

Studies in Linguistics and Philosophy

V olum e 30

Managing Editors:

GENNARO CHIERCHIA, Cornell University
PAULINE JACOBSON, Brown University

FRANCIS J . PELLETIER, University of Alber ta

Editorial Board:

JOHAN VAN BENTHEM, University of Amsterdam
GREGORY N. CARLSON, University of Rochester
DAVID DOWTY, Ohio State University, Columbus
GERALD GAZDAR, University of Sussex, Brighton

IRENE HEIM, MIX, Cambridge
EWAN KLEIN, University of Edinburgh

BILL LADUSAW, University of California at Santa Cruz
TERRENCE PARSONS, University of California, Irvine

The titles published in this series are listed at the end of this volume

MATHEMATICAL METHODS
IN LINGUISTICS

by

BARBARA H. PARTEE
Department of Linguistics,

University of Massachusetts, Amherst

ALICE TER MEULEN
Department of Linguistics,

University of Washington, Seattle

and

ROBERT E. WALL
Department of Linguistics,
University of Texas, Austin

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

Library of Congress Cataloging in Publication Data

Partee, Barbara Hall.
Mathematical methods in linguistics.

(Studies in linguistics and philosophy ; v. 30)
1. Mathematical linguistics. I., Meulen, Alice

G. B. ter. II. Wall, Robert Eugene. III,. Title.
I V . Ser ies .
P138.P37 1987 410'.72 87-9893

ISBN 90-277-2244-7

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands

Kluwei Academic Publishers incorporates
the publishing programmes of

D Reidel, Maitinus Nijhoff, Dr W Junk and MTP Press

Sold and distributed in the U S A and Canada
by Kluwer Academic Publishers,

101 Philip Drive, Norwell, MA 02061, U S A

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,

P O. Box 322, 3300 AH Dordrecht, The Netherlands

Printed on acid-free paper

All Rights Reserved
© 1990 by Kluwer Academic Publishers

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner

Printed in the Netherlands

Table of Contents

LIST OF SYMBOLS xiii

PREFACE

PART A: SET THEORY

xvii

CHAPTER 1. BASIC CONCEPTS OF SET THEORY 3
1,1. The concept o f a set 3
1.2. Specification o f sets 4
1.3. Set-theoretic identity and cardinality 8
1.4. Subsets 9
1.5. Power sets 11
1.6. Union and intersection 11
1.7. Difference and complement 14
1.8. Set-theoretic equalities 17

Exercises 23

CHAPTER 2: RELATIONS AND FUNCTIONS 27
2.1. Ordered pairs and Cartesian products 27
2.2. Relations 28
2.3. Functions 30
2.4. Composition 33

Exercises 36

CHAPTER 3: PROPERTIES OF RELATIONS 39
3.1. Reflexivity, symmetry, transitivity, and connectedness 39
3,2. Diagrams o f relations 43
.3.3. Properties o f inverses and complements 44
3.4, Equivalence relations and partitions 45
3.5, Orderings 47

Exercises 51

CHAPTER 4: INFINITIES 55
4,1. Equivalent sets and cardinality 55
4.2. Denumerability of sets 58
4.3. Nondenumerable sets 62
4.4 Infinite vs. unbounded 69

Exercises 71

vi Table of contents

APPENDIX A: SET-THEORETIC RECONSTRUCTION OF NUMBER SYSTEMS 75
A .I. The natural numbers 75
A.2, Extension to the set of all integers 78
A 3 . Extension to the set o f all rational numbers 80
A.4, Extension to the set of all real numbers 82

REVIEW EXERCISES 85

PART B: LOGIC AND FORMAL SYSTEMS

CHAPTER 5: BASIC CONCEPTS OF LOGIC AND FORMAL SYSTEMS 87
5.1. Formal systems and models 89
5.2. Natural languages and formal languages 93
5.3. Syntax and semantics 94
5.4. About statement logic and predicate logic 95

CHAPTER 6: STATEMENT LOGIC 99
6.1. Syntax 99
6.2. Semantics: Truth values and truth tables 101

6.2.1. Negation 101
6.2.2. Conjunction 102
6.2.3. Disjunction 103
6.2.4 The Conditional 104
6.2.5 The Biconditional 105

6.3. Tautologies, contradictions and contingencies 107
6.4. Logical equivalence, logical consequence and laws 110
6.5. Natural deduction 115

6.5.1. Conditional Proof 120
6.5.2. Indirect Proof 122

6.6. Beth Tableaux 123
Exercises 130

CHAPTER 7: PREDICATE LOGIC 137
7.1. Syntax 137
7.2. Semantics 142
7.3. Quantifier laws and prenex normal form 148
7.4. Natural deduction 154
7.5. Beth Tableaux 165
7.6. Formal and informal proofs 170
7.7. Informal style in mathematical proofs 172

Exercises 175

CHAPTER 8: FORMAL SYSTEMS, AXIOMATIZATION, AND MODEL THEORY 181
8,1. The syntactic side o f formal systems 181

8,1.1. Recursive definitions 181

Ta b le of contents vii

8.2. Axiomatic systems and derivations 185
8,2.1. Extended axiomatic systems 188

8.3. Semi-Thue systems 191
8,4. Peano’s axioms and proof by induction 194
8.5. The semantic side o f formal systems: model theory 200

8.5.1. Theories and models 200
8.5.2. Consistency, completeness, and independence 202
8,5.3. Isomorphism 203
8.5.4. An elementary formal system 205
8,5.5. Axioms for ordering relations 207
8,5.6. Axioms for string concatenation 213
8,5.7. Models for Peano’ s axioms 215
8,5.8. Axiomatization o f set theory 217

8.6. Axiomatizing logic 219
8.6.1, An axiomatization o f statement logic 219
8,6.2. Consistency and independence proofs 222
8.6.3, An axiomatization of predicate logic 225
8.6,4. About completeness proofs 227
8,6.5. Decidability 229
8.6.6. Godel’s incompleteness theorems 230
8.6.7. Higher-order logic 231
Exercises 234

APPENDIX B-I: ALTERNATIVE NOTATIONS AND CONNECTIVES 239

APPENDIX B-II: KLEENE’S THREE-VALUED LOGIC 241

REVIEW EXERCISES 245

PART C: ALGEBRA

CHAPTER 9: BASIC CONCEPTS OF ALGEBRA 249
9.1. Definition of algebra 249
9.2. Properties o f operations 250
9.3. Special elements 251
9.4. Maps and morphisms 253

Exercises 255

CHAPTER 10: OPERATIONAL STRUCTURES 257
10.1. Groups 257
10.2. Subgroups, semigroups and monoids 263
10.3. Integral domains 266
10.4. Morphisms 271

Exercises 273

viii T able of contents

CHAPTER 11: LATTICES 277
11.1. Posets, duality and diagrams 277
11.2. Lattices, semilattices and sublattices 280
11.3. Morphisms in lattices 285
11.4. Filter s and ideals 287
11.5. Complemented, distributive and modular lattices 290

Exercises 295

CHAPTER 12: BOOLEAN AND HEYTING ALGEBRAS 297
12.1. Boolean algebras 297
12.2. Models o f BA 300
12.3. Representation by sets 301
12.4. Heyting algebra 303
12.5. Kripke semantics 306

Exercises 309

REVIEW EXERCISES 311

PART D: ENGLISH AS A FORMAL LANGUAGE

CHAPTER 13: BASIC CONCEPTS 31'
13.1. Compositionality 31"

13.1.1. A compositional account of statement logic 31<
13.1.2.. A compositional account o f predicate logic 32:
13.1.3, Natural language and compositionality 33'.

13.2. Lambada-abstraction 33:
13.2.1. Type theory 33
13.2.2. The syntax and semantics of X,-abstraction 34
13.2.3. A sample fragment 34
13.2.4. The lambda-calculus 34
13.2.5. Linguistic applications 35
Exercises 3£

CHAPTER 14: GENERALIZED QUANTIFIERS 3 '
14.1. Determiners and quantifiers 3'
14.2 Conditions and quantifiers 3'
14.3. Properties o f determiners and quantifiers 3!
14.4. Determiners as relations 31
14.5. Context and quantification 3

Exercises 4

CHAPTER 15: INTENSIONALITY 4
15.1. Frege’ s two problems A
15.2. Forms of opacity A

15.3. Indices and accessibility relations 414
15.4. Tense and time 423
15.5. Indexicality 427

Exercises 429

PART E: LANGUAGES, GRAMMARS, AND AUTOMATA

CHAPTER 16: BASIC CONCEPTS 433
16.1. Languages, grammars and automata 433
16.2. Grammars 437
16.3. Trees 439

16.3.1. Dominance 440
16.3.2. Precedence 441
16.3.3. Labeling 443

16.4. Grammars and trees 446
16.5. The Chomsky Hierarchy 451
16.6. Languages and automata 453

CHAPTER 17: FINITE AUTOMATA, REGULAR LANGUAGES AND TYPE 3 GRAMMARS 455
17.1, Finite automata 455

17.1.1. State diagrams o f finite automata 457
17.1.2. Formal definition of deterministic finite automata 458
17.1.3. Non-deterministic finite automata 460
17.1.4. Formal definition of non-deterministic finite automata 462
17.1.5. Equivalence o f deterministic and non-deterministic finite

automata 462
17.2, Regular languages 464

17.2.1. Pumping Theorem for fal’ s 471
17.3, Type 3 grammars and finite automaton languages 473

17.3.1. Properties of regular languages 477
17.3.2. Inadequacy o f right-linear grammars for natural languages 480
Exercises 482

CHAPTER 18: PUSHDOWN AUTOMATA, CONTEXT FREE GRAMMARS AND
LANGUAGES 487

18.1. Pushdown automata 487
18.2. Context free grammars and languages 492
18.3. Pumping Theorem for cfl’ s 494
18.4. Closure properties o f context free languages 497
18.5. Decidability questions for context free languages 499
18.6. Are natural languages context free? 503

Exercises 505

CHAPTER 19: TURING MACHINES, RECURSIVELY ENUMERABLE LANGUAGES AND
TYPE 0 GRAMMARS 507

19.1. Turing machines 507
19,1.1. Formal definitions 510

X Table of contents

19.2. Equivalent formulations o f Turing machines 514
19.3. Unrestricted grammars and Turing machines 515
19.4. Church’ s Hypothesis 517
19.5. Recursive versus recursively enumerable sets 519
19.6. The universal Turing machine 520
19.7. The Halting Problem for Turing machines 522

Exercises 525

CHAPTER 20: LINEAR BOUNDED AUTOMATA, CONTEXT SENSITIVE LANGUAGES AND
TYPE 1 GRAMMARS 529

20.1. Linear bounded automata 529
20.1.1. Lba’ s and context sensitive grammars 530

20.2. Context sensitive languages and recursive sets 531
20.3. Closure and decision properties 533

Exercises 534

CHAPTER 21: LANGUAGES BETWEEN CONTEXT FREE AND CONTEXT SENSITIVE 535
21.1, Indexed grammars 536
21.2, Tree adjoining grammars 542
21.3. Head grammars 548
21.4. Categorial grammars 550

CHAPTER 22: TRANSFORMATIONAL GRAMMARS 555

APPENDIX E-l: THE CHOMSKY HIERARCHY 561

APPENDIX E-II: SEMANTIC AUTOMATA 565

REVIEW EXERCISES 573

SOLUTIONS TO SELECTED EXERCISES 575
Part A Chapter 1 575

Chapter 2 577
Chapter 3 578
Chapter 4 579

Review Problems, Part A 581
PaitB. Chapter 6 584

Chapter 7 589
Chapter 8 596

Review Problems, Part B 599
Part C Chapter 9 603

Chapter 10 604
Chapter 11 609
Chapter 12 610

Review Exercises, Part C 612

T a b l e o f c o n t e n t s xi

PaitD. Chapter 13 616
Chapter 14 618
Chapter 15 621

Part E. Chapter 17 622
Chapter 18 628
Chapter 19 631
Chapter 20 632

Appendix E-II 633
Review Problems, Part E 634

BIBLIOGRAPHY 637

INDEX 643

List of Symbols

Symbol Meaning Page

be A b is a member of set A 4
be A b is not a member of set A 4
[a,b] (unordered) set with members a and b 5
(XI...) set of all X such that... 6
A = B sets A and B are equal (identical) 9
IAI cardinality of set A 9
m cardinality of set A 9
*0 aleph-zero (cardinality of set of natural numbers) 9
0 empty set 9
A q B A is a subset of B 9
A cB A is a proper subset of B 10
AgB A is not a subset of B 10
pA power set of A 11
2A power set of A 11
AuB union of sets A and B 11
uA union of all sets in A 12
AnB intersection of sets A and B 12
r\A intersection of all sets in A 14
A-B difference of sets A and B 14
A’ complement of set A 16
V universe of discourse 16
x+y arithmetic addition 20
x*y arithmetic multiplication 20
A+B symmetric difference of sets A and B 25
<a,b> ordered pair 27
AxB Cartesian product of sets A and B 28
R-1 inverse of relation R 29
F-.A-^B F is a function from A to B 31
F(a) value of F at argument a 31
G °F composition of functions F and G 33
i d A identity function in set A 34
x > y x is greater than y 43
x>y x is not greater than y 43
M] equivalence class containing x 45
A~B sets A and B are equivalent 55
N set of natural numbers 57
A* set of all strings on A 58
Z set of integers 59
2 K0 cardinality of pN 63
[0,1] set of real numbers between 0 and 1 64
a© p cardinal addition 73
a® P cardinal multiplication 73
* y arithmetic multiplication 78

xiii

82
99
99
99
99
99
101
101
111
111
115
138
138
143
213
239
239
239
240
240
241
249
251
251
252
252
253
253
278
278
278
278
281
281
288
288
290
290
293
304
306
307
326
338
340
344
346
374
378

L ist of sym bols

absolute value of x
negation of proposition p
conjunction of propositions p and q
disjunction
conditional
biconditional
true (truth value)
false (truth value)
P is logically equivalent to Q
P logically implies Q
therefore
universal quantifier
existential quantifier
semantic value of a
concatenation of strings a and (j
negation of proposition p
conjunction of propositions p and q
conditional
neither p nor q
Sheffer stroke
undefined (truth value)
general algebraic operation
left identity element
right identity element
(two-sided) identity element
inverse of a
left zero
right zero
generalized ordering relation
a and b are incomparable
least upper bound (supremum) of B
greatest lower bound (infimum) of B
meet of a and b
join of a and b
least ideal generated by X
least filter generated by X
bottom or zero of a lattice
top or unit of a lattice
lattice complement of a
pseudo-complement of a relative to b
collection of filters on Rripke-frame P
s is true at information state p in model M
denotation of a relative to model M and assignment g
lambda operator
set of denotations of type a
set of meaningful expressions of type a
set of all functions from Da to Db
determiner in the set of entities E
permutation of a set

XV

.383
383
383
384
398
415
415
415
415
434
434
4.36
4.37
438
449
458
458
459
460
462
464
464
488
497
507
508
508
521
521
521
533
535
5.36
548
550
556

L ist of sym bols

quantifier on domain E
external negation of quantifier Q
internal negation of quantifier Q
dual of quantifier QE
restriction of D to context set X in £
necessity operator
possibility operator
set of indices
intensional model with respect to I
empty string
reversal of string x
n repetitions of symbol (or string) a
rewrite string y as string to
y yields to in one rule application
rewrite A as y in context a__P
alphabet (for automaton)
transition function (for automaton)
produces in one move
produces in zero or more moves
transition relation (for automaton)
concatenation of languages A and B
closure (Kleene star) of language A
stack alphabet of a pushdown automaton
yields in zero or more rule applications
blank (for Turing machines)
move left (for Turing machines)
move right (for Turing machines)
encoding of Turing machine M
encoding of string x
the universal Turing machine
positive closure of language L
n factorial
nonterminal A with index sequence [i,j,k]
“split string” (in head grammar)
complex category (in categorial grammar)
boundary symbol (in transformational grammar)

Preface

This book grew out o f two previous introductory texts: Fundamentals
o f Mathematics for Linguists by Barbara Hall Partee and Introduction to
Mathematical Linguistics by Robert Wall, both o f which had gone out of
print in the U S by the mid 1980’s. Faced with the daunting prospect of
revising and updating each o f these books for re-publication, the authors
decided to pool their resources and soon after Alice ter Meulen joined them
in the project o f producing this book, Mathematical Methods in Linguistics.

Like its predecessors, this book is designed primarily for students in lin
guistics, but it can o f course be used by anyone wanting an introduction to
the kind o f discrete mathematics which finds application in many areas of
contemporary linguistic theory. We have tried to make this a gentle intro
duction in that nearly all the basic material on set theory and logic (Parts
A and B) presuppose no mathematical skills beyond the high school level.
Indeed, since the mathematics covered here deals with discrete entities-for
example, strings o f letters from some alphabet-rather than with continu
ous structures such as lines and areas, the reader will find that it bears a
stronger resemblance to high school algebra than to calculus or analytic ge
ometry. One aim, then, is to provide a kind o f basic literacy course in set
theory and formal logic, which are essential to understanding formalizations
in a broad and ever-increasing range o f work in linguistics (and in many
other fields as well).

The largest portion o f this book , however, shows how more complex and
interesting structures can be built out o f the set-theoretic and logical bases,
and, within the limits of space available in these already dense pages, we have
tried to indicate how these structures can prove useful in certain linguistic
domains. Part C, for example, leads from the notions o f order and operation
to algebraic structures such as groups, semigroups, and monoids, and on
to lattices and Boolean and Heyting algebras, which have played a central
role in much recent work in the semantics o f events, mass terms, collective
vs. distributive actions, etc. In Part D, the model-theoretic semantics o f

xvii

xviii Preface

predicate logic is extended and applied to a limited, but interesting, fragment
o f English, and this leads into a discussion o f work on generalized quantifiers
and the problems posed by intensional constructions, Part E deals with an
area which has traditionally been labelled “mathematical lingusitics,” i e,,
formal languages and automata theory This section includes proofs o f the
non-regularity o f English and o f the non-context freeness o f Swiss German as
well as material on formal languages -e .g ,, indexed languages, tree adjoining
languages, and categorial languages- lying between the context free and
context sensitive classes. There is also a brief discussion o f the mathematical
properties o f “ standard theory” transformational grammars.

As is perhaps evident from these cursory descriptions, Parts C, D , and E
each form nearly independent sequels to the introductory material in Parts
A and B There is far more material here than can be covered in a one
semester course (or perhaps even a one year course), so an instructor will
necessarily have to make a selection according to the background and inter
ests o f the class. For those approaching the subject matter for the first time,
it might be wise not to try to read the first eight chapters in sequence but
to take the elementary sections on set theory and logic in parallel, leaving
the more advanced material on axiomatic systems, Chapter 8, for later. The
exercises at the end o f most chapters and sections (with answers to many o f
them supplied at the back o f the book) will help both students enrolled in
a class and those working on their own to check their understanding o f the
concepts introduced Some relevant but not, strictly speaking, essential m a
terial has been relegated to appendices, and there are, o f course, references
and suggestions for further reading to be found with each section.

A word should be said about what is not included. W e have not tried to
cover probability and statistics (used in glottochronology, frequency counts
o f words and constructions in texts, and in fact relevant to the: analysis
o f any sort o f experimental data), the mathematics o f wave theory (used
in acoustic phonetics), and the mathematics o f com putation beyond basic
automata theory (used in computational linguistics in the study o f parsing
and machine translation, for example). There is virtually no limit to the
mathematical tools which might eventually prove useful in solving linguistic
problems, and so a book such as this one can never hope to be completely
comprehensive.

Beyond the specific aims just outlined, we have an even broader purpose
in m ind in puttting this textbook together. To quote from the Preface o f
Fundamentals o f Mathematics for Linguists:

Preface xix

A further and even more general aim o f the book is to make math
ematical concepts and mathematical reasoning more accessible,
less formidable, and hopefully even pleasurable, to those students
who have stayed away from mathematics out o f a perceived inse
curity or distaste for the subject Many o f the best textbooks on
subjects treated here presuppose a considerable degree o f math
ematical sophistication, not because the subject matter requires
it, but just because in most curricula such topics as formal sys
tems and automata theory are not standard first-year fare and
are more likely to be taken up by students who have studied a
considerable amount o f other logic or mathematics first. And it
is certainly true that this book by itself does not provide [all] the
tools to become a creative researcher in mathematical linguistics
or in any o f the branches o f mathematics here covered; but [we]
believe it does provide a solid grounding to enable the student to
understand much o f the basis o f the formalization encountered
in linguistics and other social and behavioral sciences, and to go
on to study further mathematics and logic with confidence.

Many people contributed to the preparation o f this book. We would
especially like to thank Fred Landman, David Dowty, Pauline Jacobson,
John Etchemendy, Tom Hukari, Arnold Zwicky, Craige Roberts, and Peter
Lasersohn for reading earlier versions o f the manuscript and field-testing
parts o f it in the classroom. Their suggestions and criticisms have led to
many improvements, for which we are very grateful, Kathy Adam czyk, Louis
Conover, John Brolio, Avery Andrews, and Krzysiek Rozwadowski worked
uncountably many horns putting the text into computer-readable form and
I^TgXing it into camera-ready copy, Their patience and dedication knows no
bounds, and they are to be thanked for the fact that the price o f the book is a
finite and relatively reasonable amount. A special debt o f gratitude is owed
to Lauri Karttunen, Annie Zaenen, Mark Aronszajn, and Steven Weisler
for their support, encouragement, and generous hospitality. W e would also
like to express our sincere appreciation to Martin Scrivener o f Kluwer A ca
demic Publishers for his continued patience, understanding, and unfailing
support during the long process o f getting this book into print And we
gratefully acknowledge the help o f the System Development Foundation for
Grant No. 650 to Barbara Partee during part o f the time the manuscript
was being prepared, and a research grant from the University o f Groningen
during 1985-86 to Alice ter Meulen.

XX Preface

For any mistakes, omissions, or other deficiencies remaining, the authors
have agreed to blame each other,

Part A

SET THEORY

Chapter 1

Basic Concepts of Set
Theory

1.1 The concept of a set

A set is an abstract collection o f distinct objects which are called the mem
bers or elements o f that set, Objects o f quite different nature can be members
o f a set, e.g. the set o f red objects may contain cars, blood-cells, or painted
representations. Members o f a set may be concrete, like cars, blood-cells or
physical sounds, or they may be abstractions o f some sort, like the number
two, or the English phoneme / p / , or a sentence o f Chinese, In fact, we
may arbitrarily collect objects into a set even though they share no property
other than being a member o f that set The subject matter o f set theory and
hence o f Part A o f this book is what can be said about such sets disregarding
the actual nature of their members

Sets may be large, e g, the set o f human beings, or small, e g the set
o f authors o f this book. Sets are either finite, e.g, the readers o f this book
or the set o f natural numbers between 2 and 98407, or they are infinite, e g.
the set o f sentences o f a natural language or the set o f natural numbers:
zero, one, two, three, Since members o f sets may be abstract objects,
a set may in particular have another set as a member, A set can thus
simultaneously be a mem ber o f another set and have other sets as members.
This characteristic makes set theory a very powerful tool for mathematical
and linguistic analysis.

A set may be a legitimate object even when our knowledge o f its member
ship is uncertain or incomplete. The set o f Rom an Emperors is well-defined

3

4 C h a p t e r 1

even though its membership is not widely known, and similarly the set o f all
former first-grade teachers is perfectly determined, although it may be haid
to find out who belongs to it. For a set to be well-defined it must be clear in
principle what makes an object qualify as a member o f it. For our present
purposes we may simply assume that, for instance, the set o f red objects is
well-defined, and disregard uncertainties about the exact boundary between
red and orange or other sources o f vagueness.

A set with only one member is called a singleton, e.g. the set consisting
o f you only, and there is one special set, the empty set or the null set, which
has no members at all. The empty set may seem rather startling in the
beginning, but it is the only possible representation o f such things as the set
o f square circles or the set of all things not identical to them selves, Moreover,
it is a mathematical convenience. If sets were restricted to having at least
one member, many otherwise general statements about sets would have to
contain a special condition for the empty set. As a matter o f principle,
mathematics strives for generality even when limiting or trivial cases must
be included

W e adopt the following set-theoretic notation: we write A, B , C , . ..
for sets, and a ,b ,c ,. . . or sometimes x ,y , z , .. . for members o f sets. The
membership relation is written with a special symbol £, so that b £ A is
read as ‘ b is a member o f A ’ . It is convenient also to have a notation for
the denial o f the membership relation, written as so that b (jz A is read as
‘ b is not a member' o f A ’ . Since sets may be members o f other sets we will
sometimes write A £ B , when the set A is a mem ber o f set B , disregarding
the convention that members are written with lower case letters.

1.2 Specification of sets

There are three distinct ways to specify a set: (1) by listing all its members,
(2) by stating a property which an object must have to qualify as a member
o f it, and (3) by defining a set o f rules which generate its members. We
discuss each m ethod separately.

L ist n o ta tio n : W hen a set is finite, its members can in principle be
listed one by one until we have mentioned them all. To specify a set in
list notation, the names o f the members, written in a line and separated by
commas, are enclosed in braces For example, the set whose members are
the world’ s longest river, the first president o f the United States and the
number three could be written as

S p e c i f i c a t i o n o p s e t s 5

(1 -1) {T h e Am azon River, George Washington, 3}

Several things must be noted here. First, in specifying a set, we use a name
or some definite description o f each of its members, but the set consists
o f the objects named, not o f the names themselves. In our example, the
first president o f the United States, whose name happens to be ‘ George
W ashington’ , is a mem ber o f the set. But it is the man who belongs to the
set, not his name Exactly the same set could have been described in the
following way

(1 -2) {T h e Amazon River, the first president o f the United States, 3}

by using an alternative description for this individual. O f course, a set may
also contain linguistic objects like names. To avoid confusion, names which
are members o f sets in their own right are put in single quotes. The set

(1 -3) {T h e Amazon River, ‘ George W ashington’ , 3}

should hence be distinguished from the set in (1- 1), as it contains a river,
a name and a number, but not the man who was the first president o f the
United States, It is important to realize that one and the same set may
be described by several different lists, which prima facie have nothing in
comm on except that they denote the same individuals.

Second, insofar as sets are concerned, it is an accidental feature o f our left
to right writing convention that the members are listed in a particular order.
Contrary to what this notation m ay suggest, there is no first, second or third
mem ber in the set (1-1) A less misleading notation, which we sometimes
use, is shown in (1-4) below; it avoids the suggestion o f any ordering o f its
members (see the Venn diagrams in Sec. 6 below).

(! - 4) George Washington

3

The Am azon River

The list notation is obviously more convenient to write and typeset, and is
therefore usually preferred.

6 C h a p t e r 1

Another point about the list notation for sets is that writing the name o f
a member more than once does not change its membership status. Should
we write

(1 -5) { a , b , c , d , e , e , e , e }

we would have described exactly the same set as by writing

(1- 6) { a , b , c , d , e }

This is a consequence o f a fundamental principle o f set theory: for a given
object, either it is a member o f a given set or it is not. There is no such thing
as halfway, multiple or gradual membership in our set theory (although there
have been attempts to construct theories o f “ fuzzy sets” ; see Zadeh (1987))..

For large finite sets the list notation may be im practical and is abbrevi
ated if some obvious pattern can be recognized in the list. For example, to
list all multiples o f five between zero and one hundred, we m ay write:

(1 -7) {0 ,5 ,1 0 ,1 5 ,. .. ,9 5 ,1 0 0 }

P r e d ic a te n o ta tio n : The list notation can be used, strictly speaking,
only for finite sets, although it is sometimes used in elliptical form for well-
known infinite sets such as the various sets o f numbers. For example, the set
o f positive integers (whole numbers) is sometimes denoted by {1 , 2, 3, 4 ,} .
A better way to describe an infinite set is to indicate a property the m em
bers o f the set share. The so-called predicate notation for this type o f set
description is illustrated by

(1 -8) {k | x is an even number greater than 3}

The vertical line following the first occurrence o f the variable x is read ‘ such
that’ , The whole expression in (1-8) is read ‘ the set o f all x such that x
is an even number greater than 3.’ Here x is a variable, which we may
think o f as an auxiliary symbol that stands for no particular ob ject, but it
indicates what the predicate is applied to. Note that the predicate notation
describes finite and infinite sets in the same way (e.g., the predicate ‘ x is an
even number between 3 and 9 ’ specifies the finite set {4 , 6 , 8}) and that two
predicates, i f they are coextensive, will specify the same set. For example,

(1 -9) {k | x is evenly divisible by 2 and is greater than or equal to 4 }

S i 'B U ii ' i U A T i O N OJ-' S E T S I

is the same set as (1-8).
A predicate may also define its members in relation to something else

For instance, the set

(1 -10) {k | x is a book and Mary owns k }

contains the books that Mary owns.
R u sse ll ’ s P a ra d o x : In the early years o f set theory any conceivable

property was thought to be a defining property o f a set. But Bertrand Russell
discovered in 1901 that a paradox could be obtained from an apparently
acceptable set specification o f that sort

Russell observed first that if sets are defined by properties o f their m em
bers, some sets will turn out to be members o f themselves and other sets
will not. For example, the set o f all elephants is not itself an elephant, and
therefore is not a mem ber o f itself. But the set o f all abstract concepts must
contain itself as member, since a set is an abstract concept. The properties
‘is a member o f itself’ and ‘ is not a member o f itself’ should therefore also be
defining properties o f sets. In particular, then, one could define a set U as the
set o f all those sets which are not members o f themselves: U — {k | x (jz k }.
Then we m ay ask o f U whether it is a member o f itself. Now two cases may
obtain: (i) i f U is not a member o f itself, then it satisfies the defining char
acteristic o f members o f U, and therefore it must be a member o f U , i.e., o f
itself; or (ii) if U is a member o f itself, then it does not satisfy the defining
property, hence it is not a member o f U , i.e., o f itself Since U either is or is
not a member o f U, the result is a logical paradox. The evident conclusion
from this paradox is that there is no such set U , but nothing in Cantor’s
set theory excluded such a possible defining property, The discovery o f the
Russell paradox was therefore o f great im portance (many different but es
sentially equivalent versions have since been form ulated), but it was all the
more significant in light o f the fact that logicians and mathematicians had
been attempting to show that set theory could serve as a foundation for all
o f m athem atics, The appearance o f a paradox in the very foundations o f set
theory made some people doubtful o f long-used and familiar mathematical
notions, but mathematical practice continued as usual without being ham
pered by this foundational crisis. Many inventive and innovative solutions
have been proposed to avoid the paradox, to resolve it or to make its con
sequences harmless. One such way, initially suggested by Russell, was type
theory, which has found fruitful applications to natural language (e g. in
Montague Grammar; see Part D), as well as in the context o f programming

8 C h a p t e r 1

languages and their semantics, but it is beyond the scope o f this book to
discuss the type theories in general or any o f the various other solutions to
the set-theoretic paradoxes (see, however, the axiomatization o f set theory
in Chapter 8 , section 2.8),

R e c u r s iv e ru les : Since finite sets specified simply by listing their mem
bers can never lead to such paradoxes, no changes had to be made for them.
For infinite sets, the simplest way to avoid such paradoxes and still be able
to define most sets o f relevance to ordinary mathematics is to provide a rule
for generating elements “recursively” from a finite basis, For example, the
set E = {4 ,6 ,8 , , . .,} (= (l -8)= (l -9)) can be generated by the following rule:

(1 -11) a) 4 £ E
b) If x £ E , then x + 2 £ E
c) Nothing else belongs to E.

The first part o f the rule specifies that 4 is a mem ber o f E\ by applying
the second part o f the rule over and over, one ascertains that since 4 £ E ,
then 6 £ E ; since 6 £ E , then 8 £ E] etc. The third part insures that no
number is in E except in virtue o f a and b

A rule for generating the members o f a set has the following form: first,
a finite number o f members (often just one) are stated explicitly to belong to
the set; then a finite number o f if-then statements specifying some relation
between members o f the set are given, so that any mem ber o f the set can be
reached by a chain o f if-then statements starting from one o f the members
specified in the first part o f the rule, and nothing that is not in the set can
be reached by such a chain. We will consider such recursive devices in more
detail in Chapter 8 , section 1.1,

The earlier m ethod o f specifying a set by giving a defining property
for its members has not been abandoned in practice, since it is often quite
convenient and since paradoxical cases do not arise in the usual mathematical
applications o f set theory. Outside o f specialized works on set theory itself,
both methods are commonly used.

1.3 Set-theoretic identity and cardinality

We have already seen that different lists or different predicates may specify
the same set. Implicitly we have assumed a notion o f identity for sets which
is one o f the fundamental assumptions o f set theory: two sets are identical
if and only if they have exactly the same members. For instance,

S u b s e t s 9

(1- 1 2) { 1 ,2 ,3 ,4 ,5 ,6}

and

(1 -13) {k | x is a positive integer less than 7}

and

(1 -14) a) 1 G A
b) if x £ A and x is less than 6 , then 2 + 1 £ A
c) nothing else is in A

are three different kinds o f specifications, but because each picks out exactly
the same members, we say that they specify the same set. We use the equals
sign '= ’ for set-theoietic identity Thus we m ay write, for example,

(1 -15) { 1 ,2 ,3 ,4 ,5 ,6 } = {k | x is a positive integer less than 7}

The equals sign is also used in naming sets. For example, we might write
‘ let B = {1 , 2, 3, 4, 5, 6} ’ to assign the name ‘ B ’ to the set in (1-12), The
context will make it clear whether ‘= ! is being used to stipulate the name o f
a set or to assert that two previously specified sets are identical.

A consequence o f this notion o f set-theoretic identity is that the empty
set is unique, as its identity is fully determined by its absence o f members.
Thus the set o f square circles and the set o f non-self-identical things are the
same set. Note that the empty list notation ' { } ’ is never used for the empty
set, but we have a special sym bol ‘0 ’ for it.

The number o f members in a set A is called the cardinality o f A , written
| A | or # (A) . The cardinality o f a finite set is given by one o f the natural
numbers. For example, the set defined in (1-12) has cardinality 6 , and since
(1-13) and (1-14) describe the same set, they describe sets o f the same car
dinality (o f course distinct sets may also have the same cardinality). Infinite
sets, too , have cardinalities, but they are not natural numbers. For exam
ple, the set o f natural numbers itself has cardinality ‘ aleph-zero’ , written Ho,
which is not a natural number. W e will take up the subject o f infinite sets
in more detail in Chapter 4

1.4 Subsets

W hen every member o f a set A is also a member o f a set B we call A a
subset o f B. W e denote such a relation between sets by A C B . Note that

10 C h a p t e r 1

B m ay contain other members besides those o f A, but this is not necessarily
so. Thus the subset relation allows any set to be a subset o f itself. I f we
want to exclude the case o f a set being a subset o f itself, the notion is called
proper subset, and written as A C B. For the denial o f the subset relation
we put a slash across the subset symbol, e.g. A <$. B means that A is not a
subset o f B , hence that A has at least one member which is not a member
o f B.

The following examples illustrate these concepts.

(1 -16) a) { a , b , c } C { s , b , a , e , g , i , c }
b) % { s , b , a , e , g , i , c }
c) { a , b , c } C { s , b , a , e , g , i , c }
d) 0 C {a }
e) { “ » { “ } } £ {a, b, { a } }
f) { { “ } } i M
g) { a } % { { a } } , but {a } G { { a } } (!!)

A curious consequence o f the definition o f subset is that the null set is
a subset o f every set. That is, for any set A whatever, 0 C A. Since 0
has no members, the statement that every member o f 0 is also a member o f
A holds, even if vacuously. Alternatively, we could reason as follows. How
could 0 fail to be a subset o f A ? According to the definition o f subset, there
would have to be some member in 0 that is not also a member o f A. This is
impossible since 0 has no members at all, and so we cannot maintain that
0 % A. Since the argument does not depend in any way on what particular
set is represented by A , it is true that 0 C A for every A.

Note, however, that while 0 C {a } , for example {0 } (£ {a } . The set {0 }
has a member, namely 0, and therefore is not the empty set. It is not true
that every member o f { 0} is also a member o f {a } , so { 0} (£ {a }

Members o f sets and subsets o f sets both represent relationships o f a
part to a whole, but these relationships are quite different, and it is im
portant not to confuse them. Subsets, as the name suggests, are always
sets, whereas members may or may not be. Mars is a mem ber o f the set
{E arth , Venus, M ars} but not a subset o f it. The set containing Mars as its
only member, {M ars}, is a subset o f {Earth, Venus, M ars} because every
member o f the former is also a member o f the latter. Further, whereas every
set is a subset o f itself, it is not clear whether a set can ever be a member
o f itself, as we saw above in the discussion o f Russell’ s Paradox. Note how
important it is here to distinguish between Mars, the planet, and {M ars},

P o w e r s e t s 11

the set.
Sets with sets as members provide the most opportunities for confusion.

Consider, for example, the set A = { b, { c } } . The members o f A are b and { c } .
From the considerations in the preceding paragraph we see that b A and
{ 6} C A. Similarly, { c } A because c is not a member o f A, and { { c } } C A
because every member o f { { c } } , namely, { c } , is a member o f A The reader
should also verify the following statements concerning this example: { 6} $ A\
c $ A; { { c } } $ A; {b, { c } } C A; {b, { c } } $ A; { {b, { c } } } £ A.

Another difference between subsets and members has to do with our
previous remarks about sets o f sets. We have seen that if b £ X and X £ C,
it does not necessarily follow that b £ C The element b could be a member
o f C, but if so this would be an accidental property o f C, not a necessary
one W ith inclusion, however, if A C B and B C C , it is necessarily true
that A C C\ that is, if every mem ber o f A is also a member o f B, and
further if every member o f B is also a mem ber o f C , then it must be true
that every member o f A is also a member o f C. For example, {a } C {a , b}
and {a , b} C {a , b, c} so it follows that {a } C {a, 6, c } On the other hand,
a £ { a } and { a } £ { { a } , b}, but a ^ { { a } , b} (assuming o f course that a and
b are distinct).

1.5 Power sets

Sometimes we need to refer to the set whose members are all the subsets o f a
given set A. This set is called the power set o f A, which we will write as p(A) .
Suppose A = { a, b} ; then the power set o f A , p(A) , is { { a } , { 6} , {a , 6} , 0}..
The name ‘power set’ derives from the fact that if the cardinality o f A is
some natural number n, then p(A) has cardinality 2” , i.e., 2 raised to the
n power, or 2 X 2 X 2 x X 2 [n times). Sometimes the power set o f A is
denoted as 2^

1.6 Union and intersection

We now introduce two operations which take a pair o f sets and produce
another set.

The union o f two sets A and B , written A\J B, is the set where members
are just the objects which are members o f A or o f B or o f both. In the
predicate notation the definition is

12 C h a p t e r 1

(1 -17) A u B = ^ ej { x | x £ A or x £ B}

Note that the disjunction ‘ or’ in (1-17) allows an object to be a member
o f both A and B For this reason, the ‘or ’ is an inclusive disjunction; (see
Chapter 6 , section 2). For example,

(1 -18) Let K — {a , b}, L — {c , d} and M = { 6, d}, then

K U L = { a , b , c , d}
K u M - { a , b , d}
L U M = { b , c , d}
(.K \ J L) U M = K\ J (L\ J M) = { a , b , c , d }
K U0 = { a , b} = K
L U0 = {c , d} = L

Set-theoretic union can easily be generalized to apply to more than two
sets, in which case we write the union sign in front o f the set o f sets to
be operated on: eg . |J { K , L, M } = the set o f all elements in K or L
or M — { a, b, c , d} . There is a nice m ethod for visually representing set-
theoretic operations, called Venn diagrams. Each set is drawn as a circle
and its members are represented by points within it. The diagrams for two
arbitrarily chosen sets are represented as partially intersecting - the most
general case - as in Figure 1-1. The region designated ‘ 1’ contains elements
which are members o f A but not o f B; region 2, those things in B but not in
A; and region 3, members o f both B and A. Points in region 4 outside the
diagram represent elements in neither set. O f course in particular instances
one or more o f these regions might turn out to be empty.

The Venn diagram for the union o f A and B is then made by delineating
all the regions contained in this set - shown in Figure 1-2 by shading areas
1, 2, and 3.

The second operation on arbitrary sets A and B produces a set whose
members are just the members o f both A and B. This operation is called
the intersection o f A and B , written as A I~1 B. In predicate notation this
operation would be defined as

(1 -19) A H B = def { x | x £ A and x £ B }

For example, the intersection o f the sets K and M o f (1-18) is simply the
singleton { 6} , since b is the only object which is both a mem ber o f K and a
mem ber o f M . Here are some more examples:

U n io n a n d i n t e r s e c t i o n

Figure 1-1: Venn diagram o f two arbitrary
sets A and B

A B

Figure 1-2: Set-theoretic union A l l B.

14 C h a p t e r 1

K f] L = 0
L n M = { d}
K f) K = { a , b } = K
K n 0 = 0
(j r n L) n M = i f n (L n M) = 0

J T n (L u M) = {b}

The general case o f intersection o f arbitrary sets A and B is represented
by the Venn diagram o f Figure 1-3

A B

Figure 1-3: Set-theoretic intersection A [~l B

Intersection may also be generalized to apply to three or more sets; e.g.,
f] { K , L, M } = 0, The intersection o f three arbitrary sets A, B and C is
shown in the Venn diagram o f Figure 1-4. Here the black area represents
what is common to the regions for A n B, B D C and A I~1 C . Obviously
when more than three sets are involved, the Venn diagrams becom e very
complex and o f little use, but for simple cases they are a valuable visual aid
in understanding set-theoretic concepts.

Problem: Construct a Venn diagram for the union o f three arbitrary sets.

1.7 Difference and complement

Another binary operation on arbitrary sets A and B is the difference, written
A — B , which ‘ subtracts’ from A all objects which are in B. The predicate
notation defines this operation as follows:

D i f f e r e n c e a n d c o m p l e m e n t 15

A

B C

Figure 1-4: Venn diagram for f| {^4, B , C }
(A fl B , B D C and A D C (shaded) and

f l { A , B , C } (black))..

(1 -21) A — B = j ef { x | x £ A and x g B }

A — B is also called the relative complement o f A and B. For instance for the
particular sets L and M , given in (1-18), L — M = { c } , since c is the only
member o f L which is not a member o f M . I f A and B have no members in
comm on, then nothing is taken from A\ i.e., A — B — A. Note that although
for a llse ts^ 4 ,B : A\JB — B \J A and A n B — B O A , it is not generally true
that A — B — B — A I f one thinks o f difference as a kind o f subtraction, the
fact that the order o f the sets matters in this case is quite natural.

The Venn diagram for the set-theoretic difference A — B is shown in
Figure 1-5.

Some more examples:

(1 -22) K - M = (4
L - K = { c ,^ }
M - L = (6}
K - 0 = {a , 6}
0 - K = 0

This operation is to be distinguished from the complement o f a set A,

16 C h a p t e r 1

written A', which is the set consisting o f everything not in A . In predicate
notation

(1 -23) A' = def {k | x % A }

W here do these objects come from which do not belong to A? The answer
is that every statement involving sets is made against a background o f as
sumed objects which comprise the universe (or domain) o f discourse for
that discussion.. In talking about number theory, for example, the universe
might be taken as the set o f all positive and negative real numbers. A truly
universal domain o f discourse fixed once and for all, which would contain
literally ‘ everything’ out o f which sets might be com posed, is unfortunately
impossible since it would contain paradoxical objects such as ‘the set o f all
sets’ . Therefore, the universe o f discourse varies with the discussion, much as
the interpretation o f the English words ‘ everything’ and ‘ everyone’ tends to
be implicitly restricted by the context o f discourse W hen no other specified
name has been given to the universe o f discourse in a particular discussion,
we conventionally use the sym bol V for it. W hen it is clear from the con
text or irrelevant to the discussion at hand, the universe o f discourse may
not be explicitly mentioned at all, but the operation o f complement is not
well-defined without it. The complement o f a set A , then, is the set o f all
objects in the universe o f discourse which are not in A , i.e.,

(1 -24) A' - U - A

W e see that in (1-23) the variable x in the predicate notation is implicitly

S e t - t h e o r e t i c e q u a l it i e s 17

understood to range over (i e , take its values from) the set- theoretic universe
U (and the same is true, incidentally, in (1-17) and (1-19)).

The Venn diagram with a shaded section for the complement o f A is
shown in Figure 1-6.

Figure 1-6: The set-theoretic complement
A'.

1.8 Set-theoretic equalities

There are a number o f general laws pertaining to sets which follow from the
foregoing definitions o f union, intersection, subset, etc. A useful selection of
these is shown in Figure 1-7, where they are grouped (generally in pairs - one
for union, one for intersection) under their more or less traditional names.
We are not yet in a position to offer formal proofs that these statements really
do hold for any arbitrarily chosen sets X , Y , and Z (we will take this up in
Chapter 7, section 6), but for now we may perhaps try to convince ourselves
o f their truth by reflecting on the relevant definitions or constructing some
Venn diagrams.

It is easy to see that for any set X , X U X is the same as X , since
everything which is in X or in X simply amounts to everything which is in
X . And similarly for everything which is in X and in X , so X fl X = X .

Likewise, everything which is in X or in Y (or both) is the same as
everything which is in Y or in X (or both); thus, X U F = Y U X . The
argument for intersection is similar.

18 C h a p t e r . 1

1. Idempotent Laws
(a) I U I = I

2. Commutative Laws
(a) X U Y = Y U X

3. Associative Laws
(a) (X U Y) U Z = X U (Y U Z)

4. Distributive Laws
(a) I U (7 n Z) = (I U 7) n (I
(b) x n {Y u z) = (x n Y) u { x

5. Identity Laws
(a) I U « = I
(b) X U U = U

6 . Complement Laws
(a) X U X ' = U
(b) (X ') ' = X

7. DeM organ’s Law
(a) { X U Y) ' = X T Y '

8 . Consistency Principle
(a) X C Y iff X U Y = Y

(b) X n X = X

(b) x n y = y n x

(b) (x n y) n z = x n (y n 2

u z)
n z)

(c) x n 0 = 0
(d) x n u = x

(c) x n X ' = 0
(d) x - y = x n r

(b) (x n y y = x ' u y '

(b) X C Y iff x n y = x

Figure 1-7: Some fundamental set-theoretic
equalities.

S e t - t h e o r e t i c e q u a l i t i e s 19

The Associative Laws state that the order in which we combine three
sets by the operation o f union does not matter, and the same is true i f the
operation is intersection To see that these hold, imagine the construction o f
the appropriate Venn diagrams. We have three intersecting circles labelled
X , Y , and Z We shade X U Y first and then shade Z The result is shading
o f the entire aiea inside the three circles, and this corresponds to (X LSY)UZ.
Now we start over and shade Y UZ first and then X . The result is the same.

The construction o f the Venn diagrams to illustrate the Distributive Laws
is somewhat trickier. In Figure 1-8 we show a Venn diagram for X fl { Y U Z).
To make it more perspicuous, X has been shaded with vertical lines and
Y U Z horizontally. The intersection o f these two sets is then represented
by the cross-hatched area. Figure 1-9 shows the corresponding diagram for
(I f l 7)U (X fl Z) X n Y is shaded vertically and X fl Z horizontally; thus,
the union is represented by the area shaded in either (or both) directions.
The reader should now be able to construct the Venn diagram for case (a)
o f the Distributive Laws.

Y Z

Figure 1- 8: Venn diagram for X fl { Y U Z)
(X shaded vertically, 7 U 2 shaded

horizontally, X fl (Y U Z) cross-hatched).

The Identity Laws are evident from the definitions o f union, intersection,
the null set, and the universal set. Everything which is in X or in 0 just
amounts to everything which is in X , etc. The Complement Laws are likewise
easily grasped from the definitions o f complement with perhaps a look at

20 C h a p t e r 1

Y Z

Figure 1-9: Venn diagram for
(X fl Y) U (X fl Z) (X n Y shaded vertically,

X H Z shaded horizontally,
(X fl Y) U (X fl Z) the entire shaded area).

the Venn diagram in Figure 1-6. Case (d) becomes less baffling if we look
at Figure 1-5 and consider the area corresponding to the intersection o f A
with the complement o f B

DeM organ’s Laws are a symmetrical pair. Case (a): everything which is
in neither X nor Y is the same as everything which is not in X and not in
Y . Case (b): everything which is not in both X and Y is either not in X or
not in Y (or in neither). This case is less immediately evident, and a Venn
diagram will help.

The Consistency Principle is so called because it is concerned with the
mutual consistency o f the definitions o f union, intersection, and subset. If
we think o f a Venn diagram in which the circle for X lies entirely inside the
circle for Y (representing X C Y) , then it is easy to see that X U Y = Y .
On the other hand, if we know that X U Y = Y , then in the standard Venn
diagram the region corresponding to elements which are in X but not in Y
must be em pty (otherwise, the union would not be equal to Y) . Thus, X ’s
members lie entirely in the Y circle; s o I C F , The (b) case is similar.

