedro owns a donkey, he beats it
(b") *If Pedro owns every donkey, he beats it.
(c) Every farmer who owns a donkey, beats it
(c') *Every farmer who owns every donkey, beats it.
Definite determiners constitute a subset of the positive strong determin-
ers, defined as follows:

DeFINITION 14.6 A determiner is definite if in every model M where D(A)
is defined, there is a set B # 0, such that D(A)={X CE|BC X}. |

Note that for a definite determiner D the set D(A) is the principal filter
generated by B (see Chapter 11 for the general notion of a filter in a lattice)
Determiners which are positive strong but not definite are every, more than
half and at least half Plural definite determiners are the only determiners
that can be embedded in partitive constructions, as we can see from (10).
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(10) (a) most of the children
(a") *most of some children
(b) several of the five children
(b") *several of at least five children

Ladusaw (1982) added to this definiteness condition on determiners in
partitives that the embedded plural NP must be interpreted collectively,
since one of both is unacceptable although both is a filter generated by a set
with two elements The two is a collective determiner, but both is distribu-
tive, as can be seen from the fact that both boys lifted the piano means that
the piano was lifted twice, whereas the two boys lifted the piano does not
specify how many times the piano was lifted, as it is true also when the two
boys once lifted the piano together, i.e , collectively. The analysis of plurals
as generalized quantifiers presents intriguing semantic problems, many still
open, which have been explored in Link (1983), (1984) using lattice-theoretic
domains, Hoeksema (1983), and elsewhere. Other restrictions on determin-
ers in partitives can also be described by semantic properties For instance,
in the general syntactic form of partitives

Detl Of DEtz Det3 CN

Det; must be pronominal, ie. a determiner which can be interpreted in
isolation of any CN such as some, several, none, the three but not every,
the, a, no (due to unpublished work of J. Hoeksema; see also Westerstahl
(1985)). Possessive or demonstrative determiners are also pronominal, but
they should already be excluded from Det; positions in partitives, since they
do not occur in extensional and quantitative NPs. For the Dets position
we find that only possessives, plural demonstratives and the are admissible,
which are all definite once we allow context-sensitive filters (see Section 5 for
context-sensitive determiners). Dets can be filled only with weak determin-
ers which impose some measure or cardinality condition on the set A (the
CN-interpretation). These results are typical descriptive semantic facts of
generalized quantifier theory, for which further explanation should be sought
in more procedural terms of verification of NPs in models, information pro-
cessing, or complexity-measures of quantifiers and determiners,

Other recent results in generalized quantifier theory include extensions to
many place determiners (fewer men than women) (Keenan and Faltz (1985),
and Keenan and Moss in van Benthem and ter Meulen (1985)), exclusion
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determiners (every man but John), determiners which rely on some order-
ing (every other number), adjectival and numerical determiners, tempora]
quantiﬁcation, and comparatives for which we refer the reader to the further
reading suggested for this chapter.

14.4 Determiners as relations

In presenting the main concepts of generalized quantifiers in the previous sec-
tion, we switched back and forth between the functional perspective, in which
the VP is interpreted as element of the second-order NP-interpretation, and
the flattened relational perspective, where determiners are interpreted as re-
lations between the sets A and B. In this section we focus on the relational
perspective and study properties of relations as constraints on determiners,
uncovering some important new semantic insights on the class of possible
natural language determiners. (The relational analysis is extensively stud-
ied in Zwarts (1983), whose exposition is followed closely in this section, and
in van Benthem (1986) )

Let D be a binary relation in a model M = (E, []) on the sets 4,B,C C
E; the following list of properties of relations is useful for defining types of
determiners

reflexivity: DgAA

irreflexivity: ~ DgAA

symmetry: DgAB — DgBA
asymmetry: DgAB —~ DgBA
anti-symmetry: DpAB& DgBA— A=B
connectedness: DgABV DgBAV A=2FH

strong connectedness: DgAB vV DgBA
almost connectedness: DgAB — (DgAC vV DgCB)

transitivity: (DEAB& DgBC) — DgAC
euclideanness: (DgAB & DgAC) — DgBC
anti-euclideanmness: (DEAB& DgCB) — DgAC
circularity: (DEAB& DgBC)— DgCA

For example, the determiner every is reflexive, transitive and anti-sym-
met-ric, and its external negation not every is irreflexive, almost connected
and connected. The numerical determiner the nis transitive, anti-symmetric
but not reflexive. Symmetric determiners are some, no, at least n, at most
n, ezactly n But we will see that other properties of relations like asymme-
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t1y, strong connectedness, euclideanness or circularity are not properties of
possible determiners in natural languages.

We assume the four universal conditions on quantifiers Extension, Con-
servativity, Quantity and Variation set forth in Section 2 of this chapter,
There are some useful theorems on equivalences between relational proper-
ties and set-theoretic inclusion of the sets A and B.

THEOREM 14.3 The following pairs of statements are equivalent:

(1) (i) D is reflexive

(i) ACB— DAB
(2) (i) D is irreflexive

(i) DAB — A¢ B
(3) (i) D is antisymmetric

(i) DAB — AC B
(4) (i) D is connected

(i) A B — D AB

Proofs:

(1) (i) — (ii) Assume D is reflexive, and take A C B. Then DAA and
since AN B = A also DA(AN B). By Conservativity then DAB.

(1) (ii) — (i) follows directly from the reflexivity of inclusion.

(2) D is irreflexive iff ~ D is reflexive. By (1) D is irreflexive iff A C B —
~ D AB. Contraposition and double negation gives D AB — A ¢ B.

(8) (i) — (it). Assume D is antisymmetric and take for some domain E,
sets A,B C E such that Dg AB. By Conservativity Dg A(A N B).
Extend E to E', and take A’ C E’' such that |4’} = |4] and 4N
A" = AN B. Then Dg A(AN A’) and by Extension Dg A(AN A').
Conservativity gives Dg: A A'. Now consider a permutation « of F'
which yields identical sets for AN A’ and E' — (A U A’) but permutes
A — A" with A’ — A Quantity gives us Dpw(A4)w(A"), i.e, Dp A" A.
So we have now D A A’ and Dg' A’ A, and antisymmetry of D gives
A=A Since ANA = AN B it follows that AN B = A,s0 A C B.
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(3) (ii) — (i). Assume (ii), let DAB and DBA. Then AC Band B C A,
so A=B.

(4) By definition D is connected iff ~ D is antisymmetric. With (3) D is
connected iff ~ DAB — A C B. So D is connected iff AZ B — DAB.
]

From these relational characterizations we can now prove that some prop-
erties of relations cannot be properties of natural language determiners, given
the four universal conditions we have assumed on quantifiers. Such results
demarcate the class of possible natural language determiners as a proper
subset of the class of logically possible determiners.

THEOREM 14 4 (van Benthem (1984)) There are no asymmetric determiners.
]

Proof: By definition of asymmetry, to show that there are no asymmetric
determiners amounts to showing that there are no irreflexive antisymmetric
determiners Suppose D is irreflexive and antisymmetric, and assume DAB.
From Theorem 14 3, (2) says that A € B but (3) says that 4 C B. Contra-
diction! So D can only be the trivial empty determiner, but that violates
Variety. ]

As a corollary to Theorem 14 4 it follows that there exist no irreflexive
and transitive determiners, since antisymmetry entails transitivity for de-
terminers (see exercises). Since a binary relation which is irreflexive and
transitive is called a strict partial ordering, we find that no determiners are
strict partial orderings,

Similarly we can establish that no determiners induce a weak linear o1-
dering on E (reflexive, transitive, anti-symmet1ic and connected), since there
are no antisymmetric connected determiners

THEOREM 14.5 (Zwarts (1983)) There are no antisymmetric connected de-
terminers. B

Proof. Assume that some D is antisymmetric and connected. From Theorem
14.3, (4) tells us that A € B — DAB and (3) that DAB — A C B. But
then A ¢ B — A C B. Contradiction! ]

In fact the only determiner which is reflexive and antisymmetric is the
inclusion-determiner every (and its plural counterpart all), since it is evi-
dent from Theorem 14.3 (1) and (3) that for reflexive and antisymmetric
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D,D AB «» AC B. Hence every is the only determiner which is reflexive,
transitive and anti-symmetric, i.e. induces a weak partial ordering on E.

We prove two more non-existence results on natural language determiners
here.

THEOREM 14.6 (van Benthem) There are no symmetric and transitive de-
terminers N

Proof Since transitive determiners are positive strong (see exercises), and
Theorem 14.2 showed that positive strong determiners always include the
entire domain £, we have D AE. Symmetry gives D EE, but that means
that the only symmetric and transitive determiner is the trivial universal
one, which violates Variation, n

Since equivalence relations are reflexive, symmetric and transitive we
can conclude from Theorem 14 6 that no natural language determiner will
induce an equivalence relation on E Since euclidean determiners must be
symmetric and transitive (see Zwarts (1983)), we can also conclude that g
fortiori there are no euclidean determiners in natural language

THEOREM 14.7 (van Benthem) There are no circular determiners. N

Proof. We show that circular determiners must be euclidean and hence can-
not exist in natural language because of Theorem 14 6. The reasoning is
similar to the proof of Theorem 14.1 (3) (i) — (ii) Assume D is circular
and take for some domain £ A, B,C C E such that Dg AB and Dg AC.
By Conservativity DgA(A N B). Extend E to E', and take A’ C E’' such
that |A'] = |A]and AN A" = AN B. Then DgA(A N A') and by Extension
Dp A(AN A"). Conservativity gives Dg: A A’ Now consider a permutation
7 of E' which yields identical sets for AN A’ and E' — (AU A’) but permutes
A~ A" with A" = A, Quantity gives us Dgir(A)r(A’),ie Dg A" A So we
have now Dg:A A’ and DgiA' A, and circularity of D gives Dg:A A and by
Extension Dg A A From this together with the assumption that Dg AC and
circularity of D we infer DgCA Given DgAB, the circularity of D gives us
DgBC,ie., D must be euclidean |

More negative but also positive existence results on possible natural lan-
guage determiners based on properties of relations can be found in Zwarts
(1983)
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14.5 Context and quantification

In studying the fundamental properties of NPs interpreted as generalized
quantifiers we initially disregarded any form of context-dependence of the
interpretation. Extension required NPs to be insensitive to domain exten-
sions, and Quantity made us disregard all that is specific in reference and
quantification In this final section we indicate briefly how the theory may
be extended to include the important forms of context-dependence found
in natural language, while seeking to extend the explanatory power of this
semantic analvsis of quantification in terms of more dynamic processes of in-
terpretation and evaluation. (The exposition is partly based on Westerstahl
(1985a) and (1985b) )

How many is many? We already alluded to the fact that the determiner
many violates Extension when interpreted by sets of a cardinality greater
than a least number fixed by the size of the domain E:

manyg AB = manyg A(B N A) where |(B N A)| 2 f(E)

Although Extension is clearly violated in this interpretation, Conserva-
tivity and Quantity are not. Let us call this interpretation many® for the
moment.