It may help in getting a grasp on some o f these laws if one considers
analogues from algebra. The operation o f + (addition) and * (m ultiplication)
obey a commutative law:

Se t - t h e o r e t i c e q u a l i t i e s 21

(1-25) for all numbers x, y, x + y = y + x and x * y = y * x

and an associative law:

(1-26) for all numbers x, y, z, (x + y) + z = x + (y + z) and (x * y) * z =
x * { y * z)

but neither is idem potent: in general it is not true that x + x = x nor that
x * x = x However, there is a distributive law relating * and + as follows:

(1-27) for all numbers x, y, z, x * (y + z) = (x * y) + (x * z)

but no such law holds if * and + are interchanged; i.e., it is not in general
true that x + (y * z) = (k + y) * (k + z). (For example, let x = 1, y = 2, and
z = 3; then the left side is 7 and the right side is 12)

Arithmetic analogues o f the Identity Laws are k + 0 = k, k * 0 = 0, and
x * 1 = x with 0 playing the role o f the null set and 1 that o f the universal
set, (But this analogy, too , breaks down: x + 1 does not equal 1.)

W hat we have seen then is that there is an algebra o f sets which is
in some respects analogous to the familiar algebra involving addition and
multiplication but which has its own peculiar properties as well, We will
encounter this structure once more when we take up the logic o f statements
in Chapter 6, and we will discover in Chapter 12 that both are instances o f
what is called a Boolean algebra,

For the moment our concern is not with the structure o f this algebra
but rather to show how these equalities can be used in the manipulation o f
set-theoretic expressions. The idea is that in any set-theoretic expression
a set m ay always be replaced by one equal to it. The result will then be
an expression which denotes the same set as the original expression. For
example, in A fl (B U C) 1 we may replace (B U C) ' by its equivalent, B' fl C'
(citing DeM organ’s Laws), to obtain A n (B ' n C ') . Since (B l iC)' and B ' D C
have the same members, so do A fl (B U C) 1 and A fl (B 1 fl C') .

This technique can be used to simplify a complex set-theoretic expres
sion, as in (1-28) below , or to demonstrate the truth o f other statements
about sets, as in (1-29) and (1-30). It is usually convenient to arrange such
demonstrations as a vertical sequence in which each line is justified by ref
erence to the law employed in deriving it from the preceding line.

(1 -28) Example: Simplify the expression [A U B) U (B fl C)'

22 C h a p t e r 1

1. (A u B) U (B n cy
2. (AUB)U(B'UC') DeM.
3 4 U (B U (B ' U C ')) Assoc
4, A U ((B U B') U C') Assoc
5. AU(UUC') Com.pl,
6. A U (C' U U) Comm
7, AUU Ident,
8. U Ident

(1- 29) Example: Show that (An B) n (A n cy - An(B

1. (i n B) n (i n cy
2. {A n B) n {A1 u C') DeM
3. i n (5 n (A1 u C')) Assoc
4. A n ((B n A') u (B n C')) Distr,
5., {Ac {Bn A)) u (A n (B n C1)) Distr.
6. {A n (A1 n B)) u (A n (5 n V)) Comm.
7. ((A n A') n B) u (A n (B n c o) Assoc,
8. (V n B) u (A n (B n C ')) Compl,
9. (B n &) u (A n (B n C ')) Comm.
10. 0u (A n (B n c ')) Ident.
11. (A n (B n C1)) u 0 Comm.
12. A n (B n c 1) Ident.
13. A n (B - C) Compl

(1- 30) Example: Show that X fl Y C X U Y .

B y the Consistency Principle this expression is true iff (X fl Y) fl (X U Y) =
X D Y . We demonstrate the lattei.

1 . (X n Y) n (x u Y)
2, ((X n Y) n X) u ((x n Y) n Y) Distr.
3. (x n (x n Y)) u ((X n Y) n Y) Comm.
4. ((x n x) n 7) u ((x n y j n y j Assoc.
5. ((x n x) n Y) u (x n (y n y)) Assoc,
6. (x n Y) u (x n Y) Idemp.
7. x n y Idemp.

Such arrays constitute formal proofs (o f the fact that, in each o f these
cases, the set in the last line is equal to that in the first line) We will
take up the topic o f proofs in due course, but the reader who attempts such

E x e r c i s e s 23

derivations in the exercises will no doubt encounter a notoriously trouble
some problem connected with proofs; namely, while it is relatively simple to
verify that a given proof is correct, it m ay be very difficult to find the one
one wants. So if presented with a problem such as (1-29), one might have
to try m any unsuccessful paths before finding one that leads to the desired
final expression. A certain amount o f cutting and trying is therefore to be
expected

Exercises

1 . Given the following sets:
A = {a , 6, c, 2 , 3 , 4 } E = {a , 6, { c } }
B = {a , b} F = 0
C = { c , 2} G = { { a , 6} , { c , 2 } }
D = { 6, c }

classify each o f the following statements as true or false
(a) c G A (s) D c A (m) B C G

(b) c G F (h) A c C (n) { B } C G

(c) c G E (i) D c E (°) D C G

(d) (c> G E (j) F c A (P) {£>} C G

(e) {c } G C (k) E c F (q) G C A

(f) B C A (1) B G G (r) { { * } } C E

2 . For any arbitrary set S,

(a) is S a member o f { 5 } ?

(b) is { 5 } a member o f { 5 } ?

(c) is { 5 } a subset o f { 5 } ?

(d) what is the set whose only mem ber is { 5 } ?

3. Write a specification by rules and one by predicates for each o f the
following sets. Remember that there is no order assumed in the list,
so you cannot use words like ‘the first’ or ‘the latter’ . Recall also that
a recursive rule m ay contain more than one if-then statement.

(a) {5 ,1 0 ,1 5 ,2 0 ,,. .}

(b) { 7 , 1 7 , 2 7 , 3 7 , . . . }

(c) {3 0 0 ,3 0 1 ,3 0 2 ,.. .,3 9 9 ,4 0 0 }

(d) {3 , 4, 7 ,8 ,1 1 ,1 2 ,1 5 ,1 6 ,1 9 ,2 0 , „ .,}

24 C h a p t e r 1

(e) {0 , 2, - 2, 4, - 4 , 6, - 6, . . . }

(f) {1, 1/ 2, 1/ 4 , 1/ 8, 1/ 16, . . . }

4 . Consider the following sets;

51 = m , { A } , A } 56 = 0
52 = A 57 = {0}
53 = W 58 = {{0}}
54 = { {A}} 59 = {0,{0}}
55 = {{A}, A}

Answer the following questions Remember that the members o f a
set are the items separated by commas, if there is more than one,
between the outermost braces only; a subset is form ed by enclosing
within braces zero or more o f the members o f a given set, separated
by commas.

(a) O f the sets 51 - 59 which are members o f 51?

(b) which are subsets o f 51?

(c) which are members o f 59?

(d) which are subsets o f 59?

(e) which are members o f 54?

(f) which are subsets o f 54?

5 . Specify each o f the following sets by listing its members:
(a) p{ a , b , c } (d) p { 0}
(b) p { a } (e) p p { a , b }
(c) p 0

6 . Given the sets A , . . . , G as in Exercise 1 , list the members o f each o f
the following:

(a) B U C (g) A n E (m) B - A
(b) Al l B (h) C n D (n) C - D
(c) d u e (i) b t f (o) e - f

(d) B U G (j) C D E (p) F - A
(e) D U F (k) B n G (q) G - B
(f) A n B (1) A - B

E x e r c i s e s 25

7 . Given the sets in Exercise 1, assume that the universe o f discourse is
|J{A, B, C , D, E, F , <?}, List the members o f the following sets:

(a) {A n B) U C (h) D'nE'
(b) An {BUC) (0 Fn {A - B)
(c) { BUC) - { CUD) (j) {A n B) u u
(d) A n { C - D) (k) { CuD) n u
(e) (i n C) - (i n D) (1) C n D 1
(f) G' (m) GUF'
(g) {D U E)' (n) {b n c y

Let A = { a ,6,c}, B = {c, d} and C = {d,e,f}.

W hat are:

(i) A U B (v) B U 0
0 0 A C B (vi) A n { B n C)

(iii) A U { B T C) (vii) A - B
(iv) C U A

Is a a member o f {^4, B} ?

Is a a member o f A U B?

9. Show by using the set-theoretic equalities in Figure 1-7 for any sets A,
B, and C,

(a) { { A U C) Cl { B U C')) C (A U B)

(b) A n { B ~ A) = 0

1 0 . Show that the Distributive Law 4(a) is true by constructing Venn di
agrams for X U (Y fl Z) and (X U Y) fl (X U Z).

1 1 . The sym m etric difference o f two sets A and B, denoted A + B , is
defined as the set whose members are in A or in B but not in both A
and B, i.e.

A + B = d e f (A u B) - {A n B)

(a) Draw the Venn diagram for the symmetric difference o f two sets,

(b) Show that A + B = [A — B) U (B — A) by means o f the set-
theoretic equalities in Figure 1-7. Verify that the Venn diagram
for { A — B) U (B — A) is equivalent to that in (a).

(c) Show that for all sets A and B, A + B = B + A.

26 C h a p t e r 1

(d) Express each o f the following in terms o f union, intersection, and
complementation, and simplify using the set-theoretic equalities.

(i) A + A (iv) A + B, where A C B
(ii) A + U (v) A + B, where A fl B = 0

(iii) A + 0

(e) Show that ((^4 — B) + (B — A)) = A + B

(f) Show that (A + B) C B iff A C B

1 2 . Call adjectives which are correctly predicated o f themselves ‘ autolog-
ical’ and those which are not, ‘heterological,’ For example, ‘English’
and ‘ short’ are autological, but ‘French’ and ‘long’ are heterologial,
Show that when we ask whether the adjective ‘heterological’ is hetero
logical or autological we are led to a contradiction like that in Russell’s
Paradox. This is known as Grelling’s Paradox.

Chapter 2

Relations and Functions

2.1 Ordered pairs and Cartesian products

Recall that there is no order im posed on the members o f a set, We can, how
ever, use ordinary sets to define an ordered pair, written (a, b } for example,
in which a is considered the first member and b is the second member o f the
pair. The definition is as follows:

(2 -1) (a , b) = def { { a } , { a , b } }

The first member o f (a , b) is taken to be the element which occurs in
the singleton { a } , and the second member is the one which is a member of
the other set {a , 6} , but not o f {a } . Now we have the necessary properties
o f an ordering since in general (a, b) / (6, a) . This is so because we have
{ { a } , {a , 6} } = { { 6} , {a , 6} } (that is, (a, b) = (6, a)), if and only if we have
a — b. O f course, this definition can be extended to ordered triples and
in general ordered n-tuples for any natural number n Ordered triples are
defined as

(2- 2) (a , b , c) = def ((a , b) , c)

It might have been intuitively simpler to start with ordered sets as an ad
ditional prim itive, but mathematicians like to keep the number o f primitive
notions to a minimum.

If we have two sets A and B, we can form ordered pairs from them by
taking an element o f A as the first member o f the pair and an element o f B

27

28 C h a p t e r 2

as the second member, The Cartesian product o f A and B , written A X B,
is the set consisting o f all such pairs. The predicate notation defines it as

(2 -3) A x B = def { (x , y) | x G A and y G B}

Note that according to the definition if either A or B is 0, then A x B = 0.
Here are some examples o f Cartesian products:

(2 -4) Let K = { a , b , c } and L — {1 ,2 } , then

K x L = { (a, 1), (a, 2), (6,1) , (6,2) , (c, 1) , (c, 2) }
L x K = { (1 , a), (2, a), (1, 6), (2 , 6), (1 , c), (2, c)}
L x L = { (1 , 1) , (1 , 2) , (2 , 1) , (2 , 2) }

It is important to remember that the members o f a Cartesian product
are not ordered with respect to each other. Although each member is an
ordered pair, the Cartesian product is itself an unordered set o f them.

Given a set M o f ordered pairs it is sometimes o f interest to determine
the smallest Cartesian product o f which M is a subset. The smallest A and
B such that M C A x B can be found by talcing A = { a \ (a , b) £ M for
some 6} and B = {6 | (a, b) G M for some a}. These two sets are called the
projections o f M onto the first and the second coordinates, respectively. For
example, if M = { (1 , 1) , (1, 2), (3,2) } , the set {1 , 3} is the projection onto
the first coordinate, and { 1 , 2} the projection onto the second coordinate.
Thus { 1 , 3 } x {1 , 2 } is the smallest Cartesian product o f which M is a subset.

2.2 Relations

We have a natural understanding o f relations as the sort o f things that hold
or do not hold between objects, The relation ‘mother o f ’ holds between
any mother and her children but not between the children themselves, for
instance. Transitive verbs often denote relations; e.g., the verb ‘kiss’ can
be regarded as denoting an abstract relation between pairs o f objects such
that the first kisses the second, The subset relation was defined above as
a relation between sets. Objects in a set m ay be related to objects in the
same or another set. We write Rab or equivalently aRb i f the relation R
holds between objects a and b. We also write R C A x B for a relation
between objects from two sets A and B , which we call a relation from A to

R e l a t i o n s 29

B A relation holding o f objects from a single set A is called a relation in
A The projection o f R onto the first coordinate is called the domain o f R
and the projection o f R onto the second coordinate is called the range o f R.
A relation R from A to B thus can be viewed as a subset o f the Cartesian
product A x B (There are unfortunately no generally accepted terms for
the sets A and B o f which the domain and the range are subsets) It is
im portant to realize that this is a set-theoretic reduction o f the relation R to
a set o f ordered pairs, i.e { (a, b) | aRb}. For example, the relation ‘mother
o f ’ defined on the set H o f all human beings would be a set o f ordered pairs
in H X H such that in each pair the first member is mother o f the second
member. We may visually represent a relation R between two sets A and B
by arrows in a diagram displaying the members o f both sets.

A B

Figure 2-1: Relation R: A —> B

In Figure 2-1, A — {a , 6} and B = {c , d, e } and the arrows represent a
set-theoretic relation R = { (a , d) , (a , e }, (6, c } } . Note that a relation may
relate one object in its domain to more than one object in its range. The
complement o f a r elation R C A X B, written R', is set-theoretically defined
as

(2 -5) R ' = de f (A x B) - R

Thus R 1 contains all ordered pairs o f the Cartesian product which are not
members o f the relation R, Note that (R 1)' = R . The inverse o f a relation
R C A x B, written it!- 1 , has as its members all the ordered pairs in R, with
their first and second elements reversed. For example, let A — {1 , 2, 3} and
let R C A x A be { (3, 2 }, (3 ,1 } , (2 , 1 } } , which is the ‘greater than’ relation in
A. The complement relation is { (1 , 1) , (1 , 2) , (1 , 3) , (2 , 2) , (2, 3), (3 , 3) } ,

30 C h a p t e r 2

the ‘less than or equal to ’ relation in A, The inverse o f R, i£_1 , is { (2 , 3) , (1,
3), (1 , 2) } , the ‘less than’ relation in A, Note that = R , and that
if R C A x B, then R -1 C B x A , but R 1 C A X B.

We have focused in this discussion on binary relations, i.e., sets o f or
dered pairs, but analogous remarks could be made about relations which are
com posed o f ordered triples, quadruples, etc , i.e., ternary, quaternary, or
just n-place relations.

2.3 Functions

A function is generally represented in set-theoretic terms as a special kind
o f relation, A relation R from A to B is a function if and only if it meets
both o f the following conditions:

1. Each element in the domain is paired with just one element in the
range

2, The domain o f R is equal to A.

This amounts to saying that a subset o f a Cartesian product A x B can
be called a function just in case every member o f A occurs exactly once as
a first coordinate in the ordered pairs o f the set.

As an example, consider the sets A = {a , b, c } and B = {1 ,2 , 3, 4 }. The
following relations from A to B are functions:

(2 -6) P = { (a , l) , (6 , 2) , (C,3) }
Q = { (a,3) , (M),(c , l) }
R = { (a, 3), (6,2), (c, 2)}

The following relations from A to B are not functions:

(2 -7) 5 = { (a , l) , (6 , 2) }
T = { (a, 2), (6,3) , (a, 3), (c, 1)}
F = { (a, 2), (a, 3), (6,4) }

S fails to meet condition 2 because the set o f first members, namely
{a , 6} , is not equal to A. T does not satisfy condition 1 , since a is paired
with both 2 and 3. In relation V both conditions are violated,

X UlNL/iiUiNa

M uch o f the terminology used in talking about functions is the same as
that for relations. We say that a function that is a subset o f A x B is a
function from A to B , while one in A X A is said to be a function in A The
notation ‘ F : A —* B ’ is used for lF is a function from A to B ’ Elements in
the domain o f a function are sometimes called arguments and their corre
spondents in the range, values. O f function P in (2-6), for example, one may
say that it takes on the value 3 at argument c, The usual way to denote
this fact is P (c) = 3, with the name o f the function preceding the argument,
which is enclosed in parentheses, and the corresponding value to the right
o f the equal sign.

‘Transform ation,’ ‘m ap,’ ‘m apping,’ and ‘ correspondence’ are comm only
used synonyms for ‘function,’ and often lF(a) = 2 ’ is read as ‘F maps a into
2 ,’ Such a statement gives a function the appearance o f an active process
that changes arguments into values, This view o f functions is reinforced by
the fact that in most o f the functions comm only encountered in mathematics
the pairing o f arguments and values can be specified by a formula contain
ing operations such as addition, multiplication, division, etc. For example,
F(x) = 2x + 1 is a function which, when defined on the set o f integers,
pairs 1 with 3, 2 with 5, 3 with 7, and so on. This can be thought o f as
a rule which says, “ To find the value o f F at x , multiply x by 2 and add
1 ” Later in this book it m ay prove to be necessary to think o f functions as
dynamic processes transforming objects as their input into other objects as
their output, but for the present, we adhere to the more static set-theoretic
perspective, Thus, the function F (x) = 2x + 1 will be regarded as a set of
ordered pairs which could be defined in predicate notation as

(2 -8) F = { (k, y) | y = 2x + 1 } (where x and y are integers)

Authors who regard functions as processes sometimes refer to the set o f
ordered pairs obtained by applying the process at each element o f the domain
as the graph o f the function. The connection between this use o f “graph”
and a representation consisting o f a line drawn in a coordinate system is not
accidental.

We should also note that relations which satisfy condition 1 above but
perhaps fail condition 2 are sometimes regarded as functions, but if so, they
are customarily designated as ‘partial functions,’ For example, the function
which maps an ordered pair o f real numbers (a, b) into the quotient o f a
divided by b (e,g., it maps (6,2) into 3 and (5,2) into 2.5) is not defined
when 6 = 0, But it is single-valued - each pair for which it is defined is

32 C h a p t e r 2

associated with a unique value - and thus it meets condition 1. Strictly
speaking, by our definition it is not a function, but it could be called a
partial function. A partial function is thus a total function on some subset
o f the domain. Henceforth, we will use the term ‘function,’ i f required, to
indicate a single-valued mapping whose domain m ay be less than the set A
containing the domain,

It is sometimes useful to state specifically whether or not the range o f a
function from A to B is equal to the set B Functions from A to B in general
are said to be into B I f the range o f the function equals B , however, then the
function is onto B (Thus onto functions are also into , but not necessarily
conversely) In Figure 2-2 three functions are indicated by the same sort
o f diagrams we introduced previously for relations generally It should be
apparent that functions F and G are onto but H is not. A ll are o f course
into.

A D A C

Figure 2-2: Illustration o f onto and into
functions.

A function F : A —* B is called a one-to-one function just in case no mem
ber o f B is assigned to more than one member o f A, Function F in Figure
2-2 is one-to-one, but G is not (since both b and c are m apped into 2), nor
is H (since H(b) = H(c) = 3). The function F defined in (2-8) is one-to-one
since for each odd integer y there is a unique integer x such that y — 2x + 1 .
Note that F is not onto the set o f integers since no even integer is the value
o f F for any argument x. Functions which are not necessarily one-to-one
may be termed many to one. Thus all functions are m any-to-one strictly
speaking, and some but not all o f them are one-to-one. It is usual to apply
the term ” many-to-one” , however, only to those functions which are not in
fact one-to-one,,

A function which is both one-to-one and onto (F in Figure 2-2 is an
example) is called a one-to-one correspondence Such functions are o f special

C o m p o s i t i o n 33

interest because their inverses are also functions (Note that the definitions
o f the inverse and the complement o f a relation apply to functions as well)
The inverse o f G in Figure 2-2 is not a function since 2 is mapped into both
b and c, and in H ~ l the element 2 has no correspondent,

Problem: Is the inverse o f function F in (2-8) also a function? Is F a
one-to-one correspondence?

2.4 Composition

Given two functions F : A —> B and G: B —> C, we may form a new function
from A to C , called the com posite, or composition o f F and G, written G o F .
In predicate notation function com position is defined as

(2 -9) G o F = def { (x , z) | for some y , (x , y) G F and (y , z) G G}

Figure 2-3 shows two functions F and G and their composition.

F : K — > L

p \ -------

\ G o F : K — > M

G : L — * M

Figure 2-3: Com position o f two functions F
and G

34 C h a p t e r 2

Note that F is into while G is onto and that neither is one-to-one. This
shows that compositions may be formed from functions that do not have
these special properties, It could happen, however, that the range o f the
first function is disjoint from the domain of the second, in which case, there
is no y such that (x , y) £ F and (y , z) £ G, and so the set o f ordered pairs
defined by G o F is empty In Figure 2-3, F is the first function and G is
the second in the composition. Order is crucial here, since in general G o F
is not equal to F o G The notation G o F may seem to read backwards,
but the value o f a function F at an argument a is F (a), and the value o f G
at the argument F(a) is written G(F(a)) . B y the definition o f com position,
G (F (a)) and (G o F) (a) produce the same value,

A function F\ A ■—> A such that f = { (a ; , a ;) | a ; £ ^ 4 } i s called the
identity function , written id&. This function maps each element o f A to
itself. Composition o f a function F with the appropriate identity function
gives a function that is equal to the function F itself. This is illustrated in
Figure 2-4,

A B B

A A B

Figure 2-4: Composition with an identity
function

Given a function F : A —* B that is a one-to-one correspondence (thus the
inverse is also a function), we have the following general equations:

(2 -10) F - 1 o F = id A
F o F ~ l — idg

C o m p o s i t i o n 35

These are illustrated in Figure 2-5,

Figure 2-5: Composition o f one-to-one
correspondence with its inverse.

The definition o f com position need not be restricted to functions but can
be applied to relations in general, Given relations R C A x B and S C B X C
the com posite o f R and S, written S o R, is the relation { (x , z) | for some
y, (x , y) £ R and (y , z) £ -S'} An example is shown in Figure 2-6.

A B B C A C

Figure 2-6: Composition o f two relations R
and S.

For any relation R C A X B we also have the following:

(2 -11) idB o R = R
R o idj± - R

(Note that the identity function in A , id&, is o f course a relation and could
equally well be called the identity relation in A)

36 C h a p t e r 2

The equations corresponding to (2-10) do not hold for relations (nor for
functions which are not one-to-one correspondences) However, we have for
any one-to-one relation R : A - + B :

(2 -12) R - 1 o R C idA
R o R ~ 1 C i ds

We should note here that our' previous remarks about ternary, quater
nary, etc. relations can also be carried over to functions. A function may
have as its domain a set o f ordered n-tuples for any n, but each such n-tuple
will be mapped into a unique value in the range, For example, there is a
function mapping each pair o f natural numbers into their sum.

Exercises

1. Let A — { 6, c } and B = { 2 , 3 }

(a) Specify the following sets by listing their members.
(i) A X B (iv) (AU B) X B

(ii) B x A (v) (A n B) x B
(iii) A x A (vi) {A - B) X (B - A)

(b) Classify each statement as true or false.

(i) (A X B) U (B X A) = 0
(ii) (A X A) C (A x B)
(iii) (c , c) C (A X A)
(iv) { (i , 3) , (3 , i) } C (A x B) U (B x i)
(v) 0 C A x A
(v i) { (6, 2), (c, 3)} is a relation from A to B
(v i i) { (6, 6)} is a relation in A

(c) Consider the following relation from A to (A U B):

R — { (& j &)> (& , 2), (c , 2), (c, 3) }

(i) Specify the domain and range o f R
(ii) Specify the complementary relation R' and the inverse R ~ 1

(iii) Is (R ')-1 (the inverse o f the com plem ent) equal to (-R- 1)'
(the complement o f the inverse)?

- t - j y v u i x v - 'i . - i .L j . j

2 . Let A = {a , 6, c } and B = { 1 , 2}„ How many distinct relations are there
from A to B ? How many o f these are functions from A to B1 How
many o f the functions are onto? one-to-one? D o any o f the functions
have inverses that are functions? Answer the same questions for all
relations from B to A.

3. Let

= { (1 , 1) , (2 ,1) , (3 , 4) , (2 , 2) , (3, 3) , (4 , 4) , (4 , 1) }

-R2 = { (3 , 4) , (1 , 2) , (1 , 4) , (2 , 3 > , (2 , 4 > , (1 , 3) }

(both relations in A , where A = {1 ,2 , 3 ,4})

(a) Form the composites R 2 0 Ri and R 1 0 R 2. Are they equal?

(b) Show that R ^1 0 R x ^ ida and that R 2 1 ° R 2 % id4 .

4 . For the functions F and G in Figure 2-3:

(a) show that (G 0 F) ~ x = F ~ 1 0 G ~ 1.

(b) Show that the corresponding equation holds for relations R and
S in Figure 2-6,

Chapter 3

Properties of Relations

3.1 Reflexivity, symmetry, transitivity, and con
nectedness

Certain properties o f binary relations are so frequently encountered that
it is useful to have names for them, The properties we shall consider are
reflexivity, sym m etry, transitivity, and connectedness. A ll these apply only
to relations in a set, i.e., in A X A for example, not to relations from A to
B, where B / A. <-
R e fle x iv ity

Given a set A and a relation R in A, R is reflexive if and only if all the
ordered pairs o f the form (x , x) are in R for every x in A.

As an example, take the set A = { 1 ,2 ,3 } and the relation R i = { (1 ,1) ,
(2, 2), (3, 3), (3 ,1) } in A. Ri is reflexive because it contains the ordered
pairs (1 , 1), (2 , 2), and (3 , 3) , The relation R 2 = { (1 , 1), (2 , 2) } is non
reflexive since it lacks the ordered pair (3 , 3) and thus fails to meet the
definitional requirement that it contains the ordered pair (x , x) for every
x in A. Another way to state the definition o f reflexivity is to say that a
relation R in A is reflexive if and only if H a , the identity relation in A, is
a subset o f R The relation ‘has the same birthday as’ in the set o f human
beings is reflexive,

A relation which fails to be reflexive is called nonreflexive, but if it con
tains no ordered pair (x , x) with identical first and second members, it is
said to be irreflexive. R% = { (1 , 2) , (3, 2) } is an example o f an irreflexive
relation in A. Irreflexivity is a stronger condition than nonreflexivity since

39

40 C h a p t e r 3

every irrefiexive relation is nonreflexive but not conversely, The relation ‘ is
taller than1 in the set o f human beings is irrefiexive (therefore also nonre-
flexive), while the relation ‘is a financial supporter o f ! is nonreflexive (but
not irrefiexive, since some people are financially self-supporting) Note that
a relation in 4̂ is nonreflexive if and only if ida R\ it is irrefiexive if and
only if R D ida = 0.
Symmetry-

Given a set A and a binary relation R in A , R is symm etric if and only if
for every ordered pair (x , y) in R, the pair (y, x) is also in R It is im portant
to note that this definition does not require every ordered pair o f A X A to
be in R Rather for a relation R to be symmetric it must always be the case
that if an ordered pair is in R , then the pair with the members reversed is
also in R

Here are some examples o f symmetric relations in { 1 , 2 , 3 } :

(3 -1) { (1 , 2) , (2 , 1) , (3 , 2) , (2 , 3) }
{ (1 = 3) , (3 , 1) }
{ (2 , 2)}

{ (2 , 2) } is a symmetric relation because for every ordered pair in it, i ,e.,
(2 , 2), it is true that the ordered pair with the first and second members
reversed, i.e., (2 , 2) , is in the relation. Another example o f a symmetric
relation is ‘ is a cousin o f 1 on the set o f human beings. If for some (x , y)
in i?, the pair (y , x) is not in R then R is nonsymmetric. The relation ‘is
a sister o f 1 on the set o f human beings is nonsymmetric (since the second
member may be male. It is, however, a symmetric relation defined on the
set o f human females).

The following relations in { 1 , 2 , 3 } are nonsymmetric:

(3 -2) { (2 , 3) , (1 , 2) }
{ (3 , 3) , (1 , 3)}
{ (1 >2) , (2 , 1) , (2 , 2) , (1 , 1) , (2 , 3) }

If it is never the case that for any (x , y) in i?, the pair (y , x) is in
R, then the relation is called asymmetric The relation ‘ is older than1 is
asymmetric on the set o f human beings. Note that an asymmetric relation
must be irrefiexive (because nothing in the asymmetry definition requires a;
and y to be distinct). The following are examples o f asymmetric relations in
{ 1 , 2 , 3 } :

R e f l e x i v i t y , s y m m e t r y , t r a n s i t i v i t y , a n d c o n n e c t e d n e s s 41

(3 -3) { (2 , 3) , (1 , 2) }
{ (1 , 3) , (2 , 3), (1 , 2) }
{ (3 , 2) }

A relation is anti-symmetric if whenever both (x , y) and (y , x) are in R,
then x = y. This definition says only that if both (x , y) and (y , x) aie in
R, then x and y are identical; it does not require (x, x) £ R for all x £ A. In
other words, the relation need not be reflexive in order to be anti-symmetric.

The following relations in { 1 , 2 , 3 } are anti-symmetric.

(3 -4) { (2 , 3) , (1 , 1) }
{ (1 , 1) , (2 , 2)}
{ (1 , 2) , (2 , 3) }

Transitivity
A relation R is transitive if and only if for all ordered pairs (x , y) and

(y , z) in R, the pair (x , z) is also in R,

Because there is no necessity for x, y, and z all to be distinct, the fol
lowing relation meets the definition o f transitivity,

(3 -5) { (2 , 2) }

where x = y = z = 2.

The relation given in (3-6) is not transitive,

(3 -6) { (2 , 3) , (3 , 2) , (2 , 2) }

because (3 , 2) and (2 , 3) are members, but (3 , 3) is not

Here are some more examples o f transitive relations:

(3-7) { (1, 2) , (2, 3) , (1, 3)}
{ (1 , 2) , (2 , 1) , (1 , 1) , (2 , 2)}
{ (1, 2), (2, 3), (1, 3), (3,2), (2, 1), (3, 1), (1, 1), (2, 2), (3, 3)}

The relation ‘is an ancestor o f ’ is transitive in the set o f human beings.
If a relation fails to meet the definition o f transitivity, it is nontransitive, I f
for no pairs (x , y) and (y, z) in R, the ordered pair (x, z) is in R , then the
relation is intransitive. For example, the relation ‘ is the mother o f 1 in the
set o f human beings is intransitive.

42 C h a p t e r 3

Relation (3-6) is nontransitive, as are the following two:

(3 -8) { (1 , 2) , (2 , 3) }
{ (1 , 2) , (2 , 3) , (1 , 3) , (3 , 1) }

The first o f these relations is also intransitive, as are the following relations:

(3 -9) { (3 , 1) , (1 , 2) , (2, 3) }
{ (3 , 2) , (1 , 3) }

Connectedness
A relation R in A is connected (or connex) if and only i f for every two

distinct elements x and y in A, (x , y) £ R or (y , x) £ R (or both).
Note that the definition o f connectedness refers, as does the definition

o f reflexivity, to all the members o f the set A. Further, the pairs (x , y)
and (y , x) mentioned in the definition are explicitly specified as containing
nonidentical first and second members. Pairs o f the form (x , x) are not
prohibited in a connected relation, but they are irrelevant in determining
connectedness.

The following relations in { 1 , 2 , 3 } are connected:

(3 -10) { (1 , 2) , (3 , 1) , (3 , 2) }
{ (1 , 1) , (2 , 3) , (1 , 2) , (3 , 1) , (2 , 2) }

The following relations in { 1 , 2 , 3 } , which fail the definition, are noncon
nected.

(3 -11) { (1 , 2) , (2 , 3) }
{ (1 , 3) , (3 , 1) , (2 , 2) , (3 , 2) }

It m ay be useful at this point to give some examples o f relations speci
fied by predicates and to consider their properties o f reflexivity, symmetry,
transitivity, and connectedness

(3-12) Example: R f is the relation ‘ is father o f 1 in the set H o f all human
beings. R f is irreflexive (no one is his own father); asymmetric (if
x is j/’ s father, then it is never true that y is x ’ s father); intransitive
(if x is j/’ s father and y is z ’ s father, then x is z ’ s grandfather but
not z ’ s father); and nonconnected (there are distinct individuals x
and y in H such that neither ‘ x is the father o f y ’ nor ‘ y is the
father o f x ’ is true).

D i a g r a m s o f r e l a t i o n s 43

(3 -13) Example: R is the relation ‘greater than’ defined in the set Z =
11, 2 , 3 , 4 , . „,} o f all the positive integers Z contains an infinite
number o f members and so does R, but we are able to determine
the relevant properties o f R from our knowledge o f the properties
o f numbers in general. R is irreflexive (no number is greater than
itself); asymmetric (if x > y, then y ^ x; transitive (if x > y
and y > z, then x > z), and connected (for every distinct pair o f
integers x and y, either x > y or y > x

(3 -14) Example: Ra is the relation defined by ‘x is the same age as y , ’ in
the set H o f all living human beings, Ra is reflexive (everyone is
the same age as himself or herself); symmetric (if x is the same age
as y, then y is the same age as a;); transitive (if x and y are the
same age and so are y and z, then x is the same age as z); and
nonconnected (there are distinct individuals in H who are not of
the same age),

3.2 Diagrams of relations

It may be helpful in assimilating the notions o f reflexivity, symmetry and
transitivity to represent them in relational diagrams. The members o f the
relevant set are represented by labeled points (the particular spatial arrange
ment o f them is irrelevant), If x is related to y, i.e. (x , y) £ R, an arrow
connects the corresponding points. For example,

q _________ p• -g--— — •

Figur e 3-1: Relational diagram,

Figure 3-1 represents the relation

R = { (1 , 2) , (2 , 1) , (2 , 2) , (1 , 1), (2 , 3) , (3 , 3) }

It is apparent from the diagram that the relation is reflexive, since every
point bears a loop, The relation is nonsymmetric since 3 is not related to 2

44 C h a p t e r 3

whereas 2 is related to 3. It cannot be called asymmetric or antisymmetric,
however, since 1 is related to 2 and 2 is related to 1. It is nontransitive since
1 is related to 2 and 2 is related to 3, but there is no direct arrow from 1 to
3, The relation cannot be intransitive because o f the presence o f pairs such
as (1 , 1).

If a relation is connected, every pair o f distinct points in its diagram will
be directly joined by an arrow. W e see that R is no connected since there is
not direct connection between 1 and 3 in Figure 3-1.

3.3 Properties of inverses and complements

Given that a relation R has certain properties o f reflexivity, symmetry, tran
sitivity or connectedness, one can often make general statements about the
question whether these properties are preserved when the inverse R ~ 1 or
complement R' of that relation is formed.

For example, take a reflexive relation R in A, By the definition o f reflexive
relations, for every x £ A, { x, x) £ iZ, Since R ~ x has all the ordered pairs
o f R, but with the first and second members reversed, then every pair (x , x)
is also in iZ- 1 , So the inverse o f R is reflexive also. The complement R'
contains all ordered pairs in A x A that are not in R. Since R contains
every pair o f the form (x , x) for any x £ A, R' contains none o f them. The
complement relation is therefore irrefiexive.

As another example, take a symmetric relation R in A. Does its com
plement have this property? Let’s assume that the complement R' is not
symmetric, and see what we can derive from that assumption If R' is not
symmetric, then there is some (x , y) £ R' such that (y , x) 0 R', by the def
inition o f a nonsymmetric relation, Since { y, x) 0 R' , (y , x) must be in the
complement o f R', which is R itself. Because R is symmetric, (x , y) must
also be in R But one and the same ordered pair (x , y) cannot be both in R
and in its complement R', so the assumption that the complement R' is not
symmetric leads to an absurd conclusion. That means that the assumption
cannot be true and the complement R' must be symmetric after all. I f R is a
symmetric relation in A , then the complement R' is symmetric and vice versa
(the latter follows from essentially the same reasoning with R' substituted
for R), This m ode o f reasoning is an instance o f what is called a reductio
ad absurdum proof in logic. It is characterized by making an assumption
which leads to a necessarily false conclusion; you may then conclude that

E q u i v a l e n c e r e l a t i o n s a n d p a r t i t i o n s 45

the negation o f that assumption is true. In Chapter 6 we will introduce rules
o f inference which will allow such arguments to be made completely precise,

For sake o f easy reference the table in Figure 3-2 presents a summary of
properties o f relations and those o f their inverses and complements. These
can all be proved on the basis o f the definitions o f the concepts and the laws
o f set theory. Since we have not yet introduced a formal notion o f proof, we
will not offer proofs here, but it is a good exercise to convince yourself o f
the facts by trying out a few examples, reasoning informally along the lines
illustrated above.

R (not 0) R - 1 R'

reflexive reflexive irreflexive
irreflexive irreflexive reflexive
symmetric symmetric (iZ_1 = R) symmetric
asymmetric asymmetric non-symmetric
antisymmetric antisymmetric depends on R
transitive transitive depends on R
intransitive intransitive depends on R
connected connected depends on R

Figure 3-2: Preservation o f properties o f a
relation in its inverse and its complement.

3.4 Equivalence relations and partitions

An especially important class o f relations are the equivalence relations. They
are relations which are reflexive, symmetric and transitive. Equality is the
most familiar example o f an equivalence relation. Other examples are ‘has
the same hair color as!, and ‘is the same age as!. The use o f equivalence
relations on a domain serves primarily to structure a domain into subsets
whose members are regarded as equivalent with respect to that relation.

For every equivalence relation there is a natural way to divide the set on
which it is defined into mutually exclusive (disjoint) subsets which are called
equivalence classes. We write f z j for the set o f all y such that (x , y) £ R.

46 C h a p t e r 3

Thus, when R is an equivalence relation, [k] is the equivalence class which
contains x The relation ‘is the same age as’ divides the set o f people into age
groups, i.e., sets o f people of the same age Every pair o f distinct equivalence
classes is disjoint, because each person, having only one age, belongs to ex
actly one equivalence class. This is so even when som ebody is 120 years old,
and is the only person o f that age, consequently occupying an equivalence
class all by himself. By dividing a set into mutually exclusive and collectively
exhaustive nonem pty subsets we effect what is called a partitioning o f that
set

Given a non-empty set A , a partition o f A is a collection o f non-em pty
subsets o f A such that (l) for any two distinct subsets X and 7 , 1 (1 7 = 0
and (2) the union o f all the subsets in the collection equals A The notion of
a partition is not defined for an empty set, The subsets that are members
o f a partition are called cells o f that partition,

For example, let A = { a , b , c , d, e } , Then, P = { { a , c} , { 6, e} , { d } } is
a partition o f A because every pair o f cells is disjoint: { a , c } 0 { 6, e } = 0,
{ 6, e } fl { d } = 0 , and {a, c } 0 { d } = 0 ; and the union o f all the cells equals
A: = A ,

The following three sets are also partitions o f A:

(3 -15) Pi = { { a , c, d}, { 6, e } }
P2 = { { a } , { b } i { c } , { d } , { e } }
Pz = { {a>b, c , d, e} }

P3 is the trivial partition o f A into only one set, Note however that the
definition o f a partition is satisfied.

The following two sets are not partitions o f A\

(3 -16) C = { { a , b , c } , { b , d } , { e } }
D = { M , { & , e } , { c } }

C fails the definition because { a , 6, c } 0 { 6, d} 0 and D because U ({ a }:
{ M } > (c } } i- A

There is a close correspondence between partitions and equivalence rela
tions, Given a partition o f set A , the relation R = { (x, y) \ x and y are in
the same cell o f the partition} is an equivalence relation, Conversely, given a
reflexive, symmetric, and transitive relation R in A, there exists a partition
o f A in which x and y are in the same cell if and only if x and y are related by

O r d e r i n g s 47

R. The equivalence classes specified by R are just the cells o f the partition.
An equivalence relation in A is sometimes said to induce a partition o f A.

As an example, consider the set A = 1 1 , 2 , 3 , 4 , 5 } and the equivalence
relation

(3-17) R = { (1 , 1) , (1 , 3) , (3 , 1) , <3, 3) , (2 , 2) , (2 , 4) , (4, 2) , (4 , 5) ,
(4 , 4) , (5 , 2) , (5 , 4) , (5 , 5) , (2 , 5) }

which the reader can verify to be reflexive, symmetric, and transitive. In
this relation 1 and 3 are related among themselves in all possible ways, as
aie 2, 4, and 5, but no members o f the first group are related to any member
o f the second group. Therefore, R defines the equivalence classes { 1 , 3 } and
{2 ,4 , 5 }, and the corresponding partition induced on A is

(3 -18) P r = { { 1 , 3 } , { 2 , 4 , 5 } }

Given a partition such as

(3-19) Q = { { 1 , 2}, {3 , 5 }, { 4 } }

the relation R q consisting o f all ordered pairs (x , y) such that x and y are
in the same cell o f the partition is as follows:

(3-20) R q = { (1 , 1) , (1 , 2) , (2 , 1) , (2 , 2) , (3 , 3) , (3 , 5) , (5 , 3) , (5 , 5) , (4 , 4

R q is seen to be reflexive, symmetric, and transitive, and it is thus an
equivalence relation.

Another example is the equivalence relation ‘is on the same continent
as’ on the set A = {France, Chile, Nigeria, Ecuador, Luxem bourg, Zambia,
Ghana, San Marino, Uruguay, Kenya, H ungary}. It partitions A into three
equivalence classes: (1) A i = {France, Luxem bourg, San Marino, Hungary},
(2) A i = {C hile, Ecuador, Uruguay} and (3) As — {Nigeria, Zambia, Ghana,
Kenya},

3.5 Orderings

An order is a binary relation which is transitive and in addition either (i)
reflexive and antisymmetric or else (ii) irrefiexive and asymmetric. The
former are weak orders; the latter are strict (or strong).

48 C h a p t e r 3

To illustrate, let A — {a , b, c, d} The following are all weak orders in A:

(3 -21) Hi - { { a , b) , { a , c) , { a , d) , (b’ c)> {)> { M), { c, c) , { d , d) }
R 2 = { { b , a) , (b i b) , { a , a) , (c , c) , { d , d) i (c , b) , { c , a) }
Rz = { { d , c) , { d , b) , { d , a) , { c , b) , { c , a) , { a , a) , { b , b) , (c , c) ,

(d , d) , (b , a)}

These are represented in Figure 3-3 as relational diagrams, from which it
can be verified that each is indeed reflexive, antisymmetric, and transitive

Q ^ ;

b

o ' d

R i

o _ o _ o

c b a

& d
R 2 Rz

Figure 3-3:
Diagrams o f the weak orders in (3-21),

To these weak orders there correspond the strict orders S i, S2 and S3 ,
respectively:

(3 -22) Si = { (a , b) , (a , c) , (a , d) , (b , c) }
S2 = { (b , a) , (c , b) , (c , a) }
Sz = { { d , c) , { d , b) , (d , a) , { c , b) i { c , a) , { b , a) }

These can be gotten from the weak orders by rem oving all the ordered
pairs o f the form (x , x) . Conversely, one can make a strict order into a weak
order by adding the pairs o f the form (x , x) for every x in A.

As another example o f an order, consider any collection o f sets C and a
relation R in C defined by R = { (X , Y) \ X C Y } W e have already noted
in effect (Chapter 1 , section 4) that the subset relation is transitive and
reflexive. It is also antisymmetric, since for any sets X and Y , if X C Y and
Y C X , then X = Y (this will be proved in Chapter 7). The corresponding
strict order is the ‘proper subset o f ’ relation in C.

O r d e r i n g s 49

Figure 3-4:
Diagrams o f the strict orders in (3-22),

Further, we saw in Example (3-13) that the relation R ‘greater than’ in
the set o f positive integers is irrefiexive, asymmetric and transitive. It is
therefore a strict order. (Problem : W hat relation defines the corresponding
weak order?)

Some terminology: if R is an order, either weak or strict, and (x , y) g R,
we say that x precedes y, x is a predecessor o f y, y succeeds (or follow s) x.
or y is a successor o f x , these being equivalent locutions. I f x precedes y
and x y, then we say that x immediately precedes y or x is an immediate
predecessor o f y, etc., just in case there is no element z distinct from both
x and y such that x precedes z and z precedes y. In other words, there is
no other element between x and y in the order. Note that no element can
be said to immediately precede itself since x and y in the definition must be
distinct.

In R i and Si in (3-21) and (3-22), b is between a and c; therefore,
although a precedes c, a is not an immediate predecessor o f c. In R^ and Si,
c is an immediate predecessor o f 6, and 6 is an immediate predecessor o f a.

In diagramming orders it is usually simpler and more perspicuous to
connect pairs o f elements by arrows only if one is an immediate predecessor
o f the other. The remaining connection can be inferred from the fact that
the relation is transitive. In order to distinguish weak from strict orders,
however, it is necessary to include the ‘reflexive’ loops in weak orders. Di
agrammed in this way, the orders in (3-21) would appear as in Figure 3-5.
The diagrams o f the corresponding strict orders would be identical except
for the absence o f the loops on each element.

There is also a useful set o f terms for elements which stand at the ex-

50 C h a p t e r 3

o j j j j
c b a d c b a

Ri i?2

Figure 3-5: Immediate predecessor diagrams
o f the orders in (3-21)

tremes o f an order. Given an order R in a set A ,

1. an element x in A is minimal if and only if there is no other element
in A which precedes x (examples: a in R i and S i; c and d in R^ and
S2; d in i?3 and S3)

2. an element x in A is least i f and only if x precedes every other element
in A (examples: a in i?i and S i; d in iZ3 and S3)

3. an element x in A is maximal if and only if there is no other element
in A which follows x (examples: c and d in R i and S i; a and d in R^
and S2; a in iZ3 and S3)

4. an element x in A is greatest if and only if x follows every other element
in A (examples: a in #3 and S3).

Note that a in Ri and Si is both a minimal and a least element, while
c and d in these same orders are both maximal but not greatest (c does
not follow d, for example), Element d in R^ and S2 is both minimal and
maximal but neither greatest nor least. The order defined by R in Example
(3-13) has 1 as a maximal and greatest element (it follows all other elements
and has no successors) but there is no minimal or least element in the order.
Observe here that the form ‘greatest’ as used technically about orders need
not coincide with the notions ‘ greater than 1 or ‘greatest’ in the realm of
numbers.

A least element, if there is one in an order, is unique (if there were
two, each would have to precede the other, and this would violate either

asymmetry or antisymmetry), and similarly for a greatest element, There
may be more than one minimal element, however (e.g., c and d in i?2 and
52 above), and more than one maximal element An order might have none
o f these; the relation ‘greater than1 in the set o f all positive and negative
integers and zero, { 0 , 1 , —1 , 2 , —1 ,, , } has no maximal, minimal, greatest or
least elements.

If an order, strict or weak, is also connected, then it is said to be a total or
linear order. Examples are R$ and S3 above and the relation R o f Example
(3-13), Their immediate predecessor diagrams show the elements arranged
in a single chain, Ordei Ri is not total since d and c are not related, for
example Often orders in general are called partial orders or partially ordered
sets, The terminology is unfortunate, since it then happens that some partial
01 ders are total, but it is well established nonetheless, and we will sometimes
use it in the remainder o f this book.

Finally, we mention some other frequently encountered notions pertain
ing to orders A set A is said to be well-ordered by a relation R if R is a
total order and, further, every subset o f A has a least element in the order
ing relation, The set o f natural numbers N = { 0 , 1 , 2 , 3 , .} is well-ordered
by the ‘is less than1 relation (it is a total order, and every subset o f N will
have a least element when ordered by this relation). The set o f integers
Z = {0 , 1 , —1,2, —2 ,} , on the other hand, is not well-ordered by that rela
tion, since the negative integers get smaller ‘ ad infinitum’ . Note that every
finite linearly ordered set must be well-ordered

A relation R in A is dense if for every (x , y) £ R, x ^ y, there exists
a member z £ A, x ^ z and y ^ z, such that (x , z) £ R and (z , y) £ R
Density is an im portant property o f the real numbers which we can think
o f as all the points lying on a horizontal line o f infinite extent. The relation
‘is greater than’ is not dense on the natural numbers, but it is dense on the
real numbers.

Exercises

1. (a) Determine the properties o f the following relations on the set of
all people. In each case, make the strongest possible statement,
e.g, call a relation irrefiexive whenever possible rather than non-
reflexive

(1) is a child o f
(i i) is a brother o f

52 C h a p t e r 3

(iii) is a descendant of
(iv) is an uncle o f (assuming that one may marry one’s aunt or

uncle)

(b) W hich o f your answers would be changed if these relations were
defined in the set o f all male human beings?

2 . Investigate the properties o f each o f the following relations If any
one is an equivalence relation, indicate the partition it induces on the
appropriate set, (If you do not know the concepts, try to find some rea
sonable assumptions, state them explicitly, and do the exercise based
on those).

(a) M = { (x , y) | x and y are a minimal pair o f utterances of
English}

(b) C = { (x, y) | x and y are phones o f English in complementary
distribution}

(c) F = { (x, y) | x and y are phones o f English in free variation}

(d) A — { (x , y) | x and y are allophones o f the same English phonem e}

(e) Q is the relation defined by ‘X is a set having the same number
o f members as Y ’ in some appropriate collection o f sets.

3. Let A = {1 ,2 ,3 ,4 } ,

(a) Determine the properties o f each o f the following relations, its
inverse and its complement, If any o f the relations happens to be
an equivalence relation, show the partition that is induced on A.

R, = { (1 , 1) , (2 , 1) , (3 , 4) , (2 , 2) , (3 , 3) , (4 , 4) , (4 , 1) }
R 2 = { (3 , 4) , (1 , 2) , (1 , 4) , (2 , 3) , (2 , 4) , (1 , 3) }
R 3 = { (2 , 4) , (3 , 1) , (3 , 4) , (2 , 2) , (1 , 3) , (4 , 3) , (4 , 2) }
Ri = { (1 , 1) , (2 , 4) , (1 , 3) , (2 , 2) , (3 , 1) , (4 , 4) , (3 , 3) , (4 , 2) }

(b) Give the equivalence relation that induces the following partition
on A :P = { { 1 } , { 2 , 3 } , { 4 } } .

(c) How many distinct partitions o f A are possible?

4. W hat is wrong with the following reasoning that reflexivity is a conse
quence o f symmetry and transitivity? (B irkhof & MacLane (1965)) ,, If
{ x , y) £ R, then (y , x) £ R, since we assume R is symmetric. I f both
(x , y) and (y , x) are in R, then (x , x) must be in R by transitivity.

E x e r c i s e s 53

Let A = {1 , 2,3,5, 6 , 10, 15, 30} and let R be a relation in A defined as
follow s:

R = { (x , y) | x divides y without remainder}

(a) List the members o f R, and show that it is a weak partial order
but not a total order

(b) Construct an immediate predecessor diagram for this order and
identify any maximal, minimal, greatest, and least elements.

(c) Do the same for the set p(B) , where B = {a, 6, c } , and the relation
‘is a subset o f ’ .

Chapter 4

Infinities

In the preceding chapters we have occasionally dealt with sets, such as the
set o f positive integers, which we intuitively regard as infinite. We now want
to examine the concept o f infinity in more detail,

Some initially plausible approaches to the problem o f characterizing in
finity are not satisfactory, A definition employing the terms ‘never-ending’
or ‘im possible, in principle, to list exhaustively,’ for example, would be defec
tive, since these expressions are themselves no clearer than the term ‘infinite’
that is to be explicated. W hat is needed is a definition that makes use o f
set-theoretic concepts already at hand and that accords with our intuitions
about what sets should be regarded as infinite. Since an infinite set is in
some sense “larger” than any finite set, we start by defining what it means
for two sets to be o f equal or unequal size.

4.1 Equivalent sets and cardinality

We say that two sets A and B have the same number o f members, or are
equivalent, if and only if there exists a one-to-one correspondence between
them. Since a one-to-one correspondence is a function that is one-to-one and
onto, every mem ber o f A is paired with exactly one mem ber o f B , and vice
versa. In such a situation it would certainly be reasonable to say that the
sets are o f equal size, W e denote the equivalence o f A and B by A ~ B

The terms equal and equivalent must not be confused. Equal sets have
the same members while equivalent sets have the same number o f members
Equal sets, are therefore, necessarily equivalent but the converse is, in gen
eral, not tiue. Further, nothing is said in the definition o f equivalence about

55

56 C h a p t e r 4

the exact nature o f the one-to-one correspondence between the sets - only
that one exists.

For the case o f finite sets this definition o f equivalence leads to the ex
pected conclusion, A set with just four distinct members, for example, can
be put into one-to-one correspondence with any other set having exactly four
distinct members, but not with any set with more or fewer members. The
relation o f equivalence o f sets is, as the name implies, an equivalence relation
with the property that all o f the sets with the same number o f members are
put into the same equivalence class. To each equivalence class we can assign
a number, called the cardinal number, denoting the size o f each set in the
class. For finite sets, the cardinal numbers correspond exactly to the natur al
numbers. Thus a set A with just four members is said to have a cardinality
o f 4, written |A|= 4, as we indicated in Chapter 1.

In the case o f infinite sets something rather surprising happens, Consider,
for example, the set o f positive integers P , the set E o f positive even integers
(without zero), and the function F from P to E that maps every integer x
into 2x as indicated in Figure 4-1,

Figure 4-1 : A one-to-one mapping from the
positive integers to the positive even integers.

Every positive integer can be multiplied by 2 to give as a unique value a
positive even integer. This shows that F is a function whose range is in E.
The function F is one-to-one because for any integers x and y, if 2x = 2y,
then x = y. Further F is onto, since every member o f E can be represented
as 2x, for some positive integer x. Thus, F is a one-to-one correspondence,
and P and E , being equivalent sets, have the same number o f member s. This
result is surprising in view o f the fact that E is a proper subset of P (3, for
example, is in P but not in E). We are accustomed to thinking o f a set as

E q u i v a l e n t s e t s a n d c a r d i n a l i t y 57

being “larger” than any o f its proper subsets, but if we adopt the notion of
equivalence as the criterion for equal size o f sets, then we are inescapably led
to conclude that sometimes a set and a proper subset o f that set m ay have
the same number o f members. If, on the other hand, we were to say that a
set is always “larger” than a proper subset o f itself, we would have to accept
the puzzling consequence that sets o f different size can be put into one-to-
one correspondence. Either way the situation seems paradoxical W hen we
examine the sets that exhibit this unusual behavior, however, we find that
they are just the ones that we would intuitively call infinite. Accordingly,
we define an infinite set in the following way:

D e f i n i t i o n 4.1 A set is in fin ite i f f it is equivalent to a proper subset o f
itself ■

(4 -1) Example: The set o f natural numbers N = { 0 , 1 , 2 , 3 , . . . } is infinite.
Consider the set P = { 1 , 2 , 3 ,4 , , ,} , which is a proper subset o f N
and establish the mapping indicated in Figure 4-2 in which each
natural number n is carried into n + 1 To each member o f N there
corresponds a unique member o f P , and vice versa. Therefore, G
is a one-to-one correspondence, and P ~ N .

Figure 4-2 : Mapping showing that the set
N is equivalent to a proper subset o f itself

58 C h a p t e r 4

(4 -2) Example: The set o f all (finite) strings A* on the alphabet
{a , 6} is infinite. Take as a proper subset o f A" the set B =
{b,ba,bb,baa,bab,bba, . } i e ,, all strings in A* beginning with 6.
The mapping h shown in Figure 4-3 is a one-to-one correspondence
because for every string x in A * there is a unique string bx in B ,
and vice versa (e is the empty string o f zero length)

Figure 4-3 : A one-to-one mapping o f
{a , 6}* onto a proper subset o f itself'.

It should be easy to see that no finite set can be equivalent to one of
its proper subsets (take, for example, the set { a , 6, c } and any o f its proper
subsets). One point about the definition o f infinite sets sometimes causes
confusion: Only the existence o f at least one equivalent proper subset is
required, The definition does not say that an infinite set is equivalent to
every proper subset o f itself, a condition that in fact could never be met,
For example, N is not equivalent to its proper subset {0 , 3,18} .

4.2 Denumerability of sets

We have said that we can associate with each finite set a natural number
that represents its cardinality, and that sets with the same cardinality form
an equivalence class. Equivalent infinite sets can also be grouped into equiv
alence classes, all members o f which have the same cardinality, but there is

D e n u m e r a b i l i t y o f s e t s 59

no positive integer that can be associated uniquely with such an equivalence
class as its cardinal number, This follows from the fact that every integer
is the cardinal number o f a class o f finite sets, and no infinite set can be
equivalent to a finite set, since no one-to-one correspondence between them
is possible, Nonetheless, it is convenient to have symbols denoting the cardi
nality o f infinite sets; the one conventionally adopted as the cardinal number
o f the set o f natur al numbers (and all sets equivalent to it) is No (aleph null
or aleph zero). It must be emphasized as we have said, that N0 is not a
natural number, i.e., not a mem ber o f the set N = { 0 , 1 , 2 , 3 , , , ,,}„ Each
natural number has a corresponding cardinal number, but there are cardinal
numbers, e,g No that correspond to no natural number. A cardinal number
can be regarded as an answer to a question about the number o f members
in a set If we ask ‘How many natural numbers are there?’ or ‘How many
positive integers are there?’ , the answer is the cardinal number No

By definition, a set with cardinality No, i.e., one that is equivalent to
the set o f natur al numbers, is called denumerable or denumerably infinite or
countably infinite, A set that is either finite or denumerably infinite is called
countable. W e have already seen that the set o f positive even integers (E in
Figure 4-1) is denumerable Here are some other examples:

(4 -3) Example: The set o f integers, including zero, Z =
{0 , +1 , — 1, + 2 , — 2, + 3 , — 3,, } , is denumerably infinite One pos
sible one-to-one correspondence with N is

Z = {0 , + 1 , - 1 , + 2 , - 2 , +3 , - 3 , ., }

F

N = {0 , 1, 2, 3, 4, 5, 6 , ,,, }

The function F : Z —> N is defined by

(
0 when x = 0
2k — 1 when x is positive

— 2x when x is negative

That F is indeed a one-to-one correspondence can be seen by noting
that positive numbers in Z correspond to odd numbers in N , and negative
numbers in Z correspond to even numbers in N (with 0 corresponding to 0),

60 C h a p t e r 4

(4—4) Example; The set o f reciprocals o f the natural numbers without
zero 5 = {1 , |, |, • •} is denumerably infinite, as shown by
the following one-to-one correspondence with N :

< 7 - / 1 1 1 1 1 1 D ~ 11 > 2 1

G

> 6 >

N

G(x) = 1 - 1

{0, 1, 2, 3, 4, 5, . . . }

(4 -5) Example: The set o f odd positive integers F — 11 , 3 , 5 , 7 , 9 , . . .} is
denumerably infinite. One possible one-to-one correspondence with
N is

H

N

{1 , 3, 5, 7, 9, . . , }

{0, 1, 2, 3, 4, }

H(x) = z f l

W e have seen that the set o f positive integers P, the set o f even positive
integers E, and the set o f odd integers F all have the same cardinality. Since
P — E U F one might have supposed that P would have more members than
either E or F, but this is not the case Thus, the union o f two infinite sets
is not necessarily a set with greater cardinality.

Are there sets larger than the set o f positive integers? One that might
intuitively seem so is the set o f ordered pairs in the Cartesian product N x N .
W hen the pairs are listed in the order indicated by the arrow in Figure 4-
4, however, we find that the following one-to-one correspondence between
N X N and N can be established, although in this case it is somewhat more
difficult to prove that the correspondence is actually one-to-one.

One would also tend to think that there are more rational numbers than
natural numbers, since there are an infinite number o f rational numbers
between any two natural numbers (recall that a rational number is one which
can be represented as the ratio o f two integers x/y where y ^ 0). However,
a one-to-one correspondence can be established, proving that the sets are
actually o f the same cardinality.

To set up a correspondence, we write down the positive r ational numbers
in an array o f the following form:

D e n u m e r a b i l i t y o f s e t s 61

Figure 4-4: An enumeration o f the members
o f N x N .

N x N = { (0,0) , (0,1) , (1,0) , (0,2) , (1,1) , (2,0) , (0,3) , (1,2) , (2,1) , . , }

F

N = { 0, 1, 2, 3, 4, 5, 6 , 7, 8, . ,}

Figure 4-5: A one-to-one correspondence
between N X N and N .

1 /1 , 2/ 1 , 3 / 1 , 4 / 1 , 5 /1 , 6/ 1 ,. . ,

1 / 2 , 2/ 2 , 3 / 2 , 4 / 2 , 5 / 2 , , ..

1/3, 2 /3 , 3 / 3 , 4 / 3 , , . ,

1 /4 ,2 /4 , 3 / 4 , . , .

1 / 5 , 2 / 5 , , , , ,

1/ 6 , ...

We first set up a correspondence between the elements o f this array and
the positive integers as follows: starting in the upper left-hand corner, count
down the successive diagonals from the top row to the leftmost column. The
first few terms o f this correspondence are: 1/1 to 1, 2 /1 to 2, 1 /2 to 3, 3 /1 to

62 C h a p t e r 4

4, 2 /2 to 5, 1 /3 to 6, 4 /1 to 7 , , etc, This is similar to the enumeration we
gave in Figure 4-4, Next we pair the negative rationals with negative integers
and 0 with 0 to give a complete correspondence between the integers and
the rationals We then make use o f the established correpondence between
the natural numbers and the integers to obtain a correspondence between
the natural numbers and the rationals. (The rational numbers will each
have been written down more than once by this procedure; e.g., 1 /2 will
also appear as 2 /4 , 3 /6 , etc But having shown a one-to-one correspondence
between this larger set and the natural numbers, it is easy enough to go
through the list striking out each occurrence o f a rational num ber which
has already appeared in another form, m oving the succeeding terms higher
up in the list to fill in the gaps) Putting the members o f a set in a one-to-
one correspondence with the natural numbers by means o f some well-defined
procedure such as this one is sometimes called effectively listing the members
o f that set .

4.3 Nondenumerable sets

Not only is there a procedure for effectively listing the ordered pairs o f
integers, one can also effectively list the ordered triples, quadruples, etc.,
i. e„, the set o f re-tuples for any given re, (Problem: Give a systematic m ethod
for listing the ordered triples o f integers as a linear sequence.) Thus, a set
with cardinal number greater than No will not be found by taking successive
Cartesian products o f N, At one time it was suppposed that there were no
sets with cardinality greater than No, but Georg Cantor (1845-1918), the
mathematician who developed a large part o f the theory o f sets, proved that
for any set A, the power set o f A always has greater cardinality than A.
Thus, the power set of N will have cardinality greater than N .

T h e o r e m 4,1 (C antor): For any set A , \A\<\p(A)\ ■

P roo f There is a function from p(A) to A that maps every set containing
just one element into that element in A, and maps all the other sets into
some fixed element of A This function is onto since every member o f A has
at least one correspondent in p(A) . Thus \A\<\p(A)\ or |A| = |p(A)|, i.e.,
p(A) is at least as large as A, We next show that there is no one-to-one and
onto function F from A to p(A) , and thus that the sets cannot be equivalent.
Assume that there is such an F : A —> p(A) Then every mem ber o f A is

N o n d e n u m e r a b l e s e t s 63

mapped onto some subset o f A In general, some members o f A will be
mapped into a subset o f which they are also members, and some will not.
In the example in Fig, 4-6, 0 and 2 are each m apped by F into a set which

Figure 4-6: Illustration o f an alleged
one-to-one correspondence between a set and

its power set

has that element as a member, but 1 and 3 are not. Now form the set B by
taking every member o f A that is m apped into a subset not containing that
member. That is, B = { x £ A | x $ -F (k)} B is some subset o f A and is
therefore one o f the members o f p(A) B y hypothesis, F is onto, so there is
at least one mem ber o f A that is m apped into B Call this member y, Now
we ask whether y is in B or not.

1, if y £ B then it is not a member o f the set it is m apped into, B, Thus
if y £ B then y $ B . Contradiction!

2, if y $ B then it is one o f those elements not in the set it is mapped
into, so by definition it must be in B. So if y $ B, then y £ B.
Contradiction again! ■

This tw o-fold contradiction, which is reminiscent o f Russell’s Paradox
(see Chapter 1 2), shows that the assumption that F is one-to-one and onto
is false. Therefore it cannot be the case that \A\ = \p(A)\, so we conclude that
|A|<|p(A)| A corollary of this important theorem is that there is a cardinal
number greater than aleph-zero, which is comm only called 2^°, by analogy
with the finite cardinals, where the power set o f a set with n members has 2"

v^iiArxiutt <±

members. 2 °̂ does not denote an integer or any other real number, however,
since raising 2 to the power No is not a meaningful arithmetic operation.

Forming the power set o f p (N) leads to a cardinal number 22><0 that

is larger than 2K°; p (p (p (N))) has cardinality 2z2 , and so on. C antor’s
Theorem thus yields an infinite sequence o f ever greater infinite cardinal
numbers: No < 2K° < 22><0 <

Another example o f a nondenumerable set is the set o f all real numbers
between 0 and 1 (including 0 and 1 themselves), which we denote [0 , 1].
The real numbers consist of (1) the integers, (2) the other rational numbers
and (3) the irrational numbers such as \/b, n, etc,> which are not
expressible as the ratio o f two integers. In number theory it is proved that
all real numbers, whether rational or irrational, can be written as an integer
(possibly 0) followed by an infinitely long decimal fraction to the right o f the
decimal point. The fraction |, for example, can be written as 0.3333333 ,
where the ellipsis indicates that the sequence o f 3 ’s is infinite, Fractions such
as | can be represented as 0.5 or 0,50 or 0,500, etc,, or else as the infinite
repeating decimal 0.499999 , .. P roof o f this last statement would require
an excursus into geometric series, but it can be made at least more plausible
by considering the following: | = 0 11111; 1 = 9(|) = 9(0,11111 . ,) =
0.99999 ,, , The decimal fraction o f an irrational number is also infinitely
long, but unlike a rational number it does not have repeating digit sequences.

Cantor’s proof o f the nondenumerability o f [0,1] begins with the assump
tion that every number in this set is uniquely represented by a sequence
com posed o f 0 and an infinitely long decimal fraction, To assure that this
representation is unique for each member o f the set, we also take every
rational number that might be written with an infinite string o f 0 ’s, e.g.,
0 5000 , , in the form having an infinite string o f 9 ’s, e g ,, 0,4999 We
now make the assumption that is to be proved false, namely, that the set [0 , 1]
is denumerable. I f so, then its members can be put into a linear sequence
with a first member, etc., and this sequence will contain every mem ber of
[0,1] In Figure 4-7, this sequence a^, Xi, £ 3 , xn , „ ,, is indicated as run
ning vertically down the page with the decimal representation o f each x± to
the right o f the equals sign. The a ’s are the individual digits in each decimal
fraction; <113, for example, is the third digit in the decimal part o f the first
number in the sequence.

W e now show that there is a number y in the set [0,1] that is not in
the sequence Xi, X2, K3 , , . , xn, ... This number has the following charac
teristics: the integer part is 0; the first decimal digit, ay l, is different from

N o n d e n u m e r a b l e s e t s 65

X i — 0, &iiCL\2 ^13 " ' ^1 n

X 2 = 0.ffi21ffi22ffi23 ' ' a 2n '

X 3 = 0.(131(132(133 '

X-n — 0 ^nl^n2^n3 ^nn '

Figure 4-7 : Putative enumeration of [0,1]

a n ; its second decimal digit, ay2; is different from <122! and in general the
nth decimal digit a ^ is different from ann, Therefore, y cannot be equal to
Xi because they differ in the first decimal place (and we have agreed that
each number has a unique representation in the array); likewise, y cannot be
equal to x 2 because they differ in the second decimal place; and in general,
y cannot equal any number xn in the array because it differs from y in (at
least) the nth decimal place. Yet y is a number between 0 and 1 because
it is o f the form y = 0.ayi<iy2<iy3ayn • ’ Thus, our assumption that the
elements o f [0,1] can be put into a linear sequence cannot be maintained, and
the set is nondenumerable, This particular form o f reductio ad absurdum, the
so-called diagonal argument (y is constructed to be distinct from the integer
0 ffiii<i22ffi33 Onn on the diagonal o f the square array), is encountered
frequently in proofs involving infinite sets,

This proves that the cardinality o f the set [0,1] is greater than N0 but
does not determine just what it is. Cantor was able to show (by a proof
we will not reproduce here) that [0, 1] is equivalent to the power set o f the
integers, and thus its cardinal number is 2K°. Other sets with this cardinality
are the set o f all real numbers, the set o f all points on a line (o f whatever
length), the set o f all points on a plane, the set o f all points in re-dimensional
space (for any finite re), and the set o f all subsets o f the integers.

A problem that remained unsolved for many years was whether there
are any infinite cardinal numbers other than No, 2^°, 22><0, etc, Is there,
for example, a cardinal number f3 such that No < /? < 2K° or, to put it
another way, is there a set intermediate in size between N and p (N)? The
conjecture that the answer to this question was negative is known as the
Continuum Hypothesis, It was not until 1963 that the matter was finally
resolved (an event sufficiently newsworthy that it was reported in the New
York Times (N ov. 14, 1963, p. 37)), when P.J, Cohen showed that the

66 C h a p t e r 4

Continuum Hypothesis can be neither proved nor disproved on the basis
o f the usual assumptions about set theory The Continuum Hypothesis is
therefore independent, and either it or its negation could be added to set
theory without being redundant or creating a contradiction.

The following examples further illustrate the diagonal m ethod and some
other m ethods of showing that a set has cardinality greater than No,

(1) The set o f all real numbers x, 0 < x < 1, written in binary notation.
The diagonal m ethod can be applied to this set exactly as to the set o f real
numbers between 0 and 1 in decimal notation. Since every digit is either a
0 or a 1 , one simply sets ynn = 1 if ann = 0, and ynn = 0 if ann = 1, The
only reason for giving special mention to the binary notation case is that
it is often easier to relate other sets to the real numbers in binary notation
than to the real numbers in decimal notation

(2) The set o f all subsets o f the set o f natural numbers, i.e ., p (N), For
this example, we will use a m ethod which is not overtly “ diagonal” , although
it is closely related. (W e already know from Theorem 4-1 that this set has
cardinality greater than N0; we use the example to illustrate a m ethod of
proof.)

Assume that p (N) has the same cardinality as the natural numbers, i.e..
No Then it would be possible to list all the members of p (N) , i.e. all the
subsets o f N , in some linear order, as So, S i, 5 2 , Suppose that we had a
complete list o f this sort. W e could then construct a new subset o f N , to be
called S*, as follows:

Let the natural number 0 be a member o f S* if and only if 0 is not a
member o f So

Let 1 £ S* if and only if 1 0 Si.

Let 2 £ S “ if and only if 2 0 S2

In general, let n 0 S* if and only if n 0 Sn.

Then S* is a set of natural numbers, i e , a subset of N , which is different
from each subset in the list by at least one member, I f n £ Sn for all n, then
So = 0, and 0 was not in the list Therefore the list could not have been
complete after all, and the cardinality o f p (N) must be greater than N0

(3) The set o f all languages on a finite alphabet. Given an alphabet
V = {do, ffli, ®2> ■ define a sentence on V to be any finite string o f

N o n d e n u m e r a b l e s e t s 67

elements o f V (allowing repetitions). Define a language on V to be any set
o f sentences on V.

As a preliminary step, we will show that the set o f all sentences on V
has cardinality No, by showing how the sentences can be listed in a single
lineai list W e will list first all the 1-sym bol sentences, and then all the
2-sym bol sentences, etc. W ithin each group, the sentences can be listed in
alphabetical order, letting do be the first sym bol and an the last. Thus the
list will begin as follows:

do
ai

(L q CLq

&0al

CLlCLQ
ai<ii

d\ &TI

&ti &n
C Lq d Q a ,Q

dn dn Q"n
a0 clq dodo

Since all the sentences are clearly included in the list, they can be numbered
0 , 1 , 2 , thus establishing a one-one correspondence between the set o f
sentences and the natural numbers,

Having established that the set o f all sentences on V has cardinality No,
we can now show that the set o f all languages on V has a greater cardinality.
We will show three different methods o f proof which can be used

UHAPTER 4

(i) (Diagonal proof) Assume that the set o f all languages on V has
cardinality N0, so that the languages can be listed Lq,L\,L-2, We have
already established a means o f listing all the sentences on V as s0, Si, S2,
Then we can set up an infinite square array o f 0 ’s and l ’s as shown below,
where an entry x\f is 0 if s; is not in Lk and is 1 if s; is in Lk-

Sq *1 *2 SB s 4

L0

L i

L2

Lz

La

nO

®0

,0 »0 »0

x\

Thus for instance the language consisting o f all and only the odd-number ed
sentence^ would be represented by a row 0 1 0 1 0 1 ., the language consisting
o f all the 1-sym bol sentences (do through On) would be represented by a row
whose first n + 1 entries were l ’s, with all the remaining entries 0 ’s.

Then we can construct a representation o f a language L* different from
any in the list as follows: Let Xq = 0 if Kq — 1; *0 — 1 if xo = 0, In the same
way make xJ different from x\, x% different from k|, etc.; in general, x ^ = 0
if x™ = 1, and x ^ = 1 if k™ = 0, Then by the given interpretation o f 0 ’s
and l ’s, it follows that sm is in L" i f and only if sm is not in Lm, and thus
that L* differs by at least one sentence from every language in the list. Since
the procedure applies to any such putative list o f all languages, it follows
that there cannot be such a list, and therefore that the set o f all languages
on V has a cardinality greater than No.

(ii) The second proof is analogous to the proof used for the set p (N)
given as example (2) above Let 5 be the name of the set o f all sentences
on V . Then since every language on V is a set o f sentences on V , and every
set o f sentences on V is a language on V , the set o f all languages on V is
exactly the set o f all subsets o f 5 , i.e. p(S) . Then suppose that the set o f all
languages on V had cardinality No. We could then list all the languages, i.e.
all the members o f p (S), in a single list, L q,L \ ,L i , But then we could
immediately construct a new language L* as follows (using the enumeration
o f the sentences o f 5 previously established): let So £ L* if and only if

I n f i n i t e v s u n b o u n d e d 69

s0 $ L q, Si £ L x if and only if Si $ L i, etc,; in general, sm £ L * if and only
if sm $ Lm. Thus L" is a subset o f 5 which differs from every language in
the list by at least one member, and the list, therefore, could not have been
complete. Therefore, the set o f all languages, p (S), cannot have cardinality
No,

(iii) The third p roo f is an example o f a general m ethod: to show that
a given set has cardinality greater than H0, it is sufficient to show that it
can be put into a one-one correspondence with a set already known to have
cardinality greater than Ho, Since the set o f real numbers between 0 and 1
in binary notation is already known to have cardinality greater than Ho, we
will set up a one-one correspondence between it and the set o f all languages
on V.

Let each language be represented as an infinite sequence o f 0 ’s and l ’s
in the manner described in the first m ethod o f p roof above, (W e do not,
however, assume that the languages can be listed in a linear order, since we
have already seen that such an assumption leads to a contradiction.) Then
each language can be paired with a unique real number between 0 and 1 ,
since the infinite decimal is also an infinite sequence o f 0 ’s and l ’s designating
exactly one language and exactly one real number.

The establishment o f the correspondence completes the p roof
The three m ethods o f p roo f outlined above are equally valid The first

two have the advantage o f not requiring prior knowledge o f any sets with
cardinality greater than Ho, but once such knowledge is at hand, the third
m ethod is often more convenient. Furthermore, only the third m ethod, set
ting up a one-one correspondence, can establish exactly what the cardinality
o f a set is, and then only when the cardinality o f the corresponding set is
known. In the examples above, all the sets with cardinality greater than Ho
have the same cardinality as the set o f real numbers, but we have not proved
the fact for any o f the sets, and we cannot take it for granted because, as
we have seen, there are in fact infinitely many different cardinalities greater
than Ho-

A set which is not countable is called uncountable or non-denumerable
or non-denumerably infinite.

4.4 Infinite vs. unbounded

There is sometimes confusion over the difference between the terms ‘infinite’
and ‘unbounded’, particularly with respect to statements like ‘The length

70 C h a p t e r 4

of English sentences is unbounded’ , or ‘English has sentences o f unbounded
length.’ Unbounded means ‘having no upper bound’ , i e, having no limiting
value such that every value is at or undei that limit. Both o f the cited
sentences mean simply that there is no fixed length such that all English
sentences are o f that length or less, and this is perfectly consistent with the
statement that every English sentence is finite in length One can argue
validly from the premise that the length of English sentences is unbounded
to the conclusion that the set o f English sentences is infinite (see problem
4 in the following exercises), but one cannot validly argue from that to the
conclusion that the length of some English sentence is infinite.

Further examples
(1) The number o f sides o f regular polygons is unbounded, since for any

polygon with n sides, there is another with n + 1 sides; but the number o f
sides is always finite. The set o f such polygons is infinite.

(2) Consider the set o f real numbers x such that 0 < x < 1, Although
there is no largest real number in that set (1 itself is excluded from the set,
and for every real number less than 1 , there is a larger real number that
is less than 1), the size o f the real numbers in that set is bounded, since 1
serves as an upper bound. In this case, the size o f the members o f the set is
bounded, but the set itself is nevertheless infinite.

(3) Starting with the words in some given English dictionary, the length
o f English sentences that do not use any word more than once is bounded.
(The number o f distinct words in the given dictionary would provide an
upper bound; it is irrelevant to the question o f boundedness whether an
English sentence o f that length could actually be constructed,)

As can be seen from the examples, the terms ‘bounded’ and ‘unbounded’
apply to values o f functions, or to measur es o f various sorts applied to mem
bers o f a set; these terms do not describe cardinalities o f sets, as do ‘ finite’
and ‘infinite’ . It is never strictly meaningful to speak o f an ‘unbounded
set’ , although such a phrase may sometimes be interpretable in context as
elliptical for some longer phrase. Confusion can be most easily avoided by
eschewing the use o f the term ‘unbounded’ altogether, and replacing state
ments like the first two above by statements like ‘There is no upper bound
on the length o f English sentences’ . For the reader who encounters the term
‘unbounded’ in a statement, it may be advisable to ascertain whether the
statement can be unambiguously recast in such a form before proceeding.

E x e r c i s e s 71

Exercises

1 . Show that the relation o f equivalence o f sets is in fact an equivalence
relation,

2 . Show that the set o f integral powers o f 10 {10, 100, 1000, 10,000,
10 0 , 000, } is denumeiably infinite

3. Show that the set o f all negative integers is infinite

4. Suppose that the following assumptions are true o f English:

(i) There is a finite alphabet for writing sentences, consisting o f
26 letters, a set o f punctuation marks and a space

(ii) Every sentence is a finite string in the alphabet given in (i).

(iii) There is no upper bound on the length o f sentences o f En
glish, E.g, given any sentence, a longer one can be made by
conjoining it with another one.

W hat then is the cardinality o f the set o f all sentences o f English?
M otivate your answer

5. A hotelkeeper has a hotel with a denumerably infinite number o f rooms,
all single room s, numbered 1 , 2, 3,4, 5 , , , On Saturday night the hotel
was full, but Joe Doe came in asking for lodging. The obliging hotel
keeper, using his intercom, asked each guest to move into the room
n + 1 when his present room was numbered n, So Joe Doe was given
room 1, But on Sunday everyone stayed for another night. Now a de
numerably infinite football team came in asking for lodgings one room
per person How could the obliging hotelkeeper accom m odate them?

6 . Assume that the earth rests on the back o f a giant turtle, and that the
turtle sits on the back o f two giant turtles, and those two on three, etc.
‘all the way dow n’ (i e, there is no bottom layer o f turtles),,1

1This problem was inspired by a legendary anecdote reported in the preface of an
equally legendary, but actual Ph.D dissertation, Constraints on Variables in Syntax by
J. R, Ross, M IT 1967 Since only parts of the dissertation are published, we repeat the
anecdote here as told by Ross for historically accurate preservation:

72 C h a p t e r 4

(a) Suppose each turtle is the sole deity of some m onotheistic sect
(exactly one sect per turtle). W hat is the cardinality o f the set
o f all such sects?

(b) Suppose each subset o f the set o f all these earth-supporting turtles
forms the deity-group of some one sect (a-, m ono- or polytheis
tic, with the latter including both finite and infinite numbers of
deities). W hat is the cardinality o f the set o f all such sects?

After a lecture on cosmology and the structure of the solar system, William James was
accosted by a little old lady “Your theory that the sun is the center of the solar system,
and that the earth is a ball which rotates around it has a very convincing ring to it, Mr.
James, but it ’s wrong. I’ve got a better theory” , said the little old lady., “And what is
that, madam?” inquired James politely “ That we live on a crust of earth which is on
the back of a giant tuitle” . Not wishing to demolish this absurd little theory by bringing
to bear the masses of scientific evidence he had at his command, James decided to gently
dissuade his opponent by making her see some of the inadequacies of her position. “ If
your theory is correct, madam,” he asked, “ what does this turtle stand on?” “You are a
very clever man, Mr, James, and that’s a very good question” replied the little old lady,
“ but I have an answer to it,. And it’s this: the first turtle stands on the back of a second,
far larger turtle, who stands directly under him” . “ But what does this second turtle stand
on?” persisted James patiently, To this the little old lady crowed triumphantly. “ It’s no
use, Mr. James - it ’s turtles all the way down.”

E x e r c i s e s 73

(N ote that two different sects may o f course worship some turtles
in comm on as long as they do not worship exactly the same set)

Cardinal numbers form theii own numerical system in which we can
do cardinal arithmetic. This exercise gives the basic notions. Let A
and B be disjoint sets, finite or infinite, and let a = \A\ and b = \B\.
We define cardinal addition, written ©, and cardinal multiplication,
written ®, as follows:

a © b = | [A U B) |
a ® b = |(A X B) |

W hen A and B are both finite, cardinal addition and multiplication
produce the same results as the corresponding arithmetic operations
on integers. W hen at least one is infinite, however, the operations aie
no longer parallel in all respects. Find examples o f sets A and B for
which the following hold:

(a) No © 1 = N0

(b) No ® 2 = N0

(c) No © No = N0

(d) No ® No = No

Do the operations © and ® appear to be commutative and associative?

It can be proved that N0 is the smallest infinite cardinal number. Con
sider the following putative counterexample to this claim. Choose a
cardinal number x such that 2X = N0„ x cannot be finite, since 2 raised
to any finite power is finite; but x cannot be equal to N0 either, since
2^° > No by Cantor’s Theorem. Therefore x is an infinite cardinal
number less then No. W hat is wrong with this argument?

Appendix A

Set-Theoretic
Reconstruction
of Number Systems

In this appendix we represent the structures o f the natural numbers, the
integers, and the rationals in pure set-theoretic terms. This set-theoretic
representation o f numbers gives us first o f all a good impression o f the power
o f set theory in representing other structures or mathematical systems. To
represent a number structure in pure set-theoretic terms means to define its
primitives, operations and relations in set-theoretic terms only, To define the
notion number in terms o f sets may seem strange at first, since we are so much
more familiar with numbers than with sets. The set-theoretic representation
o f numbers is in fact quite artificial and and the one given here is also not
the only conceivable one. It is sufficiently cumbersome that it is never used
in practice for ordinary manipulation o f numbers, So its function is purely
theoretical: it is a necessary step in establishing the interesting claim that
set theory is the universal foundation o f all o f mathematics.

A .l The natural numbers
First we define 0 as the empty set:

0 = def®

Then for the number 1 let us find a set with exactly one mem ber which is
built from sets already constructed, i.e. built from 0. Such a set is {0} „ So
we define

1 = cZ e fW

75

76 A p p e n d i x A

As a result o f these two definitions we see that

1 = { 0 }

We continue in the same way

2 = d e / { 0 > W } = { 0>1}

3=<fe/ {0> W . { 0 . { 0} } } = { O , 1 , 2}

We can proceed indefinitely in this way, defining each successive number
as the set o f all its predecessors, This can be expressed formally in either o f
two ways:

for all re (i) n + 1 = { 0 , 1 , 2 , ,,., re}
or (ii) n + 1 = re U {n }

Given any set o f finite elements o f any sort, the way to tell how many
elements it has is to compare it with each o f these ‘num ber’ sets in turn until
one is found whose members can be put in a one-to-one correspondence with
the members o f the set in question. An analogy can be drawn to the m ethod
of telling that something is a meter long by comparing it to the standard
meter, a physical object preserved in Paris

Each natural number has a unique representation in our scheme, but it
remains to be shown that the numbers, as reconstructed, have the properties
that we expect them to have. In particular, our reconstruction should exhibit
the required behavior' in relations such as equality and greater-than, and
under operations such as addition and multiplication.

The notion o f a successor o f a natural number is defined as:

successor o f x = j ef X U {k } ,

We indicate the successor o f x by s(k),
Equality between natural numbers is defined as set equality, i.e., having

identical membership. Thus, 5 and s(4) are the same number, each being
{ 0 , 1 , 2 , 3 , 4 } ,

The linear order ‘less than’ is defined by set inclusion: x < y iff x C y\
also, x < y, ‘less than or equal to ,’ iff x C y, and similarly for x > y and
x > y

T h e n a t u r a l n u m b e r s 77

Addition can be defined by a pair o f rules using the notion o f successor:

for all x (i) x + 0 = x
(ii) x + s(ra) = s(k + n)

For example, to add two numbers, the second part o f the definition is
repeated until the first part becomes applicable The steps foi 4 + 3 are:

= 4 + s(2) def. successor
= *(4 + 2) def. addition
= s (4 + s (l)) def. successor
= s(s(4 + 1)) def. addition
= s (s (4 + s (0))) def. successor
= * (* (* (4 + 0))) def. addition
= *(®(*(4))) def. addition
= -(< (5)) def. successor
= - (6) def. successor
= 7 def, successor

Subtraction can also be defined by a pair o f rules, but it is only defined
when a set is being subtracted from one which contains it:

for all x (i) x — x = 0
(ii) s (x) — n = (̂a: — n)

For example,

s (3) - 2 def. o f successor
= s(3 - 2) def. o f subtraction
= - (- (2) - 2) def. o f successor
= *(* (2 - 2)) def. of subtraction
= , (, (0)) def o f subtraction
= . (1) def, o f successor
= 2 def. o f successor

Multiplication can be defined by a pair o f rules involving addition, which
has been already defined:

78 A p p e n d i x A

for all x (i) x ■ 1 = x
(ii) x ■ s(n) = (x n) + x

For example,

2 3 = 2 s(2) def, o f successor
= 2 - 2 + 2 def. o f multiplication
= 2 • s(l) + 2 def. o f successor
= (2 1 + 2) + 2 def, o f multiplication
= (2 + 2) + 2 def. o f multiplication
= 4 + 2 = 6 by addition, as

previously defined

A .2 Extension to the set of all integers

Mathematicians (and scientists in general) strive to develop concepts with
as wide a range o f application as possible. Looking at the system above,
one detects a gap: the concepts o f equality, addition and multiplication
are defined for any two natural numbers, but subtraction is not. It would
desirable to extend the number system so as to have subtraction defined
everywhere.

W hat does it mean to ‘ extend’ a system? It means to create a new system
with additional elements and possibly additional operations or relations in
such a way that the new system contains a subsystem which is isomorphic
to the old system. In other words, there is some subset o f the elements,
operations and relations o f the new system which can be put in one-to-one
correspondence with the elements, operations and relations o f the old sys
tem , so that the corresponding operations on corresponding elements yield
corresponding elements, and the corresponding relations contain correspond
ing ordered pairs o f elements. This guarantees in effect that nothing o f the
old system has been lost in constructing the new one.

In this case, where we are concerned with an operation, subtraction,
which is not defined on certain elements, we would much prefer, for purposes
o f conceptual economy, that the operation in the new system be given a single
definition on all the elements. We will construct a new number system
in which subtraction has a uniform definition on all elements, and which
contains a subsystem which is isomorphic to the original system. The new
number structure is called the integers, Remember that the set-theoretic

E x t e n s i o n t o i n t e g e r s 79

representation o f number structures is not in any sense a definition o f what
the numbers ar e in absolute terms, but rather o f how they can be represented
by set-theoretic constructions or re-constructions

The representation o f the integers does not bear any resemblance to the
ordinary integers . . . — 2, —1, 0 , 1, 2,, , ,, They are here defined in a special
way so that the operations and relations on them can be defined in terms of
the operations and relations already defined for the natural numbers,

D e f i n i t i o n A 1 An integer is an ordered pair (a, b) o f natural numbers. ■

(Intuitively, the ordered pair (a, b) will correspond to the integer which
is the difference a — b\ i.e , (5,3) represents 2; (2 ,4) represents —2. Thus,
many oredered pairs represent the same integer,)

Equality: (a , b) = (c, d) if and only if a + d = c + 6, using the definition o f
+ for the natural numbers. Note first that equality is an equivalence relation
in the new system, Note also that under this definition (a,b) = (a + k,b + k)
for any k. Hence,

(7,3) = (6 , 2) = (5,1) = (4,0)
(3,7) = (2 , 6) = (1,5) = (0,4)
(3,3) = (2 , 2) = (1 , 1) = (0 , 0)

Every integer is therefore equal to some integer o f one o f these three forms:

1 , (a — b, 0)

2 , (0 , a — b)

3 (0,0)

where a and 6 are natural numbers and ‘ — ’ is as defined for the natural
numbers. By convention, all integers equal to some integer o f the first type
will be called positive integers, the second type negative integers and the
third type zero.

Ordering ‘greater than’ : (a, b) > (c, d) i f and only if a + d > c + 6 where
> on the right is the relation ‘greater than’ defined on the natural numbers.
For example, (6 , 3) > (2 , 1) (i.e., 3 > 1) because (6 + 1) > (2 + 3); similarly,
(4, 4) > (2, 5) (i.e , 0 > - 3) since (4 + 5) > (2 + 4).

Addition: (a , b) + (c, d) = (a + c,b + d) where addition on the right is
addition as already defined on natural numbers. For example, (6 , 3) + (4, 2) =
(10,5) (i e, , 3 + 2 = 5); also, (2, 5) + (2,1) = (4 ,6) (i.e., - 3 + 1 = -2) ,

80 A p p e n d i x A

Subtraction: (a, b) — (c, d) = (a, b) + {d, c) = (a + d,b + c). For example,
(4, 2) - (6 , 3) = (4 ,2) + (3 ,6) = (4 + 3 ,2 + 6) = (7, 8) (i.e ., 2 - 3 = -1) . (To
subtract, one adds the ‘negative3 o f the subtrahend, i.e., 2 — 3 = 2 + (—3))
Note further that (a,b) = (a, 0) — (6,0). Since we call numbers o f the form
(a, 0), (6, 0) positive, we may now interpret this result as showing that any
integer (a, b) can be represented as the difference o f two positive integers
(a ,0) - (6, 0).

Multiplication: {a,b) {c , d) = ((a c) + (6 d) , (a d) + (6 c)) , where
multiplication on the right side is multiplication as already defined on natural
numbers. For example, (6,3) • (4,2) = ((6 ■ 4) + (3 2), (6 2) + (3 4)) =
(2 4 + 6 , 1 2 + 12) = (30,24) (i e , 3 2 = 6); similarly, (2,5) (1,2) = ((2 1) +
(5 2), (2• 2) + (5 1)) = < 2 + 1 0 , 4 + 5) = <12,9) (i.e., (- 3) (- 1) = 3), This
definition has the desired result for positive integers: (a , 0) (c, 0) = (a c, 0);
and for negative integers: (0 , 6) (0 , d) = {bd, 0); (a , 0) (0 , d) = (0 , ad).

The natural numbers are not themselves a subset o f this set-theoretic
representation o f the integers. Rather, the set o f all integers contains a
subset consisting o f the positive integers and zero which is isom orphic to
the set of natural numbers Although in many applications the distinction
between natural numbers and non-negative integers is not im portant, the
concepts can be seen to differ by virtue o f the total systems o f which they
are part. For example, while the positive integer +5 can be subtracted
from the positive integer +3 , the corresponding natural number 5 cannot be
subtracted from the natural number 3

A .3 Extension to the set of all rational numbers

The operations o f addition, subtraction and multiplication are now de
fined on all the integers. We have not said anything yet about division.
The question ‘W hat number multiplied by x gives yV does not always have
an answer in the integers. The next extension o f this system will be to a
number structure in which this question is always answered: the rationals.
There is one notable exception: division by 0 is always impossible, (It is
instructive to attempt to extend the system to one which includes division
by 0 and observe the difficulties one encounters,) The elements o f the new
system will be defined in terms o f integers, for convenience written as usual

— 2, —1, 0 , 1 , 2 , The operations and relations o f the new system will
be defined in terms o f the operations and relations on the integers. An iso
morphism can then be shown between the integers and a subsystem o f the
rationals.

E x t e n s i o n t o r a t i o n a l n u m b e r s 81

D e f i n i t i o n A. 2 A rational number is an ordered pair {a ,b) o f integers
where 6 ^ 0 . ■

The pair {a , b) may be interpreted in the language o f ordinary arithmetic
as the fraction Note that since each integer is defined as a pair o f natural
number s a rational will be a pair o f pairs o f natural numbers.

Equality: (a, b) = {c , d) i f and only i f a d = c ■ b.

Ordering ‘greater than3: {a, b) > (c, d) i f and only i f a d > c - b.

Addition: (a,b) + (c, d) = (a ■ d + c • b,b ■ d).

Subtraction: (a, b) — (c,d) = (a d — c ■ 6, 6 d).

Multiplication: (a, b) ■ {c , d) = {a ■ c,b d).

Division: (a,b) : {c , d) = (a d, c 6),
(A ll operations on the right sides are as defined for the integers.)
It will be noted that attempting to divide by 0 yields an ordered pair

whose second member is 0 ; by definition, such ordered pairs are not rational
numbers and hence division by 0 is impossible within the system.

To define the isomorphism between the integers and a substructure o f
the rationals (except division), let the rational number (k ,1) correspond
with the integer x , and all the operations for the rationals (except division)
correspond to operations with the same name for the integers and similarly
for the ordering, It can be verified that this is an isomorphism.

82 A p p e n d i x A

A .4 Extension to the set of all real numbers
This section does not actually come within the realm o f discrete math

ematics, which deals with set o f cardinality no larger than The real
numbers, as we saw in Chapter 4, form a larger set, and its properties are
different in m any ways, Most o f the subject o f calculus, for example, depends
on some o f the essential properties o f the real number system,

This extension o f the number system in its set-theoretic representation
allows us to obtain a system in which we always have an answer to a question
like ‘W hich number multiplied by itself gives 2? ’ , There are two fundamental
ways o f constructing the real number system, one due to Cantor, the other
to Dedekind, We give here Cantor’s construction. Consider sequences

A _ 1 2 3 4 5 6
2 ’ 3 ’ 4 ’ 5 ’ 6 ’ 7 ’

and
R — 2 3 4 5 6 7

1 ’ 2 ’ 3 ’ 4 ’ 5 ’ 6 ’ "
Both o f these sequencer converge to 1; i.e., the more a sequence is developed,
the closer one gets to 1, even though 1 is never actually reached. This is
expressed more precisely by saying that a sequence ao,a\ ,a 2, , , converges
to x if for any positive number e (epsilon), no matter how small, we can
find an index N such that \an — x\ < e for all n > N Some sequences o f
rational numbers converge to a number which is itself not representable as a
rational number. The above definition cannot be used to test convergence in
such cases, since we have no means o f expressing the point o f convergence.
Another definition o f convergence can be given which is equivalent to the
former but which does not depend on the nature o f x

D e f in it io n A, 3 A sequence ao, a i, <i2: ■ converges i f for any positive num
ber e no m atter how small we can find an index N such that \an — am\ < e
for a U m > N and n > N ■

In other words, we are stating that the terms far out in the series must
get closer and closer to each other, which has the same effect as saying that
they must all get closer and closer to some particular point o f convergence.
Cantor defined a real number as a convergent sequence o f rational numbers.
The rational numbers themselves can be represented in this system as se
quences o f the form r, r, r , ., , where r is a rational number, since a sequence
all o f whose member s are identical cerainly satisfies the definition o f conver
gence. If one thinks o f real numbers as infinite decimals, one way o f repre
senting real numbers would be as the limit o f a sequence o f finite decimals

E x t e n s i o n t o r e a l n u m b e r s 83

(which are rational numbers) o f the form Ki., £1 . x2, x i , x 2x 3, X1 .X2X3X4, i.e.,
s l , ^ f 2-, Xlioos ! • ■ Operations must all be defined anew for the real num
bers, but this is quite simple. To give just one example, addition is defined
by: do, ai , a2, .. + 60, , &2, ■ = ffio + &o, <ii + &i, <12 + &2, •

ieview Exercises

1 . Consider the following sets:

Ai = {0,{B},{0,B}}
A 2 = {B}
A3 = {0}
^4 = {0, {0: B}}
A 5 = {{5}, {0, B}}
Aq = {0,5}

Determine the following sets:

(a) A i n A 4.

(b) (A? U A3) — A 6

(c) p (A e) n A s

(d) - A 2

2 . On the integers specify a relation which is :

(a) symmetric and irrefiexive

(b) transitive and asymmetric

3. Consider the set TV o f all natural numbers in set-theoretic representa
tion

(a) Let R be the subset relation on N. Is R symmetric and /or tran
sitive an d /or reflexive ?

(b) I f re £ N and x £ re, is necessarily x C n? Motivate your answer,

4 . Suppose that, starting with a single common ancestor, Adam , each
man has some finite positive number o f sons, each o f his sons has some
finite positive number o f sons etc, forever. Suppose that for each

85

86 R e v i e w e x e r c i s e s

man other than Adam we know who his father was and also what his
chronological order is amongst his brothers (no simultaneously born
twins, no women either).