Another interpretation of many compares the number of B’s that are
A’s to some constant or normal frequency. For instance, in a class of twenty
students we say that many students got an A, when we compare the number
of A-grades to the average score in other classes over some period of time and
find that five out of twenty is more than that average ratio. Suppose that by
coincidence there are as many right-handed students as A-grade students,
but they are not same individuals In that situation Many students got an
A is true, whereas Many studenis are right-handed is false, ie. DgAB but
~ Dg AC although [AN B| = |AN C|, violating Quantity. If we assume in
addition that the students who got an A are the same individuals as the
right-handed students, ie. DgAB and ~ DgAC although AN B = 4AnNC,
we have a context where even Conservativity is violated

What counts as many may depend on various contextual parameters
Although five A grades in a class of twenty might be considered many, if
five out of twenty people are 1ight-handed this is not considered to be many.
Different contextual parameters are at stake in this example, and we should
ask which properties of determiners are pieserved under addition of which
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parameters. If we compare the cardinality of B N A to some contextually
fixed 1atio of As, we get the following interpretation:

manyy AB = many’ A(AN B) where [(4N B)| < ¢ |A4]

and c is here a contextual parameter which may be 1/4 for the A-students
but 3/4 for right-handed students. This interpretation saves Conservativity,
Extension and Quantity, but introduces an external parameter which must
be given as input to the interpretation. If the dependence on the frequency
of B’s in the domain E should be represented explicitly, the following would
be required:

|B|

manyy AB = many® A(A N B) where (AN B)| > s

|A]

Conservativity fails since F is now relevant to the interpretation, and
hence Extension fails as well.

Finally many may be used to compare to the set of B’s, rather than 4’s,
as in the following examples from Westerstahl (1985a).

(1) Many winners of the Nobel prize in literature are Scandinavians
(2) Many Scandinavians have won the Nobel prize in literature

(3) Many Scandinavians are Nobel prize winners in literature

For (1) to be true a number of external parameters, like the distribution
of nationality among Nobel prize winners in general, will have to be con-
sidered, hence the interpretation many® is appropriate. The sentence (2) is
either equivalent to (1), or it counts among all Scandinavians the number of
them who won the Nobel prize for literature, and that cannot turn out to
be many. Sentence (3) expresses this latter interpretation of (2), which is
obviously false, If (1) and one interpretation of (2) are equivalent, many in
these contexts is symmetric, but, if it still is based on an asymmetry in the
cardinalities of the respective sets, it must be interpreted as comparing to
the set B,ie. :

manyy AB = many* 4(AN B) where |(An B)| > ¢ |B|
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This interpretation satisfies Extension and Quantity, but not Conservativity.
In Barwise and Cooper (1981) manyin any of its interpretations is analyzed
as requiring that [B| # 0.

To gain more insight into the semantics of many, it should be contrasted
to most, which appears to allow only two different interpretations. Most!
compares the number of 4’s that are B’s to the number of A’s that are not
B’s, equivalent (on finite sets) to the complex determiner more than half.

mosty AB = most* A(A N B) where |(AN B)| > |(4A - B)]

This interpretation satisfles Conservativity, Extension and Quantity.

The other interpretation of most is related to the universal quantifier and
gives it a meaning of almost all.

mosty AB = most? A(AN B) where (AN B)| > c- | A

Here c is again some contextually given parameter like in mang?, which
determines in a given context how many counts as almost all. By using
> instead of >, most? A are B is always true when 4 = 0, just as for the
universal determiner, but most! 4 aere B is always false when 4 = (. In
terms of strength mos#? is positive strong, whereas most! is positive strong
only when A # (. Let us call this property almost positive strong.

The following table summarizes our findings on many and most and lists
their monotonicity properties.
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Ezt. Cons. Quant. Symm. Rightiner. Leftincr.

manyt - + + + + +
many®  + + + - + -
many3 — -~ + + ~ -
many*  + ~ + - - +
most'  + + + - + -
most® + + - + -

Figure 14-2: Properties of many and most

The definite determiner the shares the property of being almost positive
strong with most* In fact, all definite positive strong determiners require
that | 4| > 0in order to be interpretable in a model Recall that a determiner
D is definite if it is interpreted as the principal filter generated by a non-
empty B in every model in which D(A) is defined. The requirement that 4 is
not empty is a presupposition of definite determiners on the models in which
their interpretation is defined (see also de Jong and Verkuyl (1985) on the
presuppositions of definite determiners). The set B determines the truth-
conditions or the interpretation of the definite D, but the set A imposes a
necessary pre-condition on a model for its interpretation: prior context must
have introduced elements of the set 4 Indefinite determiners like three or
few which are weak and intersective do not carry such a presupposition on
A, but their interpretation, which is always defined, requires A4 to be of a
certain cardinality. Indefinite determiners serve to change the context so
that A is of the required cardinality. But how do we represent such context-
dependency in the notion of a generalized quantifier? Westerstahl (1985b)
suggests relativizing all determiners to a context set X C F by the following
universal condition.

Restriction. DEAB « Dg(X N A4)B.

Conservativity and Extension are preserved under this Restriction, and
a local form of Quantity where the permutation is restricted to X may even
be maintained as well. Many of the relational properties of determiners
are preserved as well, but anti-symmetry, for instance, is not. Note that
restriction to a context set X does not add another argument to a binary
determiner, but serves to represent which elements of the large domain of
entities £ have been contextually given. Definite determiners are analyzed
as context set indicators requiring |X N A| > 0, and indefinite determiners
extend a given, possibly empty context set with new entities with property
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A The determiners which are neither definite nor indefinite, like the posi-
tively strong more than helf or every, each and ell together with their right
monotone decreasing counterparts are truly quantitative over £ and do not
depend on any context set. Note that this notion of a context set solves a
well-known problem concerning the uniqueness of the referent of a singular
definite description: A may contain other elements besides those in the rele-
vant context set X N A. E g., interpreting the dog is running in the yardin a
context where there are possibly more dogs around only requires X N [dog]
to contain a single dog, but A C F may be of any non-empty cardinality.

In relation to this semantic analysis of definite and indefinite determiners
as context-sensitive generalized quantifiers it is worth noting that quantifiers
with definite determiners, whether plural or singular, have unique witness
sets and quantifiers with indefinite determiners may have different witness
sets.

DEFINITION 14.7 A witness set of a conservative quantifier D(A) is any
W C A such that D AW. B

Since DAB with a definite monotone increasing determiner is interpreted
as principal filter generated by B, the witness set W for D(A4) is always non-
empty and unique. Furthermore this W is a singleton in case the relevant CN
is morphologically marked as singular, and of cardinality 2 or more in case
the relevant C'N is morphologically marked as plural. Indefinite determiners
introduce new elements of the domain into X N A, hence there may be
several disjoint witness sets for a quantifier D(A4) with a weak determiner.
The number marking of the C'N again determines whether the witness set
is a singleton or not, but the determiner itself may in addition impose an
exact cardinality on X N A and hence on any witness set for D(4). In
verifying a quantified sentence in a model we search for such witness sets,
and if one is found, the statement is true in that model. Since quantifiers
with definite determiners have only one witness set, the entire domain £ may
have to be searched in an attempted verification, whereas a quantifier with
an indefinite determiner is verified as soon as one witness is found, and the
domain may contain more such witness sets, From this fact we may predict
that experimental verification of definite monotone increasing NPs requires
in general more search time than indefinite monotone increasing NPs. Along
these lines it may become feasible to give the theory of generalized quantifiers
in natural language empirical foundations in psycholinguistic research.
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Exercises

1.

Explain and illustrate in a Venn diagram with two sets 4 and B in a
domain E what the combined effects of the four universal conditions
on quantifiers are.

Represent the following quantifiers and properties of quantifiers in the
number-theoretic trees by describing the set of pairs which verify the
quantifier by shading the appropriate area in the tree, and/or by de-
scribing the general pattern which the condition imposes on the tree.

(a) no men

(b) not all men

(c¢) neither man

at most two men

at least one man

)
)
(f) exactly one man or exactly three men do not walk (B = walkers)
) Variation
) Right monotone increasing

)

Symmetry

Determine the monotonicity properties of the following determiners:
several, at most three, none, at least n, some (sing.), these, neither,
every, all, each, infinitely many, a finite number of, most, many.

(a) Show with some examples of entailments for some simple left
monotone increasing determiners that they are also:
(1) right monotone increasing
(ii) continuous

(b) Construct an example of a complex English determiner which is
left monotone increasing but not right monotone increasing.

Show in a model with four entities that John’s books is not a quanti-
tative quantifier, whereas every bookis.

Prove set-theoretically that Variation is preserved under external and
internal negation, (i.e. if @ meets Variation, then ~Q and @ ~ do).
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Prove that

(a) if @ is monotone increasing, @~ is monotone increasing
(b) for any @, the dual of @™~ is @ itself

(c) forany @, @~ & ~(@~) & (~Q)~

(d) if @ is self-dual, then @ ~&~Q

. Prove that every definite determiner is positive strong.

. We define an intersective determiner as a determiner D for which in

all models M and all B C F: DAB « D(AN B)B.

(a) Prove the following equivalences for intersective determiners:

DAB « D(AN B)E < DBA

(b) Give natural language examples of these semantic equivalences.
Prove in the relational analysis of determiners that

(a) every antisymmetric determiner is transitive
(b) every connected determiner is almost connected

(c) every transitive determiner is positive strong

(ie. if (DAB&D BC)— D AC) then (D AB — D AA))






Chapter 15

Intensionality

This chapter is of a somewhat different nature than the rest of this book,
since it does not present mathematical tools for linguistic analysis, nor show
successful applications of such tools to linguistic problems. It is concerned
with some of the most difficult issues in philosophical and linguistic semantics
which for a long time have been and still are central to the theory of meaning
and interpretation of natural language. Various analyses of these issues
have been proposed using different mathematical tools, but at least in the
present state of the art there is no single account of these puzzles which is
commonly received and recognized as the right solution. The core of these
issues is outlined here without much formalization only to provide some
initial understanding of what is at stake. In Section 3 a simple method is
presented to analyze intensionality in natural language, and the discussion in
subsequent sections may aid in appreciating the possibilities and limitations
of different mathematical methods for linguistic analysis.

15.1 Frege’s two problems

Two semantic puzzles which preoccupied Frege, the founder of modern logic,
still constitute major foundational problems of contemporary linguistic and
philosophical theories of meaning and interpretation. The first puzzle con-
cerns the information expressed in identity statements with coreferential
NPs. The classical discussion is based on the question why

(15-1) Hesperus is Phosphorus

403
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would have been an informative identity statement to the Babylonian as-
tronomers who did not know it was true, whereas

(15-2) Hesperus is Hesperus

would to them be completely uninformative, even though (15-1) and (15-2)
are both true statements and the NPs, all proper names, corefer to the same
object, the planet Venus. The same puzzle is also often formulated with
complex referential NPs like definite descriptions, as in the informative

(15-3) The Morning Star is the Evening Star
and the uninformative
(15~4) The Morning Star is the Morning Star

If coreferential expressions have the same semantic value, they must be
substitutable for each other in any context without changing its semantic
value. Substitution of semantic equivalents is an important rule of inference
in any logical system. But how can (15-1) and (15-3) then be informative,
whereas (15-2) and (15-4) in which coreferential expressions are substituted
are completely uninformative? If a semantic theory is to account for such
facts it must allow coreferential expressions to have different semantic values.
For this purpose Frege introduced the fundamental distinction between the
reference (Bedeutung) of an expression and its sense (Sinn). Proper names
and other referential NPs may refer to the same object or individual, but
they differ in their sense. Since we use natural language to communicate our
thoughts, the meaning of any linguistic expression must at least in part be
accessible to all its users. This objective part of meaning is what Frege called
the sense of an expression Identity statements are informative when they
contain expressions with different senses, and they are true when their NPs
are coreferential. Conditions of ‘informativeness’ hence cannot be identified
with truth conditions. Perhaps there is more to the semantic value of an
expression beyond its sense and reference, like its psychological associative
power, connotation or ‘color,’ but that part of its meaning will be sub jective
and should be disregarded in semantics, according to Frege, for it cannot be
the source of communicable information.