(a) Show how a one-to-one correspondence between the set o f all men
and the natural numbers may be constructed, including an illus
tration of how the beginning o f the list might look

(b) Let every distinct set o f men (finite or infinite, and spanning
arbitrary stretches of time) be called a ‘ club’ . Show without using
any o f the results o f Chapter 4 that the set o f all clubs is non-
denumerably infinite

5. Determine whether the following systems are partially ordered, linearly
ordered or well-ordered

(a) the set o f all positive and negative rational numbers; the relation
‘is equal to or less than3

(b) the set o f all negative rational numbers; same relation as (a)

(c) the set o f all negative rational numbers and zero; the relation ‘is
equal to or greater than’

(d) the set A o f all strings finite in length form ed by concatenating
elements a, b, c; the relation ‘is at least as long as’

(e) the same set A as in (d); the relation R described by ‘ x Ry if either
y is longer than x or x and y are the same length but x does not
come after y alphabetically’

* (f) the set o f natural numbers; the relation R described by ‘ x R y if
x and y are both even and x < y or, if x and y are both odd and
x < y\

* (g) as (f) but R is: ‘ x Ry if x and y are both even and x < y or, if x
and y are both odd and x < y or x is even and y is od d ’ .

* (h) as (f) but R is: ‘ x Ry if x and y are both even and x < y or, if x
and y are both odd and x < y or x is odd and y is even’ .

6 . Show that for any sets A , B , C , i f |A| < |5|, and |5| < |C|, then
| A |< |C | .

Part B

LOGIC AND FORMAL
SYSTEMS

Chapter 5

Basic Concepts of Logic and
Formal Systems

5.1 Formal systems and models

Formalization or axiomatization is an outgrowth o f the broader goals o f
scientific systematization Euclid systematized geometry by showing how a
great many statements known to be true about geometrical figures could be
logically derived from a small set o f principles assumed to be true, called the
axiom s, Newton systematized mechanics by showing how the known laws
o f motion, both planetary and terrestrial, could be derived from three basic
statements. In both cases, the initial assumptions had the status o f true
statements, ‘self-evident3 in the Euclidean system, empirically discovered
truths in the Newtonian system, In both cases the system was concerned
with particular objects, points and lines in the one case, physical objects in
the other,

The realization that a strict separation o f the formal, syntactical aspects
o f a system from any o f its meaning assignments or interpretations, i.e its
sem antics, is both possible and desirable was one o f the consequences o f the
discovery o f non-Euclidean geometries

E uclid ’s axioms included one known as the ‘Parallel Postulate’ which can
be stated as follows.

P a ra lle l P o s tu la te : Given a line L and a poin t P not on line L, one and
only one line L' can be drawn through P parallel to the line L (i.e., not
intersecting no matter how far extended .)

89

90 C h a p t e r 5

Since this particular postulate had always seemed less ‘self-evident3 than
the others, numerous attempts, all unsuccessful, were made to derive it from
the remaining axioms. N. Lobachevsky and (independently) J„ Bolyai in
the early 19th century made such an attempt, trying to use the m ethod
o f reductio ad absurdum , which we have illustrated in our reasoning about
properties o f complement relations in Section 3.3 They began by assuming
that more than one line parallel to L could be drawn through point P , but
instead o f deriving a contradiction as intended, they discovered or invented
the first non-Euclidean geometry The revised axiom system turned out to
be perfectly consistent (a notion we discuss in Chapter 8) Later, Riemann
constructed another non-Euclidean geometry, in this case by replacing the
Parallel Postulate by a postulate stating that no lines parallel to a given line
L could be drawn through a given point P not on L, i.e. that all distinct
lines intersect eventually Again, no contradiction arose, These discoveries
in no sense refuted Euclidean geometry, but they did lead to a fundamental
change in our attitude towards the axioms. Earlier the axiomatic approach
was thought to systematize a body o f absolute truths, but after Bolyai,
Lobachevsky and Riemann it began to be appreciated that while the derived
statements were valid, i.e, logically necessary consequences o f the axioms,
the axioms themselves were simply assumptions. We now no longer ask
whether certain axioms are true in any absolute sense, but what, if anything,
they might be true o f That question is equivalent to asking what m odels,
if any, the set o f axioms has.

Euclidean geometry may seem by its usual terminology to have presup
posed a particular model, namely the abstract set o f points and lines and
the figures that can be constructed with compass and straightedge. How
ever, to look at it as a genuinely formal system we must fust replace the
occurrences of the words ‘poin t’ and ‘line’ by undefined primitives such as
‘p ’ and ‘1’ , making corresponding changes in the definitions o f subsequent
terms, since notions o f ‘parallel’ , ‘ triangle’ etc. can be defined in terms o f
‘poin t’ and ‘line’ . We then find that, for instance, if we start with a fixed
circle in a plane and interpret ‘p ’ as ‘point in the interior o f the circle’ and
‘1’ as ‘ open-ended chord o f this circle’ (an ‘ open-ended chord o f a circle’ is a
straight line within the circle which approaches indefinitely closely, but does
not touch the circumference), then through a given point, more than one
parallel can be drawn to a given line, This is illustrated in Figure 5-1.

Starting with line A B and point C , we can construct lines D C E and
F C G , among others. D C E and F C G are both parallel to A B since neither
will intersect A B ‘no matter how far extended’ , i.e. no matter how close to

F o r m a l s y s t e m s a n d m o d e l s 91

Figure 5-1: Open-ended chords in a circle

the circumference o f the circle they get, This interpretation therefore does
not satisfy the Euclidean axioms and does not provide a m odel for them. It
does provide a m odel for the Bolyai-Lobachevsky non-Euclidean geometry.
In fact, it is often by constructing a m odel for a set o f axioms that we prove
them to be consistent (see Ch. 8 , Sec 2 for the connection between these
two important notions ‘ consistency3 and ‘having a m odel’). Any system or
structure in which all o f Euclid’s axioms are true is called a m odel o f Euclid ’s
system; plane geometry is the standard or intended model, since it was with
that “in m ind” that Euclid developed the formal system in the first place.

The development o f quantum mechanics has similar consequences for the
attitude we have towards N ew ton’s physical system. It is still true that
all o f the laws o f mechanics which Newton derived follow from three basic
principles. But the laws are now seen to hold only in certain macroscopic
situations. The actual physical universe is no longer held to be a m odel of
the Newtonian system.

In the cases o f geometry and mechanics the m odel came first and the
formalization later. This is the usual case in empirical research and in math
ematics, but it is not the only one. It proves to be very fruitful to study
formal systems in the abstract, since insofar as distinct systems have a simi
lar structure, their formalizations are alike. Direct study o f a formal system
can yield results which can be applied generally to all systems which are
models o f it, Also, once we show that a certain system is equivalent in its

92 C h a p t e r 5

formal structure to another better known system, what we know about the
latter may transfer to new insights about the former.

In general, a formal system consists of:

(i) a non-em pty set o f primitives

(i i) a set o f statements about the primitives, the axioms

(i i i) a means o f deriving further statements from the axioms, either:

(a) an explicit set o f recursive rules o f derivation; or
(b) appeal to a background logic for the language in which the axioms

are stated, usually predicate logic; or

(c) no explicit means o f derivation; one is to derive “ whatever logically
follows” from the axioms.

Some o f the more “ syntactic” formal systems that we will illustrate in Chap
ter 8 follow option (iiia) above.

In most formalizations o f scientific theories and blanches o f mathematics,
it is taken for granted or assumed to be given what the permitted background
logic or forms o f reasoning are. But forms o f reasoning themselves are the
subject matter o f logic, to which most o f this part o f this book is devoted,
Hence we use logic or a logical language to reason about other systems like
set theory, geometry or physics. We call the language which we use to talk
and reason about another system the meta-language, and the system rea
soned and talked about the object language. The distinction is o f course a
relative one, since we can use set theory, for instance, in its turn as a meta
language to talk about physical systems. Natural languages are the only
kind of languages lich enough to incorporate their own meta-language We
talk in English about English, although in linguistics we also develop spe
cialized formal languages to talk about sentence structure or word meaning,
for instance,

In the last chapter o f this part o f the book, Chapter 8 , we will return to
the subject o f formal systems, axiomatization, and m odel theory, after we
have introduced enough logic to present some interesting examples. We will
also see how a system o f logic can itself be axiomatized. In the case o f logic,
an axiomatization will consist of:

(i) a syntax defining the expressions o f the language,

(i i) a set o f axioms (themselves among the formulas o f the language)

N a t u r a l l a n g u a g e s a n d f o r m a l l a n g u a g e s 93

(iii) a set o f explicit rules o f inference for deriving further formulas from
the axioms. The axioms plus all further formulas so derivable axe the
theorems o f the system

5.2 Natural languages and formal languages

The languages we speak and use naturally to communicate with each other
are what we call natural languages. Natural languages axe acquired as first
languages in childhood and axe suited to just about any communicative goal
we may have. Formal languages, on the other hand, axe usually designed
by people fox a cleai, paiticulai puxpose, but, although these languages axe
constxucted, in use they may to a cextain extent change and evolve. Exam
ples o f formal languages are the language o f set theory with which you got
acquainted in Part A, the language o f logic which we introduce in Chapters
6 and 7, the language o f ordinary arithmetic, and programming languages
like Pascal, Fortran, Prolog, Lisp and all their ‘dialects3,. There are m any
other notational systems with conventional meaning which may deser ve the
name ‘language’ as well, like musical notation, traffic light systems, Morse
code and so on, but we will leave these out o f our present considerations,
One o f the most important uses linguists and especially semanticists make
o f formal languages is to represent meaning o f natural languages. Char ac
terizing meaning is the main goal o f the semantic component o f a grammar,
whether it be a grammar of a formal language or a grammar o f a natural
language. Like any scientific enterprise, semantics chooses particular aspects
and parts o f meaning as objects o f study and employs formal languages as
analytic tools. Logic is a branch o f the foundations o f mathematics which
has developed a number o f particularly useful formal languages, o f which
the first-order logic introduced in this part o f the book is perhaps the best
known and most often used. As we already suggested in the previous section,
logical languages can be used as meta-languages in which we reason about
set theory as object language or about set theoretic objects. But logical
languages can be applied to any other object language and formalize the
reasoning from axioms to theorems in that domain. One o f our interests
in this book is in developing the background for1 applications o f logic and
formal languages to natural languages, such as English, Part D is devoted
to such applications and to a number o f current topics in the semantics o f
natural language. But first we have to study the language o f logic, and learn
how to use it. And o f course the study o f logic has many other important

94 C h a p t e r 5

applications both within and outside o f the field o f linguistics

5.3 Syntax and semantics

The distinction between the syntax and the semantics o f a language or a
formal system is essentially a distinction between on the one hand talking
about properties o f expressions o f the system itself, such as its primitives,
axioms, rules o f inference oi rewrite rules, and theorems, and on the other
hand talking about relations between the system and its models or interpre
tations Although the separation o f form and content is itself ancient, it is
not always possible to draw a hard and fast line between the purely syntac
tic and the purely semantic aspects o f a language or system, especially since
many properties o f a system are likely to be reflected in both its syntax and
its semantics But there is general agreement that syntax and semantics
have some clear distinctions among their core notions, For instance, the
construction o f proofs from premises or axioms according to formal rules o f
inference or rewriting rules is a syntactic activity, while demonstrating that
a certain set o f axioms is consistent by showing that it has a m odel (see
Chapter 8) is giving a semantic argument. On the syntactic side are well-
formedness rules, derivations, proofs, and other notions definable in terms
o f the forms o f expressions On the semantic side are notions like truth and
reference, properties which expressions may have relative to one m odel or
interpretation and fail to have with respect to another,

Both syntactic and semantic methods o f ar gumentation and tools o f anal
ysis have proved valuable in the study o f formal systems. Neither is inher
ently superior or more legitimate; one may be more direct or handy than the
other for answering a particular question or showing that a given form al sys
tem has some property or other, Many important results in the metatheory
o f logic concern the relation between syntax and semantics, and the disci
pline o f model theory is expressly concerned with the application o f semantic
tools to logic and mathematics (See Chapter 8)

The program o f studying only the syntax o f a system without making
any appeal, explicit or tacit, to its meaning constitutes the form alist re
search program, which is known as Hilbert’s program in the foundations o f
mathematics and, stretching the concept perhaps, as Chom sky’s program of
studying syntax autonomously in the theory o f generative grammar. M odern
generative syntax is in fact rooted in the mathematical theory o f formal lan
guages and automata, a syntactic enterprise on the above characterization,

A b o u t s t a t e m e n t l o g i c a n d p r e d i c a t e l o g i c 95

since it deals with the properties o f string rewriting and sym bol manipulat
ing in systems, Semantics in the “formal semantics” tradition is rooted in
logic and m odel theory, and borrows many o f its tools from those developed
by logicians foi the study o f the formal languages o f logic, It is ironic that
the name “formal semantics” has becom e the standard name o f the model-
theoretic approach to semantics, which is decidedly not a formalist program
in the above sense

Outside o f logic the term semantics is often used in a much broader sense,
roughly as anything relating to meaning In linguistics one finds a range o f
uses along with ongoing debates concerning where theoretical boundaries can
most usefully be drawn So in one sense, issues concerning scope ambiguity
are certainly among the concerns o f semantic theories o f natural languages;
at the same time one can distinguish among theories that treat certain scope
ambiguities “ in the syntax” or “in the semantics.” In the chapters which
follow, we will stick to the rather clearly regimented usage that has become
customar y in logic, reserving the term semantics for the study o f the relations
o f formal systems to their interpretations

5.4 About statement logic and predicate logic

In Chapters 6 and 7 we will examine two systems o f logic: statement logic
(also called the propositional calculus or statement calculus) and predicate
logic (also known as (first-order) predicate calculus) Each will be treated
as a formal language with its own vocabulary, rules o f syntax, and seman
tics (or system o f interpretation), But as we will see, the syntactic and
semantic components o f these languages are very much simpler than those
o f any natural language; indeed, that is their virtue, since they have been
purposely constructed to avoid ambiguities and many complicated features
contained in natural languages. For instance, the sentences o f our logical
languages are all declaratives— there are no interrogatives, imperatives, per
formatives, etc,— and, further, the means o f joining sentences together to
form com pound sentences is severely limited, We will find sentential con
nectives corresponding (roughly) to English and, or, not, if , , . then, and if
and only if, but nothing to answer to because, while, after, although, and
many other conjunctions In predicate logic we will in addition find counter
parts o f a few determiners o f English— some, all, no, every,— but not most,
many, a few, several, one half, etc. As a discipline, logic is the study of
reasoning (the product not the process— the latter is the province o f psy

96 C h a p t e r 5

chology), with the objective o f identifying correct, or valid, instances and
distinguishing them from those that are incorrect, or invalid, We recognize
intuitively for example, that the reasoning exhibited in argument (5 -1) is
valid, in that the conclusion (the sentence below the horizontal line) is a
necessary consequence o f the premises above the line. To put it another
way, if we grant the truth o f the premises in (5 -1), we cannot, logically,
deny the truth o f the conclusion,

(5 -1) A ll m en a re m orta ls .
S ocra tes is a m an .

T h e re fo re , S ocra tes is a m orta l.

In contrast, the reasoning in argument (5 -2) is easily seen to be invalid:

(5 -2) A ll ca ts a re m am m als.
A ll d og s a re m am m als.

T h e re fo re , A ll cats are dogs.

That is, in (5 -2) even if we accept the premises we may logically reject the
conclusion,

A system o f formal logic— for these examples it will be predicate logic— is
intended to give a systematic account o f what underlies these intuitions. In
this enterprise the logical language serves as a m odel, or image, o f the nat
ural language (albeit a much simplified one), but it is designed so that one
can give an explicit account o f validity for any arguments expressed in it. An
argument couched in natur al language can then be assessed by translating it
into the logical language and determining the validity o f the translation. Ar
gument (5 -1), for example, could be translated into the following argument
in predicate logic, which, as we will see in Chapter 7, is valid:

(5 -3) { Vx) { H{ x) - » M{ x))
H(s)

M { s)

Clearly the success o f such a program will depend heavily on the adequacy
o f the translations (assuming a satisfactory characterization o f validity and
invalidity in the logical language)

One m otivation for proceeding in this way is that many arguments in
natural language, while superficially distinct, appear to be instances o f the

A b o u t s t a t e m e n t l o g i c a n d p r e d i c a t e l o g i c 97

same underlying argument form , We observe, for example, that (5 -1) pro
duces another valid argument under systematic replacement o f its proper
and common nouns:

(5-4) All rabbits are rodents.
P e te r is a ra b b it .

T h e re fo re , P e te r is a r o d e n t .

Evidently the validity o f (5 -1) and (5 -4) does not rest on the meanings of
words such as man, Socrates, and rabbit, but rather results from the frame
work in which these words are embedded, i.e ., the form of the argument, We
also observe that the word all is an integral part o f o f this form; replacing
it by some, for example, yields an invalid argument:

(5 -5) S om e m en are m orta ls .
S ocra tes is a m an .

T h e re fo re , S ocra tes is a m orta l.

(Note that the conclusion o f (5 -5), while true, does not follow necessarily
from the premises) We might then say that (5 -1) and (5 -4) are instances
o f the (valid) argument form (5 -6):

(5 -6) A ll X ’ s a re Y ’ s
a is an X

T h e re fo re , a is a 7

and similarly, (5 -2) is an instance o f the following invalid argument form:

(5 -7) A ll X ’ s a re Y ’ s
A ll Z ,s a re Y ’ s

T h e re fo re , A ll X ’ s a re Z ,s

A logical language, then, is designed to provide effective translations and
an account o f validity or invalidity for a certain range o f argument forms,
Predicate logic treats the two forms just mentioned, for example, but state
ment logic, as we will see presently, does not, since it is constructed to deal
only with argument forms whose validity hinges o f the meanings o f sentential
connectives such as and, or, and i f , , , then, but not on quantifier words such
as all, and som e,

Chapter 6

Statement Logic

6.1 Syntax

The syntax o f statement logic is very simple: W e assume an infinite basic
vocabulary o f atomic statements represented by the symbols p , q , r , s , ,
with primes or subscripts added as needed,

D e f i n i t i o n 6,1

1. A ny atomic statement itse lf is a sentence or well-formed formula (wiT).

2. A ny w ff preceded by the symbol (negation) is also a wff.

3. A ny two (not necessarily distinct) wffs can be made into another w ff
by writing the sym bol (conjunction), ‘V ! (disjunction), » ’ (condi
tional), or ’ (biconditional) betw een them and enclosing the result
in parentheses

M

Here are some examples o f w ff’s o f statement logic constructed according to
these rules:

(6- 1) p
q'
(PV q)
~ (f>' ^ P')
rv r
~ ~ r
((((p k q)W ~ q1) -* r) s)

99

100 C h a p t e r 6

The following are not w ff’ s:

(6- 2) pq
V p
~ Vpq
p\! q (lacks outer parentheses)
~ (p) (no parentheses around atomic statements)

N o te : we will occasionally omit outer pairs of par entheses in the interest of
increased legibility, e.g., p\/ (q & r) instead o f (p V {q & r)) . The former can
be regarded as an informal abbreviation for the latter,

As we have said, logical languages are typically designed to mirror certain
natural language constructions. In the present case, the connectives &, V,

are intended as the couterparts of English and, or, if ,, then, and
if and only if, when used to conjoin declarative sentences, e.g., the and of
John smokes and Mary snores. Atom ic w ff’s are the logical representatives
o f simple declarative sentences, i e„, those which do not contain instances o f
the sentential connectives and, or, if , , , then, if and only i f , or not The
negation symbol is a unary operator rather than a binary connective in
that it applies to only one wff to produce a wff Its English counterpart is
the not in John will not leave or the more formal It is not the case that (e ,g ,,
It is not the case that John will leave). Note that what the logic regards as a
“ simple” declarative sentence may in fact be quite complex syntactically For
example, John’s incessant smoking has caused Mary to consider strangling
him contains none o f our designated sentential connectives and so would be
represented as an atomic sentence in statement logic,

A word about terminology. We will say that an English sentence such as
John smokes makes, or expresses, a statement. W e ignore, for the present,
pragmatic concerns such as speaker and context. We use ‘ statement’ as
a neutral term to avoid using the more common ‘proposition ,’ since the
latter has acquired a number of different meanings over time which we would
prefer to avoid sorting out. Synonymous sentences, e g , Paris is the capital
o f France and France’s capital is Paris express the same statement, while
ambiguous sentences, e,g,, Visiting relatives can be annoying express more
than one statement.

S e m a n t i c s : T r u t h v a l u e s a n d t r u t h t a b l e s 101

6.2 Semantics: Truth values and truth tables

The semantics of statement logic is nearly as simple as its syntax. Each
atomic statement is assumed to have assigned to it one of the truth values: 1
(also called true) or 0 (false). We are thus working with a two-valued logic;
systems with more than two values have also been studied, but they will
not concern us here (but see Appendix BII) Each complex wff also receives
a truth value, which is determined by (1) the truth values of its syntactic
component statements, and (2) the syntactic structure of the complex wff;
i.e . its connectives and their arrangement in the formula,. For example, the
truth value o f (p & q) will be determined by the truth values o f p and q
and by the so-called truth-functional properties o f the connective & The
latter is given by a truth table saying how the truth -value o f a foim ula is a
function o f the truth values o f its immediate constituents when the principal
connective is the conjunction &, We now give the truth tables for the five
connectives along with some remarks on how they compare with their English
counterparts. In the following, P , Q, etc,, will stand for any arbitrary wff,
atomic or complex.

6.2.1 N egation

Negation reverses the truth value o f the statement to which it is attached.
For any formula P , if P is true, then ~ P is false, and, conversely, if P is
false, then ~ P is true. This is summarized in the truth table o f Table 6-1,

p ~ p
1 0
0 1

Table 6-1: Truth table for negation
Logical negation is o f course intended to mirror sentential negation in natural
language, In English, this is often expressed by the insertion of not into the
verb phrase (John is here, John is not here), sometimes with the addition
o f a form of do (John smokes, John does not smoke). The semantic effect is
generally to produce a sentence opposite in truth value to the original, but
there are cases where this is not so: John must leave, John must not leave.
Here then is a case in which the English and the logical connectives are not
exact correspondents. Closer to the behavior o f the logical connective is the
circumlocution it is not the case that (c f,, John must leave, It is not the case
that John must leave).

102 C h a p t e r 6

6 .2 .2 Conjunction

If we conjoin two declarative English sentences by and, the result is, by and
large, true if both conjuncts are true, and false if one or both o f the conjuncts
are false. For example, if John smokes is true and Jane snores is also true,
then John smokes and Jane snores is true; if either oi both o f the constituent
sentences are false, the entire conjunction is false. The truth table for the
logical connective & is constructed accordingly:

p Q (p & Q)
1 i i

1 0 0
0 1 0
0 0 0

Table 6-2: Truth table for conjunction

Note that P and Q are variables denoting any wff whatsoever and that there
are four rows in the table corresponding to the four ways o f assigning two
truth values independently to two statements

As we have now come to expect, there are instances in which & does not
correspond exactly to the English sentential conjunction and The latter,
for example, sometimes carries a temporal connotation which is absent from
the logical connective (c f , John took a shower and he got dressed, John got
dressed and he took a shower), In the logic o f statements (p & q) always has
the same truth value as (q & p). Furthermore, while (p & p) is perfectly well
formed (and has the same truth value as p itself), a sentence such as John
smokes and John smokes is distinctly odd and could be appropriately used
only in rather special circumstances (perhaps as a colorful way of saying that
John smokes incessantly).

In translating from English into statement logic the sentential connective
hut is often rendered as &; thus, John smokes but Jane snores might be
translated into (p & q), where the & carries none o f the connotations of
contrast or unexpectedness o f the English connective Similar remarks could
be made about however, although, despite the fact that, and so on,

English and can o f course be used to conjoin noun phrases, verb phrases,
etc, as well as sentences (John and Mary, smokes and drinks), and nothing
in our logical language corresponds to this usage (remember that we are

S e m a n t i c s : T r u t h v a l u e s a n d t r u t h t a b l e s 103

ignoring the internal structure o f simple sentences). Sometimes sentences
containing phrasal conjunction can be treated as elliptical forms of sentential
conjunction; e g ,, John and Mary smoke might be regarded as an abbreviated
form o f John smokes and Mary smokes and thus could be translated into
something like (p & q). Not all cases o f phrasal conjunction can be so
treated, however, as we can see by examples such as John and Mary met in
New York or Mary mixed red and blue paint,

6 .2 .3 Disjunction

The logical connective V has the following truth table:

p Q (PVQ)

1 l 1
1 0 1

0 1 1

0 0 0

Table 6-3: Truth table for disjunction

Thus the disjunction o f two statements is true if at least one o f the disjuncts
is true; it is false only if both are false. The rough English correspondent is
the sentential connective or as in John smokes or Jane snores The logical
connective is the so-called inclusive disjunction, which is true when both
disjuncts are true It is commonly supposed that English or also has an ex
clusive sense, which excludes the possibility that both disjuncts are true; cf.,
You may have soup or you may have salad, but not both, but it is controver
sial whether the English word is actually ambiguous or whether' the inclusive
vs., exclusive sense o f such disjunction sentences is determined by matters
o f context and other pragmatic factors Latin vel and aut have often been
cited as natural language examples of disjunctions which bear, respectively,
the inclusive and exclusive senses, but even here the facts are not entirely
clear, In any event, the logical connective V is unambiguously inclusive, as
evidenced by the first row of its truth table, (There is no standard symbol
for exclusive logical disjunction, but if there were, its truth table would be
like that in Table 6-3 except for having the value 0 in the first row).

Similar remarks about phrasal disjunction can be made here as in the
case o f o f phr asal conjunction. For example, (E ither) John or Mary smokes

104 C h a p t e r 6

can be regarded as elliptical for John smokes or Mary smokes and therefore
represented as (p V ?) A problematic case is A doctor or a dentist can
write prescriptions, where the intended interpretation is that both doctors
and dentists can write prescriptions (it would be false if doctors could but
dentists couldn’t, foi example). Thus, the best translation for this sentence
would be o f the fo im (p & q), not (p V q).

6 .2 .4 The Conditional

The discontinuous connective i f . , then in English is used in a host o f differ
ent ways and has been the subject of much discussion. The correspondent
in our logical language, —>, shares one crucial feature with all the natural
language uses, viz,, when the if-clause (the antecedent) is true, and the then-
clause (the consequent) is false, the entire conditional statement is false. For
instance, I f M ary is at the party, then John is at the party (too) is clearly
false if Mary is at the party but John isn’t. This is reflected in the second
row o f the truth table for —

p Q { p -»• Q)
1 i l
1 0 0
0 1 i

0 0 i

Table 6-4: Truth table for the conditional

(P —> Q) is true in all other cases, and it is this aspect o f the semantics of
the conditional which is most controversial, W hen asked for the truth value
o f If M ary is at the party, then John is at the party (too) in case Mary is
not at the party, we may be puzzled We might be inclined to say that the
conditional sentence has no clearly defined truth value or that the question
o f its truth value does not arise. Even in the case where both Mary and John
are at the party, we might hesitate to say that the conditional is true since
we would expect some logical or causal connection between antecedent and
consequent be determined before we could determine the actual truth value
Here we seem to have a case where the logical and the English connectives
are greatly at variance. How can we justify our choice o f 1 (true) in these
cases?

Se m a n t i c s : T r u t h v a l u e s a n d t r u t h t a b l e s 105

The answer goes along two lines: (1) In a two-valued logic, if a statement
is not false, then it must be true: there is no other choice. (2) This definition
of the conditional suffices for the analysis o f valid and invalid arguments in
mathematics and thus carries the weight o f tradition. It is not without its
troublesome and sometimes paradoxical side effects, however,

6.2 .5 The Biconditional

The truth table for the biconditional is shown in Table 6-5.

p Q (P + + Q)
1 i i
1 0 0
0 1 0
0 0 1

Table 6-5: Truth table for the biconditional

English expressions translated by the biconditional are ‘i f and only i f ’ , ‘just in
case that’ , and ‘is a necessary and sufficient condition for 5 It is sometimes
difficult to tell whether some statements in ordinary language should be
representedby the conditional or the biconditional, For example the sentence
I will leave tom orrow if I get the car fixed might mean that getting the
car fixed is a sufficient condition for leaving tom orrow (although I might
leave tomorrow anyway), but it might be intended to mean that getting the
car fixed is not only a sufficient but also a necessary condition for leaving
tom orrow (I w on ’t leave unless the car gets fixed). The latter interpretation
is forced when the connective is ‘if and only i f ’ : I will leave tom orrow if
and only if I get the car fixed. In mathematics this connective is frequently
abbreviated ‘iff.’ Formal definitions o f mathematical terms always employ
it, The usual form is

(6 -3) X is called a Y (or is a Y) iff X has property P.

Using ‘i f ’ instead o f ‘if f ’ would leave open the possibility that X might also
be called a Y (the term being defined) in other circumstances as well. The
‘if and only i f ’ makes it a proper definition by restricting X ’s being called
Y to only those cases in which X has property P.

106 C h a p t e r . 6

The truth tables provide a general and systematic method o f com put
ing the truth value o f any arbitrarily complex statement. The number o f
lines in the truth table is determined by the requirement that sill possible
combinations o f truth values o f atomic statements must be considered. In
general, there are 2n lines when there are n atomic statements The order
o f evaluating the constituent statements is from the most deeply embedded
one to the outermost. So to construct a truth table for ((p Sz q) — (pV r)) ,
one would proceed as follows:

(i) construct columns for the atomic statements p, q and r ,

(ii) construct columns for (p Sz q) and for (p V r),

(iii) construct a column for ~ (p V r) reversing the values for (p V r) ,

(iv) construct the truth table for the entire statement, applying the condi
tional table to the table for (p & q) and the table for ~ (p V r).

The entire process is laid out in the following table.

p 9 T (p & ?) (p V r) ~ (p V r) ((p & ?) (p V r))
1 1 1 1 1 0 0
1 1 0 1 1 0 0
1 0 1 0 1 0 1
1 0 0 0 1 0 1
0 1 1 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 0 0 1 1

Table 6- 6 : Truth table for
((p & q) (p V r))

Obviously truth tables can get very complex when more than three atomic
statements are involved, and clerical errors are easily made. But in principle
we can compute the entire table for any complex statement.

T a u t o l o g i e s , c o n t r a d i c t i o n s a n d c o n t i n g e n c i e s 107

6.3 Tautologies, contradictions and contingencies

Statements can be classified according to their truth tables. A statement is
called a tautology i f the final column in its truth table contains nothing but
I ’s, i.e. the statement is always true, whatever' the initial assignment o f truth
values to its atom ic statements. Such statements are true simply because o f
the meaning o f the connectives. A statement is called a contradiction if the
final column in its truth table contains nothing but 0 ’s, i e. it is always false,
whatever the initial assignment o f truth values to its atomic statements. All
other statements with both 1 and 0 in their truth table are called contingent
statements or contingencies, Their truth or falsity does depend on the initial
truth value assignment to their atomic statements

Some examples o f each type, which the reader may verify, are:

• tautologies: (p V ~ p), (p ->• p), (p ->• (q ->• p)), ~ (p & ~ p)

• contradictions: ~ (p V ~ p), (p & ~ p), ~ ((p V q) <-> (q V p))

• contingencies: p, (p V p), ((p V q) ->• q), ((p ->• q) ->• p)

Here, for example, are truth tables for (p V ~ p) and (p & ~ p):

p (p v ~ p)
1 0 1
0 1 1

Table 6-7: Truth table for tautology
(P V ~ p)

P (p & ~ p)
1 0 0
0 1 0

Table 6- 8: Truth table for contradiction
(p & ~ p)

108 C h a p t e r 6

A n important property o f tautologies and contradictions is that any state
ments whatever may be substituted for the atom ic statements without af
fecting the truth value o f the original expression. For example, if in the
tautology (p V ~ p) we replace p by (q —► r), the resulting expression
((q -»■ r) V ^ (q —t)) is still a tautology, as shown in Table 6 9. In
general, the substitution o f any statement Q for p in (p V ~ p) produces
a statement o f the form (<?V ~ Q). W hatever the truth value o f Q in any
particular line, the truth value o f ~ Q is the opposite; thus, one must be
true and the other false. The disjunction o f Q and ~ Q is therefore true on
every line o f the truth table. Since Q may be any statement at all, elemen
tary or complex, we see that this tautology (and all tautologies in fact) is
true by virtue o f its form, i.e., the arrangement o f statements and connec
tives, and not because o f the particular statements it is made o f The same
considerations apply, mutatis mutandis, to contradictions

9 T (?->f) ~({-*r) ((q ->• r)v ~ {q ->• r))
1 1 1 0 1
1 0 0 1 1
0 1 1 0 1
0 0 1 0 1

Table 6-9: Truth table showing that
((? —*■ i')V ~ (? —> r)) is a tautology

It is often very important to know whether a certain statement is a
tautology or not, but since long truth tables are cumbersome, there is a
simple “ quick falsification” test which searches systematically for a line on
a truth table whose final value is 0. I f the search is completed and no such
line is found, then we know for sure the statement under investigation is
a tautology, The test is an application o f the general reasoning strategy
o f reductio ad absurdum W e assume there is a line whose final value is 0,
and reason “backwards” from that assumption to see whether we can find
an assignment o f truth values to the atomic statements without running
into contradictory or conflicting assignments. The procedure is illustrated
first with a simple example: {p —► (? —► p)) Assume there is a line whose
final value is 0. We enter the truth value directly under the principal or
“highest” connective i.e., the last one added in the syntactic construction of
the formula.

T a u t o l o g i e s , c o n t r a d i c t i o n s a n d c o n t i n g e n c i e s 109

(p (? P))
0

Then reasoning from that assumption, we know that the antecedent o f this
conditional must be true and the consequent false, since that is the only
0-case for conditionals.

(P (? P))
1 0 0

Now we simply fill out the 1-assignment for the atomic p in the consequent:
(since the assignment o f truth values to the atomic statement must be uni
form, i.e , the same throughout the entire formula).

(p (q - > p))
1 0 0 1

Looking at the truth table for conditionals we see now that we run into
conflicting assignments: on the one hand, the consequent (q —► p) should
be false, but on the other hand that cannot be the case, since p is true and
(? ~ p) can °nly be false if p is false, given the table for conditionals, Hence
we may conclude that the assumption that there is a line on the truth table
for this statement which ends in false is itself false. Thus all lines must be
1 ; (p —► (q —> p)) is a tautology.

Let’s work through another example with the very similar, but contingent
((P -+ 5) -+ P)-

S tep 1 . ((p -> q) -»■ p)
0

S tep 2 . ((p -> q) p)
1 0 0

S tep 3 . ((p -> q) -> p)
0 1 0 0

(The antecedent (p —► q) must be true, while p is false, and that is admiss-
able.)

S tep 4 . ((p q) -+ p)
0 1 0 0 0

or

110 C h a p t e r . 6

S tep 4 '. ((p -> q) ->• p)
O i l 0 0

Thus the truth value o f q may be either 1 or 0, and the procedure is completed
without running into conflicting assignments. So ((p —► ?)—► p) must be at
least contingent, though it may even be a contradiction. W e cannot now do
a similar short-cut test to see whether it is a contradiction, since we end up
writing the complete truth table checking for all the other cases. Note that
this m ethod may not always save time if there turn out to be many possible
assignments which we have to check for a line ending in 0 .

6.4 Logical equivalence, logical consequence and
laws

If a biconditional statement is a tautology, the two constituent statements so
connected are logically equivalent For example, the truth table in Table 6-
10 shows the statements ~ (pV q) and (~ p & ~ q) to be logically equivalent
since (~ (p V g) p & ~ q)) is a tautology:

p 9 (pv?) ~ (p v ?) ~ p (~ p & ~ q) (~ (p V q) <-> (~ p & ~ q))
1 1 1 0 0 0 0 1
1 0 1 0 0 1 0 1

0 1 1 0 1 0 0 1
0 0 0 1 1 1 1 1

Table 6-10: Truth table showing the logical
equivalence o f ~ (p V q) and (~ p & ~ q)

Logically equivalent statements may also be characterized by saying that
they have the same truth value for any assignment o f truth values to the
atom ic statement (note the fourth and seventh columns in Figure 6-10). It
is o f course just this fact which insures that the biconditional connecting the
two formulas will always be true.

Logically equivalent statements are important for the analysis o f valid
patterns o f reasoning because they may freely replace one another in any
statement without affecting its truth value. For example, in the statement
(p V q), replacement o f p by the logically equivalent com plex statement
(p & p) yields a statement ((p & p) V q) whose truth value is exactly the same
as the original statement, whatever that may happen to be. Substitution o f

L o g i c a l e q u i v a l e n c e , l o g i c a l c o n s e q u e n c e a n d l a w s 111

logically equivalent expressions always preserves truth value, i.e. preserves
both truth and falsity. To denote logical equivalence between two axbitraxy
statements P and Q we write P <=> Q. Note that this “ double arrow” is
not a new connective for statements, but rather a convenient notation for
expressing that P <-> Q is a tautology

If a conditional statement is a tautology, we say that the consequent is
a logical consequence o f the antecedent or, equivalently, that the antecedent
logically implies the consequent. An example is shown in the truth ta
ble o f Table 6-11, which demonstrates that q is a logical consequence o f
((?->• i) & P)'

p 9 (p - » 9) ((p 9) & P) (((p -> 9) & P) -> 9)
1 1 1 1 1
1 0 0 0 1
0 1 1 0 1
0 0 1 0 1

Table 6-11: Truth table showing that q is a
logical consequence o f ((p —> q) & p)

In contrast to logical equivalence, the relation o f logical consequence pre
serves truth but not necessarilly falsity. That is, is the antecedent o f a
tautologous conditional is true, then the consequent must be true also (cf.
line 1 o f Table 6-11, for example). I f the antecedent is false, then nothing
can be guaranteed about the truth value o f the consequent (cf. lines 3 -4
o f Table 6-11). The relation o f logical consequence is im portant, as we will
see in the next section, since it is the basis for the construction o f valid
arguments. W e write P => Q to indicate that Q is a logical consequence o f
P,

Note that when P => Q we cannot in general substitute Q for P in a
larger form ula and be guaranteed that truth will be preserved. For example,
given that (j>8z ~ p) => p) (which the reader may quickly verify by a truth
table), we cannot conclude that ((p& r*j P) ->• 9) =* (P -► 9), replacing
(p& ~ p) by its logical consequence p In fact, if p is true and q is false,
then ((p & ~ p) ► 9) will be true and {p —► 9) false. Thus, our remarks
about truth preservation by logical consequence pertain only to replacement
o f an entire formula by a logical consequence o f that formula. This is in

112 C h a p t e r . 6

Laws of statement logic
1. Idempotent Laws
(a) (P V P) <$=>• P
(b) (P & P) <=> P

3. Commutative Laws
(a) (P V (?) •£=> ((? V P)
(b) (P & (?) ■*=>■ (<? & P)

5. Identity Laws
(a) (P V F) <==> P
(b) (P V T) <=> T
(c) (P & F) <=> F
(d) (P & T) <=> P

7. DeMorgan’s Laws
(a) ~ (P V < ?) •£=> (~ P &
(b) ~ (P & (?) •<==> (~ P V

2. Associative Laws
(a) ((P v Q) V J R)
(b) ((P k Q) k R)

(P V (Q \ / R))
(P t (Q t R))

4. Distributive Laws
(a) (P V (< ? & £)) ((P V (J) f e (P V
(b) (P & ((? V £)) <=>• ((P & (?) V (P &

6. Complement Laws
(a) (P V ~ P) <=> T
(b) ~ ~ P •£=> P

(also called double negation)
(c) (P & ~ P) ■*=» F

8. Conditional Laws
- (?) (a) (P —► (?) •£=> (~ P V (?)
Q) (h) (P ^ Q) <=> (~<?-~P)

(also called contraposition)
(c) (P —► (?) •£=> ~ (P & ~ (?)

9. Biconditional Laws
(a) (P (5) ((P -C (5) & (<? ->• P))
(b) (P <-►<?) < => ((~ P & ~ ^) V (P & < ?))

T a b le 6 -1 2

L o g i c a l e q u i v a l e n c e , l o g i c a l c o n s e q u e n c e a n d l a w s 113

contrast to the relation o f logical equivalence where, as we noted above,
replacement o f any subformida by a logically equivalent expression preserves
the truth value o f the entire formula,

It is convenient to have at hand a small number o f logical equivalences
from which all others may be derived. Table 6-12 gives those “laws” most
frequently used, together with their names. This list is redundant in that
some equivalences are derivable from others, but it is a convenient set to work
with. Since we will refer to them repeatedly in this and the next chapter,
it is worthwhile to memorize them, W e write T for any arbitrarily chosen
tautology and F for any contradiction, and P , Q , R for any statements
whatever , whether atomic o f complex.

W e may verify that these equivalences do indeed hold by the truth table
method, As an example, take an instance o f the equivalence 8 (a) o f this
table: (p —► q) •£=> (~ p V q) I f these two statements are equivalent,
their corresponding biconditional must be a tautology. We may check that
with a truth table as shown in Table 6-13, Furthermore, in view o f our
remarks in the preceding section about the preservation o f tautologousness
under uniform substitution o f atomic statements, we know that (P —► Q) <->
(~ P V Q) is a tautology, for any statements P and Q whatever; hence, the
(a) case o f the Conditional Laws.

p 9 (P -> ?) ~ p (~ p v ?) (ip ->• ?) ^ (~ P V q))
1 1 1 0 1 1
1 0 0 0 0 1
0 1 1 1 1 1
0 0 1 1 1 1

Table 6-13: Truth table verifying a logical
equivalence,

Since logically equivalent statements may be substituted for each other with
preservation o f truth values, we may use these laws to transform a statement
into one which is logically equivalent but perhaps o f lesser complexity. The
procedure may be illustrated with a simple example, showing that (p —►
(~ q V p)) reduces to T , i.e. it is a tautology. We write the law used in each
step o f the derivation at the right.

114 C h a p t e r 6

(6 -4) 1. (p - > (~ ? V p))
2. (~ p V (~ ? V p)) Conditional law
3. ((~ g V p) V p) Commutative law
4. (~ g V (p V ~ p)) Associative law
5. ~ q V T Complement law
6 T Identity law

As we have said, substitution o f logical equivalents can be carried out on
subformulas contained within larger formulas, For example, (p & {q —i> r))
is logically equivalent to (p & (~ q V r)) , where the latter is derived from
the former by replacing the subformula (q —► r) by its logical equivalent
(~ q V r), Since logically equivalent formulas have the same truth values
on every line o f theii truth tables, they will contribute in the same way to
the truth values o f larger formulas in which they are embedded. Therefore,
the truth value o f a larger formula will be unaffected by the substitution o f
logically equivalent subformulas. This principle is sometimes referred to as
the Rule o f Substitution.

This rule applies only to the substitution o f subformulas, i.e ,, w ff’s which
are syntactic constituents o f a larger formula. It would not be allowed, for
example, to convert (p & (q —► r)) into (q & (p —> r)), citing the logical
equivalence o f (p & q) and {q & p), since (p & q) is not a subformula
(constituent) o f (p & {q —> r))„

In the following derivation the application o f the Rule o f Substitution
is explicitly noted by “ (Sub,)” at line 4, This derivation does not achieve
a simplification o f the original formula but shows how one o f the logical
equivalences, contraposition, can be established using some o f the other ones
P and Q here are arbitrary wffs.

(6 -5) 1. P - ± Q
2 . ~ P V Q Cond.
3. Q\/ ~ P Comm.
4. ~ ~ Q v ~ P Compl, (Sub.)
5. ~ Q — P Cond.

Note that essentially the same derivation could have been given to convert
(p —► q) into the logically equivalent (~ q — p), but since the equivalence
holds under any uniform substitutions o f formulas for p and q, we may as well
carry out the derivation for the general case, i.e., as a derivation schema,

N a t u r a l d e d u c t i o n 115

6.5 Natural deduction

We have shown thus far how statements axe combined syntactically, how
truth tables represent the semantics o f connectives and how we use them to
compute the truth value o f a complex statement, and how logical laws allow
rewriting a statement as a logically equivalent one. We are now ready to
take up an analysis o f valid patterns o f reasoning.

A n argument consists o f (1) a number o f statements called premises,
which are assumed to be true, even if just for the sake o f the argument, and
(2) a statement which is called the conclusion, whose truth is alledged to
follow necessarily from the assumed truth o f the premises. We axe interested
in characterizing the valid forms o f argument by defining a numbex o f infex-
ence rules which guarantee txuth pxesexvation (but which may ox may not
preserve falsehood). An argument is called valid i f and only if there is no
uniform assignment o f truth values to its atom ic statements which makes all
its premises true but its conclusion false; if there is such an assignment we
call the argument invalid,

The criterion for validity can be formulated differently, but equivalently,
by requiring that, i f Pi, P2, . ,, ,P n are the premises, and Q the conclusion,
the statement ((P x & P 2 & , & Pn) —*• Q) is a tautology. This is so because
the conditional is tautologous just in case there is no possibility o f a true
antecedent and a false conclusion. Relating the validity o f arguments to
tautologies allows us to use the laws from the previous section to infer that
any uniform substitution for the atomic statements in a valid argument
pxoduces anothex valid axgument.

Let’s take a simple example o f a natural language axgument we sill in
tuitively judge to be valid. We use to indicate the conclusion, lead as
‘thexefore’ .

(6-6) If John loves Mary, then Mary is happy
John loves Mary
Mary is happy

Translating this axgument to the foxmal language with the following key:
p— John loves Mary,
q— Mary is happy,
we have:

116 C h a p t e r . 6

(6 -7) q

P______

The truth table we constructed sis Table 6-11 shows this argument to be
valid. The table demonstrates that q is a logical consequence o f ((p —>
q) & p). B y the principle o f uniform substitution in tautologies, we can
say that (((P —> Q) & P) —► Q) is a tautology for any formulas P and Q
whatever, and thus

(6-8) P - ^ Q
P_________
Q

is a valid argument form It is traditionally called Modus Ponens. Here is a
more complicated instance:

(6 -9) ((~ (r V s) ^ i) - » (r f t t))
(~ (r V s) —> t)

(r & t)

Here is an example o f an invalid argument:

(6 -10) p q
9__

P

The test o f validity by truth table (Table 6 -14), shows that the corr esponding
conditional is not a tautology; thus, it is possible for the premises to be true
and the conclusion false, namely, when p is false and q is true.

p 9 (P -> 9) ((P ?) & q) (((p ->■ ?) & q) p))
1 1 1 1 1
1 0 0 0 1
0 1 1 1 0
0 0 1 0 1

Table 6-14: Truth table for
(((? - + ?) & ?) -+P)

N a t u r a l d e d u c t i o n 117

An English example which would be translated into the argument in (6-10)
is as follows:

(6-11) If J o h n loves M a ry , th en M a r y is h a p p y
M a r y is h a p p y
J o h n loves M a ry

It is easy to see in this simple case that the truth o f the premises does not
logically imply the truth o f the conclusion, but in more complex instances
one can sometimes be deluded into thinking that the argument is valid. Such
seductive invalid argument forms are called fallacies. This one is known as
the fallacy o f affirming the consequent, A similar one, the fallacy o f denying
the antecedent, reasons from (p —► q) and ~ p to the conclusion ~ q.

Although the validity o f any argument form may be determined by con
structing a truth table, it is often inconvenient to do so, particularly i f it
contains a large number o f elementary statements. An argument which con
tains five elementary statements would require a truth table o f 25 or 32 lines,
for example,

An alternative is to analyze the argument into a sequence o f simpler
arguments, and if these simpler arguments have already been shown to be
valid, we can be sure that the original argument is also valid. For example,
to demonstrate the validity o f the argument in (6-12)

(6-12) (p (q (r & s)))
P
9
(r & s)

we could show that the conclusion follows from the premises by a sequence
o f two applications o f the valid argument form Modus Ponens, This is shown
in (6 -13),

(6 -13) 1, (p - + (q ^ (r k s)))
2, p
3, q
4, (q —>■ (r & s)) from lines 1 and 2 by Modus Ponens
5, (r & s) from lines 3 and 4 by Modus Ponens

Simple valid argument forms which can be used in the way we just used

118 C h a p t e r 6

Modus Ponens are known as rules o f inference. The seven listed in Table 6 -
15 will suffice for all o f the arguments we will encounter' in this section Like
the table o f logical equivalences given above, this list is redundant: some o f
the rules catn be derived from others, together with the logical equivalences.
As an exercise, the reader may wish to check each one for validity by means
o f a truth table.