The sense of an expression determines its reference in different situations,
but even when the reference of an expression in every situation is determined,
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this does not fix its sense uniquely. If we assume, as Frege did, that the
reference of a sentence is its truth value, two sentences that necessarily have
the same truth value in all situations, e.g.

(15-5) Robin won the race

(15-6) Everyome who did not compete or lost in the race has done some-
thing Robin did not do

still differ in their Fregean sense (the example is adapted from Bigelow
(1978)). Similarly two distinct tautologies which are both always true may
contain different information In a proof, for instance, we use the logical
laws and inference rules to construct a sequence of tautologies, yet new in-
formation is inferred from its premises Reasoning in ordinary language is
also based on the manipulation of old information to gain new information.
If the semantics of natural language is to account for coreference, inferemnce
and reasoning, it should contain a mathematically satisfactory analysis of
the Fregean notions of sense and reference.

The second problem Frege presented as a central question to semantics is
related to the first one of informative identity statements. If such statements
or any other two statements with the same truth values are embedded as
sentential complements of certain verbs, the resulting statements may differ
in truth value. For instance,

(15-7) Robin believes that Hesperus is Phosphorus
(15-8) Robin believes that Hesperus is Hesperus

(15-7) may be false, whereas (15-8) must be true even when Robin knows
nothing of Babylonian astronomy, or when he is not even aware of what the
name ‘Hesperus’ refers to. For Frege this meant that sentences embedded
in that-clauses do not refer, as they ordinarily do, to their truth value but
refer indirectly, i.e. they refer to their customary senses. Substitution of
coreferential or equivalent expressions in such that-clauses does not preserve
the truth value of the entire statement. Only if the believer knows that two
NPs are coreferential can they be substituted in his belief reports.

Contexts where substitution of coreferential or equivalent expressions
does not preserve reference are called opaque, as opposed to transparent
contexts where the laws of predicate logic hold without restrictions. To
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appreciate the extent of this semantic problem in natural language consider
the following versions of the same problem in different opaque contexts.

(15-9) The Babylonian astronomers did not observe or compute that Hes-
perus was the same planet as Phosphorus

(15-10) The Babylonian linguists did not realize that ‘Hesperus’ and ‘Phos-
phorus’ are coreferential NPs, but they called Venus both ‘Hespe-
rus’ and ‘Phosphorus’ (based on Soames (1985))

(15-11) Someone found out that the Morning Star and the Evening Star
are the same planet

(15-12) John told me that the Babylonians referred to Venus as Hesperus
or Phosphorus

(15-13) We know which planet the Morning Star or the Evening Star is,
but the Babylonians did not know that

Another source of opacity was described originally in Quine (1956) and
based on belief reports grounded in perception. Ralph sees on one occasion
a man in a brown coat and says (of him) ‘He is a spy.” On another occasion
Ralph sees a man in a grey coat and says (of him) ‘He is not a spy.’ Un-
beknownst to Ralph, what he sees on these two occasions is the same man
dressed in different coats. Ralph will report about the man he has seen with
the two sentences

(15-14) The man in the brown coat is a spy

and

(15-15) The man in the grey coat is not a spy

Since the two NPs corefer, (15-14) and (15-15) are contradictions, But
Ralph is not aware of their coreference, since from the two resource situations
in which he used the NPs to refer to an individual he saw, he did not gain
sufficient information to identify their referent as the same man. Someone
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who is aware of this coreference would explicitly report Ralph’s beliefs as
contradictory by using a proper name (or demonstrative NP) to refer to the
object of Ralph’s beliefs. If the man is called Ortcutt, Ralph’s beliefs would
be described by

(15-16) Ralph believes of Ortcutt that he is and is not a spy.

The semantics of belief reports must on the one hand allow for people
to have contradictory, incompatible or inconsistent beliefs, due to their mis-
information or lack of information, but it must also be able to indicate on
what grounds their beliefs are contradictory or incompatible. It must ex-
plain why Ralph believes (15-14) and (15-15), but does not assent to (15-16)
nor to any other equivalent contradiction about the object of his beliefs,
even though (15-16) is entailed by the conjunction of (15-14) and (15-15).
This requires an account of the sense of expressions and the way their sense
contributes compositionally to the reference of a that-clause in an opaque
sentence-embedding construction.

From a more linguistic point of view we should note that NPs other than
proper names or demonstratives inside opaque contexts cannot in general
be extraposed without changing the interpretation of the entire statement.
Consider the following existential constructions, disregarding tenses for the
moment. If Ralph has reported his beliefs with (15-14) and (15-15), someone
who heard him may express what Ralph said with (15-17) or (15-18), to
which Ralph himself would still assent.

(15-17) Ralph believes that there is a man in a brown coat who is a spy
and that there is a man in a grey coat who is not a spy

(15-18) There is a man in a brown coat of whom Ralph believes that he
is a spy and there is a man in a grey coat of whom Ralph believes
that he is not a spy

Since the definite NPs in Ralph’s belief reports were grounded in his
perception, we may infer with existential generalization to the existence
of the individuals he saw, now using indefinite NPs to report what Ralph
saw. Although (15-18) and (15-19) may seem (near) equivalents, and Ralph
should assent to both, someone who knows that Ralph saw Ortcutt on both
occasions will take (15-18) to be true but (15-19) to be false.
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(15-19) There are two men and Ralph believes of the one that he is a spy
and of the other that he is not a spy

Ralph cannot assent to two other sentences, (15-20) and (15-21), which
each entail (15-17), a sentence to which he did assent.

(15-20) There is a man of whom Ralph believes that he is and is not a spy

(15-21) Of Ortcutt Ralph believes that he is and is not a spy

These sentences all differ in their sense, express different thoughts as
Frege would say, but to provide a full-fledged compositional semantic anal-
ysis of these differences in terms of their information value is an assignment
that still constitutes a major open research problem. It requires a math-
ematically satisfactory account of equivalence of ‘semantic value’ which is
sufficiently fine-grained to explain when a statement expresses new informa-
tion to someone in a particular context, and what that information is,given
the information that is already available to him.

To see why ordinary predicate logic cannot account adequately for opaque
contexts we should realize that they are characterized by

(15-22) (i) failure of substitution of predicate-logical equivalents
(ii) failure of existential generalization

Although the example of Ralph’s beliefs did admit of some forms of
existential generalization, because his own reports were grounded in his (non-
hallucinating) perception, NPs in opaque contexts in general do not admit
such existential generalization as we see in (15-22) and (15-23).

(15-23) (a) John wants to catch a fish and eat it
(b) There is a fish that John wants to catch and eat

(15~24) (a) Every man secks a woman who will always love him
(b) For every man there exists a woman who will always love him
if he seeks her

In a situation where (15-23a) is true there may not be a particular fish
that John wants to catch and eat, and from (15-24a) we cannot legitimately
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infer that for every man there is a woman who will love him if he seeks her
Note that in each example any situation in which the (b) sentence is true
must also verify the (a) sentence, so the (b) sentences entail the (a) sentences
but not vice versa. The (a) sentences are hence semantically ambiguous, i.e.
open to various interpretations, in a way that the (b) sentences are not. If
opaque contexts like the (a) sentences are given an interpretation which is
equivalent to their corresponding (b) sentences, we call this interpretation
its de re interpretation (from Latin, about the ‘res’ (thing or object) itself),
otherwise the interpretation of opaque contexts is called de dicto (literally,
about what was said or about the word). In a compositional semantics these
entailments will have to be reflected as a relation between the interpretation
of the sentences, and the difference in their structure will be important. In
predicate logic quantificational ambiguities are dissolved by differentiating
the scope of quantifiers, but in models for opacity phenomena quantifier
scope may depend not only on other quantifiers but also on the interpretation
of the expressions that create the opacity.

15.2 Forms of opacity

Opacity phenomena are inherent to natural langunage, and in fact contribute
importantly to the efficiency of communication in ordinary language use.
One and the same expression may be used in different linguistic or extra-
linguistic contexts and express different information. A disambiguated for-
mal language is required for the purposes of formalization, abstract represen-
tation and mathematical analysis of the semantics of natural language, as we
learned in practicing translations of English to predicate logic. Interpretation
in mathematical models or translation to a formal language disambiguates
natural language expressions, which is prerequisite for an account of rea-
soning and inference in ordinary language use. Our choice of mathematical
methods should be determined by the kind of phenomena we want to study:
for some quantificational ambiguities predicate logic is suitable, but for opac-
ity phenomena different mathematical methods may provide analytical tools
suited to different kinds of opacity.

In the previous section various kinds of opaque contexts were presented,
and in this section we discuss more systematically but still informally what
kinds of expressions in natural language may give rise to opacity.

The belief contexts in the previous section show that the epistemic verbs
to believe and to know give rise to opacity The examples were all based on
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sentential complements in that-clauses, but it is important to see that some
epistemic verbs also allow other constructions which may be partly opaque
as well. Comnsider the following sentences.

(15-25) Ralph believes a man in a brown coat to be spying
(15-26) Ralph knows Ortcutt but does not believe (that) he is a spy

Sentence (15-25) does not contain a that-clause, but the object NP and
infinitival clause may well be interpreted de dicto, i.e dependent omn, or in
the scope of the belief-verb. Sentence (15-26) shows that an epistemic verb
may take an object NP which is an antecedent for a coreferential pronoun
in a coordinated sentence containing another epistemic verb. Note that
even when Ortcutt is indeed a spy, (15-26) may well be true. At least on
some understanding of what it is to know someone, Ralph may know Ortcutt
although he does not know or even believe everything that is true of him. The
verb to believe behaves differently in this respect, since to believe someone is
to believe that what he says is true. Belief in someone is again different, and
borders on metaphoric use, but it is also opaque in that for instance (15-27)

(15-27) Ralph believes in a spy with a brown coat

means that Ralph believes that there is someone who is a spy and wears
a brown coat, but in reality there maybe nobody who actually has these
properties.

Although to believe and to know are typical epistemic verbs, this class of
verbs that give rise to opacity is much larger and includes the stative to be
aware of, and to be conscious of, besides action denoting verbs as to find out,
to compute, to calculate, to discover, which are actions of gaining information
and hence epistemic. These verbs belong to the same class on criteria that
are semantic in nature; they do not necessarily enter in the same syntactic
constructions. The non-equivalence of sentences (15-28) and (15-29) shows
that coreferential NPs cannot be substituted in a context find out who NP
is.

(15-28) Ralph found out who the man in the grey coat was
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(15-29) Ralph found out who Ortcutt was

Similarly a thai-clause reporting the content of a discovery or of a com-
putation is opaque, as illustrated in (15-30), and the non-equivalent (15-31)
and (15-32).

(15-30) An astronomer discovered that Hesperus and Phosporus are the
same planet

(15-31) An astronomer computed that Hesperus is the planet Venus

(15-32) An astromer computed that Phosporus is the planet Venus

In (15-31) and (15-32) it becomes particularly clear that performing a
certain operation on given objects is sensitive to the description of the ob-
jects, i.e. the way the input is given to the operation.

A class of opacity creating verbs which'is closely related to the epistemic
verbs is the class of perception verbs. However, certain constructions with
perception verbs are transparent as we see from (15-34) and (15-35).

(15-33) Ralph sees that the man in the brown coat is spying

(15~-34) Ralph sees the man in the brown coat spy

(15-35) Ralph sees Ortcutt spy

In (15-33) we cannot substitute the coreferential Oricutt for the definite
NP embedded in the that-clause reporting Ralph’s perception. But in the
naked infinitive constructions in (15-34) and (15-35) coreferential NPs can be
substituted without distorting the content of the report. (see Barwise (1981),
Higginbotham (1983) and Asher and Bonevac (1985) for more discussion)
The class of perception verbs includes visual and auditory perception, but
also verbs like to notice, or perhaps even to caich.
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Epistemic verbs and perception verbs directly concern the information
of a person or a ‘system’ , hence, for obvious reasons, communication verbs
like to tell, to say, to announce, to inform and to indicate give rise to opaque
constructions, not only in that-clauses. Consider the invalid inference in
(15-36)

(15-36) Ortcutt told Ralph about his profession
Ortcutt is a professional spy

.*. Ortcutt told Ralph that he is a spy

Telling someone about or of something or telling him what something
is brings in prime examples of opacity, as (15-36) shows, since for the first
premise to be true Ortcutt may have told Ralph anything ranging from true
stories about his adventurous life in Casablanca to tales about his cover-up
occupation as real estate agent: the relation of someone telling something can
be true without the relation truth-telling being true. The verb to indicate has
interesting semantic properties of its own, but it does require a that-clause for
a de dicto, opaque interpretation of what is indicated as the invalid (15-37)
and the transparent, valid arguments in (15-38) and (15-38') show.

(15-37) The thermometer indicates that the temperature is
ninety degrees Fahrenheit
Ninety degrees Fahrenheit is the average summer
temperature

.". The thermometer indicates that the temperature is
the average summer temperature

(15-38) The thermometer indicates the temperature
The temperature is ninety degrees Fahrenheit

.". The thermometer indicates ninety degrees
Fahrenheit

(15-38") The thermometer indicates ninety degrees Fahrenheit
Ninety degrees Fahrenheit is the average summer
temperature

.". The thermometer indicates the average summer
temperature
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Besides the epistemic, perceptual and communication main verbs that
give rise to opacity, the modal auxiliary verbs may, must, and can create
well known opaque contexts, as well as the modal adverbials possibly and
necessarily and the modal constructions with pleonastic subjects that take
sentential complements it 1s necessary that and 1t is possible that. The logical
aspects of modalities have been studied thoroughly in systems of modal or
intensional logic, that were developed after the extensional systems of predi-
cate logic. (See Hughes and Cresswell (1968) and van Benthem (1985)) The
variety of such intensional systems cannot be discussed here, but in the next
section it is briefly indicated what general characteristics make them useful
tools for the semantic analysis of opacity phenomena in natural language,

In philosophical logic formal systems have also been designed for verbs
of permission or obligation, called ‘deontic’ verbs (from the Greek deon-
‘duty’) like to permit, or to allow, or the auxiliary verbs may and must. One
important feature of such deontic verbs is that the rule of Addition (if p then
pV q) which is valid in the logic of statements cannot be a rule of deontic
logic, since the following argument is clearly intuitively invalid.

(15-39)  John may/is allowed to take a pear

.". John may/is allowed to take an apple or a pear

In such deontic contexts disjunction apparently strengthens the informa-
tion, rather than weakens it as it ordinarily does in transparent contexts
and extensional inferences. Obviously, existential generalization is not valid
either in deontic statements, since there is not necessarily a particular pear
of which it is said that John may take it.

Related to the class of deontic verbs are the main psychological atti-
tude verbs to desire, to seek, to want and to search. We have already seen
some examples of opaque contexts with such verbs. Finally there are the
intentional verbs which describe a mental state of the subject like fo try, to
attempt, to plan, including perhaps fo promise. Note that intentions are not
to be confused with intensions; the former are mental states a subject can
be in, whereas the latter are properties of linguistic or logical expressions to
which we return below. Often the epistemic and perceptual verbs together
with the psychological attitude and intentional verbs are called the verbs of
(psychological) attitudes.

This review of opacity phenomena in natural language is not intended
as a comprehensive list, but it shows that natural language is far richer
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in expressive power than can be captured with the basic tools of ordinary
predicate logic. The next section introduces some new methods to account
for scope ambiguities in opaque contexts and some other opacity phenomena,

15.3 Indices and accessibility relations

In Section 12.5 the important idea of relativizing a predicate-logical truth
definition to possible states of information was introduced in Kripke models
as semantics for Heyting algebras The same idea underlies the elementary
system of intensional logic which is introduced in this chapter Instead of
the absolute notion of truth (or falsity) in a model that was defined for
predicate logical formulas, we define here a notion of the truth value of a
formula relative to an indez. The syntax of the system of intensional logic
will be specified here briefly, but we will not discuss its methods of proof.
The usefulness of indexing truth values for natural language applications
is illustrated with some examples of English expressions translated into a
system of intensional logic, concentrating on the semantic aspects of the
intensional logic.

Relativization of truth values to an index is a generalization of the infor-
mation-states of Kripke models. An index can be understood as an epistemic
state representing the information available to an agent, or as a ‘possible
world’ , i.e., an alternative to the actual world representing a way things
could have been otherwise, or as a mixture of such interpretations, or we can
give it any other interpretation we want to depending on the kind of opacity
to be explained by it. We will understand the notion of an index in the most
general way here, leaving aside any metaphysical or philosophical refiection
on its nature., For simplicity we start out taking indices as unanalyzed
primitives of the model theory and add a set of indices to the predicate
logical models.

If we assume that a sentence expresses a statement at an index, the truth
value of that statement is either true or false at that index. We assume for
simplicity that the reference of an expression is always determined, although
an interpretation could be defined partially, leaving the reference of an ex-
pression undetermined at some indices The Fregean reference of a sentence
is hence defined as its truth value We call the reference of any expression
here its extension. To account for opacity the Fregean sense of a statement
should also be defined As a first approximation of Fregean senses let us
define the intension of an expression as a function or an operation from the
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set of indices to the extensions of the expression. For simplicity we do not
introduce in the syntax of the intensional logic a particular symbol for the
intension of an English expression, as is common in Montague Grammar (see
Dowty, Wall and Peters (1981)) Below it will become clear that this notion
of an intension is not sufficiently fine-grained to account fully for Fregean
senses, as it identifies the intensions of expressions that should have differ-
ent semantic value or senses, since they are not substitutable in all contexts
preserving informative content.

Instead of the partial order on information states that characterizes
Kripke semantics for Heyting algebras, in intensional logic any relation may
be defined on the set of indices. Such relations are called accessibility re-
lations, representing which indices can be reached from a given index in a
model. The accessibility relations characterize the structure of the models,
and it is a sound methodological strategy to impose structure only when
such is required for purposes of natural language semantics, ie depending
on the nature of the opacity creating expressions,

The syntax of this system of intensional logic is a simple extension of
predicate logic adding two operators that take formulas to produce new
formulas. To define the set of formulas of intensional logic by extension of
the recursive set of rules of predicate logic the following clause suffices:

(i) if ¢ is a formula then Op and op are formulas.

Note that this syntactic clause generates for instance (Vz)Dyp, (3z)0(Vy)
o, and the iterated O0(Vz)y and (Vz)Oo .

Although the choice of semantic primitives is in principle open, we choose
for simplicity to stay close to the predicate logical models and assume as
primitives of the model theory a (non-empty) set of indices I, a domain of
individuals or entities D, an accessibility relation R C I xI, an interpretation
function [ ..] and a variable-assignment function g. An infensional model
is then a quintuple MY = (I, D, R,[ . ],9). We define recursively the notion
of the extension of a formula in a model, relative to the assignment g and
an index 7,

Let M? be an intensional model, i € I and g a variable assignment, then
an extension of an expression at an index ¢ in the intensional model is defined
as:

(i) for any constant ¢ [e]M:9* € D
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(i1) for any variable z [z]™M9% = g(z) € D
(iii) if P is an n-ary predicate-letter, then [PJM94 C D™

(iv) if P(i1,12,...,%,) is a formula, then
HP(t1:t23 . >tn)]]M’g’i =1 iﬁ‘ . ‘
([ [Moift,]Mes, | [ )Mo € [PIM:5:4; 0 otherwise

(v) if ¢ and ¢ are formulas, then
I~ oMo = 1 iff [e]M94 = 0; 0 otherwise
To&p]™Moi = 1 iff [p]™M9% = 1 and [¢]™M9 = 1; 0 otherwise
Tovo]Mei=1 iff [e]Mei=1 or [¢JM9% = 1;0 otherwise
T — Y] = 1 iff [p]M9% = 0 or [¢]M97 = 1; 0 otherwise
T o Mo = 1 iff [p]Mod = []M94; 0 otherwise
[(Vz)p]M94 = 1 iff for every d € D[p[M#'#/4¢ = 1; 0 otherwise
[(3z) M9t = 1 iff for some d € D[p]M9'l2/dli = 1; 0 otherwise
[0p)Mg4 = 1 iff for every i such that iR:’ [p]™9% = 1; 0 otherwise
fop]Me4 = 1 iff for some i’ such that iR’ [p]M94 = 1; 0 otherwise

Formulas with the new intensional operators O and ¢ are interpreted as
true by requiring truth of the remaining formula at all accessible indices or
its truth at some accessible index respectively This resembles the universal
quantifier, and the existential quantifier now ranging over indices instead of
ranging over individuals. These intensional operators consider the extension
of an expression in their scope on indices accessible from the index of eval-
uation 7. All the extensional predicate logical formulas are interpreted on
i itself, but the extension of intensional formulas depends on extensions of
subformulas at other indices.

As an illustration of this interpretation in an intensional model let us
evaluate the quantified formula o(3z)(Pz & O Qz) in

M™ = <{i0:i1:i2}:{d0:d1:d2:d3}:

R= {<i0:i0>3 <i13i1>: <i23i2>3 <i2:i1>: <i13i2>}3ﬂ ]]:g>

given that
[PPMss = 0, [QMea = g
[PIM7es = {dy,ds}, [QIM'#% = {dy,ds}
[PIM*oiz = {dy,ds}, [QPM"9%2 = {dy,ds,ds}
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To evaluate a formula we pick an index of evaluation, say i1, and see
whether we can verify the formula,

[o(3z)( Pz & O Qz)]M"941 is true iff at some ¢/ (R’ and (3z)(Pz & 0 Qz)
is true; in MY the indices i; and iy are accessible from iy; let’s pick ¢; and
see whether we can verify the remaining formula.

[(3z)( Pz & O Qz)JM™941 is true iff for some g’ which is like g except for
assigning d to z, [(Pz & 0 Qz)]M 9'le/dli = 1

There are in fact two objects in the extension of P at iy, so there are
two distinct assignments g’ and g” which verify the first conjunct Pz. But
do they also verify the second conjunct? If g'(z) = d» and ¢”’(z) = d3, then
to verify O @z, ¢ ds should be true at each index accessible from 7, or @da
should be true at each index accessible from ;.