Rules of Inference

Name & Abbr. Form

Modus Ponens P - ^ Q
(M .P.) P

: . Q

M odus Tollens P <2
(M .T .) ~ Q

- P

Hypothetical P ^ Q
Syllogism Q R
(H.S.) P —> R

Disjunctive P y Q
Syllogism ~ P
(D .S.) : . Q

Simplification P k Q
(Simp.) p

Conjunction p
(Conj.) Q

. ' . P k Q

Addition P
(A dd.) P\/Q

Example

If John loves Mary, Mary is happy
John loves Mary

, Mary is happy

If John loves Mary, Mary is happy
Mary is not happy

. John does not love Mary

If Fred lives in Paris, then Fred lives in France
If R e d lives in France, then Fred lives in Europe

, I f Fred lives in Paris, then Fred lives in Europe

Fred lives in Paris, or Fred lives in London
Fred does not live in Paris

. Fred lives in London

Roses are red, and violets are blue
, Roses are red

Roses axe red,
Violets are blue.

, Roses are red, and violets are blue

Roses are red
Roses are red, or cigarettes are a health hazard

Table 6-15: Common rules o f inference for
statement logic

N a t u r a l d e d u c t i o n 119

Here is an example o f am argument using these rules The lines are numbered
for convenience in referring to them, and every line other than the premises
is justified by a rule o f inference and the lines used by that rule.

(6-14) 1. p _► q
2 p V s
3. q —> t

4 s —► t
5 ^ r
6 ~ 9 3,5 M T .
7. ~ p 1,6 M T.
8. s 2,7 D S
9. t 4,8 M.P.

The derivation in (6 -14) is said to be a proof o f t from the premises in lines
1-5. Since the premises also logically imply the statements in lines 6, 7,
and 8, these have also been proved, and in fact we could have stopped after
any one o f these lines and called the derivation a p roo f o f ~ q, ~ p, or s;
it all depends on where we focus our attention. Note, however, that given
some premises and an alleged conclusion, we are not assured that there is
some derivation leading from the premises to that conclusion (there won’t be
when the argument form is invalid), and even when there is one, we cannot
be sure that we will be able to find it. On the other hand, given atn alleged
proof such as (6 -14), it is a simple matter to check whether it is in fact a
p roof by verifying the derivation o f each line. In general, logic provides us
with methods for checking proofs but not for discovering them. It is true
that in statement logic one catn always determine whether a given conclusion
follows from given premises (we could always construct the truth table for
the corresponding conditional), but in more complex systems such as that
o f the next chapter there is no general m ethod for determining this.

Here is a more challenging proof, whose difficulty resides in the fact that
the premises are not o f the right form to apply any rule o f inference directly.

120 C h a p t e r . 6

(6-15) Prove (p —► q) from the premises (p —► (q V r)) and ~ r.

1 . (p - > (g V r))
2 . ~ 7”

3. ~ p V (? V r) 1 Cond.
4. (~ p V ?) V r 3 Assoc.
5. r V (~ p V q) 4 Comm
6 . ~ p V g 2, 5 D.S
7. p —► 5 6 Cond.

By converting the first premise to atn equivalent statement by the Condi
tional, Associative and Commutative Laws, we are finally able to apply D.S.
as the sole rule o f inference in this proof. Recall that substitution o f logical
equivalents preserves truth value, and so in particular it preserves truth.
Thus, in a p roo f we can never pass from truth to falsity by replacing a
formula by its logical equivalent, and validity will not be affected.

The following p roo f makes use o f the Rule o f Substitution in deriving
logical equivalents'.

1, ~ (P~> ~ ?)
2,
3 ^ (jP & ~ ~ 2)) 1 Cond (Sub.)
4, (p & ~ ~ q) 3 Comp,
5, (p & q) 4 Comp, (Sub.)
6. ((p & q) & ~ r) 2,5 Conj,
7. i p k (q k ~ 7”)) 6 Assoc.
8 (p & ~ ~ (q & ~ r)) 7 Comp, (Sub.)
9„ (p & ~ (q ->• r)) 8 Cond. (Sub.)

(Henceforth we will not mention the Rule o f Substitution explicity in
the annotation o f a p roof but merely refer to the logical equivalence used in
deriving that line.)

6.5 .1 Conditional P roof

Certain proofs whose conclusions contain a conditional as the main connec
tive are more easily proved by a m ethod o f conditional proof. Suppose atn
argument has P i , P%,, Pn as premises and Q —> R as conclusion. In a con
ditional proof we add the antecedent Q o f the conclusion as an additional
auxiliary premise and then from Q together with the other premises derive

N a t u r a l d e d u c t i o n 121

R, The conditional p roo f is concluded by cancelling the auxiliary premise Q
and writing the conclusion Q —► R. The validity o f this m ethod o f p roof is
based on the fact (which you should check for yourself) that

((P i & P2 & . . , & P „) R))

is logically equivalent to

((P i & P 2 & . & Pn & Q) - R))

(where P i , . ,, ,P n , Q, and R are any w ff’s.) As an example we construct a
conditional version o f (6-15).

(6-17) Prove (p —► q) from the premises {p —► (qV r)) and ~ r.

1 (p -C (g V r))
2 , 7»
3. p Auxiliary Premise
4 q\J r 1 , 3 M.P.
5. r\Jq 4 Comm,
6 . 9 2, 5 D S
7. P 9 3-6 Conditional P roo f

In writing a conditional p roo f we indicate with a bar each line which is based
on the auxiliary premise in or der to remind ourselves that we are working
under a special additional assumption. A conditional p roo f must always
cancel that auxiliary premise by the rule o f Conditional Pr o o f before ending
the entire p roo f It is for obvious reasons forbidden to use any lines o f the
conditional part o f the proof after this cancellation. The following proof
shows how conditional proofs may be embedded

(6-18) Prove ((5 —► s) —► (p —* 5)) from (p —> (q & r))

1 , (p -> (9 & r))
2 . q s Auxiliary Premise
3. p Auxiliary Premise
4, q h r 1, 3 M P.
5. 9 4 Simpl.
6 . s 2, 5 M.P.
7. p —► s 3-6 Conditional P roof
8 . ((9 s) (p s)) 2-7 Conditional P roof

122 C h a p t e r . 6

Comparable restrictions apply in more deeply embedded conditional proofs.
The exit from one level to the next higher one is always accompanied by the
formation o f a conditional whose antecedent is the auxiliary premise from
the lower level and whose conclusion is the formula just derived (see line 7
in (6 -18), for example), Using lines from lower levels in lines o f the proof at
higher levels is also forbidden (e.g., q in line 5 is not available for use after
we leave the lowest level at line 7) Note, however, that lines from higher
levels are available in lower levels (e,g„, line 1 is used in the derivation o f line
4)

Auxiliary premises catn be any wff whatsoever, so long as they prove use
ful towards our final goal. In (6-18) the statement s did not occur anywhere
in the initial premise, but it is perfectly legitimate as part o f an auxiliary
premise,

6 .5 .2 Indirect P roof

The inferences we have introduced up till now axe direct proofs: the conclu
sion is produced as the final line o f the proof by a series o f valid inferences.
In an indirect proof, we introduce the negation o f the desired conclusion as
an auxiliary premise and reason to a contradiction. Given the assumption
that the other premises are sill true, this contradiction shows that the aux
iliary premise to be false, so its positive form, i.e., the desired conclusion,
must be true. This is the m ethod o f p roo f we have called reductio ad ab-
surdum. We now have the means to make this reasoning formally precise as
a rule o f inference. It is a special form o f conditional proof, as it uses an
auxiliary premise, but that auxiliary premise is not chosen freely; rather it
is the negation o f the desired conclusion, The conclusion is not necessarily
o f conditional form , and may even be atom ic Here is an example o f reductio
ad absurdum:

(6 -19) Prove p from (p V q), (q ► r) and ~ r

1 . p v ?
2 , q —► r
3,
4. ~ P Auxiliary Premise
5. 9 1 , 4 D.S.
6 , r 2 , 5 M.P..
7. r & ~ r 3, 6 Conj,
8. P 4 -7 Indirect P roo f

B e t h T a b l e a u x 123

Line 7 is a contradiction, and hence the auxiliary premise in line 4 is false.
Indirect proof catn be shown to be a special form o f conditional p roo f in

the following way. Adding the auxiliary premise ~ p in the proof above,
for example, we derive (r & ~ r) B y the rule o f conditional p roo f we get
(~ p —► (r & ~ r)). As the next line we add the tautology ~ (r & ~ r): a
tautology cam be written down as a valid step anywhere in any proof since
it can never be false Then we derive ~ ~ p by Modus Tollens and then p
by the Complement Law.

Indirect proofs can have other indirect proofs and conditional proofs
embedded in them, and likewise they catn be embedded in conditional proofs.
In sill such cases, lines from a more deeply embedded section cannot be
assumed true in a less deeply embedded section.

Indirect proofs are used very frequently in mathematics, where they are
often much easier to construct than a direct proof. We encountered an
instance o fit , for example, in showing that the null set is a subset o f every set.
By assuming the negation o f this statement, we were led to the conclusion
that the null set has a member, which, taken with the definition o f the null
set, forms a contradiction. Thus, the assumption that the null set is not a
subset o f every set reduces to an absurdity and cannot be maintained,

6.6 Beth Tableaux

In current research in theoretical computer science and logic, machines are
being developed which automatically prove theorems, so called ‘theorem
provers’ The main motivation is to simulate human theorem provers (which
you are becom ing). But a straightforward implementation o f the proof proce
dures we have introduced for this elementary logical system is not possible. If
you attempt to derive a statement mechanically from a given set o f premises,
you may start trying to substitute equivalent statements for the premises or
for parts o f them, It is obviously not feasible to check all possible substi
tutions as there are infinitely many equivalent statements to consider. You
rely often on a certain intuition or heuristic to determine which statements
are particularly useful to try and which are not. At present, such heuristics
are too little understood to consider implementing them in an automated
theorem prover. But i f there is a clear procedure to list all substitutions
that should be taken into account for any given statement to be proven, its
derivation from the premises becomes feasible also for a machine. Such a
procedure exists and is known as the Beth method o f Semantic Tableaux,

124 C h a p t e r . 6

after the Dutch logician Evert Beth The finite number o f substitutions this
m ethod needs in deducing a statement axe:

1 . the statement itself

2 . all o f its constituent statements

3. certain simple combinations o f these statements, depending on the
given premises

It is one o f the most attractive features o f (closed) semantic tableaux, con
sidered as a m ethod o f proof, that all statements which appear in a proof
o f a statement P axe constituent statements o f P. In this section we will
present the method for statements, and in the next chapter we will extend
the method to include some o f the internal structure o f statements

Beth Tableaux axe based on the idea that a conditional statement is
proven when all attempts to find a counterexample, falsifying its consequent
while verifying its premises, axe shown to fail I f there is a counterexample,
this method will find it, and what is more, if there is no counterexample,
we will always find out sifter a finite number o f steps. A p roo f consists
always o f a number o f premises P i & P 2 Sz . . , & Pn_ i and the conclusion
Pn , connected by the conditional connective, A Beth Tableau attempts to
make the premises true and the conclusion false, hence making the entire
statement ((P x & P 2 & . . . & Pn- i) —► Pn) false. I f it is not successful,
the tableau is ‘ closed’ , and no interpretation o f the substatements provides
a counterexample to the validity o f the argument. But if it is successful,
the tableau will show how to construct a counterexample. The procedure is
quite simple, and we will introduce it by some elementary examples before
giving the complete set o f rules for construction o f tableaux.

Example 1 , Prove ~ ~ p from {p & q).

The notation o f Beth Tableaux we use here is as follows:
1) Set up two columns, separated by a straight vertical line (use plenty of
paper in the beginning, a tableaux might turn out to be rather more complex
than you anticipated).
2) Write TRUE on the left and FALSE on the right side o f the line.
3) Insert the premise(s) under TRUE on line 1, and the conclusion under
FALSE

TRU E FALSE
1 , (p & q) ~ ~ p

B e t h T a b l e a u x 125

We reason as follows, knowing the semantics o f the connectives from their
truth tables. I f the premise is {p & 5), then this is assumed to be true in any
attempt to prove the conclusion ~ ~ p from it Since a conjunction catn only
be true when both its constituent formulas are true, we can infei that p is
true and that q is true. That information we write on the next two lines.

2 . p
3. q

Since we have only atom ic statements under TRUE now, we have to turn to
the statement under FALSE to develop the tableau further. We reason that
since the double negation is false, a single negation must be true, because
negation simply reverses the truth value o f any statement That is recorded
by inserting ~ p under TRUE on the next line,

4, ~ p |

I f a negation is true, that statement without that negation must be false,
for' the same reason that motivated step 4, So we now get

5 | p

We have only atomic statements now, and the tableau cannot be further
developed. But i f we look back to the information we have extracted from
the given premise and conclusion, we see that on line 2 we inferred that p is
true, but on line 5 that the same statement p is false But that is impossible,
given the central assumption o f logic that a statement cannot be both true
and false at the same time. So the otherwise sound reasoning we used in
developing the tableau has led us into a contradiction! You may now think
that hence the tableau m ethod is o f no use at all, but then you jum p to
conclusions too rashly. For we have set up the tableau from the beginning
under a cer tain assumption: namely, that there exists an assignment o f truth
values which verifies the premises and falsifies the conclusion. That is why
we put the premise under TRUE and the conclusion under FALSE, On that
assumption, we rain into a contradiction, just as in a reductio ad absurdum
p roof This means that our assumption was illegitimate to start with. In
other words, there is no way to make the premise true and the conclusion
false, i.e, there is no counterexample to the claim that the conclusion follows
validly from the premise. The tableaux which run into contradiction by
having one and the same statement listed under TRUE and under FALSE

126 C h a p t e r . 6

are ‘closed’ by writing a double line under both sides o f the tableau. Note
that the statement which gives closure does not have to be atomic, as it is in
this simple example. A ny complex statement which is supposedly both true
and false leads to a contradiction, giving closure. The entire tableau for this
example is as follows:

1,
2 ,

3,
4.
5

TRUE
(p k q)

V
9

~ V

FALSE

To show which connective is ‘ decom posed’ in a line, we can annotate
each line after the first one with the connective symbol subscripted to the
line number, indicating also whether it occur s under TRUE or under FALSE,
The above tableau would have had respectively 2, & r , 3 & t , 4 and 5.~r.
It is a good practice to annotate the following examples for yourself in this
way.

Example 2 Prove ~ p V q from ~ (p > q)
To make the premise ~ (p —» 9) true and the conclusion ~ p V q false, we

open the tableau as follows:

TRUE
1. ~ (p q)

FALSE
~ p V q

Next the statement ~ p V q is simplified giving rise to lines 2 and 3

2 ,

3.

These lines are motivated by the truth table for disjunction, which tells
us that a disjunction is false only when both disjuncts are, Now 2 can be
simplified, since a negation is false when the statement without negation is
true, So the next step is

4. P I

Similarly the premise can be simplified by cancelling the negation and listing
the statement without negation under FALSE

B e t h T a b l e a u x 127

5. | (P —► ?)

We know that a conditional statement is false just in case its antecedent is
true and its consequent is false. So from 5 we get to

6. p | q

Now all statements have been simplified and no complex statements re
main The tableau shows that when we interpret the atomic statement p as
true and the atom ic statement q as false, we obtain a counterexample to the
original statement ~ (p —i> q) — p V q. This claim can be verified with the
quick falsification m ethod based on truth tables:

~ (P 9) ~P V q
1 1 0 0 0 01 0 0

W hen one and the same atomic statement occurs on both sides o f the
tableau, we assume that no counterexample can be based on it This is
obviously based on the law that a statement cannot be both true and false.

Example 3 is an illustration o f a closing tableau, proving the statement
q — p\J q valid.

Example 3, Prove ~ p V ? from q

1.
2.
3

TRU E
q

FALSE
~ p V g

~ p

Closure obtained on the statement q is indicated by the = = = = = = line
on both sides. I f there is a non-atom ic statement on either side after closure
which may still lead to simplification, this only means that the truth value
o f that statement does not matter to the validity o f the entire sentence, as
is clearly the case in this example for ~ p. Hence closed tableaux may still
contain complex statements, but we cannot and need not apply any more
rules to them.

The construction o f tableaux may get more complex when there are al
ternative interpretations to consider. For instance, when a disjunction p V q
is true, then p may be true or q may be true (or both), In such cases the

128 C h a p t e r . 6

tableau will split into alternative interpretations. Consider the tableau for
(~ p V q) (p ->• q)

Example 4-

TRUE FALSE
1. (~ p V g) (? - » ?)
2. P
3. (
4 4 .! ~ p 4 2 9 4,i 4 2

5. P

Lines 2 and 3 axe just as in Example 1. Line 4 leads to a split into
subtableaux 4i and 42, since the disjunction may be true on the basis o f
the truth of either disjunct. Each disjunct is hence entered into its ‘ow n’
subtableau and we simplify and check for possible closure o f each subtableau,
In 4, the second subtableau is closed on each side as q occurred under FALSE
in 3 Then o simplifies the true negation ~ p, and again this subtableau closes
since p occurred under TRUE in 2

A (sub)tableau closes only if a statement occurs both under TRUE and
under FALSE. A complex tableau closes only if all its subtableaux close. If
we do not obtain such a statement on both sides in the tableau construction,
then we find an assignment o f truth -values to the atom ic statements which
constitutes a counterexample to the alledged validity o f the tested statement
The entire m ethod o f construction is given by the following construction
rules.

Construction Rules for Beth Tableaux
If statement occurs under I f statement occurs unde

TRUE FALSE

negation ~ p put p under FALSE put p under TRUE

conditional p —► q SPLIT!
put q under TRUE,
and p under FALSE

put p under TRUE
and q under FALSE

B e t h T a b l e a u x 129

conjunction p & q put p and q SPLIT!
under TRUE put p under FALSE

and q under FALSE

disjunction p V q SPLIT! put p and q under FALSE
put p under TRUE
and q under TRUE

Note that the development o f one open subtableau suffices to find a
counterexample. In constructing subtableaux all statements from the earlier
steps in the tableau before it split count in finding closure possibilities. In
general, it is a good strategy to apply splitting rules only after you have used
all other applicable rules

Here is an example o f a tableau which splits twice
Example 5 Prove (p & q) from (p —► q)

1,
2 , 2 1

3, 3 .H

TRUE
(p q)

' 2 2
3. 1 2 2 1 q 3, 2,2

2,1
3 i.i

FALSE
(p & g)

2 2
3.12 P 2 1 3 2 2 P

The split on the second line is constructed by the false conjunction, which
makes each o f the two conjuncts false. The next line continues this split, and
introduces a second split by the true conditional, which makes the consequent
true and the antecedent false. Since we have to consider this situation under
each o f the two assumptions in line 2, we split each subtableau and apply
the rule for a true conditional in each subtableau. In attempting to close
any subtableau, all statements that occur on lines above a given subtableau
must be taken into consideration. The subscripting o f subtableaux indicates
which higher subtableaux are relevant, e g ., in this example 2,2 is relevant
to 3 2 i) but 2 i is not relevant to 3 2.2- Closure can only be obtained for the
subtableau 3,2,11 hence we obtain the following counterexamples:

1) p = 0 and q = 1 (3 i,i)
2) p = 0 and q = 1 or 0 (3,i 2)
3) p = 0 and q = 0 (3 2 2)

In each o f these cases the pr emise o f this example is true and the conclusion
false.

130 C h a p t e r . 6

The m ethod o f semantic tableaux for the logic o f statements constitutes
a ‘ decision procedure’ for the validity o f statements. This notion will be
central in Chapter 8, but we may make a few preliminary remarks about
it in the context o f the tableau construction. Any statement consists o f a
finite number o f connectives and atomic statements. The rules guarantee
that any tableau construction comes to an end: it either closes or it provides
a counterexample. Any tableau hence consists o f a finite number o f steps
corresponding to the number o f connectives in the statement tested, and a
circular or looping tableau is never possible. The only respect in which the
procedure is not fully automatic yet is in the order o f application o f the rules.

Exercises

1. Translate the following sentences into statement logic. Use lower case
letters for atomic statements and give the “key” to the translation, i.e.,
say which atomic statements are the correspondents o f which English
sentences, (In some cases you may want to use a syntactically different
version o f the English sentence) Example: “If John is at the party,
then Mary is, to o .” Translation: (p —► q) Key: p: “John is at the
party” ; q: “Mary is at the party”

(a) Either John is in that room or Mary is, and possibly they both
are

(b) The fire was set by an arsonist, or there was an accidental explo
sion in the boiler room,

(c) W hen it rains, it pours

(d) Sam wants a dog, but Alice prefers cats

(e) If Steve comes home late and has not had any supper, we will
reheat the stew.

(f) Clarence is well educated only if he can read Chuvash,

(g) Marsha won’t go out with John unless he shaves off his beard and
stops drinking,

(h) The stock market advances when public confidence in the econ
omy is rising and only then.

(i) A necessary but perhaps not sufficient condition for negotiations
to commence is for Barataria to cease all acts o f agression against
Titipu

E x e r c i s e s 131

In each case say what, if anything, has been “lost in translation” ; that
is, what semantic properties o f the English sentence axe not represented
in the logical formula.

2. The following sentences contain various sorts o f ellipsis, so that some
o f the connectives appear not to be connecting whole statements. Re
formulate them so that the connectives connect statements (using dif
ferent connectives i f necessary) and translate into symbolic notation
as above.

(a) John and Bill are going to the movies, but not Tom

(b) Susan doesn’t like squash or turnips.

(c) I f neither Peter nor Fred is going to the party, then neither will I,

(d) I f Mary hasn’t gotten lost or had am accident, she will be here in
five minutes

(e) A bear or a w olf frightened the boys.

(f) A party or a softball game would have amused the children,

3. Let p, q and r be true and let s be false, Find the truth values o f the
following statements

(a) ((p & q) k s)

(b) (p & (g & s))

(c) p ->• s

(d) s —> p

(e) ((p & q) <-> (r & ~ s))

(f) (p (q w (r s)))

4. Construct truth tables for each o f the following statements. Note
whether any are logically equivalent,

(a) (p V ~ q)

(b) ~ (~ p & q)

(c) ((p w q) & p)

(d) ((p -»■ (q V ~ r)) & (p ->• (q V ~ r)))

(e) (((p - > g) - * p) - * {)

132 C h a p t e r . 6

5. For each o f the following, use the “ quick falsification” m ethod to find
an assignment o f truth values to the atomic statements which makes
the entire statement false.

(a) (p V ?)

(b) ((p V g) -> (p & ?))

(c) (~ (~ q V p) V (p ->• q))

(d) ((((P -> q) -> r) -> s) -> (p -> q))

(e) (((p Vq) & (r & s)) <-> (((p & g) & r) &s))

6 . Let p, 5 and r be atomic statements. W hich o f the following are tau
tologies, contradictions or contingent statements?

(a) (p V ~ p)

(b) (p V ?)

(c) ((p & q) (p V r))

(d) (~ p & ~ (p ->• ?))

(e) ((pVr) ->• ~p)

7. Certain o f the logical connectives can be defined in terms o f others
For example, (p —► q) can be defined as an abbreviation for (~ p V q),
since the two statements axe logically equivalent. Hence, all formulas
containing the connective —► could be replaced by formulas containing
V and

(a) Define —► in terms o f & and

(b) Define & in terms o f V and

(c) Define <-» in terms o f —► and &.
(Thus, the five connectives could ultimately be reduced to two:
V and

(d) Show how the five connectives could be reduced to just & and

8 . Use the laws in Table 6-12 to reduce each o f the following statements
to the simplest equivalent statement

(a) (~ p V (p & ?))

E x e r c i s e s 133

(b) ((~ p & g) V ~ (p V {))

(c) (~ p & ((p & g) V (P & r)))

(d) ((~ p & g) (p V g))

(e) (((p V g) f e (r V ~ g)) ^ (p V r))

9. Give a formal p roo f o f validity for each o f the following argument forms
(A conditional or indirect proof will be much easier in some.)

(a) p g
q —► r
^ 7»
~ P

(c) p V g

r — p
.* • ~ T

(e) ~ p V g
~ g & 7*
~ (p V g) —► s

. t k, s

(g) P < - + 9

~ P
(g & ~ r) V i
(s V i) ^ r

r & ~ g

(i) p ^ { q k r)
q —► 5
t —► 2
(5 & f) — u
u

(b) p
~ 7>
(p & ~ 7>) —► g

g
(d) p g

7* —► q
^ r —> 5
p —► 5

(f) p V (g & r)

(p v g) - » (s v 0
~ p
r & s

(h) ~ p - > g

7* —► (5 V f)
5 — 7”
p f

. ’ .T’ - t g

(j) p g
7” —» S
~ g V ~ s

P
(f & it) —► 7>

. ~ p

134 C h a p t e r . 6

(k) (p & g) (p -> (r & s))
(p & q) & w

(1) P
(p & g) V (p & r)
(p v 9) ~ 1 T

:.p < r+ 9

10. Express the following arguments in symbolic form, and determine
whether they are valid.

(a) The butler or the cook or the chauffeur killed the baron. I f the
cook killed the baron, then the stew was poisoned, and i f the
chauffeur killed the baron, there was a bom b in the car. The stew
wasn’t poisoned, and the butler didn’t kill the baxon. Therefore,
the chauffeur killed the baxon,

(b) If the subject has not understood the instructions or has not fin
ished reading the sentence, then he has pressed the wrong button
or has failed to answer. I f he has failed to answer, then the timer
hasn’t stopped. The subject has pressed the right button, and
the timer has stopped. Therefore, the subject understood the
instructions.

(c) I f the pressure is 1 atm, the water is boiling only if the tempera
ture is at least 100°C If the pressure is 1 atm, then the water is
frozen only if the temperature is at most 0°C. The pressure is 1
atm and either the temperature is at least 100° C or it is at most
0°C. The water is not boiling. Therefore, the temperature is at
most 0°C.

(d) I f I am honest, then I am naive. Either I am honest or naive,
or else Sam was right and that magazine salesman is a crook. I
am not naive, and that magazine salesman is certainly a crook.
Therefore, Sam was right

(e) A certain consonantal segment, if it occurs initially, is prevocalic,
and if it is noninitial, it is voiceless. I f it is either prevocalic or
voiceless, it is continuant and strident. I f it is continuant, then if
it is strident, it is tense. If it is tense, then if it occurs initially, it
is palatalized. Therefore, the segment is palatalized and voiceless.

11. Let the set S = {p , (p V 9), (P V p), (p V ~ p), (p & (9 V ~ 9)),
(~ 9 P). (P (9 P)), (~ P 9), (p V (9 & ~ 9)). (p V (9 V ~ ?)) } .
Let the relation R = { (x , y) \ x £ S and y 6 S and x O y}

E x e r c i s e s 135

(a) Show that R is atn equivalence relation,

(b) Find the equivalence classes into which R partitions S

12. Construct Beth tableaux to test the validity o f each o f the following
arguments:

(a) p - > (g - > r))
~ (~ p V 7”)
p k ~ q

(b) p -»■ q
q k r
p k q

(c) (p - t g) f e (j V i)
f —s- g

13. Expressions in the prepositional calculus may be written in “Polish
parenthesis-free notation,” which places the connective to the left o f
the propositions it connects rather than between them In this notation
the connectives are N (negation), A (alternation), K (conjunction), C
(conditional), and E (biconditional). The last four extend over the
next two well-formed expressions to the right; negation extends over
only one. The expressions in standard notation in the left column
below would written in Polish notation as shown in the right column.

Standard Polish
~ P Np
P V q A pq
p k q Kpq
p ^ q Cpq
p *+ q E pq
(p k q) V r A Kpqr
p k (q V r) K pAqr

Observe that parentheses are unnecessary in Polish notation to distin
guish between formulas such as (p k q) V r and p k (q V r).

(a) Translate into Polish notation:

136 C h a p t e r . 6

(i) ((p V g) & (g V r)) & (p V s)

(ii) (~ p & (~ p -» g)) -» g

(iii) (p V g) ^ ((r ^ s)tp)

(b) Translate into standard notation:

(i) ApCKNyNgKpEgr

(ii) KANKAKEEpg7,spg7’s
(iii) N CAK Epgrsi

(c) Express DeM organ’s Laws in Polish notation.

Chapter 7

Predicate Logic

7.1 Syntax

We now turn to the second o f the logical languages we will examine: predi
cate logic, In it we will be able to analyze arguments such as (5-1) and (5-2)
as well as all the arguments o f the statement calculus.

In predicate logic atn elementary statement can be composed o f a pred
icate and a number o f terms. For example, H(s) contains a (one-place)
predicate H and the term s; the statement L (j , m) is composed o f a (two-
place) predicate L and two terms, j and m. The former might serve, for
example, as the translation o f Socrates is human, where Socrates is repre
sented by s and is human by the predicate H Similarly, L (j , m) might be
the predicate logic counterpart o f John loves Mary.

Predicates are specified as one-place, two-place, etc. according to the
number o f terms they require to form a statement. In the examples above,
H was one-place and L was two-place. Combining a predicate with the
wrong number o f terms results in an expression which is not well formed,
e g ,, H(j , m) ; L (s) . Predicates will typically be represented by upper case
letter s but will not ordinarily carry any explicit indication o f the number o f
terms they require. There is no limit on the number o f places for a predicate
so long as the number is finite.

We should note here, incidentally, that a predicate in the logical language
need not correspond to a predicate in the grammatical sense in a natural
language. Although the (logical) predicate H above was used to translate
the (grammatical) predicate is human in the sentence Socrates is human ,

137

138 C h a p t e r . 7

the logical predicate L corresponds to the transitive verb loves in John loves
Mary, and indeed nothing prevents us from translating John loves M ary into
predicate logic as G (m), where G is a one-place predicate corresponding to
John loves, which presumably is not a grammatical constituent at all.

Terms come in two varieties. The first is individual constants exemplified
by s ,m , and j above. As the name suggests, in the semantics o f the pred
icate logic these will denote specific individuals, and in translating natural
language statements they will typically show up as the correspondents o f
proper names such as John, M ary , and Socrates. The second kind o f term
is the individual variable (or simply variable), for which we use lower case
letters from the end o f the alphabet— v, w, x, y, z— with primes and/or
subscripts attached if we need to mention more o f them. W hen a predicate
is combined with one or more variables, e.g., H(x) , L (m, y) , the result is
not a statement but an expression called an open statement or propositional
function.

An open statement can be made into a statement by prefixing an appro
priate number o f quantifiers, thus: (' i x) H{ x), (3y) L(m, y). The universal
quantifier is denoted by V and is the correspondent o f English expressions
such as all, each, and every. The existential quantifier, represented by 3,
corresponds to some (in the sense o f “ at least one, possibly more”). The
x written alongside the universal quantifier in (\fx)H(x) indicates that the
quantification is with respect to that variable in the expression which follows,
This labelling o f quantifiers is necessary since an expression may in general
contain more than one quantifier and more than one variable. For example,
in (\/x)(3y)L (x,y) the first position in L{ x , y) is universally quantified and
the second existentially, but in (3x)(\/y)L (x,y) it is the other way around.

Letting H correspond once again to is human, we might gloss (\/x)H(x)
as Every individual is human or Everything is human. (3 x) H(x) would
correspond to Some (at least one) individual is human, or briefly, Something
is human Letting m correspond to M ary and L to loves, (3 y) L (m, y) could
be the translation o f There is at least one individual whom M ary loves , or
more briefly, M ary loves something (or som eone, i f all individuals we happen
to be talking about are human). Similarly, ('iy)L {m ,y) would correspond
to M ary loves every individual, or, again, if all the individuals happen to be
human, Mary loves everyone.

Note incidentally that in many instances the particular choice o f vari
able letters is not important. Instead o f (\/x)H(x) we could equally well
have written (\/y)H(y) or (V z)-ff(z), etc. Similarly, (3 x) L (m , x) would do

Sy n t a x 139

just as well as (3 y) L (m , y). O f course when more than one variable is in
volved, we must use different letters for variables which may be distinct,
e.g., in (V x) (3y) L (x , y), To write L (x , x) and then quantifiy, say existen-
tially, to produce (3x) L(x , x) would give a statement which we might gloss
as There is at least one individual which loves itself (or him self) Here the
same term, x , occupies both positions required by the two-place predicate
L. In { 3x) (' i y)L(x , y) , There is at least one individual who loves every in
dividual, the x and the y may take on values which are distinct individuals
but they may also be the same; indeed, this statement will be true only if
there is at least one individual who loves every individual, including that
individual itself (or himself). Still, we should keep in mind that the choice
o f variable letter is immaterial so long as the same quantifiers are associated
with the same predicate positions; i e., {3y)(\/x)L(y, x) is £tn alphabetic vari
ant o f (3x) (\/y)L(x,y) ; but (3y)(\/x)L (y,x) and (3x)(\/y)L(y, x) would not
be alphabetic variants because the quantifiers are associated with different
positions in the predicate L.

We will return to further details o f the use o f quantifiers and variables
below, but let us now observe that statements and open statements may be
joined by the connectives ~ , &, V, —►, and <->; for example:

(7 -1) (i) ~ H{ x)
(ii) ~ ff (s)

(iii) { (^) E { x) k L { j , m))
(iv) (~ f f (s) —► ~(\/x)H(x))

Expressions (ii), (iii), and (iv) might translate, respectively, Socrates is
not human, Everything is human and John loves M ary, and I f Socrates is
not human, then not everything is human Formula (i) is not a statement
but an open statement since it contains am unquantified variable, and, not
being a statement, it would presumably not serve as the translation o f any
declarative English sentence (perhaps He is not human, where the referent
o f he is not specified would come closest)

An open statement, even if internally complex, may always have quan
tifiers prefixed, so we may, if we choose, convert ~H(x) into ('ix)^ H (x)
or (3a:)~ir(a:) (corresponding to E very individual is not human — which
is ambiguous for many speakers, but the intended sense here is that each
individual fails to be human — and A t least one individual is not human,
respectively.)

140 C h a p t e r . 7

Now that we have informally introduced the syntax o f the language o f
predicate logic by illustration and example, we give a precise formulation o f
the syntactic rules

The vocabulary consists o f

(7 -2) (i) individual constants:
(ii) individual variables: x , y, z , . (sometimes subscripted)

The individual constants and variables together are called
the set o f terms.

(iii) predicates: P , Q , R , ..., each with a fixed finite number of
argument places, called its arity.

(iv) the five connectives o f the logic o f statements: ~ , V, &, <->
(v) two quantifiers: V and 3

(vi) auxiliary symbols: (,) and [,]

The syntactic rules generate the set o f formulas o f the language o f pred
icate logic. We will define the set o f statements as a proper subset o f this
set o f formulas

(7 -3) (i) I f P is an n -ary (i e , n-place) predicate and f i , . . . , f n
are teims, then P (< i,. ., fn) is a formula

(ii) I f ip and ip are formulas, then p, (ip Sz ip), (ip V ip), { p —► ip)
and (p <-> ip) are formulas,

(iii) I f p is a form ula and x is an individual variable, then (\/x)tp
and (3x)<p are formulas

(iv) The formulas o f the language o f predicate logic catn only be
generated by finite numbers o f applications o f rules (i)-(iii).

The fiist rule generates atomic formulas (containing no connectives or
quantifiers) like R{ x , y) , P(c) , K { m , x) , and S{ x , z , m) , Note that connec
tives may combine formulas with or without quantifiers, and that any quanti
fier plus variable may be prefixed to a formula, even when that variable does
not occur within the formula (e.g., (' i x)P(y) is well-formed,) The syntax
thus allows “vacuous” quantification. (Some systems do not allow vacuous
quantification, but they pay a price: the set o f generative rules is more
complex if quantifier prefixes are allowed only when the quantified variable
occurs inside the formula. We prefer to have a simpler syntax and render
vacuous quantification meaningless or harmless in the semantics,)

If a: is any variable and <p is a formula to which a quantifier is attached
by rule (iii) above to produce (Va:)^ or (3x) p , then we say that ip is the

Sy n t a x 141

scope o f the attached quantifier and that ip or any part o f ip lies in the scope
o f that quantifier, We also refer to the ip as the matrix o f the expression
(Va;) or {3x)ip Some examples axe given in (7-4) below, where the scope
o f each quantifier is underlined.

(i) (3 x) P { x)

(ii) (3 y) R (x , y) t P (y)
(iii) (3y) (R(x , y) & P(y))
(iv) (3 x) (P (m) k R (j , y))

(v) (3x) (\/y)(R(x,y) ->• K (x , x)) (scope o f (3 e))
(scope o f (Vy))

(vi) (3x) [Q(x) t (\/y) { P{ y) -> (3 z) S{ x , y , z))] (scope o f (3 e))
(scope o f (Vy))
(scope o f (3 2))

In (ii) note that (3$r) was attached to R (x , y) , which is therefore the
scope o f the existential quantifier, and the result conjoined with P (y), which
is outside the scope o f {3y). In (iii), on the other hand, the existential quan
tifier was attached to (R (x , y) & P(y)) , which thereby becomes its scope.
Note that in (iv) a quantifier has the following form ula as its scope even if
the quantification is vacuous. In (v) and (vi) we see cases involving quan
tification o f formulas which already contain quantifiers, Thus the scope o f
one quantifier m ay be contained within the scope o f another.

This notion o f quantifier scope is crucial in the following definition,

(7- 5) D e f in it io n 7.1 An occurrence o f a variable x is bound i f it occurs
in the scope o f (3a:) or (Vz). A variable is free i f it is not bound. ■

Binding is hence a relation between a prefixed quantifier and atn occur
rence o f a variable. For example, in P(x) the x is free, but it is bound in
(3:c)P(:c)„ In (7-4)(ii), the y in R { x , y) is bound (by the (3?/)) but the y in
P{y) is free. In (iii) both occurrences o f y axe bound. In both (ii) and (iii)
the x in R (x , y) is free, not being in the scope o f a quantifier associated with
x „ Similarly, the y in (iv) is free because the only quantification is by (3k).
We now see that what we have called “vacuous” quantification is vacuous in
the sense that it does not give rise to any binding o f variables. Note inciden
tally that constants, e.g., m and j in (iv), are not said to be bound or free;
binding applies only to variables, In (v) and (vi) all variable occurrences are

142 C h a p t e r 7

bound- Note that a variable which may be free in a subformula may becom e
bound in a larger formula, e.g., the x and y in S (x , y , z) in (vi)„

Any occurrence o f a variable in a formula is either bound or free; there is
no middle ground. A variable may only be bound once, however. We might
wonder, for example, whether the x in the M (x) o f the formula (' i x) (P(x) —»
(3 k)M (k)) is bound both by the (3k) and again by the (Ve). It is not; it is
bound by the (3 e) only, and the z in P (x) is then bound by the (Ve), The
formula would surely be less confusingly written i f we had chosen different
variables, thus: (Vx) (P(x) —> (3y) M(y)) , which is an alphabetic variant o f
the original. In general, it is good practice in writing formulas to avoid
using the same variable letter for distinct variables, even in cases such as
this one where the intervening quantification assures their distinctness. We
will return to the subject o f alphabetic variants in Sec 7,3,

A statement o f the predicate logic is defined as a form ula that does not
contain any free variables. Every occurrence o f a variable in a statement
is hence bound by some quantifier in the formula, The set o f statements is
sometimes called the set o f sentences, propositions, or closed formulas o f the
predicate logic, A formula with at least one free variable is, as we have said,
called an open formula, or propositional function.

7.2 Semantics

W e give here an informal account o f the semantics of predicate logic, A more
formal treatment will be presented in Part D (Chapter 13).

As with propositional logic, a statement in the predicate calculus bears
one o f the truth values 1 (true) or 0 (false). I f the statement is com posed of
predicates and terms, and possibly quantifiers also, then its truth value is
determined by the semantic values (which are not necessarily truth values) o f
its components. For example, the statement H(s) , composed o f the one-place
predicate H and the constant s, receives its truth value in the following way:
s has as its semantic value some individual chosen from a set D o f individuals
presumed to be fixed in advance. (D is like the domain o f discourse o f set
theory and is often referred to in that way). Suppose, for example, that D
is the set o f all human beings, living or dead, and the individual assigned
to s is Socrates. The predicate H has as its semantic value some set o f
individuals from D — let us say, for example, {Socrates, Aristotle, Plato,
M ozart, Beethoven},, The statement H(s) now gets the truth value true by
virtue o f the fact that the individual corresponding to s is a member o f the

S e m a n t i c s 143

set corresponding to H . On the other hand, had H had as its value the set
{Mahler, Proust, M ichelangelo}, H (s) would have been false, Socrates not
being a member o f this set

W e use the double brackets |a] to indicate the semantic value o f the
expression a Thus, in the preceding example fs j = Socrates , [JIJ =
{Socrates, Aristotle, Plato, M ozart, Beethoven}, and [iT(s)J = 1.

A two-place predicate L has as its semantic value a set o f ordered pairs
o f individuals from D , i.e., a subset o f D x D , A statement such as L (j , m)
is true just in case the ordered pair o f individuals (x, y) is in this set, where
x is the semantic value o f j and y is the semantic value o f m. For example,
i f [jJ is John Donne and |mj is Mary Queen o f Scots, then L {j, m) is true if
(John Donne, Mary Queen o f Scots) is in the set which is the semantic value
o f L; otherwise L {j, m) is false In general symbolic terms, for any two-place
predicate K and terms a and b, | K(a, 6)J = 1 iff (flaj, f&J) £ fiTj.

Clearly the truth value o f any statement in predicate logic will depend on
the domain o f discourse and the choice o f semantic values for the constants
and predicates, W hen these are fully specified, we say that we have a model
for predicate logic, More specifically, a m odel consists o f a set D and a
function F which assigns:

(i) to each individual constant a member o f D
(ii) to each one-place predicate a subset o f D

(iii) to each two-place predicate a subset o f D X D
and in general

(iv) to each re-place predicate a subset o f D X D x ., . X D
n

(i.e., a set o f ordered re-tuples o f elements from D)

Thus, a statement in predicate logic such as H{ s) or L (j , m) is not sim
ply true or false, but true or false relative to a particular model M . I f we
want to emphasize this fact in our notation, we can add the name o f the
model as a superscript, thus: |iT(s)JM = 1, |sJM = Socrates, etc. Certain
statements will turn out to be true or false irrespective o f the m odel chosen,
and such statements constitute the tautologies and contradictions, respec
tively, o f predicate logic, Inasmuch as the connectives & , V, etc, have the
same truth tables as in statement logic, it follows at once that an expression
such as -ff(s) V 'vfl’(s) is a tautology in this system, and H(s) & ~iT(s) is a
contradiction. That is, whatever the m odel, S (s) and ~iT(s) will have op
posite truth values, thus H(s) V ~H(s) will always be true, etc. A statement

144 C h a p t e r 7

such as -ff(s) or L (j , m) , whose truth value varies from m odel to m odel, is
contingent, W e will shortly encounter examples in the predicate calculus
which axe not such straightfor ward analogs o f tautologies and contradictions
in the logic o f statements

The semantics o f quantified expressions is somewhat more com plex than
that o f statements composed simply o f predicates and terms. We sketch the
basic ideas here informally and defer the detailed formalism to Chapter 13.

A formula in which all occurrences o f variables are bound, such as (Ve)
H(x) or (3 y) L (m , y), is a statement and should accordingly be true or false
with respect to the chosen model. Such statements, however, are com posed
syntactically o f a quantifier (plus variable) and an open statement, e g ,
H (x) or L (m , y), which is not a statement and does not, strictly speaking,
have a truth value. In evaluating quantified expressions we nonetheless let
these propositional functions take on truth values temporarily by letting
the quantified variable range over all the individuals in the domain D one
by one and determining the truth value the propositional function would
have for each o f those individuals. For example, to determine the truth
value o f (Vx) I I (x) we let x range over all individuals in D and for each such
assignment o f a value to x determine the truth value H (x) would have: true
i f |®J is in |JIJ in the model and false otherwise Then (Vx) H(x) is true iff
[®J is in [JIJ for all individuals in D. I f for some individual, [®J ^ [-ffj, then
(y x) H (x) is false. To put it another way, (Vx) H(x) is true (in a particular
m odel) iff B [x) is true as x takes on as successive values every individual
in D. Correspondingly, (3 x) H(x) is true iff H (x) is true for at least one
individual in D when x assumes that value

Let us consider a small partial model, Predicates and terms not men
tioned are also assumed to have values in the m odel, but for clarity we ignore
them.

(7 -6) Let D = {Socrates, Aristotle, Plato, M ozart, Beethoven, Tolstoy}

F (H) — {Socrates, Aristotle, P lato}
F (M) = {Socrates, Aristotle, Plato, M ozart,

Beethoven, Tolstoy} = D
F (L) = {(Socrates, Socrates), (Socrates, Aristotle),

(Mozart, Beethoven), (Beethoven, M ozart),
(Tolstoy, P lato), (Plato, M ozart), (Aristotle, T olstoy)}

F(s) = Socrates
F (a) = Aristotle
F (p) = Plato

F (m) = Mozart
F(b) = Beethoven
F (t) = Tolstoy

S e m a n t i c s 145

The reader may now verify that the following statements, among others, axe
true in this model:

H(s) , H(a) , H(p) , M(s) , M (6), L(s, s), L(t ,p)

while the following are false:

H(m) , H(b) , H(t) , L(a, s), L(m , m)

The statement (Mx) M{ x) is true in this m odel since M (x) is true when
ever x takes as its value each o f the members o f D , i.e., M (s) , M (a), M (p),
M (jn), M{b) , and M{ t) axe all true The statement (3 x) H(x) is true, since
H(x) is true for at least one value o f x— in fact, it is true when |eJ is Socrates
or Aristotle or Plato (Note carefully that the semantic values x takes axe
individuals from the set D and not constant letters s, a, p, etc., o f the lan
guage.) Similarly, it is easy to see that since (\/x)M (x) is true (and the
universe o f discourse is not em pty), (3 x) M (x) is true also.

The statement (3 y) L (m , y) is true since there is at least one value o f y
(just Beethoven, in fact) such that the ordered pair (M ozart, |j/J) is in the
set assigned to L, i.e., f i j . However, (\/y)L(rn,y) is false since (Mozart,
|y j) is not in [£] for every value o f y ((Mozart, Socrates } is lacking, for
example)

Given the truth values o f the statements already mentioned, we catn
determine the truth values o f complex statements such as (H (s) & H (m)) ,
((\/x)M (x)\/H (a)), and (H(p) —► (3y) L(m, y)) in the usual way according to
the truth tables for the sentential connectives. The reader should verify that
these three examples are, respectively, false, true, and true in the assumed
model.

Evaluating atn expression such as (3a ;) ((®) Sz M (x)) in which the con
nective lies inside the scope o f the quantifier is not quite so straightforward.
By the rule for evaluating existentially quantified expressions, we must de
termine whether there is atny value o f x in D which makes the complex
prepositional function H [x) & M (x) true, Here we must try each individual
in D as a value for x atnd determine whether both H{ x) atnd M (x) are true
for that value. If at least one such value is found, (3 x) (H (x) & M (x)) is true;
otherwise, it is false. In the m odel given, this formula is true since there axe
in fact three individuals— Socrates, Aristotle, and Plato— which are both in
l-ffj and [MJ. On the other hand, (Vx)(J7(x) & M (x)) is false; not every indi
vidual is in both [iTJ and JMJ. We see, however, that (V x)(JI(x) —► M (x))

146 C h a p t e r 7

is true in this model. There is no individual which, when assigned to x,
makes the conditional H(x) —> M { x) false; i.e., no individual which is in
I#]) but not in [M j.

Problem : W hat is the truth value in this m odel o f ('\/x)(L(rn,x) —> H(x))^
o f (Vx) (L(m, x) —► M (x)) ’!

Expressions containing quantifiers within the scope o f other quantifiers
add an extra degree o f complexity in the evaluation, The same rules apply,
but the expression is evaluated, so to speak, from the outside in. (Va:)(3j/)
L(x, y), for example, will be true just in case for every possible value o f x in
D the expression (3y) L(x , y) is true. W hen is the latter true? If there is at
least one value o f y for which L(x , y) is true, where x has the value fixed in
the previous step. That is, we let x range over all the individuals in D, and
at each value we determine the truth value o f (3y) L(x , y) by again letting
y range over sill the individuals in D, (3y) L(x , y) might be true for some
values of x and false for others, but the entire expression (\/x)(3y)L(x, y) is
true only if (3y) L(x , y) is true for every value o f x,

In the chosen m odel, (^x) { 3y) L{ x , y) happens to be true To see this, let
x be Socrates; then [3y) L{ x , y) is true when y is Socrates or Aristotle, If x
is Aristotle, then (3y) L(x , y) is true when y is Tolstoy, and so on. We find
ultimately that for each value o f x we can always find some value o f y which
makes L (x , y) true. Or to put it another way, each member o f D appears at
least once as first member in the set o f ordered pairs assigned to L. Thus,
(\/x)(3y)L (x,y) is true in this model.

Note, on the other hand, that in this model (3y) (\/x)L(x,y) is false.
For this formula to be true, we would have to find at least one value o f y
for which (Vx) L (x , y) is true, i.e., some individual which appears as second
member with every individual in D as first member in the set o f ordered
pairs assigned to L, It is easy to see from inspection o f [L j that no such
individual exists, so (3y) (' i x)L(x , y) is false in this model.