Since the indices #; and i, are accessible from ¢, but @d is not true
at 71, we rule out g’ as route to verification, and check g” @ds is true at
each accessible index since ds € [Q]™M 9% and ds € [QIM"9%2. So for the
assignment g”(z) = d; We can verify the entire [(Pz & O Qz)]|M"¢"[=/ds]s

Given this recursive definition of the extension of an expression at an
index in an intensional model, two expressions are called coeziensive at in-
dez 1 iff they have identical extensions at 7. Coreference of two NPs means
that they are coextensive, so the notion depends on the index of evaluation.
For instance, the winner of the race and Robin may be coreferential at some
index, but not at others. We call two expressions eztensionally equivalent in
an intensional model when they have identical extensions at every index of
that model. Two expressions are logically equivalent when they are exten-
sionally equivalent in every possible intensional model. The strongest notion
of equivalence says that two expressions are intensionally equivalent, when
their intensions are identical, i e, when their associated functions from or
operations on the set of indices to the extensions at an index are identical.
This notion of an intension is best understood dynamically as the procedure
of computing the extension of an expression at an index. For instance, the
process of computing the reference of the winner of the race must involve
evaluating the predicates winner and race, but these steps do not play any
role in the process of computing the reference of Robin. Hence when the two
NPs the winner of the race and Robin are coreferential or even extensionally
equivalent they are not intensionally equivalent Since the intensional logic
does not contain an expression for the intension of an expression this pro-
cedural character of intensions is not further analyzed in this model theory.
Yet it is clear from the recursive definition of the extension of an expression
in an intensional model by which procedure its extension is computed.
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Now if we use these different notions of equivalence of expressions the
following criteria of substitutability can be defined.

1. Expressions which are coextensive at { are substitutable in a context
with preservation of its extension only at ¢

2 Expressions which are extensionally equivalent are substitutable in a
context with preservation of its extension at any index in that model.

3. Expressions which are logically equivalent are substitutable in a con-
text with preservation of its extension at any index in any model.

4. Expressions which are intensionally equivalent are substitutable in a
context with preservation of its intension.

The translation of English to the intensional logic will not be carried
out here, but we assume that the opacity creating expressions discussed
in the previous section will always involve other indices besides the index
of evaluation in the determination of the extension of an expression. For
instance, to evaluate John believes that Robin is the winner of the race belief
is analyzed with an accessibility relation on indices, representing the different
epistemic alternatives John entertains and requiring that at least one of these
verifies the embedded statement.

Belief contexts require verification of the embedded expression at some
index which is related to the index of evaluation by the subject’s epistemic
accessibility relation (cf o). Knowledge contexts would require verification
of the embedded expression at all epistemically accessible indices (cf. 0O).
Similarly exploiting the universal and existential quantification over indices
in the analysis of opacity, modal necessities require verification at all acces-
sible indices (cf 0O), modal possibilities only at some (cf. ©).

Some English examples which illustrate the four notions of substitutabil-

ity are the following inferences.
(1) If we evaluate sentential complements of belief contexts at an index
related by an epistemic accessibility relation to the index of evaluation,i.e.,
interpret all predicate letters and NPs at that belief index, the following
inference is valid, since the second premise states that at that index the two
NPs are co-referential.

(15-40) John believes that Robin has red hair
John believes that Robin is the winner of the race
.". John believes that the winner of the race has red hair
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Note that this inferential pattern is omly valid with definite, referen-
tial NPs in the premise stating the co-reference at the belief-index. The
difference between valid (15-41) and invalid (15-42) is based on just the defi-
niteness of the anaphoric reference in (15-41) to the referent of the indefinite
NPs introduced in the first premise.

(15-41)  John believes that a man has red hair
John believes that he is the winner of the race
‘. John believes that the winner of the race has red hair

(15-42) John believes that a man has red hair
John believes that a man is the winner of the race
.’. John believes that the winner of the race has red hair

(2) Proper names, if translated to logical constants as in predicate logic,
have a constant reference according to the first clause in the definition of
extensions in an intensional model Kripke introduced the notion of a rigid
designator for this semantic characteristic of proper names. Names do not
contribute to the information expressed in a statement, but serve merely as
‘pegs’ for properties attributed to the referents. I e., the extension of a proper
name is the same entity of the domain at any index, so evaluating a proper
name at any two indices gives the same extension. This means that a proper
name in an opaque context can be extraposed outside the opacity creating
expression to be evaluated at the index of evaluation without changing the
truth value of the entire sentence.

(15-43) John believes that Robin won the race
.. Of Robin John believes that he won the race

Note that for (15-43) to be valid John himself does not necessarily report
his beliefs with the proper name, but anyone describing John’s beliefs with
the first premise invites the inference Because of this rigid designation of
proper names, existential generalization is also valid when based on proper
names. But for other NPs, including definite descriptions, no such inferences
are valid, since their interpretation may vary at the accessible indices from
the index of evaluation, as the invalidity of (15-44) and (15-45) show

(15-44)  John believes that a man won the race
.. Of a man John believes that he won the race
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(15-45) John believes that a man won the race
.. There is a man of whom John believes that he won
the race

(3) Since predicate logic is contained in the system of intensional logic as
defined above, the tautologies of predicate logic are also valid in intensional
logic, i.e., they are all logically equivalent, always true at any index in any
model. This means that an inference is valid in intensional logic when a
tautology is conjoined in an opaque context to a true prermmise.

(15-46) John believes that Robin won the race
.. John believes that Robin won the race and that he
does or does not have red hair

This is an unsatisfactory aspect of the simple system of intensional logic
we introduced here, since John may simply fail to have any beliefs about
Robin’s hair color if he believes that Robin won the race. On the other
hand no rational person can fail to believe a tautology when he realizes
its necessary truth. If we maintain the ordinary logical notion of proof,
inferences preserve truth, but do not necessarily preserve intension. We
return to this problem below to suggest a solution.

(4) Finally there are intensionally equivalent equivalent expressions, which
are equivalent because their extension at any index is calculated in the same
way. To make this strong notion of equivalence precise a formal account
of the computational procedures used in determining extensions should be
given which specifies criteria of sameness for such procedures. We will not
do so here, but a simple example illustrates the main idea.

We learned in Part B that conjunction can be viewed as a commuta-
tive operation on statements. Hence when determining the extension of a
conjunction the order in which the extension of each conjunct is computed
does not matter In verifying p& ¢ we may start with either p or ¢, know-
ing that the result will not be affected by our choice. Looking at predicate
logical operations in this intensional way the logical equivalence of p& ¢ and
q & p should be attributed to their intensional equivalence. Some laws of
extensional logic may be viewed as determining sameness conditions on op-
erations, especially those that merely permute the order of connectives or
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their arguments (Associative, Distributive and Commutative Laws) On the
other hand laws like the Complement Laws, De Morgan’s Laws or the Con-
ditional Laws are valid because of the particular truth-functional meaning
we assigned to the connectives in this system of classical predicate logic, but
there are extensional systems in which they would not be valid. If we would
incorporate a formal definition of intensions along these procedural lines and
define which logical laws were valid due to the intensional equivalence of their
arguments, the following statements could be considered logically equivalent
on the basis of intensional equivalence of conjunction. Premise and con-
clusion are interchangable in any context because they are ‘informationally
equivalent’ and never give rise to informative identity statements.

(15-47) John believes that Robin won the race and that
Robin has red hair

.". John believes that Robin has red hair and that
Robin won the race

To account for the full variety of opacity phenomena discussed in the
previous section more sophisticated intensional models would be required,
but the examples illustrate how some aspects of these opaque contexts can
be analyzed with these simple intensional models. It should be clear that the
predicate logical laws of existential generalization and substitution of exten-
sionally equivalent expressions do not hold universally in this interpretation
in intensional models.

To conclude this section we discuss briefly some of the limitations of this
formalization of intensional interpretations for natural language.

As we remarked earlier in this system of intensional logic the predicate-
logical tautologies are all logically equivalent, although not necessarily also
intensionally equivalent, and similarly for contradictions This is partly due
to the fact that we assumed that all functions are total, i.e defined for all
arguments. If that assumption were dropped it would become possible to
distinguish functions that are logically equivalent when defined, but which
are not defined for the same arguments. For instance, the truth value of
the predicate-logical tautology Robin did or did not win the race would only
be defined if the name Robin had a reference at the same index, i.e. if the
domain contained someone called Robin. The interpretation of names could
still be constant but partially defined, which is compatible with their being
rigid designators. The interpretation of another tautology Jane did or did
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not win the race could similarly be partially defined,ie true at every index
where Jane is interpreted. But the two tautologies would not necessarily be
logically equivalent, for a model could be given which interpreted the two
names at distinct sets of indices. Partial functions in semantic interpreta-
tions yield already an importantly finer-grained notion of logical equivalence,

The second problem with these simple intensional models concerns the
interpretation of epistemic verbs which give rise to opaque contexts. Any
logical consequence of what is believed by someone must be believed by him
as well. For instance, if John believes that Robin won the race, then he
must also believe that Robin won the race and that two plus two is four,
assuming that names of numbers always refer. This issue is often called the
problem of logical omniscience. What we know or believe is not ordinarily
closed under its logical consequences, for we often discover new implications
of information we have had for a long time Only if totally defined functions
with constant extensions were absolutely forbidden in an interpretation in
intensional models could this problem be adequately, though not insightfully
be solved A more promising way would attempt to analyze the subject
matter of beliefs and require that entailed beliefs must have the same subject
matter. Another improvement would be to acknowledge the fact that on the
one hand people have well understood beliefs which may be represented by a
set of statements closed under some sufficiently fine-grained notion of logical
consequence, but on the other hand they have a chunk of unanalyzed and
only partially understood beliefs to be represented in a coarser way and not
closed under any logical operation. The problem has not yet been solved
in any definitive way for all epistemically opaque constructions which would
still allow for people who have inconsistent beliefs to be rational in not just
believing anything.

The third aspect in which these simple intensional models need improve-
ment is the interpretation of proper names. Even when we let the functions
interpreting proper names be partial, this still would not account for two
natural facts: first, different people may have the same name and only a
name in a sufliciently specific context can be said to refer uniquely, and
second, people may use the same name intending to refer to the same indi-
vidual when in fact they refer to distinct individuals, for instance, because
they were wrongly introduced or forgot their true names. A proper solu-
tion would require major modifications in the intensional models: a formal
representation of contexts and a general method to incorporate parameters
of language use, in particular for cases in which speakers may hook up the
same name to a different person. If functions interpreting expressions could
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be speaker-sensitive, we could explain how three communicative situations
differ essentially although what two speakers say, respectively ‘Robin has red
hair’ and ‘Robin does not have red hair,’” is exactly the same In the first
situation they would contradict each other, in the second they would merely
refer to two different individuals called Robin, and in a third situation one
of them or both could wrongly connect the name to the same individual or
to different individuals,

The final point in which these intensional models are too simple is in
their failure to account for genuine synonymous predicates Although there
are not too many examples in natural language of truly synonymous descrip-
tive predicates, an interpretation would have to discriminate them, although
they are logically equivalent and, if syntactically simple, even intensionally
equivalent. For instance, John may believe that woodchucks are marmots,
whereas he may not believe that groundhogs are marmots, although wood-
chuck and groundhog are synonyms. The only option open to repair this
shortcoming is to assume a set of primitive properties, as extensions of pred-
icates, instead of giving predicates an extensional set-theoretic interpretation
as the set individuals in the domain with the property.

These suggestions to improve upon the intensional models outlined in this
section are all currently subject of new 1esearch. Various formal accounts of
interpretations are being developed motivated by these and other problems
that were encountered with the simple intensional models. The interested
reader is referred to the readings suggested for this chapter.

15.4 Tense and time

Another important linguistic application of relativizing extensions of expres-
sions to indices is the interpretation of verbs, tenses and temporal adverbs.
In this section some elementary aspects of the semantics of temporal refer-
ence are outlined briefly and we discuss what modifications the interpreta-
tion in intensional models requires in order to accommodate some aspects of
temporal reference

The simple past tense inflection on a verb, for instance, creates an opaque
context, requiring the sentence to be interpreted in its present tense form at
an index in the past of the index of evaluation. E.g, Robin had red hair is
interpreted as true at an index ¢ when there is an ¢/ temporally located before
7 at which Robin has red hairis true. This means that for the interpretation
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of tenses the set of indices is ordered by an asymmetric and transitive acces-
sibility relation representing the passage of time. The tenses expressed by
inflection and the temporal auxiliary verbs require interpretation along this
temporal axis. Some classes of temporal adverbs are interpreted along this
line as quantifying in the meta-language over temporally ordered indices.
Always is a universal quantifier, sometimes an existential one and adverbs
of frequency like often, every week or twice a week require more complicated
forms of quantification over indices,

The set of temporal indices may be structured by additional assump-
tions motivated by linguistic considerations. Besides auxiliary verbs and the
inflectional morphology on VPs main verbs themselves describe changes in
the world called events A sentence like Robin won the race describes an
event which took place over a period of time in the past of the index of
evaluation. When we consider the indices to represent periods of time of ar-
bitrary length, rather than smaliest ‘points’ or atomic moments, we may also
want to assume a symimetric temporal overlap relation on the indices and
construct smallest ‘periods’ as maximal sets of pairwise overlapping periods
(see van Benthem (1983}, Kamp (1979) and (1980)).

The temporal adverb now has a special semantic function, since in any
context, transparent or heavily opaque, it refers to one and the same index,
the time of utterance, in an intensional model. Each intensional model
has to contain one designated index representing the current time, i e. the
‘now’-index, from which past and future coordinates are fixed Consider for
instance

(15-48) You will once be grateful for what I tell you now

The future auxiliary verb takes the interpretation from the index of eval-
uation, the designated ‘now’-index ig, to a future index ¢;, at which you are
grateful for what I told you at the original ‘now’ index iy, not for what I tell
you at the new ‘now’-index 47  So when tenses require the interpretation
to consider extensions at other indices, in any context the adverb now takes
the interpretation back to the designated index. A contextual parameter
‘time of utterance’ can be represented in an intensional model as a specially
selected index, and no matter at which index now is evaluated, its exten-
sion will always be that designated index. The difference between the two
sentences
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(15-49) A child was born who would be king

(15-50) A child was born who will be king

can be analyzed by requiring for the interpretation of (15-50) that the ‘now’-
index be located between the past index at which a child is born is true and
the future index at which the child is king is true, whereas the interpretation
of (15-49) does not put any requirements on its location

The ‘now’index is identified in each model with the time at which the
evaluated statement is uttered. But each intensional model represents then
in fact a static picture of the world at that time, and the past and future
coordinates are fixed with respect to that index. If we want to do justice to
the flow of time in an intensional model a series of indices would have to be
designated as consecutive ‘now’-indices. And to interpret a discourse consist-
ing of temporally ordered utterances a chain of such ‘now’-indices would be
required within each model. This cannot be incorporated straightforwardly
into a simple intensional model if what was once true could later become
false in one and the same model, and hence any analysis of valid inference
would be lost. The problem can be solved if we introduce in the formal lan-
guage variables for the indices which can then be referred to and quantified
over at the level of the object language. But a more satisfactory solution
would take the need to represent contextual parameters seriously and define
a context-sensitive notion of meaning and interpretation which does justice
to the dynamics of context change and processing information. This would
require syntactic and semantic adaptations which cannot be specified fur-
ther here, but in current research several frameworks are developed in which
events and periods as their temporal substratum constitute a domain of ob-
jects in the interpretation (see Dowty (1979), Kamp and Rohrer (1983}, Lo
Cascio and Vet (1986), and Linguistics and Philosophy 9.1)

The verbs which describe changing events create opaque contexts for
some of their arguments, A by now classical form of opacity, known as
Montague’s ‘temperature puzzle’ is the following invalid inference:

(15-51) The temperature is ninety
The temperature rises

.*. Ninety rises
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In this usage the verb to rise cannot have ordinary individuals in its
extension, but must be interpreted as a property of intensional objects like
functions or operations that determine extensions at an index. Verbs in the
same semantic class include to change, to decrease, to increase, to grow, to
diminish. In contrast to names of numbers, proper names of individuals
apparently can take such change-denoting predicates notwithstanding their
rigid designation Rather than cop out of the puzzles by treating these verbs
as lexically ambiguous, it would further our understanding of intensionality
and opaque contexts considerably if we analyzed how changes in an indi-
vidual must be distinguished from changes in measurable properties such as
volume, size, weight, warmth or relative location,

Another class of verbs which create interesting opaque contexts is formed
by verbs describing actions of creation or destruction, e.g. to build, to write,
to construct, to cook, and to destroy, to demolish, to devastate, to burn.
The object NPs of these verbs are opaque since the extension of these NPs
gradually comes into existence or ceases to exist during the period at which
the action takes place, and existential generalization cannot be valid in an
unrestricted form The progressive tense is typically used to describe such
actions as they are going on. The interpretation of these verbs must hence
add new objects to the domain of the interpretation, and withdraw objects
or parts of them from it. The simple intensional models were based on one
static domain of individuals which were taken to ‘exist’ at any index in the
model. An analysis of this form of opacity must allow the domain of objects
over which quantifiers range to depend on the index. Verbs of creation shift
the index and add new objects to the domain, and verbs of destruction
shift the index and drop objects from the domain. But if more structure is
imposed on the domains to represent part-whole relations between objects
and a related relation between events, the invalidity of the following inference
can be analyzed

(15-52) John was writing a poem

.". John wrote a poem

and contrasted to the validity of the inference

(15-53) John was writing poetry

.". John wrote poetry.
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These inferential patterns known as the ‘Imperfective Paradoz’ teceive
much attention in recent research on tense and aspect.

In early work on temporal reference by the logician H. Reichenbach (Re-
ichenbach (1947)) used besides the time of utterance, and the index at which
the event took place, a third temporal index, the reference time to repre-
sent the temporal ‘point of view’ of the speaker. The difference between
the simple past tense sentence Robin won the race and the present perfect
tense sentence Robin has won the race is accordingly analyzed by requiring
the interpretation of the simple past tense to shift the reference time as well
as the event time to a past index relative to the time of utterance, whereas
the present perfect tense only shifts the event time, leaving the reference
time at the time of utterance Note, however, that not all simple past tense
sentences shift the reference time but only those which describe ‘bounded’ or
completed events This leads into the semantic analysis of aspect and verb
classes which is an important focus of ongoing research. In frameworks of
dynamic interpretation the notion of reference time has come to be crucial
in accounting for temporal dependencies and temporal anaphora (see Kamp
and Rohrer (1983) and Partee (1984)).

15.5 Indexicality

In the previous section it was pointed out that in any linguistic context the
temporal adverb now refers to a fixed contextual parameter, the time of
utterance. The class of expressions in natural language which serve such a
semantic function, the indezical expressions, is much larger and includes the
personal pronouns I, you, and we, besides the locative expressions here and
there The demonstrative or deictic expressions this, that, these, those, and
the deictic pronoun ke are also often included in this semantic class.

The semantic interpretation of indexicals is essentially dependent on the
extra-linguistic situation of use. An indexical refers in any linguistic context,
ie., on any index, directly to a value of a contextual parameter, e g [refers
to the speaker who utters the sentence, here to the location of utterance and
that to what is being pointed at by the speaker But I cannot be interpreted
synonymously with the speaker since the reference of a definite description
is always dependent on the index. So on the one hand the reference of an
indexical does not depend on its linguistic sentential context, on the other
hand it shifts when the context of use changes. The value of a contextual
parameter, i.e., who is the speaker at an index, where something is said and
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what is being pointed at changes constantly. The context of use determines
the content of an indexical expression. For instance, when I say

(15-54) T am speaking

what I said differs from when you utter (15-54) The component of the
Fregean sense of an expression which deterrnines how the content is deter-
mined by the context of use is called the character of the expression This
is what competent speakers of a language have to know if they are to un-
derstand (15-54) In any context of use The content of an expression may
be identified with what we called intension in the previous section, i.e., the
context-independent procedure which determines its extension at an index.
Now we may explain that any utterance of (15-54) is true, but that by utter-
ing (15-54) I am not expressing a logically necessary truth, but a contingent
statement, whose truth value varies from index to index Non-indexicals
have a constant character and express the same content in every context.

To incorporate this account of the semantics of indexicals and their direct
reference to elements of the context of use, the interpretation by indexing the
extension of an expression in an intensional model is extended by contexts,
ie. a set of contextual parameters representing elements of a context of use
and containing at least parameters for the speaker, the hearer, the utterance
time and the utterance location: context ¢ = (8¢, k¢, te,le). Of course, the
set of contextual parameters can be extended upon need. This is called the
fleshing out strategy: supply contextual parameters when indexical linguistic
expressions refer to them,

In such a double-indezing interpretation the indexical I, for instance, is
interpreted by a function from contexts to the parameter s., the speaker at
that context, and the extension of s, is determined at an index by identifying
it with the extension of the predicate speaking at that index This explains
why

(15~-55) The speaker is the one who is speaking

1s an uninformative identity statement, whereas

(15-56) I am the one who is speaking
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may express new information to others beside oneself

Proper names interpreted as Kripkean rigid designators are expressions
with constant contents They are also independent of contextual parameters
so their character is also constant The identity statement

(15-57) I am Robin

is informative in two different ways: first, when it gives a hearer a new
way of rigidly referring to the speaker when he is not present and second,
when the hearer already has information about someone called Robin, but
is not acquainted with him from his own experience. In the first case, the
information stabilizes the character, in the second case it hooks up a stable
content to the external context of use.

To provide a satisfactory mathematical modelling of these issues lies at
the heart of contemporary research in the semantics of natural language. We
have attempted to show that the tools offered in the first three parts of this
book provide a choice of mathematical methods to tackle such problems in
a linguistic theory of meaning and interpretation.

Exercises

1. If the intensional model M™ defined in Section 15.3 had an irreflex-
ive accessibility relation, is the formula [(3z)(Pz & DQz)]M™9% still
verifiable? If so, define the assignment.

2. Compute in M* defined in Section 153 the truth value of
[(32)(Pz & Qz) — o(Vz) ~ Pz)]M™9

3. If the following formulas are assumed to be valid in a system of inten-
sional logic they characterize a property of the accessibility relation.
Find out which property by drawing relational diagrams of small in-
tensional models, making the formula true at each index and verifying
it.

(i) Dp— ¢
(ii) D¢ — DD
(ili) oOp — ¢
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Chapter 16

Basic Concepts

16.1 Languages, grammars and automata

At one level of description, a natural language is simply a set of strings—
finite sequences of words, morpheme, phonemes, or whatever. Not every
possible sequence is in the language: we distinguish the grammatical strings
from those that are ungrammatical. A grammar, then, is some explicit
device for making this distinction; it is, in other words, a means for selecting
a subset of strings, those that are grammatical, from the set of all possible
strings formed from an initially given alphabet or vocabulary.