These last two examples demonstrate that the order in which quantifiers
appear in an expression when one is universal and the other existential can
have semantic significance. That is to say that there may in general be
models, as here, in which one statement is true and the other, with the
order o f quantifiers reversed, is false. This is immediately evident if we
choose a slightly less artificial model. Let I? be the set o f sill living persons
and let L = { (x , y) | x loves y }„ Then (\/x)(3y)L (x,y) is true if for each
person there is at least one individual (possibly himself or herself) whom

S e m a n t i c s 147

that person loves, but (3y)(\/x)L (x,y) would be true only if there were at
least one person who is universally loved, i.e., loved by everyone. It is easy
to imagine that the former could be true while the latter is false,

We can now see how to translate certain types o f English statements into
predicate logic, For All cats are mammals, for example, we will need one-
place predicates, call them C and M , to correspond to is a cat and is a mam
ma/,. We can then represent the English statement by (V zXC^a:) —► M(x)) ,
which we can gloss roughly as follows: for every individual in the universe
o f discourse, if that individual is a cat, then it is also a mammal; or more
briefly, everything which is a cat is a mammal (Note, by the way, that in
our predicate calculus rendition the statement is true in case there axe no
cats in the universe o f discourse, for then C[x) will be false for sill values o f
x and hence the conditional will always be true,,) In the same vein, No cats
are mammals might come out as (Vx) (C(x) — M(x)) : everything which
is a cat fails to be a mammal Again, this is true in case the universe o f
discourse contains no cats, unlike the English statement, which we might
well regard as inappropriate or nonsensical in such an instance. We axe once
again in familiar territory where English statements and their nearest logical
correspondents do not match up perfectly.

Some cats are mammals could be translated as (3a:)(C'(a:) & M(x)) , which
is true iff there is at least one individual in the domain o f discourse which
is both a cat and a mammal. In this case the absence o f cats from the
universe o f discourse makes the predicate calculus statement false, whereas
we might say that the English statement suffers from presupposition failure
(with whatever consequences attach to this defect). Note that (3a:)(C'(a:) —►
M(x)) , with a conditional as in the translation o f the universal statement,
would not do This statement is true when there are no cats (the antecedent
is always false) or when there is at least one mammal (the consequent is
true) . Although we are prepared to accept a certain amount o f disparity be
tween English statements and their logical translations, we would not want
to say that Some cats are mammals gets the same translation as Either there
are no cats or there is at least one mammal,

The negative existential statement Some cats are not mammals could be
rendered as (3a:)(C'(a:) & ~ M (e)) , (which is also false when the universe o f
discourse contains no cats),

148 C h a p t e r 7

7.3 Quantifier laws and prenex normal form

Based on this set-theoretic semantics o f predicate logic there are a number
o f important equivalences, which we may consider as laws of predicate logic.
They will be very useful when constructing proofs and also in recognizing
formulas which are equivalent to translations o f English sentences but which
do not resemble them structurally. In the following we write f [x) , ip(x), etc,
for any form ula which contains at least one free instance of the variable x,
e g. H(x) , L (x , x) , (\/y)L(x, y) , (3y) (H(x) ->• L(x , y)) , etc., and similarly for
<p{y), ip{y), and so on,

A statement o f the form (3®) ~<j>(x) asserts that there is at least one
individual which makes ~^(®) true; this individual therefore makes <j>[x)
false. Thus (\/x)4>(x) could not be true, because the universal quantifier
would require sill instances o f <f>(x) to be true; therefore ~(\/x)4>(x) is true,

This reasoning can also be applied in the reverse direction, and the result
is the first quantifier law:

(7 -7) Law 1 Quantifier Negation: ~(\/x)<j>(x) (3 x)~<j>(x)

A possible pair o f English correspondents would be: Not everyone passed the
test and Someone did not pass the test .

Because o f the Law o f Double Negation, i.e., <S> <j>, Law 1 could also
be written in the following equivalent forms:

(7 -8) Law 1' (\/x)<t>(x) ~ (3®) ~<j>(x)
Law 1" ~(V®) ~(f>(x) <S> (3x)<j>(x)
Law 1'" (Vx) ~<fi(x) <£> ~ (3 x)4>(x)

English correspondents for these versions are also easy to construct. For
Law 1'", for example, we could have Everyone did not pass the test (i.e.,
everyone failed the test) and No one passed the test.

A consequence o f Law 1 (and the Law o f Double Negation) is that either
quantifier could be entirely eliminated from predicate logic in favor o f the
other and the result would be an equivalent system.

The next group o f laws are analogs o f the Distributive Laws for & and
V in the statement calculus, although we should note that two of those that
follow are only logical implications and not logical equivalences.

Q u a n t i f i e r , l a w s a n d p r e n e x n o r m a l f o r m 149

(7-9) Laws of Quantifier Distribution
Law 2 (Vx)(ip(x) & ip{x)) •£> (Vx)<p(x) & (Vx)i/>(x)

Law 3 (3a:)(i|0(a:) V ip{x)) •£> (3aj)<^(a;) V (3x)tp(x)

Law 4 (\/x)tp(x) V ('ix)tp(x) => (Va;)(< (̂a3) V ip{x))

Law 5 (3x)(ip (x) & ip(x)) => (3x)tp(x) & (3x)ip(x)

The left side o f Law 2 is true iff every individual in the domain o f dis
course makes both 4>{x) and ip(x) true. The right side is true iff every
individual makes 4>{x) true and every individual makes ip(x) true, These
axe fairly obviously equivalent statements. The similar reasoning involved
in verifying Law 3 is left as an exercise for the reader.

The left side o f Law 4 is true iff everything (in the universe o f discourse)
makes 4>{x) true or everything makes tp{x) true. In such a case it follows
that everything makes <p[x) or ip(x) true The reverse implication does not
hold, however. The statement that everything in the universe o f discourse is
either male or female does not imply that everything is male or everything
is female Similar reasoning can be applied to Law 5,

Laws 2 and 3 suggest a fundamental connection between the universal
quantifier and conjunction and between the existential quantifier and dis
junction, (\/x)4>(x) is true just in case 4>{a) is true and 4>{b) is true and
, , . , where a, 6 ,....name all the members o f the universe o f discourse, Simi
larly, {3x)<p[x) is true just in case <f [a) is true or 4>{b) is true or Thus
a universally quantified statement is equivalent to a (possibly infinite) con
junction 4>{a) & 4>{b) & . . ., while an existential statement is equivalent to the
disjunction <f>(a) V 4>{b) V From this perspective, Law 1 resembles a kind
o f generalized DeM organ’s Law:

(7-10) ~ (^ (a)& ^ (6)& ..)<=> ~ ^ (a) V ~ ^ (6) V

The next group o f laws pertains to the linear order o f quantifiers in
doubly quantified statements. I f both quantifiers axe universal or both axe
existential, their linear order in the statement is irrelevant (Laws 6 and 7).
This much is probably evident from the semantic treatment o f the quantifiers
outlined earlier The extension o f these laws to cases o f three or more quan
tifiers o f the same type is then immediate, For these reasons, a statement
o f the form (\/x)(yy)(p(x,y) is often abbreviated as (\/x,y)<t>(x,y). Similarly,
{3x) (3y)(3z)<j>(x,y,z) is abbreviated to (3x , y , z)<fr(x,y, z) , etc.

150 C h a p t e r . 7

(7-11) Laws of Quantifier (In)Dependence
Law 6 (V®)(Vy)<p{x,y) & (\/y)(Vx)tp(x, y)

Law 7 (3x) (3y)<p(x,y) ^ (3y) { 3x) p (x , y)

Law 8 (3x) (\jy)p{x,y) => {\/y){3x)tp(x,y)

We have already seen above that reversing the order o f existential and
universal quantifiers produces a non-equivalent statement, Yet the logical
implication given in Law 8 holds. If everyone has someone whom he or she
loves, (\/x)(3y)L(x,y) , it is not necessarily true that each loves the same
person; i.e., (3y) (' i x)L(x , y) may be false, On the other hand, if there is
someone who is loved by everyone, i.e., the latter statement is true, then
it does follow that the former statement is true: for each person there is
someone whom that person loves— the object o f universal adoration, at the
least, The reading with the existential preceding the universal quantifier is
sometimes called the stronger reading o f the two, as it excludes situations
which axe included by the weaker reading.

In applying these laws to particular closed formulas, it is sometimes
necesssary to make an alphabetic change o f variable. For example, (V x)F (x) &
(V y)G (y) is not o f the correct form to be converted to (V x)(F (x) & G(x))
b y Law 2,
It can be put into the required form , however, by replacing the subfor
mula (Vy)G(y) by the equivalent formula (Vx)G(x) This gives (V x)F (x) &
(Vx)G(x) for the whole formula, which is then equivalent to (Vx) (F(x) &
G(x)) by Law 2. An alphabetic change o f variable is permissible i f (1) the
same new letter is substituted for every occurrence o f the letter being re
placed, and (2) the replacements do not change the overall binding configu
ration o f the entire formula. Under these conditions, the new formula, called
an alphabetic variant, is logically equivalent to the original one. Consider
the example just mentioned,

(7-12) (V x)F (x) & {'iy)G (y) : (V x)F (x) & (V x)G (x)

In the formula on the left, the y ’s can be replaced by z ’ s because sill
occurrences o f variables remain bound to the same quantifier.

Here is another example o f alphabetic variants:

(7 -13) (Vx) ((Vz) F(x , z) (3 y) H(y , x)) :
(' i x) ((' i y)F(x , y) (3 y) H(y , x))

Note that the overall binding configuration is unchanged.

Q u a n t i f i e r , l a w s a n d p r e n e x n o r m a l f o r m 151

The following formulas are not equivalent and hence axe not alphabetic
variants.

(7-14) (\/x)(F(x) ->• (3 y) G(x , y)) : (y x) (F (x) -* (3 x) G(x , x))

The x in G(x , y) is bound first by the (V®), afterward by the (3®).

(7-15) (Vx) (F(x) (3y) G (x , y)) : (Vz) (F(z) ->• (3y) G(x , y))

x has not been replaced everywhere in the formula (and the x in G (x , y)
becomes free).

It will sometimes be convenient, especially in carrying out the rules o f
inference outlined in the next section, to move all quantifier symbols to the
left o f the formula. The following laws characterize when a quantifier prefix
may be moved while preserving truth value.

(7-16) L aw s o f Q u a n tifie r M o v e m e n t
Law 9 (p —► (yx) ip(x)) •£> (V®)(^ —> ip{x))

provided that x is not free in ip.

Law 10 (p —► (3x) ip(x)) •£> (3®)(^ —► tp{x))

provided that x is not free in p

Law 11 (V®)^(®) —► ip <=> (3 s) (^ (s) —► ip)

provided that x is not free in ip.

Law 12 (3®)^(®) —► ip •£> (\fx)(p(x) —> ip)

provided that x is not free in ip.

These laws axe used to find the Prenex Normal Form o f any formula,
which is its alphabetic variant with sill quantifiers preceding a quantifier-free
matrix, For example, to convert

(7-17) (3®).F(a:) ->• (\/y)G(y)

to PN F, we apply Law 9 to get

(7-18) (Vy)[(3®).F(a:) ->• G(y)}

This is allowed since the vaxiable y in the moved quantifier has no free
occurrences in the antecedent (3®)J ’(®). The resulting formula is still not in

152 C h a p t e r . 7

PNF because (3 e) has only F(x) as its scope, We need to move (3 e) from
inside the formula (3a:)i?(a:) —► G { y), which we can do by Law 12 since x does
not occur free in the consequent G (y) The result is (V x) (F (x) —► G (?/)),
which is equivalent to the bracketed subexpression in (7-18). Thus, the
desired equivalent to (7-17) in PNF is:

(7 -19) (Vj/)[(Va:)(i?(a:) G (y))]

The square brackets may now be dropped to give

(7-20) (\/y)(\/x)(F(x) ->• G(y))

The reader may wish to verify that if Law 12 had been applied to (7-17)
and then Law 9 to the result, we would have obtained (' i x) (' i y) (F(x) —►
G(y)) , which is o f course equivalent to (7-20) (and thus to (7-17) also).

As in the case o f other laws, it may sometimes be necessary to replace a
formula by an alphabetic variant before proceeding If (7-17) had been given
in the form (3a:)i?(a:) —► (V x)G (x), for example, we could have applied Law
9 to give

(7-21) (Va:)[(3a:)i?(a:) —► G (e)]

(Note that x does not occur free in (3a:)i?(a:).) But now when we try to
move (3e) outside the square brackets by Law 12, we cannot do so because
x now does occur free in the consequent G(x) . (The fact that it is bound
by the (Ve) outside is irrelevant here; we axe working on the subformula
(3a;)-FT(a;) —► G(x) , and in this subformula, x occurs free in the consequent)
The solution is to convert (3a:)i? (a:) —► G{ x) to an alphabetic variant, say,
(3y) F(y) —► G(x) , and then apply Law 12, legally, to give (V'2/)(i? (?/) —►
G(x)) , The final result is:

(7 -22) (Vx) (Vy) (F(y) -+ G(x))

which is, o f course, equivalent to (3a:)i?(a:) —► (Vx)G(x) (and to (7-20) and
(7-17)),

Given any formula, we can bring it into prenex form by the following
procedure.

1 atomic formulas are already in PNF.

Q u a n t i f i e r , l a w s a n d p r e n e x n o r m a l f o r m 153

2. if S0 is equivalent to ip' which is in PN F, then (\/x)tp is equivalent to
('ix)ip ' which is in PNF.

3. i f <p is equivalent to ip' which is in PN F, then ~ip is equivalent to
If ip' contains quantifiers, apply Law 1 to ~tp' to obtain a PNF,

4. i f the formula is o f the form <p —► ip, the procedure is more complex.
Assume that we have the P N F ’s <p' and ip', which axe equivalent to
ip and ip, respectively. Convert to alphabetic variants to make sure
that any variable which occurs bound by a quantifier in either ip' or
ip1 does not occur at all in the other. Then we may use the quantifier
movement rules to obtain a P N F equivalent to ip' —► ip'.

This procedure guarantees that there is a PN F for any formula, since we
can define all other connectives and quantifiers in terms o f ~ and —> and the
universal quantifier.

The use o f Prenex Normal Forms is primarily to compare the complexity
o f the quantificational structure o f formulas. But when an ordinary English
sentence is translated into predicate logic, the most natural rendition often
has the quantifiers embedded, since in ordinary English the quantifiers occur
inside N P ’s, For example, to translate a sentence such as Some person
likes every book into predicate logic we will have to assume a universe of
discourse which contains both persons and books. Therefore a translation
such as (3x) (yy) L(x , y) will not do since it is true only if some individual
stands in the L relation to every individual in D, i.e., persons, books, and
whatever else may happen to be included. W e need (one-place) predicates
corresponding to ‘is a person’ and ‘is a book ,’ say P and B, and then the
most natural translation (for the reading o f the sentence in which there is
at least one person who likes all books) would be:

(7 -23) (3®)(P (®) & 0i y) { B (y) ->• L(x, y)))

This form might serve our purposes very well, but the rules o f inference
in the following section axe much more conveniently applied if the formula
is first converted to PN F, For example, (7-23) could be converted to PN F
by the following steps:

154 C h a p t e r . 7

1. { 3 x) (P (x) k (\/y)(B(y) -> L(x , y)))
2. (3 ®)~ ~ (P (®)& (V ?/)(.8 (? /) -> L(x , y))) 1, Double Neg,
3, (3®) ~ (~ P (®) V ~ (V ?/)(5 (j/) -► L{ x , y))) 2, DeM,
4. (3®) ~ (~ P (*) V (3 y M B (y) - L(x, y)))

3, Quant Neg (Law 1)
5, (3®) ~ (P (®) -► (3y) ~ { B { y) -> L (x , y))) 4, Cond,
6. (3®) ~ (3 y)(P (®) -► ~ (5 (y) -> L (x , y)))

5, Quant, Mvt, (Law 10)
7, (3®)(Vy) ~ (P (®) -► ~ (5 (y) -► L{x, y)))

6, Quant Neg, (Law 1)
8. (3®)(Vy) ~ (~ P (®) V ~ (5 (y) -► L(x , y))) 7, Cond.
9. (3 ®)(V y)(~ ~ P (®)& ~ ~ (5 (y) -» L (x , y))) 8, DeM

10. (3®)(Vy)(P(®) & (B(y) L (x , y))) 9, Double Neg,

7.4 Natural deduction

We need to add very little to our rules o f inference to handle arguments
containing quantified formulas and statements. Remember that valid argu
ments are characterized by rules which preserve only truth. The main idea
is to introduce rules which strip away the quantifier prefix, then apply the
rules o f inference to the remaining matrix and finally introduce quantifiers
back into the formula We require two new rules for removing quantifiers—
Universal Instantiation (U .I.) and Existential Instantiation (E .L)— and two

for introduction o f quantifiers— Universal Generalization (U .G .) and Exis
tential Generalization (E .G.). To avoid incorrect inferences, some o f the new
rules carry additional conditions on application. In these inference rules
(\fx)p(x) and (3a;)^p(a3) are used to indicate explicitly that the variable x
occurs in the arbitrarily complex formula ip, i.e., the rules cannot be applied
to vacuously quantified formulas.

A universally quantified formula is true if and only if every instantiation
o f an object from the universe o f discourse for the quantified variable in the
m atrix is true. Therefore we can infer from the truth o f (\fx)p(x) that some
particular instantiation given by an assignment to the variable x is true.
From a universally quantified sentence All men are m ortal, we m ay hence
infer If John is a man, he is mortal, The new rule U.I, can be formulated
as:

N a t u r a l d e d u c t i o n 155

U n iversa l In s ta n tia t io n (U.I.)

(Vx)tp(x)

where c is an individual constant substituted for every free occurrence o f x
in <p(x) o f the premise (and having as its semantic value an object in the
universe o f discourse). W ith U I we have all we need to demonstrate the
validity o f the argument (5-3), Here is the proof.

(7 -25) 1. -> M (x))
2 H(a)
3. H(s) M (s) 1, U.I
4. M(s) 2, 3 M.P,

Since the second premise introduces a particular individual constant s,
and the conclusion mentions the same constant, we use it in this application
o f U.I The formula in line 3 is not quantified anymore, and hence the rules
o f the logic o f statements can be used, Here Modus Ponens detaches the
consequent o f line 3, which is the desired conclusion.

To prove that some form ula is true o f every member o f a set, one can
arbitrarily choose an individual from that set and prove that the formula
holds o f it. If the proof depends only on the fact that this individual is a
member o f that set and not on any additional properties it may have, it
can be validly inferred that the statement holds o f sill individuals in the set.
This line o f reasoning is made precise in the rule o f Universal Generalization:
what is true o f an arbitrarily selected object is true o f every object in the
universe o f discourse. We reserve the individual constant v as a special
symbol for such an arbitrarily selected object, indexing it v%,.... ,vn ,
when more are needed, Note that v is an individual constant, so ip[y) is
an atomic statement and not an open formula. Yet v is like a variable in
that it stands for an arbitrary individual, and not for any specific one in the
universe o f discourse, U.G, is formulated as:

U n iversa l G e n e ra liz a t io n (U .G .)

<p(v)
(Vx)ip(x)

This rule is used in the following argument form, o f which we give first
the English and then the formal language version.

156 C h a p t e r . 7

(7-26) E v e r y ra b b it is a q u a d ru p e d
E v e r y q u a d ru p e d is w a rm -b lo o d e d
E v e r y ra b b it is w a rm -b lo o d e d

(7-27) (V z)(£ (z) -* Q(x))
(V x)(Q (x) -*• W { x))

(\/x)(R(x) W { x))

The proof is as follows:

1. (' i x) (R(x) —> Q(x))
2. (V®)(Q(®) - W (®))
3. R (v) ^ Q { v) 1 ,U .I ,

The first premise is instantiated by the arbitrarily selected constant v. Recall
that every constant produces a true instantiation o f a universally quantified
formula; thus, R{v) —► Q(v) is a legitimate instantiation o f line 1.

4. Q (v) ^ W (v) 2, U.I

Here we have instantiated the second premise with the same constant we
selected in line 3.

5. E (i ;) -> W (u) 3, 4, H S.
6. (V i) (J i (i) - t W (i)) 5, U.G,

Since v has been arbitrarily selected, the proposition containing it can be
universally generalized to the conclusion in line 6.

Here is another example o f the use o f U.I. to remove a universal quantifier
and o f U.G. to replace the quantifier afterward.

(7 -28) 1. (i x) (P (x) &Q (x))
2. (Vx) (R(x) —► ~ P (k))
3. P(v) 8zQ(v) 1, U.I.
4. R(v) —► ~P (u) 2, U.I.
5, P(v) 3, Simp.
6, ~ ~ P (t;) 5, Compl.
7, ~R (v) 4, 6, M .T .
8, Q(v) 3, Simp.
9. Q (v) & ~R (v) 7, 8, Conj.

10 (Vx) (Q(x) & ~R(x)) 9, U.G,

N a t u r a l d e d u c t i o n 157

W hen t,o(c) is true, where c is a constant, it constitutes a true instan
tiation o f the open form ula 1,0(3:), So we may conclude (3a:)ip(a:) from the
true 1p(c) For example, i f we already know (or hold as true) that John is a
human being, we may infer that there is some human being or that a human
being exists, The rule of Existential Generalization is formulated as:
E x is te n tia l G e n e ra liz a tio n (E G)

<p (c)
(3a0<p(®)

The following p roo f employs E G

1, H(c)
2. (\/x)(H(x) —► M [x))
3, H (c) M (c) 2, U.I.
4 M (c) 1, 3, M.P.
5, (3 x) M (x) 4, E.G.

If an existentially quantified statement is true, there is at least one assign
ment to its variable which provides an instantiation for the matrix There
fore we can infer from the truth o f (3a:)ip(a:) that 1p(w) for some constant
w interpreted by an object in the universe o f discourse. In general some
instantiations o f the matrix may be false, because the object assigned to
the variable is not a true instantiation, and other assignments provide true
instantiations. So w is like v introduced in U I in that it does not refer to
a specific individual, but it is different in that the range o f individuals to
which it can possibly refer is not in general the entire universe o f discourse,
but a subset o f individuals, those that form true instantiations o f the matrix
in question. Because o f this restriction on w we must be par ticularly careful
in applying E I. For example, suppose that (3®)^(®) and (3x)tp(x) are two
premises o f an argument and that in the proof the former has been instanti
ated by 1p(w) using E I Now it is not valid to use w again in inferring ip(w),
because we have no guarantee that the same object will verify both matrices.
The correct inference must use two distinct constants, Wi and w2, deriving
<p(wi) and i p (w 2) from the premises. We therefore impose a restriction on
E.I. that the constant introduced cannot have occurred previously in the
same proof. The rule E I is formulated as:

E x is te n tia l In s ta n tia t io n (E .I,)

<p(w)

158 C h a p t e r . 7

(where w is a new constant)

Now tp(w) cannot be a basis for universal generalization to (Vx)ip(x),
since w has not been selected totally arbitrarily, but rather from a possibly
smaller set o f individuals which happen to form true instantiations o f the
m atrix , Here is a proof involving E I.:

(7 -30) 1, (3a:)(P(:c) & Q(®))
2 , P{ w) & Q{ w) 1, E I.
3, P(w) 2 , Simp.
4, (3 ®)P (ib) 3, E.G.

This step is valid since w is a constant that forms a true instantiation o f
P(x) ,

5, Q(w) 2, Simp.
6 (3x) Q(x) 5, E.G.
7 (3x) P(x) & (3x) Q(x) 4, 6, Conj.

The following p roo f illustrates an important point about the rules o f E.I.
and U.I,:

(7 -31) 1, (3 ®)(T (®)& P (®))
2. (\/x)(P(x) —► H(x))
3, T (tb) & P (tb) 1, E l
4. P(tb) H{ w) 2, U.I,,

Since P (x) —► H(x) is verified by every individual in the domain o f discourse,
it is legitimate to choose w to form the instantiation. The p roo f would be
technically incorrect if we had first instantiated line 2 sis P(w) —> H(w) by
U.I, and then instantiated line 1 as T{w) & P(w) by E I, since w would then
have occurred in a previous line.

5. P{ w) 3, Simp.
6, H(w) 4, 5, M P ,
7, T(w) 3, Simp.
8, T (w) h H (w) 6, 7, Conj,
9. (3 x) { T { x) k H { x)) 8, E.G.

Note that it would have been incorrect to derive (Vx) (T(x) & H (x)) from
line 8 by U.G. because w was introduced by E.I.

N a t u r a l d e d u c t i o n 159

An English counterpart o f this argument form is the following:

(7-32) Some toadstools are poisonous.
All poisonous things are harmful.
Some toadstools are harmful.

The following “p roo f” is erroneous because the restriction on E,I. has
been ignored.

1 (E iX C O O feV O c))
2. (3a:)(.D(:c) & V { x))
3 C{ w) k V (w) 1, E.I,
4. D (w) & V(w) 2, E I, (incorrect)
5, C(w) 3, Simp,
6. D(w) 4, Simp,
7, C(w) & D(w) 5, 6, Conj.
8, (3 x) { C { x) k D { x)) 7, E.G,

This argument form is easily seen to be invalid by examining the following
English version:

(7-34) Some cats are vicious.
Some dogs are vicious.
Some cats are dogs.

In order for a quantifier to be removed by E l . or U.I, it must stand at
the left side of the expression with no other quantifiers or connectives pre
ceding it, and it must have the rest o f the expression as its scope. Thus,
~ (V x)(P (x) & Q(x)) cannot be instantiated as ~ (P (t ;) & Q(v)) by U.I. be
cause the negation sign precedes the quantifier. To instantiate this expres
sion it should first be transformed to (3x) ~ (P (x) &: Q(x)) by Quantifier
Negation, and then E.I can be applied to give ~ (P (w) & Q(w)) , Similarly,
P (c) —► (3x) Q(x) cannot be directly instantiated to P (c) —► Q(w) by E.I.
because the existential quantifier is not at the extreme left o f the expression,
but it can produce this result after being converted to the equivalent state
ment (3 k)(P (c) —► Q(w)) by Law 9. Neither quantifier in (V x)P (x) & { 3y) Q(y
can be removed by instantiation; (Vk) is at the left but does not have the re
mainder o f the entire expression within its scope. The solution is to convert
the expression to PNF and then apply E.I, or U.I.

160 C h a p t e r 7

In the reverse process, the quantifier is attached to the left of’ the propo
sition being generalized and takes that entire expression as its scope. Thus
P (v) v Q (v) cannot be generalized to P (v) v (3 x) Q (x) by inserting a quantifier
internally, and P (v) v Q (v) cannot be generalized by U G, to (V x)P (x)v Q (v)
since the scope o f the universal quantifier does not include Q [y)

Recall that the m ethod o f Conditional P roo f allows us to introduce a
premise P , which is temporarily assumed to be true, and upon deriving Q
from P and the original premises to state that P —► Q is logically implied by
the original premises Since the truth o f P is not asserted but only accepted
provisionally for the sake o f deriving P —► Q and then abandoned, P m ay be
any pr oposition at all . In the predicate calculus, the first line o f a conditional
p roof can be a quantified formula, e g , (V x)P (x) or (Vx) (3y) Q(x , y) , or
a predicate with constant terms, e.g., P (s) or L(a,b) . In particular, the
constant terms v and w may appear, e g , P{ v) , L { w, v) , where, as before,
v is an arbitrarily selected constant and w is a constant that forms a true
instantiation o f some existentially quantified expression, In the following
example the conditional proof begins with P(v)

(7 -35) 1.
2.
3,
4,
5,
6 ,

7,

(Vx) ((P(x) V Q(x)) -> R(x))
(P (u) V Q(v)) ->• R(v)

P(v)
P(v) V Q(v)
R(v)

P(v) —> R{v)
(V®)(P(®) R{x))

1, U.I
Aux. Premise
3, Add
2, 4, M P .
3-5, Cond. P roof
6, U G,

The following is a possible English version o f this argument form:

(7 -36) E v e r y o n e w h o is p o lite o r q u a rre lso m e is r ig h t-h a n d e d .
. ' . E v e r y o n e w h o is p o lite is r ig h t-h a n d e d .

The temporarily assumed premise in the following conditional p roo f is
P (c), where c is a specific constant term

N a t u r a l d e d u c t i o n 161

(7 -3 7) 1, (V®)(P(c) Q(x))
2 P (c) Q(v) 1, U.I.
3 P(c) Aux, Premise
4. Q 0) 2, 3, M P
5 (Vx)Q(x) 4, U G
6, P (c) (Vx)Q(x) 3-5, Cond, P roof
7 (3y) (P(y) (Vx)Q(x)) 6, E G

Note that in line 7 the existential quantifier has the entire conditional as
its scope. To conclude (3 y) P{ y) —► (Vx)Q(x) from line 6 by E G, would be
technically incorrect since the existential quantifier binds only the variable in
the antecedent o f the conditional, E g,, let (Vx)Q(x) be false, and (3 y) P(y)
and (3 y)~~P{y) both be true. Then (3 y) { P{ y) —► (Vx)Q(x)) is true, but
(3 y) P (y) —i► (Vx)Q(x) is false.

Compare the following English version o f this argument form:

(7-38) I f C h a u n ce y is a p r ie s t , th en e v e ry o n e is qu a lified
T h e re is so m e o n e su ch th a t , i f he is a p r iest ,

e v e ry o n e is q u a lified .

It would be invalid to conclude: I f there is at least one priest, then everyone
is qualified

The derivation in (7-39) constitutes part o f the p roo f o f one of the Laws
o f Quantifier Distribution,

(7-39) 1 (Vx) (P(x) 8z Q (x)) Aux. Premise
2 P (v) k Q (v) 1, U I,
3, P(v) 2, Simp,
4. (y x) p (x) 3, U G
5 Q(v) 2, Simp,
6. (Vx)Q(x) 5, U.G.
7, (Vx) P(x) & (Vx)Q(x) 4, 6, Conj
8, ’Vx) (P(x) & Q(x)) ((Vx) P(x) &: (Vx)Q(x))

1-7, Cond, P roof

This illustrates another aspect o f conditional proof, namely, that it may
proceed from no premises except the one that begins the conditional proof.
In such a case the truth o f the derived conditional statement is independent

162 C h a p t e r 7

o f any other propositions, which is another way o f saying that the conclusion
is tautologous, To see this, recall that for any valid argument fo im

(7-40) ip!
V>2
<P3

ip

the conditional (<pi & <P2 & <P3 ■ ■ ■) —► ip is a tautology. We could think o f the
first seven lines o f (7-39) not as a conditional p roof but as a direct p roo f o f
(V x)P (x) Sz (V x)Q (x) from the single premise (V x)(P (x) Sz Q(x)) , and thus
(Vx) (P(x) 8z Q (x)) -> ((Vx) P(x) & (Vx)Q(x)) is tautologous. In general, for
every valid argument form (7-40) there is a corresponding conditional proof

1, (p i &v?2 k<p3 & • ■) Aux. Premise
2, V’ i 1, Simp.
3, 1, Simp
4, <P3 1, Simp.

n, iP
n + 1 (ipi & 1,02 & <p3 &) —up 1-n, Cond. P roo f

that takes all the premises as provisional rather than assumed and derives a
tautologous conditional as a conclusion. In both cases the same statement
is being made: The premises <p\,<p2,<pz, . taken together logically imply
the conclusion ip. The difference is only in whether or not the premises are
assumed to be true.

To prove arguments containing multiply quantified propositions, e.g.,
(Vx) (3y) P(x , y) or (V x)P (x) —► (3 y)Q (y), we employ essentially the same
procedure as that used with singly quantified statements: remove the quan
tifiers by U I, and E.I,, apply the rules o f inference to the resulting formula,
and then replace the quantifiers by U.G, and E.G. In applying U I. or E L
to multiply quantified expressions, the quantifiers are removed one by one,
beginning with the leftmost quantifier, and, as before, only a quantifier hav
ing the entire expression as its scope is removable. To this end, it may
be necessary first to convert an expression into one logically equivalent by
means o f the laws in Sec 7.3, The complication comes in making sure that

N a t u r a l d e d u c t i o n 163

distinct variables do not become confused during successive applications o f
U.I or E L For example, from (\/x)(\/y)P(x,y) we get { ' i y)P{v , y) by U I.,
but i f we farther instantiate this by v to get P (v , v), then the informa
tion that P [x , y) is a prepositional function in two variables, not one, has
been lost. P (v , v) could be generalized by U G only to (Vx) P (x , x) , not to
(Vx) (Vy)P(x , y), since we cannot bind some occurrences o f a variable by one
quantifier and some by another. In instantiating (yx)(\/y)P(x, y) we could
use two different symbols, and u2, say, each representing an arbitrarily
chosen constant, which, by being distinct, preserve the form o f the propo-
sitional function P(x , y) . Although it is permitted to use distinct symbols
in such a case to instantiate distinct variables, it is not necessary to do so.
P(v , v) , for example, is a legitimate instantiation o f (yx) (\fy)P(x , y) , and
thus { ' i x) (' i y)P(x , y) logically implies (Vx)P(x , x). The latter does not im
ply the form er, however, and thus in a p roo f i f distinct variables are allowed
to merge, the original distinction cannot be subsequently recaptured in the
generalization steps.

Consider, for example, the following proof:

1, (' i x) (' i y) (P(x , y) ->• Q(y , x))
2, ('ix)('iy)(Q (y , x) R(x))
3. (' i y) (P(v1 , y) ->• Q (y,i>i)) 1, U.I.
4. P { V1 , V2) ->• Q { V 2, V!) 3, U I
5. (Vy) (Q(y , v i) -> R(v i)) 2, U.I.
6. Q { V 2, Vi) - c Jf f (' U 1) 5, U.I.

The instantiations in lines 5 and 6 could have been made with any con
stants whatever, but the choice o f and v2, the same constants used in
lines 3 and 4, allows H.S to be applied to lines 4 and 6,

7. P(v l t v2) R (v i) 4, 6, H.S.
8. (' i y) {P{v1 , y) ^ R M) 7, U.G.
9. (V *)(V y)(P (® ,y) - £ (*)) 8 U.G.

The order' in which vi and v2 are generalized in lines 8 and 9 is immaterial
since both quantifiers are universal, and, o f course, the particular choice o f
variable symbols — x for and y for v2— is arbitrary The conclusion could
equally well be written (' i y) (' i x) (P(y , x) —► R(y))

If the premises had been instantiated everywhere by v, then line 7 would
have been P(v , v) —> R(v) , which can be generalized in one step to (Vz)

164 C h a p t e r 7

(P (x , x) —► R(x)) . Again, this is a valid conclusion from the premises but a
weaker one than the conclusion actually derived in (7-42)

As another example o f an argument involving multiply quantified state
ments, consider the following

(7-43) W h o e v e r fo rg iv es at least on e p e rs o n is a saint.
T h e re are n o saints.

. ' . N o on e e v e r fo rg iv e s a n yon e .

We represent ‘x forgives y ’ by F (x , y) and ‘x is a saint’ by S(x)

(7 -44) 1. (\/x)(\/y)(F(x,y) ^ S(x))
2, ~(3a:)S(a:)

3. (V f f X F f a . s O - S K) 1 ,U .I.
4 F (v1 , v2) S(v].) 3, U.I,
5, (Vx) ~ S (e) 2, Quant, Neg
6, ~ 5 (n) 5, UI„
7„ ~ F (v i , U2) 4, 6, M .T.
8 (V ff)~ F (r1>ff) 7 .U .G .
9, (V z)(V ff)~ F (z ,ff) 8, U.G.

Statements containing both universal and existential quantifieis present
a special problem in the order in which the quantifiers axe reattached by
E G, and U, G, Suppose, for example, that (3 x)(V y)L (x , y) has been instan
tiated first by E.I and then by U.I. to L (w ,v). The quantifiers can now
be replaced, and either order o f applying E G, and U.G, yields a valid con
sequence, U G, first and then E, G produces the original expression, and
generalizing in the opposite order gives (V y)(3x)L (x , y), which is logically im
plied by (3x)(V y)L (x , y), (There is som eone who loves everyone implies Ev
eryone is loved by at least one individual) I f we instantiate (\fx) (3y)L(x, y),
however, where the universal stands before the existential quantifier, and
then generalize, replacing the quantifieis in the opposite order yields an in
correct conclusion, (\/x)(3y)L(x,y) , Everyone has someone whom he loves
does not logically imply (3 y)(\/x)L(x, y), There is at least one individual who
is loved by everyone. Thus, in order to generalize a proposition containing
both v and w it is necessary to know the order in which these constants
were originally introduced by U.I. and E.I If U I came before E L , then the
generalizations must be carried out in the order E G before U .G, I f E.I was
applied before U I,, then either order o f E.G. and U G, is permitted. This

B e t h T a b l e a u x 165

restriction is illustrated in the proof o f the following argument:

(7 -45) E v e r y h u m a n has a fa th er.
A ll B u lgarian s are h um ans.
E v e r y B u lg a ria n has a fa th er.

H(x) represents ‘x is a hum an’; F { x , y), ‘x is the father o f ?/’ ; and B{ x) , ‘x
is a Bulgarian’ , in the following proof

1, { ' i y) (3x) (H(y) ->• F (x , y))
2, (' i x) (B(x) —► H(x))
3 { 3 x) { H(v) ->• F (x , v)) 1, U.I.
4 H{ v) —► F[w, v) 3, E.I.
5. B{ v) H(v) 2, U.I,
6. B(v) —► F{ w, v) 4, 5, H.S

Since v was introduced by U I. before w was introduced by E.I (lines 3 and
4), they must be generalized in the opposite order.

7. (3x) (B(v) —► Fi x , t;)) 6, E G.
8. {\!y) {3x) {B{y) ^ F { x , y)) 7, U.G.

Generalizing in the other order would have given (3 x) { i y) { B { y) —► F{ x , y)) ,
There is at least one individual who is the father o f all Bulgarians,

7.5 Beth Tableaux

The Beth Tableaux for statements were designed as a strategy for finding
a valuation oi assignment o f truth values to the atomic subformulas o f a
statement which verifies the premises and falsifies the conclusion and hence
constitutes a counterexample to its supposed validity (truth in all valua
tions). Now we present an extension o f that strategy to quantified formulas,
seeking an assigment to individual variables which falsifies the formula. The
principles remain the same as for the case o f statements A quantificational
argument is valid if and only if every (sub)tableau for that argument leads
to closure. To construct tableaux for quantified formulas we need four new
rules, two for each quantifier depending on its occurrence under TRU E or
under FALSE, We will first discuss some examples and then formulate the
rules precisely.

166 C h a p t e r 7

Consider the (valid) argument with the premise (\/x)(F(x) —► G (c)) and
conclusion (3a:)i?(a;) —► G(c)

We know that a true universal statement is verified by checking all as
signments to its variables, which is a never-ending task in an infinite universe
o f discourse. For that reason it is better to try first to come to closure o f
the tableau by starting to decompose the conclusion, which we assume to be
false, trying to reason towards an assignment falsifying the claimed validity.
Note that the existential quantifier has only the antecedent o f the condi
tional in its scope. The conditional is therefore the main connective, and we
apply the conditional rule for statements under FALSE, A false conditional
must have a true antecedent and a false consequent, so (3®).F(:b) is entered
under TRU E, and G(c) under FALSE I f (3x) F (x) is assumed true, then
there must be an object in the domain which has the property F L et’s call
that object a, and continue the tableau with F{a) assumed true, Now the
only formula left for decom position is the initial universal premise. As in the
rule o f inference U.I. we know that for some arbitrary object the predicate
must be true; so it must be true for a as well. We use a in instantiating the
universal quantifier, obtaining F(a) —► G(c) under TRUE, Now the condi
tional rule for true statements can be applied, which produces a split and
puts G (c) under TR U E and F (a) under FALSE, in different subtableaux.
But now the two subtableaux close, since G(c) occurs under both TRU E
and FALSE, and F (a) occurs under TRU E and FALSE, So we cannot find
an assignment which makes the premise true and the conclusion false; hence
the entire argument is valid, The complete tableau is (7-47):

D = {c a}
(7 -47) TRUE FALSE

1 (V *)(F (x) -> G(c)) (Sx) F(x) G(c)
2, (3 ®)f(®) G c)
3. F(a)

- G (c)
5, 5.J 5,2 G(c) 5 i F(a) 5.2

The subset o f the universe o f discourse we actually checked consists in
this case just o f the objects denoted by the individual constants a and c,
But since a was arbitrarily chosen we could make exactly the same tableau
for any other constant, This would not have been so had we used c in
instantiating the premise, since that constant is obviously not arbitrarily

± j e j x j ~l x a d l / E j a u a . ID I

chosen. In constructing tableaux for quantified formulas we keep track o f
the set o f objects used in the construction by listing them on the side o f
the tableau; this is for convenience o f reference in case some rule we apply
carries restrictions on the constant we may use in it,

Here is a slightly more complex example o f a valid argument. The
premises are (V x) (F (x) —► ~G (a:)) and ~(V:c) ~~F(x) and the conclusion
is (3®) r*j G(x) . First we try to apply rules for connectives, in this case just
true negation on ~(V:c) ~ F (x) , bringing (\/x) ~ F (x) under FALSE Contin
uing with that formula, since it is a false universal, we know there must be
an object which falsifies the matrix ~ F (x); let’s call it a. So ~ F (a) is false,
and using the rule for false negation, we bring F{a) under TRUE, Now we
look at the existential conclusion, which, i f false, says that there is no object
satisfying ~ G (x) W ell, then ~ G (a) is false, too, and hence G(a) must be
true Next we decompose the first premise, using a as arbitrary object for
instantiation o f the universal quantifier: F{a) —► ~ G (a) is true. W ith an
application o f the rule for a true conditional, we get a split with F{a) under
FALSE and ~ G (a) under TRU E Then we bring G (a) under FALSE, and
obtain closure for both subtableaux,

, D = { a }
TRU E FALSE

1 , ('i x) (F (x) — G(x)) (3 e) ~ G (e)
~(V®) ~F(x)

2 , (Ve) ~ F (x)
3 ~F(a)
4, F{a)
5. ~ G (a)
6 , G (a)
7, F (a) ^ ~ G (a)
8 , 8 j 8,2 ~ G (a) 8-i F(a) 8„2

This tableau shows us clearly that it is a good strategy to choose con
stants we have already introduced in the universe o f discourse in developing
the potentially falsifying assignment. Had we chosen anew constant in Step
7, we could have continued the tableau without obtaining closure, but we
would have to check all assignments instantiating the first premise, hence
sooner or later we would have checked for a anyway. So it ’s best to check
assignments with “o ld ” constants first before introducing new ones. This

168 C h a p t e r 7

strategy will provide us with the smallest possible counterexample, i f there
is one,

The next example shows that even when a tableau leads to closure for a
number o f constants, in checking truth or falsity o f a universal statement we
have to continue introducing new constants to instantiate the matrix, until
we find a counterexample We can never be sure that no such counterexam
ple exists, since we can always introduce a new constant. Is the inference
(3a:)i?(a:) —► (V x)F (x) valid? Obviously not, since if something has a prop
erty, we can ’t conclude that everything has that property L et’s construct a
tableau providing us with a counterexample. The premise (3a:)i?(a:) must be
true, so there is an a such that F{a) is true Now we use a again in instanti
ating the universally quantified conclusion, and close the tableau. But this
does not mean that we cannot find a counterexample; we have simply looked
at a very special situation, a “world” with only one object, and we have not
yet checked all objects in the domain. So we introduce a new object b and
instantiate the universal quantifier This leads to a counterexample and the
tableau will not close anymore! So the counterexample consists o f a m odel
with the universe o f discourse D = {a, 6} and the interpretation o f F in this
model = {a},.

(7-49)

1.
2 .

3.

TRU E
(3®).F(:b)

F{a)

D = {a , 6}
FALSE

(y x) F (x)

F(a)

F(b)

Note that a universe o f discourse with just one element would not con
stitute a counterexample, and that the smallest counterexample must have
a universe with two elements. You may wonder why we did not introduce
a new object in Step 3 right away. The reason is that we have adopted the
strategy o f checking “old” objects before introducing new ones, Although
we can foresee that at first we get closure and then have to introduce a new
ob ject, it is an important property o f Beth Tableaux that they provide a
mechanical procedure to prove validity o f arguments, and we can’t rely on
“foresight” in mechanical procedures. We are now ready to formulate the

B e t h T a b l e a u x 169

new rules for quantifiers in Beth Tableaux.

Q u a n t i f ie r R u le s fo r B e t h T a b le a u x
quantifier occurs under quantifier occurs under

TRUE FALSE

universal instantiate any object in D x instantiate old objects and
then add new objects to D

existential instantiate old objects and instantiate any object in D*
then add new objects to D

* I f D is empty and we cannot first introduce objects by applying the
rules for false universals or true existentials, then introduce a new
object Also update these quantifiers whenever a new object is intro
duced

Note the similarity between true universal quantifiers and false existen
tial quantifiers; these two rules never add a new object to D except when
the domain is empty and we cannot first introduce objects with the other
quantifiers. I f D is empty, we introduce an arbitrary object before applying
these rules for true universals and false existentials, In applying them to
non-em pty domains, we always check all old objects. But if the other two
rules (false universal and true existential) later introduce new elements, we
have to check again for closure with these new elements, “updating” the
application o f true universal and false existential. The other pair o f rules
(false universal and true existential) may introduce new objects even after
closure was obtained with all old ones

It is best to apply all connective rules before using the quantifier rules,
and to remember to check all subtableaux for closure when a split occurs,
A subtableau has its own universe o f discourse, as potential counterexam
ples may differ in the cardinality o f D, I f an argument contains individual
constants, you may start with a universe with the same number o f distinct
objects as there are distinct individual constants in the formulas o f the ar
gument, but that will no longer guarantee that you get the smallest possible
counterexample

We give two more instructive examples, after which you should be able
to construct tableaux for any argument formalizable in predicate logic.

170 C h a p t e r 7

(7 -50)

1
2 3T
3-vr
4.vi?

BUT!!!
5.vf
6 vr

TRUE
{3x) (\fy)R{x, y)

('Vy) R{ a , y)
R (a , a)

R (a , 6)

D = {o ,6 }
FALSE

(Vx)R(x , x)

R(a, a)

R(b,b)

We have no more rules to apply, and we obtain a counterexample consist
ing o f the model with a domain D = {a , b}, assignments g(x) = a,g{ y) = a,
and g' {x) = 6 and <7'(y) = 6, and the extension of R — { (a , a), (a ,6)} We
assume that anything which is not listed in the extension of a predicate is
in the complement o f the predicate. This could have been made explicit
by giving a positive and a negative extension for any predicate. Note that
we“ update” the true universal quantifier o f 2 in 6, instantiating the newly
introduced b o f 5 for the formula in 2.

(7 -51)
J? = { « , . . . }

TRUE FALSE
1 . (Vx) (F(x) - > ~ G (z)) (3®) ~ G (x)

~ (3 i e) ~ F (x)

2.3 T ~ F (a)

3,vr (F (a) - ~ G (a))

L
U ~ G (a)

5 F (a)
6 .r̂ F G(a)
7, 7,a 7,2 ~ G (a) 7 i F(a) 7.2

In Sec, 8,3 we will return to some important points o f difference between
tableaux for statements and tableaux for quantified arguments,

7.6 Formal and informal proofs

We may apply the principles developed in the preceding section on Natural
Deduction to the proof o f statements about sets, Note that A C B, for

F o r m a l a n d i n f o r m a l p r o o f s 171

example, is a statement which asserts that a certain two-place predicate,
‘is a subset o f ’ , holds o f a particular pair o f sets, A and B. That this
is customarily written A C B instead of C (A , B) is merely a notational
convention o f set theory. Similarly, x £ A is an open statement containing
the variable x in which “ £ A ” functions as a one-place predicate (3ai)(2! £ A)
is then a statement asserting that A is not empty The A xiom of Extension
(two sets are equal if they have the same members) might be written as
(V X ,Y) (X = Y ~ (Vx) (x e l « * 6 Y)).

The following is a proof showing formally that (V X , Y) (X = Y (X C
Y 8c Y C X)) (two sets are equal iff each is a subset o f the other) follows
from the A xiom o f Extension as premise:

(7 -52) 1 (v x , y) (x = y ~ (v®)(® e x « * e y))
2. Vi = V2 *-* (Vx) (x £ Vi *-> x £ V2) 1, U I. (twice)
3 Vi = V2 *-* (Vx) ((x £ Vi -> x £ V2) t (x £ V2 x £ VI))

2, Bicond.
4. Vi = V2 *-* ((V x)(x £ Vi -* x £ V2) & (Vx) (x £ V2 - » x £ V i))

3, Quant, Distr. (Law 4)
5. Va = V2 (Vj C V2 & V2 C V i) 4, Definition o f C

In step 5 we have simply replaced two subexpressions o f line 4 by their
abbreviated forms.

6. (v x , y) (x = y ^ (x c y & y c x))5 , u .g (twice)

Line 6 thus can be added to our stock o f true statements about sets in general
(c f Fig 1-7).

As another illustration o f a proof of a set-theoretic proposition we demon
strate the following (which was asserted without p roof in Ch. 1, Sec. 4):

F or a n y sets X , Y , a n d Z, i f X is a su bset o f Y a n d Y is
a su b set o f Z, th en X is a su bset o f Z.