In this chapter we will consider two classes of formal devices which can
function as grammars in this very general sense: (1) automata, which are
abstract computing machines, and (2) string rewriting systems, which gen-
erally bear the name “grammar” or “formal grammar”. The latter will be
familiar to linguists inasmuch as grammars in this sense have formed the
basis of much of the work in generative transformational theory.

We begin by considering certain properties of strings and sets of strings.
Given a finite set 4, a string on (or over} A is a finite sequence of occurrences
of elements from A. For example, if A = {a, b, c}, then acbaab is a string on
A. Strings are by definition finite in length. (Infinite sequences of symbols
are also perfectly reasonable objects of study, but they are not suitable as
models for natural language strings.) The set from which strings are formed
is often called the wocabulary or alphabet, and this too is always assumed
to be finite. The length of a string is, or course, the number of occurrences
of symbols in it (i.e., the number of tokens, not the number of types). The
string acbaab thus is of length 6.

433
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Because we are dealing with tokens of an alphabet, there is an impor-
tant difference between the linearly ordered sequences we call strings and a
linearly ordered set If the set 4 = {a,b,c} were linearly ordered, say, as
b — a — ¢, each element of A would occupy a unique place in the ordering.
In a string, e g., achaab, tokens of a, occur in the first, fourth, and fifth
positions

To be formal, one could define a string of length n over the alphabet
A to be a function mapping the first n positive integers into A. For exam-
ple, acbaab would be the function {(1,a),(2,¢),(3,b),(4,a), (5,a),(6,b)}.
There is little to be gained in this case by the reduction to the primitives of
set theory, however, so we will continue to think of strings simply as finite
sequences of symbols. A string may be of length 1, and so we distinguish the
string b of length 1 from the symbol b itself. We also recognize the (unique)
string of length 0, the empty string, which we will denote ¢ (some authors
use A). Two strings are identical if they have the same symbol occurrences
in the same order; thus, acb is distinet from abe, and strings of different
length are always distinct

An important binary operation on strings is concatenation, which
amounts simply to juxtaposition. For example, the strings abca and bac can
be concatenated, in the order mentioned, to give the string abcabac. Some-
times concatenation is denoted with the symbol “7 thus, abca” bac. Con-
catenation is associative since for any strings &, 8,7,(a”8) "y = a” (87 7),
but it is not commutative, since in general " 8 # 8 a. The empty string is
the identity element for concatenation;ie., for any string a, a” e =¢ a=
a.

Given a finite set A, the set of all strings over A, denoted A*, together
with the operation of concatenation constitutes a monoid. Concatenation is
well-defined for any pair of strings in A and the result is a string in A4™; the
operation is associative; and there is an identity element (A, ) fails to be
a group since no element other than e has an inverse: no string concatenated
with a non-empty string z will yield the empty string. Since concatenation
is not commutative, ( 4*,” ) is not an Abelian monoid.

A frequently encountered unary operation on strings is reversal. The
reversal of a string z, denoted z%, is simply the string formed by writing the
symbols of  in the reverse order. Thus (acbab)® = babca. The reversal of
e is just e itself. To be formal, we could define reversal by induction on the
length of a string:
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DEeFINITION 16.1 Given an alphabet A;

(1) Ifz is a string of length 0, then zf = z (i.e, efl =¢)

(2) If 2 is a string of length k + 1, then it is of the form wa, where a € A
and w € A*; then ¥ = (wa)? = aw?.
|

Concatenation and reversal are connected in the following way: For all
strings z and y, (27 y)® = yB 28 For example,

(16~1) (bca"ca)® = (ca)? " (bca)® = ac " ach = acach

Given a string z, a substring of  is any string formed from continguous
occurrences of symbols in # taken in the same order in which they occur
in z. For example, bac is a substring of abacca, but neither bce nor ¢b is
a substring. Formally, y is a substring of z iff there exist strings z and
w such that z = z~ v~ w. In general, z or w (or both) may be empty,
so every string is trivially a substring of itself. (Nom-identical substrings
can be called proper substrings.) The empty string is a substring of every
string; i.e., given z we can choose z in the definition as e and w as  so that

~

r=e€e € .

An initial substring is called a prefiz, and a final substring, a suffiz.
Thus, ab is a (proper) prefix of abacca, and cea is a (proper) suffix of this
string.

We may now define a language (over a vocabulary A) as any subset of
A*. Since A* is a denumerably infinite set, it has cardinality R,; its power
set, i.e., the set of all languages over 4, has cardinality 2%° and is thus non-
denumerably infinite. Since the devices for characterizing languages which
we will consider, viz., formal grammars and automata, form denumerably
infinite classes, it follows that there are infinitely many languages—in fact,
non-denumerably infinitely many-which have no grammar. What this means
in intuitive terms is that there are languages which are such motley collec-
tions of strings that they cannot be completely characterized by any finite
device, The languages which are so characterizable exhibit a certain amount
of order or pattern in their strings which allows these strings to be distin-
guished from others in A* by a grammar or automaton with finite resources.
The study of formal languages is essentially the investigation of a scale of
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complexity in this patterning in strings. For example, we might define a
language over the alphabet {a, b} in the following way:

(16-2) L = {z | z contains equal numbers of a’s and b’s (in any order)}
We might then compare this language with the following:

(16-3) Ly = {z € {a,b}" | ¢ = a™™(n > 0)}, i.e, strings consisting of
some number of a’s followed by the same number of b’s
Ly = {z € {a,b}" | z contains a number of a's which is the square
of the number of b's}

Is Ly or L in some intuitive sense more complex than L? Most would
probably agree that L, is a more complex language than L in that greater
effort would be required to determine that the members of a’s and b’s stood
the “square” relation than to determine merely that they were equal In
other words, a device which could discriminate strings from non-strings of
L, would have to be more powerful or more “intelligent” than a device for
making the comparable discrimination for L.

What of Ly and L? Here our intuitions are much less clear. Some might
think that it would require a less powerful device to recognize strings in L
reliably than torecognize strings in Ly ; others might think it is the other way
around or see no difference. As it happens, the particular scale of complexity
we will investigate (the so-called Chomsky Hierarchy) does regard Ly as more
complex than L but puts L1 and L in the same complexity class. At least this
is so for the overall complexity measure. Finer divisions could be established
which might distinguish Lj from L

One linguistic application of these investigations is to try to locate nat-
ural languages on this complexity scale. This is part of the overall task of
linguistics to characterize as precisely as possible the class of (potential and
actual) natural languages and to distinguish this class from the class of all
language-like systems which could not be natural languages. One must keep
clearly in mind the limitations of this enterprise, however, the principal one
being that languages are regarded here simply as string sets. It is clear that
sentences of any natural language have a great deal more structure than
simply the concatenation of one element with another. Thus, to establish a
complexity scale for string sets and to place natural languages on this scale
may, because of the neglect of other important structural properties, be to
classify natural language along an ultimately irrelevant dimension. Extend-
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ing results from the study of formal languages into linguistic theory must
therefore be done with great caution.

16.2 Grammars

A formal grammar (or simply, grammar) is essentially a deductive system of
axioms and rules of inference (see Chapter 8), which generates the sentences
of a language as its theorems. By the usual definitions, a grammar contains
just one axiom, the string consisting of the initial symbol (usually §), and a
finite number of rules of the form ¥ — w, where ¢ and w are strings, and the
interpretation of a rule is the following: whenever 1 occurs as a substring
of any given string, that occurrence may be replaced by w to yield a new
string. Thus if a grammar contained the rule AB — CDA, we could derive
from the string EBABCC the string EBCDACC.

Grammars use two alphabets: a terminal alphabet and a non-terminal
alphabet, which are assumed to be disjoint. The strings we are interested
in deriving, i.e., the sentences of the language, are strings over the terminal
alphabet, but intermediate strings in derivations (proofs) by the grammar
may contain symbols from both alphabets. We also require in the rules of
the grammar that the string on the left side not consist entirely of terminal
symbols. Here is an example of a grammar meeting these requirements:

(16~4) Vr (the terminal alphabet) = {a,b}
Vi (the non-terminal alphabet) = {S, A4, B}
S (the initial symbol—a member of Vi)

§ — ABS
§ —e

R (the set of rules) = éfl : f;g
A —a
B —b

A common notational convention is to use lower case letters for the terminal
alphabet and upper case letters for the non-terminal alphabet.

A derivation of the string abba by this grammar could proceed as follows:

(16-5) S == ABS == ABABS == ABAB == ABBA = ABbA ==
aBbA =—> abbA =—> abba
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Here we have used the symbol “=” to mean “yields in one rule application ”
Note that abba is not subject to further rewriting inasmuch as it consists
entirely of terminal symbols and no rule licenses rewriting strings of termi-
nals. The sequence (16-5) is said to be a derivation (of abba from S), and
the string abba is said to be generated by the grammar. The language gener
ated by the grammar is the set of all strings generated. Here are the forma]
definitions:

DEFINITION 16.2 Let ¥ = Vr UVy. A (formal grammar G is a quadruple
(Vr,Vn,S,R), where Vr and Vi are finite disjoint sets, S is a distinguished
member of Vi, and R is a finite set of ordered pairs in ¥V X* x ¥*. n

We have written ¢ — w above for clarity instead of (¢, w). The last condition
simply says that a rule rewrites a string containing at least one non-terminal
as some (possibly empty) string.

DEFINITION 16.3 Given a grammar G = (Vr,Vn, S, R), a derivation is a

sequence of strings zi,%s3,...,Zn (N > 1) such that z; = S and for each
z; (2 € i € n), z; is obtained from z;_; by one application of some rule in
R. ]

To be completely formal, we would spell out in detail what it means to apply
a rule of R to a string. The reader may want to do this as an exercise.

DzriNiTiON 164 A grammar G generates a string ¢ € Vz if there is a
derivation z1,...,2, by G such that z,, = z. |

Note that by this definition only strings of terminal symbols are said to be
generated.

DEFINITION 16.5 The language generated by a grammar G, denoted L(G),
is the set of all strings generated by G. n

The language generated by the grammar in the example of (16-4) is {z €
{a,b}" | z contains equal numbers of a’s and b’s }.
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S
NP \VP
Det/\N VANP
| N
Poss Det N
| |
my sister found Art
|
a unicorn

Figure 16-1: A typical constitutent
structure tree

16.3 Trees

When the rules of a grammar are restricted to rewriting only a single non-
terminal symbol, it is possible to contrue grammars as generating constituent
structure trees rather than simply strings. An example of such a tree is shown
in Fig. 16-1.

Such diagrams represent three sorts of information about the syntactic struc-
ture of a sentence:

1. The hierarchical grouping of the parts of the sentence into constituents
2. The grammatical type of each constituent

3. The left-to-right order of the constituents

For example, Fig. 16-1 indicates that the largest constitutent, which is la-
beled by S (for Sentence), is made up of a constituent which is a N(oun)
P(hrase} and one which is a V(erb} P(hrase) and that the noun phrase is
composed of two constitutents: a Det(erminer) and a N(oun), etc. Further,
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in the sentence constituent the noun phrase precedes the verb phrase, the
determiner precedes the noun in the noun phrase constituents, and so on.
The tree diagram itself is said to be composed of nodes, or points, some of
which are connected by lines called branches Each node has associated with
it a label chosen from a specified finite set of grammatical categories (S, NP,
VP, ete.) and formatives (my, sister, etc ). As they are customarily drawn,
a tree diagram has a vertical orientation on the page with the nodes labeled
by the formatives at the bottom Because a branch always connects a higher
node to a lower one, it is an inherently directional connection This direc-
tionality is ordinarily not indicated by an arrow, as in the usual diagrams of
relations, but only by the vertical orientation of the tree taken together with
the convention that a branch extends from a higher node fo a lower node.

16.3.1 Dominance

We say that a node z dominates a node y if there is a connected sequence
of branches in the tree extending from z to y This is the case when all the
branches in the sequence have the same orientation away from z and toward
y. For example, in Fig 16-1 the node labeled VP dominates the node labeled
Art, since the sequence of branches connecting them is uniformly descending
from the higher node VP to the lower node Art. The node labeled VP does
not dominate the node labeled Poss, since the path by which they are joined
first ascends from VP to S and then descends through NP and Det

Given a tree diagram, we represent the fact that z dominates y by the
ordered pair {(z,y). The set of all such ordered pairs for a given tree is said
to constitute the dominance relation for that tree. Dominance is clearly
a transitive relation. If z is connected to y by a sequence of descending
branches and y is similarly connected to z, then z dominates z because they
are also connected by a sequence of descending branches, specifically, by the
sequence passing through y. As a technical convenience, it is usually assumed
that every node dominates itself, i.e., that the dominance relation is reflexive.
Further, if z dominates y, then y can dominate z only if z = y; or in other
words, dominance is antisymmetric. Thus, the relation of dominance is a
weak partial ordering of the nodes of a tree.

If z and y are distinct, z dominates y, and there is no distinct node
between z and y, then z immediately dominates y. In Fig. 16-1, the node
labeled VP immediately dominates the node labeled V but not the node
labeled found. A node is said to be the daughter of the node immediately
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dominating it, and distinct nodes immediately dominated by the same node
are called susters. In Fig. 16-1, the node labeled VP has two daughters, viz.,
the node labeled V and the rightmost node labeled NP. The latter two nodes
are sisters. A node which is minimal in the dominance relation, i.e., which
is not dominated by any other node, is called a root In Fig. 16-1 there
is one root, the node labeled S. Maximal elements are called leaves, and in
Fig 16-1 these are the nodes labeled by the formatives, my, sister, etc. Note
that a tree diagram is ordinarily drawn upside down since the root is at the
top and the leaves are at the bottom.

a d
b ¢ e f g

Figure 16-2: A multiply rooted “tree”

Mathematicians sometimes use the term iree for a configuration with more
than one root, e.g., that shown in Fig. 16-2. For linguists, however, a tree
is invariably singly rooted, the configuration in Fig. 16-2 being considered
a “forest” of trees. We shall adhere to linguistic usage and accordingly we
have the following condition:

The Single Root Condition: In every well-formed constituent structure
tree there is exactly one node that dominates every node.

The root node is, therefore, a least element (and necessarily also a minimal
element) in the dominance relation. We note, incidentally, that the Single
Root Condition is met in the trivial case of a tree that has only one node,
which is simultaneously root and leaf. The condition would not be met by
an “empty” tree with no nodes at all, since it asserts that a node with the
specified property exists in the tree.

16.3.2 Precedence

Twonodes are ordered in the left-to-right direction just in case they are not
ordered by donimance. In Fig. 16-1 the node labeled V precedes (i.e., is to
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the left of) its sister node labeled NP and all the nodes dominated by this
NP node; it neither precedes nor follows the nodes labeled S, VP, V, and
found, ie., the nodes that either dominate or are dominated by the V node.
It is not logically necessary that the relations of dominance and left-to-right
precedence be mutually exclusive, but this accords with the way in which
tree diagrams are usually interpreted.

Given a tree, the set of all ordered pairs (z,y) such that z precedes y
is said to define the precedence relation for that tree. To ensure that the
precedence and dominance relations have no ordered pairs in common, we
add the Exclusivity Condition:

The Exclusivity Condition: In any well-formed constituent structure
tree, for any nodes z and y,  and y stand in the precedence relation P, ie,
either {(z,y) € P or (y,z) € P, if and only if z and y do not stand in the
dominance relation D, ie., neither (z,y) € D nor (y,z) € D.

Like dominance, precedence is a transitive relation, but precedence is irreflex-
ive rather than reflexive. The latter follows from the Exclusivity Condition,
since for every node ,{z,z) € D and therefore (z,2) ¢ P. If ¢ precedes y,
then y cannot precede z, and thus the relation is asymmetric. Precedence,
therefore, defines a strict partial order on the nodes of the tree.

One other condition on the dominance and precedence relations is needed
to exclude certain configurations from the class of well-formed trees. An
essential characteristic of a tree that distinguishes it from a partially ordered
set in generalis that no node can have more than one branch entering it; i.e.,
every node has at most one node immediately dominating it. The structure
shown in Fig. 16-3(a) has a node d with two immediate predecessors, b and
¢, and therefore it is not a tree. Another defining property of trees is that
branches are not allowed to cross. Figure 16-3(b) illustrates the sort of
structure that is forbidden. Both types of ill-formedness can be ruled out by
adding the Nontangling Condition:

The Nontangling Condition: In any well-formed constituent structure
tree, for any nodes z and y, if z precedes y, then all nodes dominated by 2
precede all nodes dominated by y.

The configuration in Fig. 16-3(a) fails to meet this condition because
b precedes c, b dominates d, and ¢ dominates d, and therefore d ought to
precede d. This is impossible, however, since precedence is irreflexive. In
Fig 16-3(b), b precedes c,b dominates d, and ¢ dominates e. Thus, by the
Nontangling Condition, d should precede e, but in fact the reverse is true.
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b)

P

a) a a
b c c
d e d
Figure 16-3: Structures excluded as trees by
the Nontangling Condition

16.3.3 Labeling

To complete the characterization of trees we must consider the labeling of the
nodes. It is apparent from Fig. 16-1 that distinct nodes can have identical
labels attached to them, eg., the two nodes labeled NP. Since each node
has exactly one label, the pairing of nodes and labels can be represented
by a labeling function L, whose domain is the set of nodes in the tree and
whose range is a set (in syntactic trees, a set of grammatical categories and
formatives). The mapping is, in general, an into function. In summary, we
have the following definition:

DEFINITION 16.6 A (constituent structure) tree is a mathematical configu-
ration (N,Q, D, P, L), where

N is a finite set, the set of nodes

@ is a finite set, the set of labels

D is a weak partial order in N x N, the dominance relation
P is a strict partial order in N x N, the precedence relation
L is a function from N into @, the labeling function

and such that the following conditions hold:
(1) (3z € N)(vVy € N){z,y) € D (Single Root Condition)

(2) (Vz,y € N)(({z,y) € PV {y,2) € P) & ({,9) € D& (y,z) ¢ D))
(Exclusivity Condition)
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(3) (Vw,z,y,z € N)(({w,z) € P& {w,y) € D& (z,2) € D) — (y,2) € P)
(Nontangling Condition)
| ]

Given this definition, one can prove theorems of the following sort:

THEOREM 16.1 Given a tree T = (N,Q, D, P, L), every pair of sister nodes
is ordered by P. |

Proof: Take z and y as sisters immediately dominated by some node z.
By the definitions of ‘sister’ and ‘immediate domination,’ z,y, and z must
all be distinct. As an assumption to be proved false, let z dominate y.
Therefore, z must dominate z, since z immediately dominates ¥ But z
also dominates z, and z and z are distinct, so this violates the condition
that dominance is antisymmetric. Therefore,  cannot dominate y. By a
symmetrical argument, we can show that y does not dominate z. Thus,
(z,y) ¢ D and (y,z) € D, and by the Exclusivity Condition it follows that
(z,y) € PV {y,z) € P;ie, z and y are ordered by P [ ]

THEOREM 16.2 Given a tree T = (N,Q, D, P, L), the leaves are totally
ordered by P. N

Proof: Let M be the set of leaves, and let R be the restriction of the rela-
tion P to the set M;ie, R = {{z,y) € M x M | (z,y) € P}. R is a strict
partial order, since if there were any ordered pairs violating the conditions
of irreflexivity, asymmetry, and transitivity in R, then because R C P, these
pairs would also appear in P, and P would not be a strict partial order.
By definition, a leaf dominates no node except itself, and therefore for every
pair of distinct leaves z and y,{(z,y) ¢ D and (y,z) ¢ D. Thus, by the
Exclusivity Condition (z,y) € PV (y,z) € P. Since z and y are leaves,
(z,y) € RV (y,z) € R, by the definition of R, and thus R is connex. There-
fore, R is a strict total order. [ ]

Every statement about the formal properties of a constituent structure
tree can be formulated in terms of the dominance and precedence relations
and the labeling function. For example, one useful predicate on trees is that
of belonging to. A node will be said to belong to the next highest S node
that dominates it. Formally, the definition is as follows:
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DEFINITION 16 7 Given a tree T = (N, @, D, P, L), node z belongs to node
y iff
1) z#y
) {y,z) € D
(.5) € L

)
)~ (FweN)({w,S)el&w#y&kw#z&{y,w) € D&{w,z) € D).
|

(
(2
(3
(4

Parts 2 and 3 of this definition specify that the node to which ¢ belongs
is labeled S and dominates . Part 4 prohibits any S node from standing
between z and y in the dominance relation, and part 1 excludes the case
of an S node belonging to itself. To illustrate, let us consider the tree in
Fig 16-4.

The node Prn belongs to the circled S node since this is the next highest
S node dominating it. Prn does not belong to the highest S (i.e., the root)
of the tree because the circled S node is between the root and Prn in the
dominance relation

With this definition we can easily define some other predicates. Two
nodes are called clause mates iff neither dominates the other and both belong
to the same node. In Fig 16-4 the nodes labeled John and him are clause
mates since neither dominates the other and both belong to the circled S
node, Fred and him are not clause mates since they do not belong to the
same node, and Prn and kim are not clause mates since Prn dominates him.

If we let B{z,y) denote ‘z belongs to y,’ we can state the definition of
clause mates as follows:

DEFINITION 16.8 Given atree T = (N,Q,D, P,L), nodes ¢ and y are clause
mates iff (2,y) § D& (y,2) € D& (3z € N)({z,z) € B& (y,z) € B. [ ]

A node z is said to command a node y iff neither dominates the other and
z belongs to a node z that dominates y (Langacker, 1969). In Fig, 16-4 the
node labeled Fred commands the node labeled him since neither dominates
the other and Fred belongs to the root node S, which alsc dominates him
The node him does not command Fred, however, since the node to which him
belongs—the circled S node—does not dominate Fred. Note, further, that
John commands him and vice versa. Formally, the definition is as follows



446 CHAPTER 16

S
NP VP
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! A% NP
N l
®
Fred thinks NP VP
N A% NP
Pin
l
John  hates him

Figure 16-4: Tree illustrating the definitions
of ‘belonging to’ and ‘command’

DEPINITION 16.9 Given atree T = (N,Q, D, P, L), node ¢ commands node
y iff (z,y) € D& (y,z) ¢ D& (32 € N)({z,2) € B& (z,y) € D). [

Problem: Prove that two nodes are clause mates iff each commands the
other.

16.4 Grammars and trees

As we have said, if a grammar has only rules of the form A — ¢, where
A is a nonterminal symbol, there is a natural way to associate applications
of such rules with the generation of a tree. For example, if the