In symbols,

(7 -53) (V X ,y ,Z) ((X C Y k Y C Z) -> X C Z)

Our' demonstr ation uses a conditional proof:

172 C h a p t e r 7

1, V1 C V2 &V2 C V3 Aux Premise
2, (Vx) (x £ Vi —» x £ V2) & (Vx) (x £ V2 —>x £ Vs)

1, Def. o f C
3. (Vx) ((x £ Vj -* x £ V2) & (x £ V2 - * x £ V3))

2, Quant. Distr, (Law 2)
4, (v £ Vi —» v £ V2) & (t; £ V2 —» v £ Vs) 3, U.I.
5, v £ Vi —> v £ V2 4, Simp,
6, v £ V2 —> v £ Vs 5, Simp,
7, v £ Vj —> v £ Vs 5, 6, H.S
8. {Vx)(x e V 1 - > x £ V s) 7, U G.
9, V! cvB 8, Def, o f C

10. (Vi C V2 k V 2 c v3) -+ v1 c v3 1-9 , C.P.
11. {\fX,Y,z){{x c y&y c z) -* x c z)

10, U .G (three times)

7.7 Informal style in mathematical proofs

Mathematicians rarely present proofs in the completely form al style we have
been using since they can assume that their audience is familial' enough
with logical equivalences and rules of inference to require only an outline o f
the essential steps. We have already used this style o f presentation in earlier
sections (see, for example, Chapter 3, Sec, 6). Such an informal p roof should
be easily expanded into a fully formal version that can be checked step by
step if there is any doubt concerning its validity. Thus, the term “ informal” ,
when applied to proofs, does not mean “ sloppy” , only “ condensed”

To illustrate, we give (7-54) as a mathematician might write it:

(7 -55) Let X , Y , and Z be arbitrary sets such that X C Y and Y C Z.
Let £ be an arbitrary member o f X . Because X C Y , x E Y\ and
because Y C Z, x £ Z. Therefore, x £ X —» x £ Z, and thus
X C Z

Observe that no explicit mention is made o f U,I and U .G ., it being
understood from the context and use of the word ‘ arbitrary’ that the result
is true o f all sets. In the last two sentences o f the p roo f it is assumed that
the reader knows the definition of C and the inference rule of Hypothetical
Syllogism. The whole is in the form o f a conditional p roof headed by the

I n f o r m a l s t y l e i n m a t h e m a t i c a l p r o o f s 173

statement X C Y SzY C Z, but it is left to the reader to draw the conclusion
(j C F f e y C Z) X c z and to generalize it universally,

As another example, we state the definition o f ‘proper subset’ and give
both formal and informal proofs of a theorem containing this predicate.

(7 -56) (VX, Y) { X C Y ^ { X C Y k X =£Y))

The expression J ^ 7 is an alternative notation for ~ (X = Y) . Sim
ilarly, X % Y , X <f_ Y , and x $ Y can be written in place o f r-w* (X C Y) ,
~ (X C y) , and ~ (z £ 7) , respectively. The predicate C in (7-56) is defined
in terms o f the predicates C and = , which can in turn be expressed in terms
o f the predicate 6, thus:

(7 -57) (VX, y)(X C 7 « ((Vx) (x £ X x E Y)
~(Vx) (x £ l « i £ y)))

We wish to prove:

F or an y sets X an d Y , i f X is a p r o p e r su bset o f Y , th e re
is som e m e m b e r o f Y th at is n ot a m e m b e r o f X .

That is,

(7 -58) (V X ,Y) (X C Y -> (3x) (x € Y t x g X))

P roof 'form al):
1. Vi c V2
2. v1 cv2tv1^ v2
3, V! ? V2
4. ~ (v i c v2tv2 c v i)
5. Vi % V2 V V2 % Vi
6, Vi c v2
7. v 2 % Vi
8, ~(V®)(® € V2 -> X € Vi)
9. (3 z) ~ (z € V2 —» x 6 Vi)

10, (3a;) ~ (z ^ V2 V x £ Vi)
11, (3 x) (x £ V 2 t x ^ V 1)
12. Vi C V2 -* (3a;)(a; € V2 & x
13. (V X ,Y) (X c y - » (3 x) (x

Aux. Premise
1, Def. o f C
2, Simp.
3, (7-52) above
4, DeM.
2, Simp.
5, 6, D.S.
7, Def. o f C
8, Quant. Neg.
9, Cond.
10, DeM,
1-11. Cond. P roof

174 C h a p t e r 7

(7 -60) P roo f (informal): Let X and Y be arbitrary sets such that X C Y .
Then, by definition, X C Y and X / Y, X = Y iff X C Y and
Y C X . Therefore, since 1 / 7 and X C Y , it follows that 7 ^ 1 ,
which implies that there is some x in Y that is not in X.

As a final example we give formal and informal versions o f a p roo f in
volving binary relations:

F or an y b in a ry re la t ion R, R = (R~1)~1.

W e make use o f the result proved in (7-52), i.e., for all sets X and Y,
X = Y iff (X C Y & Y C X) . Thus we first prove R C (iZ- 1) - 1 , then that
(R ~ 1) ~ 1 C R (This is the customary procedure in showing equality of two
sets.)

(7 -61) P roo f (formal):
1 | { v i , v2) G V Aux. Premise

[(ui i ^2) is an arbitrarily chosen ordered pair in the
arbitrarily chosen binary relation F]

2. (’\/R)(\/x,y)({x,y} G R {y, x) G R ~ 1) Def. o f inverse
3. (Vx , y) { (x , y) G 7 « (y , x) G F -1 2, U.I.
4„ (v i , v2) G 7 « (v2, v!) G F 3, U.I. (twice)
5. ({ v i , v2} G F - * (i>2,i>i) € F -1) &

((i>2,i>i) G F -1 - » (vi,U2) G F)
4, Bicond.

6. { v i , v2) G F - » (t>2,i>i) G F _1 5, Simp,
7. {v2, v j) G V ~ 1 1, 6, M.P..
8. (\fx,y) ({x, y) G F _1 {y, x) G (F -1) -1 2, U.I.

[generalizing line 2 again, this time with respect to F a]
9. (v2,v i) € V ~ 1 (v i , v2) G (F - 1) -1 8, U.I. (twice)

10. ((i>2,t>i) G F _1 - » (i>i,i>2) G (F -1) -1) &
({ v i , v 2} G (F -1) -1 - » (i>2,i>i) G F _1)

9, B icond

11. (v2)Wi) G V ” 1 -* { v i , v2) G (F -1) -1 10, Simp.
12. (n , v 2) G (F -1) -1 7, 11, M.P.
13. <^1,u2) G F - * (i>i,i>2) G (F -1) " 1 1-12, C..P.
14. (Vx , y) ({ x , y) G F - » (x , y) G (V - 1) - 1) 13 U.G (twice
15. F C (F - 1) - 1 14, Def. o f C
16. (VR)R C (iZ -1) - 1 15, U.G

The proof o f the other half, i.e. (R a) 1 C R, is quite similar' and is left
as an exercise for the reader.

E x e r c i s e s 175

Here is an informal version o f the part just proved:

(7-62) P roof (informal): Let R be an arbitrarily chosen binary relation.
Assume (x , y) £ R. Then by the definition of inverse, (y , x) £
R ~1. Again, by the definition o f inverse, if { y , x) £ i£_1, then
(x , y) £ (iZ-1) - 1 , Thus, if (x , y) £ R , (x , y) £ (iZ-1) -1 , and so
R C (R - 1) ' 1.

In fact, if the proof were intended for readers assumed to be very familiar
with these notions, it might appear in even more condensed form:

(7-63) P ro o f : Let R be a relation and let (x , y) be in R Then (y , x) £ i i " 1
and (x , y) £ (i T 1) - 1. . ' .R C (i r 1) -1 .

or even

(7-64) P roof: Obvious,

A proof is in part a demonstration that some statement follows by logical
steps from assumed premises, but it is also an attempt to convince som e ac
tual or imagined audience o f this logical connection. Therefore, what counts
as an adequate proof depends to a certain extent on the level o f sophistica
tion o f one’s audience. O f course, as a minimal condition it must be valid,
but a proof at the level o f detail appropriate for an introductory logic text
book would strike an experienced mathematician as tedious and pedantic,
whereas condensed proofs omitting many logical steps appear incomprehensi
ble to beginners,In subsequent proofs in this book we will aim for an informal
level which we hope will be neither condescending nor obscure.

Exercises

1. Translate the following English sentences into predicate logic; choose
your own variables and predicate letters, giving the key. If you think
more than one translation is suitable, give the alternatives and dis
cuss their differences. Represent as much as possible o f the structure
relevant to quantiiicational arguments.

(a) Everything is black or white.

(b) Either everything is black or it is white.

176 C h a p t e r 7

(c A dog is a quadruped.

(d Fido is a dog

(e Everybody loves som ebody

(f Someone is loved by everyone.

(g There is someone whom everyone loves

(h If someone loves someone, John loves himself,

(i No one loves himself, unless it is John

(j Anyone either loves himself or some woman.

(k If you love a woman, kiss her or lose her.

(1 If no one kisses John, Mary will.

(m People who live in New York love it.

(n If John does not love New York, he does not live there (i e „, in it)

(° If someone does not love New York, he does not know it

(P If a tableau closes, there are no counterexamples.

(q Give him a finger, and he takes the whole hand, (D utch proverb)

(r Someone who is noisy annoys everyone but himself.

(s If someone is noisy, he annoys everybody.

(t Although no one made noise, John was annoyed.

(u Someone owns a car but rides his bike as well.

(v Only drunk drivers under 18 cause bad accidents.

(w D on’t drink and drive!

(x Driving is risky, if you ar e drunk.

(y All is well that ends well.

2. As a translation o f the sentence Everyone answered all the questions,
the statement (Vx) (Vy)A(x, y) is not adequate, when A (x , y) translates
‘ x answered y\ since, as we saw in Sec 7 3, the universe o f discourse
must contain both people and questions We have to represent the two
distinct sets by two predicates in the antecedent o f a conditional for
mula. In the light o f this discussion, translate the following sentences,

(a) No one answered every question.

(b) For every question there was someone who answered it.

E x e r c is e s 177

(c) Everyone answered at least one question.

(d) Some people didn’t answer any questions.

(e) Everyone likes Mary except Mary herself, (use I (x , y) for identity)

(f) Everyone but Fred answered at least one question

(g) Everyone who answered a question attempted some question or
other,

(h) No one answered any question that everyone attempted

(i) Everyone who attempted a question answered it,

3. In each of the following expressions, identify all bound and free occur
rences o f variables, and underline the scope o f the quantifiers.

(a) (Vx) P(x) V Q(x , y)

(b) (Vy)(<2(x) - » {\/z)P(y,z))

(c) (V x) ~ (P (x) - » (3y) (Vz) Q(x , y , z))

(d) (3 x) Q (x , y) k P (y , x)

(e) (V ®)(P (x) -*■ (3y) (Q(y) -* (Vz)R(y , z)))

4. Each part o f this exercise consists o f an English sentence followed by a
translation o f it in pr edicate logic and a number of additional formulas.
Indicate which of the formulas are equivalent to the translation and
give the laws or rules necessary to show this equivalence. I f a formula
is not equivalent to the translation, give a rendition of it in English.

(a) Everything has a father and all odd numbers are integers.
{Note-. W hile it would be tempting to read the given formula as
everyone has a father ., this would be inaccurate, since we have
not restricted the universe to the set o f people and cannot do so if
we want the predicates odd and integer to apply to some elements
in the universe. To render everyone in predicate logic, we would
have to add an antecedent with the predicate person.)

(Vz)(3y).F(sf,2!)&:(Vz)(C>(z) - » I { z))
(1) (Vz)(VaO(3y)(.F(y, x) k (0 (z) -* I (z)))
(2) (V z)(3 y)(V z)(F (y , x) & (O(z) - * I (z)))
(3) (VaO(Vz)(3y)(F(y, x) & (O(z) -* I (z)) j

(b) I f Adam is a bachelor, then not all men are husbands.

178 C h a p t e r 7

5 (a) - » ~ (V z) (M (x) - » £T(s)
(1) (Vx) (B(a) -> ~ (M (z) -> # (*)))
(2) (3 z) (5 (a) - » ~ (M (z) - » IT (s)))
(3) ~ (B (a) - (V *)(il /(*) - i? (*)))
(4) 5 (a) -> (3 x) (M(x) & ~fl-(®))

(c) If there is anything that is evil, then God is not benevolent
(3 x) E (x) - > ~B(g)

(1) ~ ((3 a) £ (a) & 5 (s))
(2) (Vx) (E(x) -> ~ B (s))

5. Find two equivalent but different formulas translating each o f the sen
tences below, using the predicates given

(a) For every integer, there is a larger integer.
(I (x) , L (x , y))

(b) Either every prime number is odd or some integers are even, or
both
(P (x) , I (x) , 0 (x))

(c) If there is a prime number which is even, then all prime numbers
greater than 7 are odd.
(P (x) , 0 (x) , G (x , y))

(d) If all men are mortal, then Socrates is mortal.
(f f (x) , M (x))

6 . Give the Prenex Normal Forms of these formulas:

(a) ((3 z)A (2 !)& (3 z)i? (2 !)) —» C(x)

(b) (\fx)A(x) (3x) B(x)

7. Prove the validity o f the following argument forms:

(a) ~ (3 x) (P (x) & Q(x))
(3x) (P (x) & R(x))

(3 x) (R { x) k ~ Q (x))

(b) (V x)(P (x) -> Q(x))
(3 x) (R(x) & ~ Q { x))

(3x) (R(x) & ~ P (z))

E x e r c i s e s 179

(c) (Vx) (P(x) - > « (*))
(3 x) (P (x) & R(x))

*• (3 x) (E (x) &Q { x))

(d) (Vx) (P(x) - * Q (x))
~(Vx) (P(: e) -»
R(x))

•\ (3x) (~R(a ;)&<2(x))

(e) (Vx) (P(x) - * Q { x))
P{a)
R(a)

• (3a:)(i2(2:) ScQ(x))

(f) (V z)((P (*) V Q(x)) -*
(Vx) ((R(x) V S(x j) -*

•'• (V z)(P (z) - T (x))

R(x))
T(x))

8 . Construct proofs o f validity for the following English arguments, ((a)-
(c) are adapted from the author o f Alice in Wonderland, Lewis Caroll
[C„ L, Dodgson], Symbolic Logic, (1896).)

(a) Babies are illogical. N obody who is despised can manage a crocodile
Illogical persons are despised. Therefore, babies cannot manage
crocodiles.

(b) Everyone who is sane can do logic. No lunatics are fit to serve on
a jury. None o f your sons can do logic. Therefore, none o f your
sons is fit to serve on a jury,

(c) No ducks waltz No officers ever decline to waltz, All my poultry
are ducks. Therefore, my poultry are not officers.

(d) A ll vowels are sonorants. All stops are obstruents. Nothing is
both a sonorant and an obstruent. Therefore, nothing is both a
vowel and a stop,

(e) No linguist believes in the parity principle. Everyone believes in
the parity principle or is a behaviorist. Every dietician renounces
behaviorism. My aunt is a dietician. Therefore, there is someone
who is neither' a linguist nor a behaviorist.

9. Test the validity o f the following arguments with Beth Tableaux. Pro
vide a counterexample, if invalid.

180 C h a p t e r 7

(a) ~ (3 x) F (x) => (Vx) ^F(x)

(b) (\fx) (3y)R(x , y) => (3y) (Vx) R(x , y)

(c) (3 y) (Vx) R(y , x) => (V s)(3y) R{ y , x)

1 0 . Give a formal proof o f each o f the following:

(a) If A C B and B C C , then A C C .

(b) If A C B and A £ C, then B g C

1 1 . Give informal proofs o f each o f the following statements:

(a) (A - B) C A

(b) ((A - B) U { B - A) = 0) iff A = B

(c) B' 2 A iff A and B are disjoint.

(d) A C B iff A U (B - A) = B

(e) p(A) n p { B) = p (A n B)

(f) p(A) U p(B) C p(A U B)

12. Give informal proofs o f the properties o f binary relations in Fig, 3-2
not already proved in the text. (If the property is “not determined” ,
give examples which show why this is so)

Chapter 8

Formal Systems,
Axiomatization, and Model
Theory

8.1 The syntactic side of formal systems

In this section and the next, we return in greater detail to the study of
formal systems from syntactic and semantic perspectives. In this section
we focus on the syntactic side, and our aim will be to link together the
notion o f recursive definition which we introduced in Chapter 1 as a means
o f specifying sets with the closely related notions of inductive proof, new
in this chapter, and o f axiomatic system. Some of the close connections
between grammars and formal systems will be illustrated, and various string
operations will be formalized, although grammars as a topic in their own
right will not be taken up until Part E. The discussion in this section will be
purely syntactic (in part so as to illustrate what that means); we will return
to a semantic investigation of some o f the formal systems discussed here in
the next section.

8.1.1 R ecursive definitions

Consider the set M o f all mirror-image strings on {o , b}. A mirror-image
string is one that can be divided into halves, the right half consisting of
the same sequence o f symbols as the left half but in the reverse order. For

181

182 C h a p t e r 8

example, aaaa, abba, babbab, and bbabbabb are mirror-image strings, but babb,
aaab, and bab are not . The following is a possible recursive definition o f M .

(8 -1) 1. a a e M & b b e M
2. (V z)(z £ t f - * (axa £ M fobxb £ M))
3, M contains nothing but those members it has by virtue o f lines
1 and 2

Line 1, which is called the base o f the recursive definition, asserts that
x £ M is true o f the specific string aa and bb. Line 2, called the recursion
step or simply the recursion, says that for any string x if x 6 M is true, then
it is also true o f the strings formed from x by concatenating an a at both
ends or a b at both ends Line 3, the restriction, rules out any true instances
o f ai £ M other than those covered by lines 1 and 2. W ithout the restriction,
the definition would specify a class of sets meeting the conditions of lines 1
and 2 but possibly containing other members as well.

The recursion step o f a recursive definition is characteristically a con
ditional in which what is being defined occurs in both the antecedent and
the consequent. This makes recursive definitions look like alleged definitions
that are circular and, consequently, not really definitions at all. For example,
the putative definition o f ‘ subset’ in (8-2)

(8 -2) For any sets A and B , A is a subset o f B iff every subset o f A is
also a subset o f B.

contains a vicious circularity in which the notion ‘ subset’ is characterized by
appealing to that notion itself. That is, one could not know what a subset
is until one had already determined what a subset is. If ‘ subset’ had already
been adequately defined in the customary way in terms o f the predicate £,
then (8-2) would be a perfectly sensible, in fact, true statement; but as a
statement introducing the term ‘ subset’ for the first time (8-2) is defectively
circular.

In a recursive definition this circularity is avoided by the presence of
the base, which makes a nonconditional statement about the thing being
defined. Given the base, one can take an appropriate substitution instance
o f the recursion step and by Modus Ponens derive the consequent o f that
substitution instance. From the base and recursion o f (8-1), for example,
the following inference can be carried out:

T h e s y n t a c t i c s i d e o p f o r m a l s y s t e m s 183

1. 00 £ M & 66 £ M
2. (Vx) (x £ M —*(axa £ M k b x b £ M))
3. 00 £ M 1, Simp
4. 00 £ M —* (o ooo £ M & baab £ M) 2, U.I.
5. oooo £ M & baab £ M 3,4, M P.
6. baab £ M 5, Simp.

From this line and another substitution instance o f the recursion step
7. baab £ M —* (abaaba £ M & bbaabb £ M) 2, U.I.

we can derive
8. abaaba £ M Sz bbaabb £ M 6, 7, M.P,

Such a series o f steps constitutes a proof that certain strings are in M ,
given the base and recursion of the recursive definition (8-1) as premises.
The fact that such a p roo f is possible for every string asserted to be in M
by the definition serves to convince us that this recursive definition really
does define something and is not circular. W ithout the base, however, no
such proofs are possible. From the recursion step alone one can derive only
a series of conditionals.

(8-4) 1. (Vx)(x £ M —» (axa £ M & bxb £ M))
2. oo £ M —* (oooo £ M & baab £ M) 1, U.I,
3. (oo £ M —* oooo £ M) & (oo £ M —» baab £ M) 2, Log, Equi
4. oo £ M —» oooo £ M 3, Simp,
5. oooo £ M —* (oooooo £ M & 600006 £ M) 1, U,I.
6. 00 £ M —» (oooooo £ M & 600006 £ M) 4, 5, H.S

The conclusions that can be derived are statements that i / certain strings
are in M , then so axe certain others, Lacking the base, the definition would
not assert that M contain any strings at all.

We also note that the close connection between sets and predicates allows
us to regard a recursive definition either as defining a predicate, e.g., the
predicate ‘is a member o f M y in the preceding example, or, equivalently, as
defining a set that is the extension o f that predicate, e.g., the set M .

A slightly more complex example is the recursive definition o f the set of
well-formed formulas (wf f ’s) in statement logic (cf. Sec. 6.1). The following
definition divides those strings constructed from the alphabet

184 C h a p t e r 8

that aie legitimate expressions in this system o f logic, e.g., {{p & g)V r) —> s),
from those, e.g,, { p k —» r), which are not.

(8 -5) !■ P is a wff-, q is a wf f ; r is a wff

2. For all a and /3, i f a and /3 are wf f ’s then so is

(a) { a k f i)

(b) (a y 13)

(c) (a -> /3)

(d) (a *-> f3)

(e) ~ a

3, Nothing is a wff except as a consequence o f lines 1 and 2,

Using this definition we can prove that some particular expression, say
{{pkq) V r), is a wff.

-6) 1 . p is a wff k q is a wff (1), Simp.
2 . {p is a wff k q is a w f f) —* {p k q) is a wff (2a), U I.
3. { p k q) is a wff 1, 2, M P .
4. r is a wff (1), Simp,
5. { { p k q) is a wff k r is a wff) —* (2b), U.I.

{ { p k q) V r) is a wff
6 . { p k q) is a wff k r is a wff 3, 4, Conj.
7. { { p k q) V r) is a wff 5, 6 , M.P.

The definition in (8-5) does not characterize all the wf f ’s o f statement
logic since it allows no more than three distinguishable atomic statements
p, q, and r O f course more symbols could be added to the alphabet and
the base o f the recursive definition could be appropriately expanded, but
for any given finite number o f symbols for atomic statements there is some
wff in statement logic containing more than this number o f distinct atomic
statements. Thus, it would appear that there must be an infinite number
o f symbols for atomic statements in the alphabet and that the base o f the
definition must consist of an infinite conjunction of the form p is a wff k q is
a wff k ■■■. This raises anew the problem o f specifying the members of an
infinite set— here, the set of conjuncts in the base o f the recursive definition.
The solution is to precede the recursive definition of wff by a recursive

A x i o m a t i c s y s t e m s a n d d e r i v a t i o n s 185

definition o f ‘atomic statement’ (more precisely, the set of symbols denoting
atomic statements). One symbol, say p, is chosen and other symbols are
created by adding primes successively: p, p', p " , p'", etc, Each such symbol
is considered distinct, designating an atomic statement potentially distinct
from all others. The recursive definition is as follows:

(8-7) 1 P is (or denotes) an atomic statement
2, For all x, i f x is an atomic statement, then so is x'
3, Nothing else is an atomic statement

The recursive definition o f wff is now as in (8-5) except that the base is
replaced by:

1. Every atomic statement is a w ff.

It is also understood, o f course, that the definition of wff now applies to
strings on the finite alphabet C ' = {p , ' , &, V, ~ , —*, <->, (,) } .

Nothing essentially new is involved in framing one recursive definition
in terms o f another. We have already seen many examples o f definitions
in which previously defined concepts appear; for example, the definition of
‘power set’ in terms o f ‘subset’ in Chapter 1 . If recursive definition is a
legitimate m ode o f definition, then there can be no objection to using one
recursively defined predicate in the recursive definition of another.

8.2 Axiomatic systems and derivations

Recursive definitions and axiomatic systems have a similar logical structure.
From a finite number o f statements given initially an infinite number of
additional statements are derivable by repeated application of a specified
set o f rules. The statements assumed at the outset are the axioms, and the
additional statements, called theorems, are derived from the axioms and pre
viously derived theorems by interated applications o f the rules o f inference.
The set o f axioms, the set o f rules of inference, and the alphabet in which
all these are written constitute an axiomatic system. Viewed in this way,
a recursive definition is like an axiomatic system in which the base states
the axioms and the recursion step constitutes the rules o f inference, The
members o f the set specified by the recursive definition, aside from those
given by the base, comprise the theorems o f the system.

186 C h a p t e r 8

D e f in it io n 8.1 An a x io m a tic sy s tem is an ordered triple (A , S , P) in which

1. A is a finite set o f symbols, called the a lp h a b et.

2. S is a set o f strings on A, called the a x iom s.

3. P is a set o f n-pla.ce relations in A *, the set o f all strings m a d e fr o m
the alphabet A, where n > 2 (i.e., the n-tuples in P must be at least
ordered pairs.) The members o f P are called p r o d u c t io n s o r ru les (o f
in fe ren ce),

■

We now indicate how the productions are to be employed in deriving
additional strings.

D e f in i t io n 8 2 Given an axiomatic system (A , S , P), i f

(■^l, *^2} , j -Era— 1, *Era)

is a production in P , w e sa y th a t xn fo llo w s f r o m (xi , x 2, . , x n- i) . We also
use Xi, x 2, „ as a*i equivalent n o t a t io n fo r (a^, x 2, ..., £n- i , xn).

■

D e f in i t io n 8 ,3 G iv e n an axiomatic system (A , S , P), a linearly ord ered
sequence o f strings y i , y 2, , Vm is called a d e r iv a tio n o r p r o o f o f ym i f and
only i f every s tr in g in the sequence is either (l) an axiom, or (2) follows
one o f the productions in P f r o m on e o r m ore strings preceding it in the
sequence, I f there is a d er iv a tion o f y in a g iv e n axiomatic system , y is called
a th e o re m o f that system . ■

We can illustrate these definitions by reinterpreting the recursive defini
tion in (8-1) o f mirror-image strings on { 0 , 6} as an axiomatic system

(8 - 8) A = { a , b }
S = { (0 0 , 66) }
P = { (x , y) € A* x A* | y — a x a V y — b xb }

The productions are thus the infinite set of ordered pairs

(8 - 9) { (e , 00) , (e, 66), (a , a a a) , (o , 606), (6, aba) , (6, 666), (00 , 0000) , . . .}

A x i o m a t i c s y s t e m s a n d d e r i v a t i o n s 187

or in the alternative notation,

(8 -10) {e —> aa, e —» 66, a —» aaa, a —* aba, b —» 666, oo —» o ooo ,. . . }

In this axiomatic system, we see that the sequence of lines

(8 -11) bb, abba,aabbaa

is a derivation of 006600 since the last string follows from preceding strings
(in fact, from just the one immediately preceding) by the production abba —*
aabba; similarly, abba follows from 66 by the production 66 —► abba; and 66
is an axiom Therefore, 006600 is a theorem of this axiomatic system. The
sequence

(8-12) 66,6006

is not a derivation since 6006 does not follow from 66 by the rules of P. This
does not necessarily mean that the string 6006 is not a theorem since there
may exist some derivation in the system in which 6006 is the last line. It
happens in this case that there is, viz ,

(8- 13) aa, baab

and thus baab is a theorem.

One consequence of the definition is that the first line of a derivation
must be an axiom since there are no lines preceding the first from which it
could follow. Thus, a sequence such as

(8- 14) 06,0060,600606

is not a derivation because 06 is not an axiom, A derivation may, however,
consist of only one line and, if so, that line must necessarily be an axiom.

The set of productions P in (8-8) is an infinite set of all ordered pairs
of the form (21,02:0) and (21,62:6), where x is a variable whose values are all
the strings in A*. P, therefore, contains productions such as L(o,ooo) and
(06, 6066) that will never actually be used in the derivation of any theorems
in this system from the given set of axioms Further, because x is a variable
symbol and not a member of the alphabet A, the expressions (x,axa) and
(x,bxb) are not themselves productions but rather production schemata or

188 C h a p t e r 8

formulas for constructing productions This finite set of schemata specifies
an infinite set of productions in which the variable symbol x is replaced by
any constant string on A*. To be completely formal, we could, of course,
give a recursive definition of the set of productions, thus embedding one
recursive specification within another as we did in (8-5) and (8-7).

The axioms may also be specified by schemata containing variable sym
bols (or by recursive definition). For example, in the axiomatic system given
in (8-15), whose theorems axe all the tuff's of statement logic, 5 is an axiom
schema specifying as an axiom any string consisting of the symbol p followed
by any number of primes [cf, (8-7)], P is also a schema for the infinite set
of productions of this system,

(8- 15) A - { & ,V ,~ , -» ,< -* ,(,) ,!> , '}
5 = {px | x £ { '} * }
P = { (z , ~ x) , (x , y , (x & c y)) , { x , y , (x V y)) , (x , y , (x y))} where
x and y are strings in A *

Problem: Which of the following sequences are derivations in the axiomatic
system of (8-15)?

1, p, ~ p , ~ ~ p

2, p , p ’ , (p V p 1), ((p V p ') fe p ")

3, (p V p) , p' , (p1 - » (p V p))

4, p, ~ p, p1

8.2 .1 Extended axiomatic systems

From a syntactic perspective, it is not uncommon to extend the definition
of an axiomatic system somewhat to allow two kinds of symbols in the al
phabet. Specifically, we have a basic alphabet and an auxiliary alphabet,
which are disjoint sets, Symbols from both sets may appear in the lines of
a derivation, but the theorems contain only symbols from the basic alphabet.
An axiomatic system with two disjoint alphabets of this sort will be called
an extended axiomatic system (e.a.s.). (Note: W e are here dangerously close
to blurring the line between axiomatic systems and grammars; model theo
rists would probably not countenance these extended axiomatic systems as
genuine axiomatic systems.)

A x i o m a t i c s y s t e m s a n d d e r i v a t i o n s 189

D e f i n i t i o n 8.4 An extended axiomatic system is an ordered quadruple
(.A , B , S , P) where

1 A is a finite set o f symbols, the auxiliary alphabet.

2 . B is a Unite set o f symbols, the basic alphabet; A and B are disjoint.

3 S is a set o f strings on (A U B)*, the axioms, S may be specified by a
finite set o f axiom schemata

4. P is a set o f n-place relations (re > 2) on strings o f {A U B)* called
productions or rules of inference, P m ay be specified by a finite set o f
production schemata , I f (zi, Z2, . . , z„_i, z„) is a production in P , we
say that x n follows from za,z 2, . ,z n_ a, which can also be denoted
by x 1} x 2, , z n_ i > x n

In an e.a.s. we distinguish between a derivation and a proof, since not every
derivation ends in a theorem. The definition of derivation is just as before

D e f in i t io n 8.5 Given an e.as. (A , B , S , P), a linearly ordered sequence
o f strings, y i , y2, , ym is called a derivation o f ym i f every string in the
sequence (1) is an axiom, or (2) follows by one o f the productions in P from
one or more strings preceding it in the sequence. ■

D e f in i t io n 8.6 Given an e.a.s (A , B , S , P), a string y is a theorem if f
(1) there is a derivation o f y in (A , B , S, P), and (2) y £ B *. When y is a
theorem, a derivation o f y is called a proof o f y. ■

We note that by oui definitions every axiomatic system is also an e.a s
with the null set as the auxiliary alphabet, but not every e.a s is an ax
iomatic system. An e.a.s, with a nonnull auxiliary alphabet is a proper
e.a.s

An example of a proper e.a.s,, whose theorems are the mirror-image
strings on a, b, is the following (cf. (8-8)):

(8- 16) A = { M }
B = { a , b }
S = { M }

aMf i

P =
a.Mfi

aMfi

a.M/3

aaMaf i
abMbfi
aaa/3
abb/3

where a and /3 are any strings
on (A U B)*

190 C h a p t e r 8

T h e fo llo w in g sequen ce o f lines

(8 -17) M, aMa, aaMaa, aabMbaa

is a derivation o f aabMbaa but not a p io o f in this system, since aabMbaa
contains a symbol of the auxiliary alphabet and therefore cannot be a theo
rem The following is a proof of aabbaa

(8 -18) M , a M a , aaM aa, aabbaa

Two systems having the same set o f theorems are said to be equivalent.
Thus, the e a s of (8-16) is equivalent to the axiomatic system o f (8-8).

The following e.a.s. is equivalent to the axiomatic system (8-15), which
generates the uiffs o f statement logic

(8-19)

P =

{ E , F }
{ & , V , ~ * ? G)->p' }
{ F }

' aF/3 a ~ F/3
aF/3 a (F & F)f3
aF/3 a (F V F)/3
aF/3 - » a (F F)/3
aF/3 —y a (F ^ F)/3
aF/3 -* aE/3
aE/3 -* aE'f3

. aE/3 -* ap[3

where a and B are any strings
on (A U B)*

(The symbol —>, unfortunately, is used for two different purposes in this
system: to signify ‘follows from ’ in the production schemata and in the fourth
schema as a symbol in the alphabet of statement logic.)

The following sequence is a proof o f ((p1 & p ") V p) in this system:

S e m i - T h u e s y s t e m s 191

(8-20) 1. F
2. (F V F)
3. ((F & F) V F)
4. ((E k E) V F)
5. ((E k E) V F)
6. { (E k E) V E)
7. ({ E ' k E) V F)
8. ((E 1 k E') V E)
9. ((E 1 k E") V E)

10. ((p1 k E") V E)
11. ((p ' k p ") v E)
12. ((P ' k p ") Vp)

The axiom set o f the e.a.s. in (8-19) contains only the single symbol
F , not an infinite set o f strings specified by axiom schemata. Rather, the
last two production schemata in the list generate the symbols for atomic
statements, p ,p ',p " ,p '" , etc. Note that a rather natural interpretation of
this system is possible in which F is a ‘well-formed form ula’ and E is an
‘atomic statement’ . The production schemata could then be interpreted as
statements such as ‘if F is a well-formed formula, then so is its negation,’
‘an atomic statement is a well-formed form ula,’ ‘p is an atomic statement,’
etc.

Problem: Describe the theorems o f the following e.a.s.

(8 -21) A = { Q }
B = { a }
S — { aQa}
p _) a QP a oQ aao /?] where a and /3 are any strings

“ ̂ a.Q/3 - > p I on (A U 5) *

8.3 Semi-Thue systems

One way in which axiomatic systems can be classified is according to some
property of theii production schemata. One could, for example, distinguish
systems with only binary productions, i.e., of the form ip —> tf>, where ip and
tf) are strings, or one could consider the class o f systems in which for every
production z i , z 2, . .. , z n- i —* Xn the number of symbols in xn is greater

192 C h a p t e r 8

than or equal to the sum of the number o f symbols in z 1)z 2>' ■ >z n- i ' Any
formal property o f the productions could, in principle, serve as a basis for
such a classification. The systems to which we now direct our attention are
the semi-Thue systems (after the Norwegian mathematician Axel Thue, who
first studied them) These are extended axiomatic systems whose produc
tions are restricted in a manner specified by the following definition

D e f in it io n 8 7 A sem i-T h u e sy stem is an e a s. (A , B , S, P) in which every
production schema is binary and o f the form

ax/3 —* ay(3

where x and y are strings on (A U B) X and a and (3 are variables taking as
values strings on (A U B)*. ■

Thus, the change effected by any production is r estricted to the replace
ment of some fixed string o f symbols by another fixed string O f the ax
iomatic systems we have examined thus far, (8-8), (8-16), and (8-19) are
semi-Thue systems, (In (8-8) each production is o f the form z —» y, where
both a and /3 are the null string.) The system given in (8-15) is not semi-
Thue since some o f its productions are ternary and not binary. The e.a.s
in (8-21) fails the definition because in neither o f its production schemata is
a fixed string replaced by a fixed string. In aQ/3, the variable string aQ is
replaced by e, and in aQ/3 —> aaQaaa/3, the fixed string Q is replaced by
the variable string aQ aaa

The fact that all productions in a semi-Thue system are binary allows us
to narrow the definition o f ‘ derivation’ somewhat.

D e f in it io n 8 .8 ■

Given a semi-Thue system (A, B , S, P) , a linearly ordered sequence of
strings y i , y 2, ■ ,ym is called a derivation o f ym iff (1) y1 is an axiom, and
(2) each string except yx follows from the immediately preceding string by
one o f the productions in P.

The definitions o f ‘theorem ’ and ‘p roo f’ remain as in an e.a.s.

A Thue system, differs from a semi-Thue system in that for every pro
duction schema ax/3 —> a y (3 in P , a Thue system also contains the inverse
schema ay/3 —» ax/3 We shall not be concerned with such systems here

S e m i - T h u e s y s t e m s 193

Although it may appear that the restrictions on the productions o f a
semi-Thue system are rather severe, these systems can in fact generate any
set of theorems that can be generated by an arbitrary e a.s. In other words,
there is no loss in generality in restricting e.a s.’s in the mannei o f semi-
Thue systems because for any e.a.s there is an equivalent semi-Thue system,
(The converse is, o f course, trivially true, since every semi-Thue system is
an e.a s.) However, a semi-Thue system may be rather more complex than
a nonsemi-Thue e.a.s. to which it is equivalent. To illustrate, we exhibit a
semi-Thue system that is equivalent to the e.a.s. in (8-21). Since all semi-
Thue production schemata are o f the same form, it is generally accepted
practice to omit the variables a and /3 in writing them; thus, we write x —> y
instead of ax/3 —* ay/3,

(8-22) A = { C , D , E , F , G , H }
B = { a }
S = { H F G a }

The schemata in P are numbered for convenience in referring to them.

P =

1. F G DG aa
2. F D D F
3. H D E C
4, C D F C
5, C G F F G a
6. H F E
7 E F E
8. E G E
9 Ea a

24) show the derivatic

(8-23) H F G a
EGa
Ea
a

Axiom
by 6.
by 8
by 9.

194 C h a p t e r 8

H F G a Axiom
H D G a a a by 1.
HCGaaa by 3,
H FFGaaaa by 5
EFGaaaa by 6.
EGaaaa by 7
Eaaaa by 8
aaaa by 9,

8.4 Peano’s axioms and proof by induction

Peano’s axioms for the natural numbers, actually due to Dedekind, are not
only one o f most well-known axiomatic systems in the history o f mathem at
ics, but they give rise to the Principle of Mathematical Induction and the
technique of proof by induction or inductive proof a conceptually im por
tant tool which further helps to highlight the close affinity between recursive
definitions and axiomatic systems.

In this section we introduce Peano’s axioms and the m ethod o f proof
by induction; we will come back to Peano’ s axioms from a m o del-theoretic
perspective in 8.5.7.

In Part A , Appendix A , we saw a constructive approach to the natural
numbers, with set theory assumed as a basis. We review that construction
here, putting it in the form of a recursive definition of N N

(8 -25) 1. 0 G N N
2. For all X , if X G N N , then X U { X } G N N
3. Nothing else is in N N

The set N N defined in this way has many useful properties which make
it a reasonable, i f artificial, set-theoretic reconstruction o f the natural num
bers. Zero is identified with 0, 1 with { 0} , 2 with { 0, { 0} } , and so on, each
natural number n being identified with the unique member o f N N having
n members. The definition endows the natural numbers with appropriate
structure and can be used as the basis for defining farther arithmetical re
lations and operations and extending the number system as discussed in
A ppendix A.

In the axiomatic approach to natural numbers, the aim was rather to set
forth some essential properties of the natural numbers from which all their

P e a n o ’ s a x i o m s a n d p r o o f b y i n d u c t i o n 195

other properties should be derivable as theorems, just as in the Euclidean
axiomatization o f plane geometry. In stating the basic axioms, only logical
concepts (including, in this case, equality) are assumed, and a set of axioms
involving two primitive predicates and one primitive constant is given. The
primitives are (1) the one-place predicate ‘is a natural num ber’ and the
two-place predicate ‘is the successor o f ’ and (2) the constant 0, It is to
be emphasized that these are primitives; the only meaning they have is
given to them in the axiomatization The concept o f a natural number is,
therefore, implicitly defined by the axioms: they are those things o f which,
in some m odel o f the system, the interpretation o f the predicate ‘is a natural
num ber’ is true, Let us write N x for ‘x is a natural number’ and Sxy for ‘x
is a successor o f y\ The axioms are:

P I) NO (zero is a natural number)

P2) (Vz)(JVz —* (3 y) (Ny & Syx & (\/z)(Szx —> z = y))) (every natural
number has a unique successor)

P3) ~ (3 z)(JVz & 5 0 z) (0 is not the successor of any number)

P4) (V z)(V y)(V z)(V u;)((JVz & N y & Szx & Swy k z = w) - > x = y) (no two
distinct natural numbers have the same successor

P5) If Q is a property such that

(i) Q 0 (zero has Q), and

(ii) (V z)(V y)((jV z & Q x k Ny & Syx) —» Q y), (if a natural number
has Q then its successor has Q, i.e. Q is a ‘hereditary’ property)

then (Vz)(JVz —> Qx) (every natural number has Q)

These axioms together characterize the set o f all natural numbers in
certain im portant respects in which they differ from other infinite sets. A l
though we will not go into the p roof here, it can be shown that this axioma
tization of the natural numbers is also sufficient for proving the equivalence
of the notions ordinary infinite and Dedekind infinite, which used only the
notion o f one-to-one correspondence, defined in Section 4 2,

The fifth Peano postulate is very important. It introduces the notion
o f mathematical induction. Intuitively, this axiom says that the natural
numbers are subject to the ‘ domino-effect’ : whenever you find a property

196 C h a p t e r 8

that knocks down zero, and makes each number knock down its successor,
you can conclude that all numbers are knocked down. There are no natural
numbers outside this single infinite chain The first four axioms guarantee
the existence o f an infinite chain o f successors starting at zero, but do not
preclude the existence o f additional natural numbers, e g a second infinite
chain unconnected to the first. The fifth axiom precludes the existence of
any more numbers than are required by the first four axioms

Now let us look more closely at the Principle o f Mathematical Induction
and its application Let us first restate the principle, i.e. Peano’s fifth axiom,
in a slightly simpler form by (i) suppressing the predicate N and assuming
that our domain of quantification is restricted to just the natural numbers,
and (ii) using the notation S(x) to denote the successor of x, something we
can legitimately do since the first four axioms guarantee that the successor-of
relation is a function.

For any predicate Q, if the following statements are both true o f Q:

(8 -26) 1 QO
2. (Vx) (Qx - » Q(S(x)))

then the following statement is also true o f Q:

3 (Vx)Qx

The similarity between (8-26) 1 and 2 and the base and recursion step,
respectively, o f a recursive definition is readily apparent. The Principle of
Mathematical Induction is not a definition, however, but a rule o f inference
to be applied to statements about the integers. A proof that employs this
rule o f inference is known as a proof by induction or an inductive proof .

Let us examine the structure o f such a proof in more detail. Suppose we
have been given a predicate P (z) such that (8- 27) 1 and 2 hold. These form
the premises o f the argument.

(8 -27) 1. P (0)
2. (V z)(P (z) - P (* + 1))

From P(0) and a substitution instance o f line 2
3. P (0) - » P (l) 2, U.I.

we can derive
4. P (l) 1, 3 , M P

and from this and another substitution instance o f line 2

P e a n o ’s a x i o m s a n d p r o o f b y i n d u c t i o n 197

5. -P (l) —* -P(2) 2, U.I.
we can derive

6 P (2) 4, 5, M .P
and so on

To prove the statement (V z)P (z) would require an infinite number o f
steps, and we would ordinarily not want to consider an infinitely long se
quence of lines a proof, if for no other reason than that it would be impossi
ble to examine it in order to verify its correctness. Thus, there is no proof of
(Vx)P(z) that can be constructed by using only the rules o f inference we have
considered up to now. Nevertheless, (8-26) 3 is intuitively a valid conclusion
to draw from the premises (8-26) 1 and 2, and the Principle of Mathematical
Induction is a formal assertion that this inference is legitimate. It should be
noted that the Principle o f Mathematical Induction itself is not susceptible
of proof but only acceptance or rejection on the grounds of its effectiveness
in separating intuitively valid from intuitively invalid arguments. W ith this
additional rule of inference, the proof of (V z)P (z) is simply as follows:

(8-28) 1. P (0)
2. (V z)(P (z) —» P (z + l))
3 (Vz) (P(z)) 1, 2, Math. Ind.

As an example we prove by induction that for every integer re the sum
o f the series 0 + 1 + 2 + ,. + (re — 1) + re equals [re(re + l)] /2 .

The premises o f the argument are the propositions stating all the usual
arithmetic properties o f the integers (the commutativity o f addition, etc),
which can be deduced as theorems from Peano’s Axioms, As is usual in
inductive proofs almost all the work comes in establishing the truth of the
statements corresponding to (8-28) 1 and 2, known as the base and the
induction step , respectively. Once these have been derived, the remainder
o f the proof consists o f just one inferential step justified by the Principle of
Mathematical Induction, We begin by demonstrating the truth o f the base,
i.e., that 0 + 1 + + re = [re(re + l)] /2 is true for re = 0, In this case the
sequence to the left o f the equals sign consists o f just 0, and the expression
to the right becomes [0(0 + l)] /2 , which is equal to 0,

The induction step to be established is

(8-29) (Vre) ^0 + 1 + . . . + re

0 + 1 +

re(re + 1)

. . + re + (re + 1) =
(re + l)(re + 1 + 1)

198 C h a p t e r 8

that is, if the equation is true for any integer re, it is also true for re + 1,
the successor o f re. To prove (8-29) we use a conditional proof in which we
assume the antecedent of the conditional in (8-29) for an arbitrary integer
k.

(8 -30) 1 0 + 1 + , . . + k = k-(- C.P.

2. 0 + 1 + . . + k + (k + 1) = - - - - — + {k + 1)
1, adding (k + l) to both sides

k(k + 1) + 2(k + 1)
3 0 + 1 + ,. + k + {k + l) = ----------------------------- -

2, converting right side to comm on denominator

4. 0 + i+,,, + Jb + (Jb + i)= (* + 1K .* + ?)
3, factoring (k + l) in numerator

\ (k + l)((ife + 1) + 1)
5. 0 + 1 + . . . + * + (* + 1) = -̂------- ^

4, expressing k + 2 as {k + 1) + 1

6. o + i + . . . + k = _

0 + l + , . . + Jb + (Jb + l) =

Since k was chosen aibitrarily, line 6 can be universally generalized to
(8-29). Having now established the truth of the base and the induction step,
the Principle of Mathematical Induction allows us to conclude:

(8 -31) (Vre) (° + 1 + ■ ' + 71 ~ ^ ' 2 ' ~)

P roof by induction can be applied not only to theorems about the set
o f integers but to theorems about any set that can be put into one-to-one
correspondence with the integers, i.e., the denumerably infinite sets. As an
example o f this sort we prove a generalized form o f the Distributive Law for
union and intersection of sets

(8-32) A u (Ba n b 2 n .. n Bn) = (A u s a) n [A u b 2) n , n(AnB„)

P e a n o ’ s a x i o m s a n d p r o o f b y i n d u c t i o n 199

The form in which the Distributive Law was given in Chapter 2 is a
special case of (8-32) in which re = 2; that is

(8-33) All (BjH B2) = (AU Bj) n(AU B2)

Equation (8-32) is meaningless for re = 0 and trivial for re = 1 We take as
the base of the inductive p roof that (8-32) holds for re = 2, i .e., that (8-33) is
true. This is easily shown by expressing the sets in terms o f predicates and
applying the Distributive Law of disjunction over conjunction in statement
logic.

To prove the induction step we assume that (8-32) holds for an arbitrarily
chosen integer k:

(8-34) i u (B i n 5 2 n, n Bk) = (i u 5 a) n (i u b 2) n . . n (Au Bk)

We wish to show that (8-34) implies (8-35)

(8-35) Ai){Bif)B2n. , n 5 M1) = (A u B 1) n (4 u s 2) n , . , n (i u B i;)n
(A U Bk+i)

The left side of (8-35) can be rewritten by the Associative Law as

(8-36) A u ((Si n b 2 n ... n Bk) n Bk+1)

which is equal to

(8-37) {A u (Bi n b 2 n „,. n Bk)) n {A u Bk+1)

by an application of the Distributive Law for the case re = 2, which has
already been proved B y the induction hypothesis (8-34), expression (8-37)
is equal to

(8-38) p u 5 1) n (i u 5 2) n , . . n (i u Bk)) n (A U Bk+1)

By the Associative Law we can omit one set o f parentheses to obtain the
right side of (8-35). This shows that (8-35) holds if (8-34) does. From this
and the base by the Principle of Mathematical Induction the generalized
form of the Distributive Law is shown to be true for all re equal to or greater
than 2 (or greater than 1 if we include this trivial case)

2 0 0 C h a p t e r 8

In this last example induction is used to prove a theorem about a class
o f equations o f the form given in (8-32), which can be put into one-to-one
correspondence with the integers. The mapping is between an equation and
an integer n representing its length— specifically, the number of terms in the
expression B 1 n B 2 fl H B „, P roof by induction on the length of a string
is the commonest use of this method of p roof in mathematical linguistics

Problem: Prove by induction the following generalized form o f one of
DeM organ’s Laws:

(4 i n i 2n . . . n 4 J ' = i ' , u u A'n

8.5 The semantic side of formal systems: model
theory

8.5 .1 Theories and models

As we said in Chapter 5, the distinction between syntax and semantics in
the logical tradition is closely tied to the distinction between formal systems
and their interpretations.. M odel theory, the study o f the interpretations of
formal systems, focuses on the relation between theories and models, with
these terms understood in a technical sense which we will now describe.

A set o f axioms together with all the theorems derivable from them is
called a theory Or equivalently, a theory is a set of statements that is closed
under logical consequence, i.e. is such that any logical consequence o f any
statement in the set is again in the set

Finding a model for a theory requires finding some abstract or concrete
structured domain and an interpretation for all o f the primitive expressions
o f the theory in that domain such that on that interpretation, all o f the
statements in the theory come out true for that model on that interpretation,
I f a theory has an axiomatic characterization, something is a m odel for that
theory iff it is a model for the axiom s,

Plane geometry is the standard m odel o f the Euclidean axioms; before
the discovery o f the non-Euclidean geometries discussed in 5,1 it was believed
to be the only model. The natural numbers are the standard or intended
m odel of the Peano axioms; we will see some non-standard models in section
8,5,7 below.

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 2 0 1

In exploring theories and models, one can start at either end, and math
ematical discoveries and advances have been made in both directions. One
can start with a given set o f phenomena as intended models and try to
write down axioms that will best characterize them - this often forces one
to sharpen up one’s conception o f the intended coverage o f the theory, and
o f course helps to uncover various consequences o f one’s initial assumptions
(One can take the whole enterprise o f linguistics as trying to formally char
acterize the class o f possible human languages; the starting point is then a
somewhat vaguely specified set o f intended m odels.) One can also start from
a set of axioms and see what sorts o f models it has. In the model-theoretic
perspective, these two complementary activities constantly feed each other.
Different axiomatic systems may be discovered to characterize exactly the
same set of models, and hence to be equivalent fr om a semantic point of view;
or two quite disparate domains may be discovered to have virtually identical
axiomatizations, revealing a hitherto unsuspected structural similarity

A note o f warning: the term “m odel” , especially in the verbal form
“modelling” , has another very different sense as well, one in which it actually
comes closer to what logicians mean by theory than to what they mean by
model, and outside o f logic and m odel theory this other sense may in fact be
more common. W hen one speaks of modelling some physical phenomenon,
or constructing an abstract m odel of some biological or cognitive process,
the intent is generally some form of theory building or at least some step in
that direction. One important clue to help resolve the ambiguity comes from
looking at what the model in question is a m odel of. models in the sense
of m odel theory are always models o f axioms or other expressions in some
language, never o f concrete objects. Models themselves in m odel theory may
be either concrete or abstract objects, so the nature of the things modelled
is a more reliable clue to the relevant sense of “m odel” than is the nature o f
the models.

In the remaining subsections o f this section, we will first look at some
fundamentally important properties that relate formal systems and theories
to their models, and then look into some examples of axiomatic systems
and models for them, some very simple and some quite rich, illustrating the
interplay between axioms and models as we go. In these sections we take
the logic as a given; in 8,6 we will broach the issue o f axiomatizing the logic
itself.

2 0 2 C h a p t e r 8

8 .5 .2 Consistency, com pleteness, and independence

A formal system is consistent if it is not possible to derive from its axioms
both some statement and the denial o f that same statement. An inconsistent
system cannot have a m odel, since no actual statement can be simultaneously
true and false; hence one way to show that a system is consistent is to exhibit
a m odel for i t .

It is useful that we have both a syntactic and a semantic characterization
o f consistency known to be equivalent, since one is easier to apply in some
cases and the other in others, In particular, when a system is inconsistent,
it ’ s usually easier to demonstrate that syntactically than semantically. That
is, it ’ s usually easier to derive a contradiction from the axioms than to prove
by a meta-level argument that the system has no models Conversely, when a
system is consistent, it ’s usually easier to show that semantically, by finding
a model, than to demonstrate that it ’s impossible to derive a contradiction
from the given axioms. When one doesn’t know the answer in advance, it
m ay be necesary to try both methods alternately until one o f them succeeds.

The term completeness is used in various senses. W hat all notions of
completeness have in common is that for a formal system to be complete in
some sense, it must be possible to derive within the formal system all the
statements satisfying some given criterion; different notions o f completeness
reflect different criteria for the desired statements. Among the most com
monly encountered notions of completeness is one which is syntactic, since
it is defined in terms of formal systems alone, and one which is semantic,
defined in terms o f the relations between formal systems and their models.
A formal system is called form ally complete if every statement expressible in
the system, i.e. expressible using only the primitives of the system includ
ing a given formalized logic, can either be proved or disproved (its negation
proved) in the system Other terms for the same or very similar notions are
deductively complete (C opi), complete with respect to negation (Thom ason),
and syntactically complete. A formal system is semantically complete with
respect to a model M , or weakly semantically complete (Thom ason), if every
statement expressible in the system which is true in the m odel M is derivable
in the formal system.

The notion o f independence concerns the question o f whether any o f the
axioms are superfluous An axiom is independent if it cannot be derived
from the other axioms o f the system. A whole system is said to be inde
pendent (a slight abuse o f language) if all o f its axioms are independent.
That was a syntactic characterization o f independence (w hy?); a semantic

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 203

chracterization is the following: A given axiom is independent o f the other
axioms o f a system S if the system S' that results from deleting that axiom
has models which are not models o f the whole system S In any reasonably
“well-behaved” framework, the two notions of independence will be provably
equivalent and one can use whichever one is easier to apply in a given case
As in the case o f consistency, which is easier often depends on whether the
answer is positive or negative. Determining precisely what it takes for a
framework to be sufficiently “ well-behaved” for the syntactic and semantic
characterizations o f independence to determine the same notion is one kind
o f question studied in the metamathematical side o f m odel theory.

The three notions of consistency, completeness, and independence are
not all o f equal importance. Consistency is o f fundamental importance,
since it is obviously a minimal condition of adequacy on any set of axioms
designed to formalize any system that is not meant to be self-contradictory.
Completeness is often of theoretical importance to logicians, but (a) prov
ing completeness for a system o f any com plexity generally requires a fairly
high level o f mathematical sophistication (and many important formal sys
tems are provably incomplete); and (b) it is not obvious that completeness
is ever any issue that linguists need to be concerned with. Questions o f com
pleteness will therefore be r elatively neglected here. Independence o f axioms
is simply a matter o f “elegance” ; it is generally considered desirable in an
axiom system, but has no significant consequences for the system as a whole,

8.5 .3 Isom orphism

The notion of isomorphism, the relation o f “having the same structure” , is
o f fundamental importance in any attempt to set up a concrete m odel o f an
abstract system or a mathematical theory o f a family o f concrete systems
Informally speaking, two systems are isomorphic if some specified part o f
their1 structure is identical and they differ only in interpretation or content
or in unspecified parts o f their structure, For example, a paper pattern for
a dress may be said to be isomorphic to the cut-out cloth with respect to
size and shape; they differ only in their material, Japanese and Korean are
sometimes said to be isomorphic with respect to syntactic structure, a claim
which would be true if the two languages differed in their morphemes but sen
tences could be put into morpheme-by-morpheme correspondence preserving
syntactic configurations and permitting the same syntactic operations.

The formal definition applies to a pair o f systems A and B , each consist
ing of a set o f elements on which are defined one or' more operations and/or'

204 C h a p t e r 8

one or more relations, (Such systems will be studied in more detail in Part
C, where we will look at them as algebras and see many more examples of
isom orphism s)

D e f in i t io n 8.9 An isomorphism between two such system s is a one-one cor
respondence between their elements and a one-one correspondence between
their operations and relations which satisfies the following conditions:

1 . I f a relation R holds between two elements o f A , the corresponding
relation R1 holds between the corresponding elem ents o f B ; i f R does
not hold between two elements o f A , R' does not hold between the
corresponding elements o f B

2 W henever corresponding operations are perform ed on corresponding
elements, the results are corresponding elements.

m

If there exists an isomorphism between two systems A and B , the systems
are said to be isomorphic. Note that for two systems not to be isomorphic,
it must be the case that there is no isomorphism between them, not simply
that some particular one-one correspondence f ails to be an isomorphism.

(8 -39) Examples:
(1) The set 1,2,3,4,5 with the relation “ greater than” (>) can be
shown to be isomorphic to the set -1,-2,-3,-4,-5 with the relation
“less than” (<) by letting each number in the first set correspond
to its negative in the second set, since for any two positive integers
n and re', if re > n ', then —re < — n '.
(2) The set A = {0 , 1} with the operation o f “ absolute value of
difference” defined in the first table below is not isomorphic to the
set B = {0 , 1} with the operation o f ordinary multiplication, shown
in the second chart.

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 205

1J
i

y
0 1

0 0 1
1 1 0

y
z y 0 1

0 0 0
1 0 1

Neither o f the two possible one-one correspondences between the two sets
can give an isomorphism, since (1) in set A , the result o f the operation on
two o f the pairs o f elements is one element and on the other two pairs is the
other element, while in set B , one element is the result in three cases and the
other in only one; and (2) in set B , the result o f operating on one element
and itself (0 ■ 0 and 1 1) is always that same element, while in set A this is
not the case. Either o f these reasons alone is actually sufficient to show that
no one-one correspondence can be set up so that the operations performed
on corresponding elements would yield corresponding elements as results.

Isomorphism plays an important role in m odel theory. If we ask how
many different models there are for a given axiomatic theory, we generally
mean different in the sense o f non-isomorphic with respect to relevant struc
ture; isomorphic models are alike in relevant structure. In the next section,
we will see a m odel-theoretic application o f the notion of isomorphism.

Note that the relation o f isomorphism is an equivalence relation in the
sense o f section 3.4.

8.5 .4 A n elementary formal system

The following system is described in Hao W ang’s Survey o f Mathematical
Logic, pp, 14-18. The system, called L, consists o f a set S and a single
two-place predicate (binary relation) R defined on S The axioms of L are
as follows:

A l: (z) (z = l V z = 2 V z = 3) & 1 ^ 2 & 1 ^ 3 & 2 ^ 3 ; i.e., S contains
only the three distinct elements 1, 2, and 3.

A2: (z) ~ R x x ; i.e., R is irreflexive.

206 C h a p t e r 8

A3: (x) (y) (z) ((Rxy & Rxz) D y = z); i e , R is not one-many

A4: (x) (y) (z) ((R.yx & Rzx) D y = z\ i e., R is not many-one. (i.e., A3 and
A4 together require R to be one-one.)

A5: (z) (3 y)R xy , i.e , every element o f S bears R to at least one element

A6: i£12; 1 bears R to 2.

A m odel for L must therefore meet the following conditions:

(a) There must be specified:

(1) a non-empty set D of objects
(2) a rule which associates each element o f S with an element o f D,
(3) a binary relation R* defined on the set D

(b) The axioms A1-A6 must be true when interpreted according to (l)-(3)
above.

It is quite easy to find a model for L. Let the set D consist o f three
persons, Chang, Li, and Yang, sitting around a round table with Chang
immediately to the right o f Li, associating them with 1, 2, and 3 respectively.
Let R* be the relation “ sits immediately to the right o f” . It can be checked
that all the axioms become true statements in this system.

In fact, if we take an arbitrary set D with three objects 1*,2*, 3* which
represent 1, 2, 3 respectively, and choose a relation R* which holds between
the pairs (l* ,2 *), (2*,3*), (3*,1*) and does not hold between any other pairs,
we will have a model for L Furthermore, it can be shown that every model
for L must have exactly this form. That is, any two models o f L must be
isomorphic. I f all the models o f a given formal system are isomorphic, the
system is called categorical1.

Once we assume A l, it is easy to find other axioms which yield a cate
gorical system. For example, the following axiom can replace all o f A2-A6:

1The term “ categorical” should not be confused with “categorial” . The former is a term
of long standing, particularly in logic; the latter is a recent coinage applied to a special
type of phrase-structuie grammar studied by Cuny, Lambek, and others, and perhaps can
also be used as an adjective corresponding to “ category” , although that is the etymology
of the former.

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 207

A2*: R is true o f the pairs (1,2), (2,3), and (1,3) and false o f the remaining
pairs formed from 1, 2, and 3.

The axioms A I and A2* determine the same interpretations as A1-A6.
Other categorical systems can be constructed analogously.

If in the specification o f L we had not given specific names to any o f the
elements o f S, we could not state A I and A6. The effect o f A l could still be
gotten from the axiom A l':

A l ': There exist only thiee distinct things:
(3z)(3y)(32)(z / y k y / 2 &z / (w) (w = z V w = y V w = z))„

But nothing resembling A6 could be expressed in the new system. How
ever, the system determined by A l ' and A2-A5 is also categorical since as
soon as one pair o f elements is specified as having the relation R, the rest
o f the structure is determined by the axioms, and all the models must be
isomorphic.

Since the axioms of L specify uniquely (up to isomorphism) the set S and
the relaion R, every expressible statement about R and S is either provable
or disprovable from A1-A6. Hence L is formally com plete, It can be shown,
in fact, that every categorical system is formally complete.

If we were to omit certain of the axioms A1-A6, the resulting system
would not be complete or categorical. If, for example, we were to omit
the axiom A5, then a possible m odel for the resulting system could be con
structed by letting Chang, Li, and Yang sit on the same side o f a rectangular
table with Chang at the far right and Li in the middle, associating them
with 1, 2, and 3 as before and keeping R* as “ sits immediately to the right
o f” . This model is not isomorphic to the original one; the new system is not
complete, since i£23 and i£31 are neither provable nor disprovable in it.

8.5.5 A xiom s for ordering relations

Various kinds o f orderings were defined in Chapter 3 in terms o f such prop
erties o f relations as transitivity, antisymmetry, etc. These definitions can
be very easily formalized as axiomatic systems, with each relevant property
specified by an axiom. W hat we gave as “examples” o f the different kinds of
orderings in 3,5 we can now redescribe as models o f the corresponding axiom
systems.

2 0 8 C h a p t e r 8

Any ordering relation is a binary relation R on a set S. We assume as part
o f the “background theory” ordinary set theory, including the representation
o f binary relations on S as sets o f ordered pairs o f members o f S, and we
specify the particular axioms that must be satisfied by particular kinds o f
orderings

D e f in it io n 8 10 is a w eak p a rt ia l o rd er on S iff:

1 . Transitivity: \/x\/y\/z((x £ S h y 6 S & 2 £ S) —> ((R x y h R y z) —»
Rxz))

2. Reflexivity: Vx{x £ S —* Rxx)

3. Antisymmetry: \/x\/y((x £ S & y £ S) —* { { Rxy & Ryx) —* x = y))

■

Alternatively, we need not explicitly assume set theory or use the lan
guage of set membership, but can simply take the domain S as the universe
over which the quantified variables in the axioms range. In that case, the
previous definition would be recast as follows:

D e f in it io n 8.11 R is a w eak p a rt ia l ord er on S iff:

1, Transitivity: \/x\Jy\Jz((Rxy & Ryz) —* R x z)

2, Reflexivity: Vx(Rxx)

3, A n tis y m m e try : \Jx\/y((Rxy & Ryx) —* x = y)

m

One will also encounter axiomatizations in which the wide-scope universal
quantifiers are omitted and open formulas are understood as universally
quantified, We will not take that further step here; but it is worth noting that
the prevalence o f “pure universal” axioms like those above is not simply an
accident. The study o f m odel theory has shown that pure universal theories,
all o f whose axioms are pure universal ones like those above, have a number
o f nice relations to their models.

In Chapter 3 it was noted that generally each weak ordering, obeying the
axioms o f reflexivity and antisymmetry, could be paired with a corresponding
strong ordering, with those axioms replaced by irreflexivity and asymmetry.

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 209

D e f i n i t i o n 8.12 R is a strict partial order on S iff:

1, Transitivity.: VzVyVz ((Rx y & Ryz) —» Rxz)

2. Irrefiexivity; Va:(~ Rxx)

3 Asymmetry: Mx^ylRxy — .ftya;)

The relations i£i, i?2, and i ?3 diagrammed in Section 3.5 are all models of
the axioms for weak partial orders, and S\, S2, and S3 are models of the
axioms for strict partial orders. Another m odel o f weak partial orders is the
subset relation on any collection o f sets; the ‘proper subset’ relation provides
the corresponding strict order.

W hat about the relations ‘is at least as old as’ and ‘is older than’ on
H, the set o f humans, assuming there do exist various pairs o f people who
are the same age? Intuitively, one might suppose that ‘is at least as old as’
would be a weak partial order on humans, much as ‘is a subset o f ’ provides
a weak partial order on a set o f sets. But while ‘is at least as old as’ on the
set o f humans does satisfy the axioms of transitivity and refiexivity, it fails
antisymmetry. For let a and b be two individuals of the same age: then Rab
and Rba, but a ^ b.

Note carefully the role o f identity here: a ^ b because a and b are two dis
tinct members of the set H ; being the same age makes them equivalent with
respect to the relation R (and ‘is the same age as’ is an equivalence relation),
but it doesn’t make them equal in the sense required by the antisymmetry
condition

A relation like ‘is at least as old as’ which satisfi.es transitivity and re
fiexivity but possibly fails antisymmetry is called a preorder or sometimes a
quasi-order', we could axiomatize it by writing down just the first two o f the
three axioms for a weak partial order. Where there’s a preorder on S there is
always the possibility o f defining an order on a suitable partitioning o f S In
this example, for instance, intuitively we want to count people o f the same
age as identical or indistinguishable; the formal technique for achieving that
is to define the ordering not directly on the set o f all people but on the set
o f equivalence clases formed under the relation ‘is the same age as’ , in which
all the people o f a given age will be grouped together in a single equivalence
class. In fact, when we step back and look at these equivalence classes, we

2 1 0 C h a p t e r 8

can see that one might even consider analyzing our ta li o f ordering people
by their ages in terms of ordering people’s ages.

W hat about ‘is older than’ ? Does that similarly fail to be a strict partial
order on the given set o f humans? Actually, no; it does satisfy all three
axioms o f Transitivity, Irreflexivity, and Asymmetry But unlike the corre-
sponding order on ages, or the apparently similar relation ‘is greater than’
on the numbers, it is not a linear order, since it is not connected;2 see the
following definitions.

Note: in examples such as those we have just been discussing, it is not
so important to try to learn to remember the names and definitions o f par
ticular kinds o f orderings or which examples satisfy which axioms; you can
always look up the technical details in this or other books when you need
them, and details o f terminology are not all uniform among different research
communities anyway The important thing to focus on in this chapter are the
illustrations o f how changes in the axioms relate to changes in the models,
and how the interesting properties o f a formal system can be explored from
both syntactic and semantic perspectives, often most fruitfully by looking
at both together

Linear orderings, both weak and strict, were defined and illustrated in
Section 3.5. I f we recast them axiomatically, they come out as follows

D e f in i t io n 8.13 R is a weak linear (or total) order on S iff:

1. Transitivity: \fx\fy\fz((Rxy & Ryz) —» Rxz)

2. Reflexivity: Vx(Rxx)

3. Antisym m etry; VxVy((Rxy & Ry x) —» x = y)

4. Connectedness: \/x\/y(x / y —* (R x y V Ryx))

m

Given that the first three axioms above constitute the definition of a
weak partial order on S, we can abbreviate the definition above as follows.

zThe relation ‘is at least as old as’ is connected, but neither asymmetric nor antisym
metric, It is an example of what Suppes (1957) defines as a weak ordering, a relation
which is transitive, refiexive, and connected, i.e a connected preorder. This is not a kind
of ordering that is standardly singled out; but one is free to define and name whatever
kinds of formal systems one thinks will prove useful for one’s purposes.

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 211

D e f i n i t i o n 8 14 R is a weak linear (or total) order on S iff;

1 , R is a weak partial order on S

2. Connectedness: 'ix\/y(x ^ y —>(Rxy V Ryx))

■
We give the definition o f strict linear order in analogous fashion.

D e f i n i t i o n 8,15 R is a strict Unear (or total) order on 5 iff:

1 , R is a strict partial order on S

2. Connectedness: 'ix 'iy (x ^ y —>(Rxy V Ryx))

m

Am ong the models for these axioms systems, the relations R3 and 63
given in Section 3 ,5 are models o f weak and strict Unear orderings respec
tively.

The reader may have noticed a certain degree o f systematicity in the
relation between the names chosen for various kinds o f ordering relations
and the selection o f axioms used in their definitions, Such systematicity
is most prevalent (and most desirable) in contexts where the emphasis is
on contrasts among closely related axiomatic systems, as is the case here.
Shorter names are often used when differences among similar systems are not
at issue; so, for instance, an author may omit the adjectives weak and strict
and talk simply of partial and total orderings if all her orderings are weak
or if all o f them are strict; definitions usually accompany initial uses of such
terms when there could be any doubt. In the case o f orderings, watch out
for the use o f the adjective strong, which is used as an antonym sometimes
of weak and sometimes o f partial The lack of perfect standardization in
nomenclature is a perfectly reasonable side effect o f the useful versatiUty of
axiomatic definitions; be prepared when in doubt to check a given author’s
definitions,

The definition o f well-ordering was also given in Section 3 .5: a set S is
well-ordered by a relation R i f R is a total order and, further, every subset
of S has a least element in the ordering relation. I f we try to write down
this further condition as an additional axiom to add to the axioms for total
orderings, we come across an important difference between it and all the

212 C h a p t e r 8

other axioms we have introduced in this section: it cannot be expressed in
fixst-order predicate logic

If we give ourselves the full expressive power o f set theory, including the
possibility o f quantifying over sets, we can write down the axioms for well-
ordering in the same form we used for the first version above o f the definition
o f weak partial orderings.

D e f in it io n 8 16 A relation R is a well-ordering o f a set S iff:

2, R is a total ordering on S .

2, E very subset o f S has a least elem ent with respect to the order R;
V 5 '((5 ' C S) -> 3 x(x G S 'k V y ({y e S '& x ± y) -> R x y)))

■

But we cannot omit the set theory talk this time as we could before. We
can recast it so that we are quantifying over one-place predicates instead
o f over sets, which we do in Section 8.6.7 where we discuss higher-order
logics. But what we cannot do is express the second axiom just with ordinary
individual variables ranging over the members o f the domain S

The well-ordering axiom, axiom 2 above, turns out to be quite powerful
and subtle. I f logicians could have found a way to replace it with a first-order
axiom having the same effect, they surely would have. W hat has been proved
is that the well-ordering axiom is equivalent to each o f several other non-first-
order axioms, including Peano’s fifth axiom, the induction axiom, which has
already been introduced and to which we will return in Section 8 5 .7, The
relations among these higher-order axioms are discussed in Section 8.6.7.
Properties which like transitivity and reflexivity can be expressed by first-
order axioms are called first-order properties, but the modifier is used only
when the contrast with higher-order properties is relevant

Ordering relations and their axiomatic characterizations provide a rich
round for exploring the syntactic and the semantic side o f formal systems
and their interrelations. Once one sees that each property like reflexivity or
antisymmetry can be characterized by an axiom, the possible combinations
to be explored become endless. Can an ordering be both asymmetric and
antisymmetric? Does the answer to that question vary with the other axioms
in the given system? Are there axioms that will force the set ordered to be
infinite? To be finite? Are there informally describable kinds o f orderings

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 213

that cannot be characterized by a finite set o f axioms? Is that last question
well-defined, and if it is not precise, can it still be fruitful?

The rich realm o f axiomatizations o f ordering relations also leads one to
wonder whether there is some single most general characterization o f order
ings such that all the well-known kinds o f orderings are gotten by adding
various axioms to some common core o f shared axioms. Different authors
have different degrees o f tolerance on this question; the natural desire for a
most general notion o f ordering is in conflict with the fact that the standard
kinds o f ordering relations are required to be, besides transitive, either re
flexive and antisymmetric or irrefiexive and asymmetric and there seems to
be no non-ugly way to say just that. Suppes (1957), noting that transitivity
is the one property they all share, makes transitive relations the most general
case in a diagram displaying the inclusion relation among several different
kinds o f ordering relations (an ordering of ordering relations.) Most authors
decline to attempt a single most general definition of ordering relations. A
wealth o f syntactic and semantic arguments establishing various properties
of orderings can be found in Suppes (1960)

S.5.6 A xiom s for string concatenation

]n this section we will axiomatize a very simple structure, the structure of
string concatenation, A string concatenation system consists o f a set A
of strings of symbols from some alphabet together with the operation o f
concatenation, which is an operation that applies to two strings and consists
simply o f writing the second down after the first so as to combine them into
a single longer string. In order for the system to be well-defined, the set A o f
strings must be closed under the concatenation operation; that is, the result
of concatenating any two strings in A must itself be in A

There are two formally different kinds o f string concatenation systems,
differing in whether they include an empty string among the strings o f the
system or not We can show how that difference corresponds to a difference
of one axiom in otherwise identical axiom systems.

For concatenation systems without an empty string, we can axiomatize
them as shown below; structures with a binary operation satisfying these
axioms are called semigroups

D e f in it io n 8.17 A system consisting o f a set A and a binary operation ^
on A is a semigroup iff:

214 C h a p t e r 8

1. A is closed under ,: \fx\fy((x £ A Szy 6 A) —> x ^ y 6 A)

2. The operation ^ is associative: V x V y V z ((x ^ y)^ z = x ^ (y ^ z))

m

To write these axioms in pure predicate logic form, we would need
to eliminate the operator notation ux /~'yn. (Similar conversions must be
made in going from the function-oriented programming language LISP to
the predicate-logic-based language PR O LO G .) We can do that by using the
notation C x y z with the intended interpretation “ x ^ y = z ” . That would
also force us to stipulate more carefully the existence and uniqueness re
quirements implicit in the operator notation. The revised first axiom would
read as follows:

D e f in i t io n 8 ,18 . . .

1. A is closed under C : \/x\/y3z(Cxyz & \/w(Cxyw —* w = z))

2.......

■

A xiom 2 o f our earlier definition would also have to be revised, o f course,
but it merely becomes more complicated and harder to read, so we refrain
from carrying out the revision.

An example o f a concatenation system o f this kind, i.e. a model o f the
above axioms where the set A is indeed a set o f strings and the operation
^ is interpreted as concatenation, is the set of all strings o f o ’s, 6’s, and c’s
whose total length is even: A = {oa , ab, ac, 6o, 66,. . , , abaa, abab, abac, „ .,
cbccab,....}„ The set A is closed under concatenation and the concatenation
operation is associative.

The set A 1 which is just like A above except that all the strings in A'
have odd length, together with the operation of concatenation, would not
form a m odel of the axioms, because it does not satisfy A xiom 1, (W hy
not?)

Turning now to systems that include the empty string, the first question
is what that means. The empty string, like the number zero or the empty
set, has more formal than intuitive motivation. It has length zero; it is a

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 215

substring o f every string; and it has the property that when concatenated
with any string it yields that string itself. This last is its defining property
in the axiomatic characterization o f concatenation systems with the empty
string: letting e designate the empty string, x e = x, and e ^ x = x, for
any string x. The em pty string therefore satisfies the definition o f being
an identity elem ent with respect to concatenation, just as 0 is an identity
element for addition, 1 is for multiplication, and the empty set is for set
union

A concatenation system with empty string therefore satisfies both o f the
earlier axioms plus an axiom specifying the existence o f an identity element;
structures that satisfy these axioms are called monoids, A monoid is there
fore characterizable in gener al as a semigroup with an identity element

D e f in it io n 8.19 A system consisting o f a set A and a binary operation ^
on A is a m onoid iff:

1 A is closed under \/x\/y((x £ A & y £ A) —» x ^ y £ A)

2. The operation ^ is associative: 'ix\/y'iz{{x'~'y)'~'z = x '^ (y '^ z))

3. A contains an identity elem ent e: 3 e V x (x ^ e = e ^ x = x)

m

B oth monoids and semigroups are examples o f kinds o f algebras. We
will return to them in Chapter 10 in the context o f group theory and other
related algebras, Some parts of the study o f algebras relate closely to the
study o f m odel theory, since algebras are usually characterizable with a small
set o f simple axioms whose models can be shown to share rich and significant
structural properties. (Am ong the algebras to be studied in Chapters 9-12,
lattices, Boolean algebras, and Heyting algebras have played a particularly
important role in m odel theoretic investigations.)

8.5 .7 M odels for Peano’s axioms

Peano’s axioms, repeated below, were introduced in section 8.4, where we
showed their connection to the important concept o f p roo f by mathematical
induction. In this section we return to them from a semantic perspective, to
consider some of their models in addition to the intended model, the natural

216 C h a p t e r 8

numbers. In Section 8,6.7 below we will discuss the relation o f Peano’s
famous fifth axiom to the well-ordering axiom mentioned in 8 5.5 The first
four axioms are first-order; the fifth is not

(8 -40) P ean o ’s axioms. There are two primitive predicates, N and S.
(The intended interpretation o f N is ‘is a natural num ber’ and that
o f S is ‘is the (immediate) successor o f ’ ,) There is one primitive
constant, 0, whose intended interpretation is the natural number
zero.

P I) NO

P2) \/x(Nx —* 3 y (N y & S yxh\/z(S zx —> 2 = y)))

P3) ~ 3 x (N x & SQx)

P4) \fx\fy\fzVw((Nx & N y & Szx & Sw y & z = w) —» x = y)

P5) I f Q is a property such that

(a) (30

(b) V xV y((N x k Q x S z N y & S yx) —» Q y),

then V x(N x —» Q x)

Peano, like Euclid, conceived o f the primitive terms o f the system as al
ready having known meaning, and o f the axioms as the smallest set o f true
statements about the natural number series from which its other properties
could be derived. But if we look at the system in the purely formal way
described above, we find that other meanings can be given to the primi
tives, and each o f these interpretations would impart another meaning to
derived statements about the natural numbers, Russell gives some instruc
tive examples:3

(1) Let ‘ 0 ’ stand for 100 and let ‘natur al number’ be taken to mean the
integers from 100 onward. All the axioms are satisfied, even the third; for
although 100 is ordinarily the successor of 99, 99 is not a ‘natural number’
in this interpretation

(2) Let ‘0 ’ be 0 but let ‘natural number’ be interpreted as ‘even number’

3This is paxt of an interesting discussion in Waismann, Chapter 9. See also his Chapter

T h e s e m a n t i c s i d e o f f o r m a l s y s t e m s : m o d e l t h e o r y 217

and let the ‘successor’ o f a number be that number obtained by adding 2 to
it. The number series will now read

0 ,2 ,4 , 6, S, ,

and again all five of Peano’ s axioms are satisfied

(3) Let ‘ 0 ’ be 1, let ‘natural num ber’ be any number of the sequence

1 ,1 /2 ,1 /4 ,1 /8 ,1 /1 6 , ,

and let ‘successor o f ’ mean ‘half o f ’ . All five axioms also hold on this inter
pretation,

By contrast, we might consider some interpretations o f N and S which
do not satisfy all five Peano axioms,

(4) Let ‘0 ’ stand for 0, ‘ successor’ for successor, and let ‘natural num ber’
be interpreted as ‘natural number less than or equal to 100’ , Then axioms
P I, P3, P4, and P5 hold, but P2 does not, because 100 does not have a
successor in this interpretation. Similarly, no finite set can satisfy all o f the
Peano axioms.

(5) Let ‘ 0 ’ stand for 0, let the ‘successor’ o f any number be the number
gotten by adding 1 to it (as in the standard interpretation), but let the
‘natural numbers’ be 0, 0.5, 1, 1 5, 2, 2,5, 3, 3,5, . . Axioms P I, P2, P3, and
P4 hold; for instance, the unique successor o f 1.5 is 2.5, and o f 1 is 2; the
unique predecessor o f 7 5 is 6.5, and o f 8 is 7. No fractional number is the
successor o f any whole number, and vice versa. The only axiom violated by
this interpretation is P5, the induction principle A property Q could satisfy
(i) and (ii) o f P5 and still fail to hold o f all the ‘natural numbers’ by failing
to hold for 0 5, 1.5, 2 5, . , which will be missed by the “ domino attack”
of (i) and (ii).

8.5.8 Axiom atization of set theory

The primitives o f set-theory are o f course the notions ‘ set’ and ‘m em ber’ .
What are the axioms o f set-theory, the assumptions from which we may
derive all we know about sets and their members? There are a number of
different axiomatizations, characterizing distinct set-theories, but the best
known one, which we give here, is known as the Zermelo-Frankel axiomati
zation (abbreviated ZF), This axiomatization appears to be quite successful

218 C h a p t e r 8

in that its axioms are very intuitive, simple truths about sets, and no contra
dictions can be derived from them. One axiom, the axiom of extensionality,
says that a set is uniquely determined by its members The other axioms
either state that a certain set exists or that a certain set can be constructed
by application o f an operation. These axioms provide the foundation from
which we may derive theorems about sets or set-theoretic concepts and, for
instance, prove the exact relationships between properties o f relations, and
properties o f their inverses or complements. Notationally we do not distin
guish between sets and members, as we did with upper and lower case letters
in the previous chapters, i.e , w ,x , y , z are arbitrary set-theoretic objects, but
anything enclosed in braces is a set The membership relation holds between
a member and the set it is a member of, but x £ x is not excluded

(8-41) The Zermelo-Frankel Axioms of Set Theory
Axiom 1. Extensionality I f x and y have the same elements,
x - y
Axiom 2. Regularity For every non-em pty set x there is y 6 x
such that x fl y = 0.
Axiom 3. Empty set There is a set with no members
Axiom 4. Pairing I f x and y are sets, then there is a set z such
that for all w, w £ z if and only if w = x or w = y ,
Axiom 5. Union For every x there is a y such that z £ y if and
only if there is a w £ x with z £ w.
Axiom 6. Power set For every x there is a y such that for all z,
z £ y if and only if z C x .
Axiom 7. Infinity There is a set x such that 0 £ x and whenever
y £ x, then y U { y } £ x.
Axiom 8. Replacement I f P is a functional property and x is a
set, then the range o f P restricted to x is a set; i.e., there is a set
y such that for every z, z £ y if and only if there is a w £ x such
that P {w) — z.

The axiom o f Regularity says that, if we are collecting objects into sets,
we may stop at any stage and what we have then collected is a set. It
is perhaps not really ‘self-evident’ that this is true, but at least it can be
proven to be consistent with all the other axioms, and it is a very power
ful axiom in constructing simple and direct proofs of other theorems. The
Empty-set axiom implies together with Extensionality that there is exactly
one empty set. Pairing guarantees that for every x and y the set { x , y }

A x i o m a t i z i n g l o g i c 219

exists Union and Power-set assert existence o f these sets formed from arbi
trary x. Infinity proves to be essential in representing the natural numbers
as sets, Replacement is the one axiom that Frankel added to Zermelo’s ax
iomatization, instead o f his axiom of Separation, which says that a definable
subset o f a set is also a set, i.e., if x is a set and P is a property then there
is a subset y o f x which contains just the elements o f x which have prop
erty P Separation follows from Replacement, but Replacement does not
follow from Separation. There are also statements which cannot be proved
from the axioms 1-7 with Separation, but which are provable from 1-7 with
Replacement,

These axioms are sufficient as foundations o f mathematics, and note that
the only primitive relation is membership Yet there are statements which
cannot be proved or disproved from this axiomatization. One in particular'
is often assumed as an additional axiom: the Axiom of Choice. Let A be a
set o f non-em pty sets, A choice-function for A is a function F with domain
A and F { X) £ X for each X £ A. The function F “ chooses” an element in
each X £ A, namely F (X)

(8-42) A x io m o f C h o ic e Every set o f non-empty sets has a choicefunc-
tion.

This axiom is often used in set theory, and has a variety of guises. It is
not provable from axioms 1-8 as Paul Cohen proved in 1963; it is consistent
with them, and no contradiction is derivable from it with 1-8, which Godel
proved in 1938. Yet its acceptance is not universal, and there are theorems
which admit o f simpler proofs with it but which also have more complicated
proofs without using the Axiom of Choice, The results o f Godel and Cohen
are milestones in the foundations o f mathematics, producing innovative and
fruitful proof techniques with wide new applications. For our present pur
poses it suffices to know that the A xiom of Choice is not universally accepted
and granted equal status with the other axioms o f set theory, although in
the sequel we will im plicitly rely on it as an additional axiom, (Axioms 1-8
+ the A xiom o f Choice are abbreviated to ZFC „)

8.6 Axiomatizing logic

8.6.1 A n axiom atization of statem ent logic

There are a number o f axiomatizations o f the system of statement logic we
introduced in Chapter 6 that equally meet the criteria o f completeness and

220 C h a p t e r 8

independence. We present here the axiomatization o f Hilbert and Acker-
mann, which was obtained by deleting one non-independent axiom from the
system of Whitehead and Russell’s Principia Mathematica (1913).

Remember that we use p s q, r, . , as variables for atomic statements and
P ,Q , R , . . as variables for statements o f arbitrary com plexity Only two
connectives are taken as primitives, namely ~ and V. The other connectives
are introduced by the following definitions:

P —* Q is an abbreviation for ~ P V Q

P & Q is an abbreviation for ~ (~ PV ~ Q)

P *-+ Q is an abbreviation for (P —* Q) & (Q —* P)
i.e , for ~ (~ (~ P V Q)V ~ (~ Q V P))

Whenever the three defined connectives occur below, they are to be in
terpreted as abbreviations for the equivalent expressions with just negations
and disjunctions

(1) Axioms

(a) (p V p) -* p
(b) p - » (p V q)
(c) (p V q) - » (q V p)

(d) (p - » q) - » ((r V p) - » (r V q))

(2) Rules of Infer ence

(a) Rule of Substitution: For a statement variable in any statement Q
we may substitute a statement P , provided that P is substituted
for every occurrence o f that statement variable in Q .

(b) Modus Ponens: From P and P —» Q infer Q.

Bear in mind the following important distinction between proofs in this
formal system and proofs within statement logic. In the latter, any tautology
could be used to obtain a conclusion from given premises; in the formal
system, the tautologies are what we are trying to prove from the four axioms.
So we cannot use a tautology in the proof o f a theorem unless it is one of
the axioms or has been proved earlier to be a theorem.

A x i o m a t i z i n g l o g i c 221

Not only is it possible to derive theorems in this system, but we can also
derive new rules o f inference which make the derivations o f other theorems
more convenient. Derived rules o f inference are simply coded shortcuts in
proofs Foi instance, the first derived iule below says that if P V P is a
theorem, then P is a theorem. The proof of the derived rule consists simply
in showing how, whenever a theorem o f the form P V P has been established,
axioim (a) and the Rule of Substitution can be used to derive a theorem of
the form P. Having shown that, we are free in the future to skip straight
from P V P to P , justifying the step by the derived rule Since rules of
inference are all o f the form ‘If , , is a theorem, then is a theorem,”
the method o f establishing rules o f inference is closely related to the rule of
conditional proof (see Chapter 6),

(8 -43) Derived rule I: I f P V P is a theorem, then P is a theorem
Proof:

1 P V P Premise
2, (p V p) —* p A xiom (a)
3 (i >V P) -) P 2, Substitution
4, P 1, 3, Modus Ponens

Derived rule II: I f P is a theorem, and Q any statement, then P V Q
is a theorem.
Proof:

1, P Premise
2, p —* (p V q) A xiom (b)
3 , P —* (P V Q) 2, Substitution
4, (P V Q) 1, 3, Modus Ponens

Derived rule III: If P V Q is a theorem, then Q V P is a theorem.

Derived rule IV: If P —* Q is a theorem and R is any statement,
then (.ft V P) —* (iZ V Q) is a theorem,

The proofs o f derived rules III and IV are similar to the proofs for I and
II (c f axioms (c) and (d)).

Two theorems are proved below to illustrate the general method o f proofs
within axiomatic systems. Each theorem may be used along with the axioms
and original and derived rules o f inference in proving successive theorems

222 C h a p t e r 8

(8 -44) Theorem 1 (p —» g) —> ((r -) p) -) (r - » g))
Proof:

1. (p —i> q) —» ((r V p) —» (r V g)) Axiom (d)
2 (p - » g) - » ((V p) —> (~ f V g)) 1, Subst. ~ r/r
3 (p - » g) - » ((r - » p) - » (r - » g)) 2, Def. - »

The substitution in line 2 perhaps deserves mention. The Rule o f Sub
stitution allows anj' complex statement to replace any atomic statement as
long as the substitution is made uniformly throughout the entire formula.
The atomic statement replaced is r of line 1, It is o f no significance that the
same symbol occurs again in the replacing statement ~ r. We could as well
have taken ~ s , and then the resulting theorem would have had s instead of
r

(8 -45) Derived rule V : If (P —» Q) and (Q —* R) are theorems , then
(P —* R) is also a theorem,
Proof:

1, (P - Q) Premise
2, (Q - R) Premise
3, (p - » g) - » {{r -* p) -+ {r g)) Theorem 1
4 {Q R) ((P -* Q) - * (P -* R)) 3, Subst
5, (P Q) (P R) 2, 4, M.P.
6 (P -* R) 1, 5, M.P.

In general, there will be a derived rule o f inference obtainable from any
theorem which has the form o f an implication,

(8 -46) Theorem 2, ~ p V p
Proof:

1 p —► (p V g) A xiom (b)
2 , p —> (p V p) 1, Subst.
3„ (p V p) —* p A xiom (a)
4 p - » p 2, 3, D„R V.
5 ~ p V p def, —>

8 .6 .2 Consistency and independence proofs

A bove we noted that consistency can be proven most easily by specifying a
model, and independence by showing semantically what effect dropping the

A x i o m a t i z i n g l o g i c 223

axiom tested for independence has on the set o f models of the entire system
The proofs given here o f the consistency and independence o f the Hilbert
and Ackermann axiomatization o f statement logic illustrate the possibility
o f giving syntactic proofs o f consistency and independence. The difficulty of
finding semantic arguments for the special case o f axiomatizing logic itself
stems from the difficulty of giving a non-trivial model A model is anything
o f which the axioms are true when primitive terms are translated in some
specified way; but the axioms in this case are tautologies, hence “ true o f”
anything

(i) Consistency

Hilbert and Ackermann’s consistency p roo f is a proof that there is no
way to derive within the system both a statement and its negation. It is a
syntactic argument since it involves only the formal pr operties o f the axioms
and rules o f inference Superficially it looks semantic in that it appears to be
introducing a model, but this “ quasi-model,” it must be emphasized, is not
something o f which the axioms are “ true” . It simply serves to isolate certain
formal characteristics o f the axioms and rules o f inference

In this “ quasi-model” the statement symbols p ,q ,r , , are not variables
for statements, but for the numbers 0 and 1, Disjunction is taken to represent
multipli cation:

0 V 0 = 0 1 V 0 = 0
0 V 1 = 0 1 V 1 = 1

Negation is defined as follows:
~ 0 = 1 ~ 1 = 0

Since the other connectives are defined in terms o f these, they are defined
now similarly by these numerical equations

It can be shown now that given this numerical encoding, (1) the axioms
all have the value 0 for all values o f statement symbols occur ing within
them, and (2) starting from statements which have the value 0 for all values
o f their components and applying the rules o f inference can only lead to
other statements which have 0 as value for all values o f their components.
It follows that no formula can ever be derived which has value 1. But from
the definition o f negation, it is clear that if P is 0 then ~ P is 1. Hence,
since we can never derive a statement with value 1, we cannot derive both
a statement and its negation in the statement logic axiomatization. The
system is therefore consistent

To show that axiom (c), for example, has value 0 for all values o f its

224 C h a p t e r 8

components, we let p and q each take on the values 0 and 1 and examine
each case.

A xiom (c): (p V q)~*{q V p); i e , (~ (p V q)) V (q V p)
p = 0, q = 0 : (~ (0 V 0)) V (0 V 0) = ~ 0 V 0 = (1 V 0) = 0
p = 0, q = 1 : (~ (0 V 1)) V (1 V 0) = ~ 0 V 0 = (1 V 0) = 0
p = l ,q = 0 : (~ (1 V 0)) V (0 V 1) = ~ 0 V 0 = (1 V 0) = 0
p = 1, q = 1 ; (~ (1 V 1)) V (1 V 1) = ~ 1 V 1 = (0 V 1) = 0

The other axioms can be handled similarly.
To show that the rules of inference permit only statements whose value

is always 0 to be derived from statements whose value is always 0, we can
proceed as follows:

Rule o f Substitution: A statement p whose value may be 0 oi 1 is substi
tuted for some variable whose value can be 0 or 1; if the formula into which
p is substituted has the value 0 for either value o f the variable p, it will still
have the value 0 for either value o f p,

Rule o f Implication: Assume that P —>Q and P have the value 0 for all
values of theii components, P —>Q is an abbreviation for ~ P V Q Since P
has value 0, ~ P V Q has value ~ 0V (value o f Q), i e ,, 1 V (value o f Q). But
for 1 V (value o f Q) to equal 0, as given, the value of Q must be 0 Hence if
P and P~*Q have value 0 for all values o f their components, so does Q

(ii) Independence
The question o f independence o f the given set o f axioms has been solved

by Hilbert and Ackeimann and independtnly by Paul Bernays, who first
showed that the fifth axiom included by Whitehead and Russell was not
independent, Hilbert and Ackermann provide a syntactic p roof o f indepen
dence for each axiom, again using quasi-arithmetical models; one example is
included here:
Independence o f Axiom (b): p—*(pV q); i e , ~ p V (p V g)

Let 0 V 0 = 0 V 1 = 0 V 2 = 0 V 3 = 0
1 V 1 = 1 V 2 = 1 V 3 = 1
2 V 2 = 2 V 3 = 2
3 V 3 = 3

and let V be commutative (Thus p V q is always the minimum o f p and q.)

A x i o m a t i z i n g l o g i c 225

It can be shown that axioms (a), (c), and (d) always have the value 0 or
2, It can also be shown that from formulas with value 0 or 2, the rules of
inference allow derivation only of othei formulas with values 0 or 2.

But if we let p = 2 and q = 1, axiom (b) has the value 1. Therefore
axiom (b) cannot be derived from the other three; it is independent.

In each proof o f independence o f an axiom, a different interpretation of
the whole system is required, since in each case we must find a property
which is posssessed by all but one of the axioms and which is passed on by
the rules o f inference

8.6 .3 A n axiom atization of predicate logic

First-order predicate logic has a particularly pleasant property: it allows
for axiomatizations that are complete and sound Completeness means here
that all valid formulas (i.e formulas that are true in all interpretations) are
derivable from the axioms using the rules of inference. Soundness of axioma
tization is the inverse property: all derivable formulas, i e all theorems, are
valid, Together these two properties mean that all and only valid formulas
are derivable from the axioms.

There are a number o f axiomatizations o f first-order predicate logic that
are complete and sound. The following one is particularly simple in its
formulation as it uses only two connectives and two rules o f inference. The
other connectives can be defined in a way similar to the definitions in 8.6.1.
The existential quantifier (3s) is defined as ~(V;e) However, instead
o f a rule o f substitution, this axiomatization uses axiom-schemata. Thus,
according to the first schema, any wff o f the form is an axiom,
where <p and ip are arbitrary statements o f first-order logic, i.e, formulas
without free variables. As before in Section 7 3 we write tp{x), ip(x) etc
for any formula which contains at least one free occurrence o f the variable
x. We write a for an arbitrary individual constant, tp(a) for the statement
obtained from <fi(x) by replacing all free occurrences o f x by a, and <p(y) for
the formulas obtained from <fi(x) by replacing all free occurrences of £ by y.
In the latter case it is understood that tp(x) does not contain occurrences of
the variable y

A x io m a t i z a t i o n o f P r e d ic a t e L o g ic

Axioms

226 C h a p t e r 8

A l) (‘P <P))

A 2) (ip-* (ip -* x)) {(P -> ip) -> (ip-> x))

A3) (~ (p -+ ~ ip)~* (ip <p)

A4) (Vx)ip(x) —> ip(a)

Rules of inference

R l) Prom <p and tp —> ip, derive ip (M odus Ponens)

R2) From <p —> ip (a), derive <p —> (\/x)ip(x) provided that a does not occur
in <p

The first three axiom-schemata, together with the rule of inference Modus
Ponens provide anther axiomatization o f statement logic, different from the
one given in 8 6 1, since it uses axiom-schemata Predicate logic is hence an
extension o f statement logic. We illustrate this axiomatization o f predicate
logic with the proofs of three theorems.

(8 -47) Theorem 1, ('ix)ip(x) —> (Vy)ip(y) is derivable for any statement
(\/x)<p(x) o f predicate logic
P roo f :

1. ('ix)ip(x) —* <p(a) Axiom-schem a 4
where a does not occur in (\fx)ip(x)

2, (Vx)cp(x) -* (\fy)tp(y) 1, R2 ■

This theorem shows that alphabetic variants are equivalent, and hence
that the choice o f individual variables is arbitrary,

(8 -48) Theorem 2, <p —* <p is derivable for any statement tp o f predicate
logic
P roof:

1, (ip-^((tp->tp)->tp))->((tp->(tp->tp))->(tp->tp))
Axiom-schem a 2

2, ip—*((ip—*ip)—*<p) Axiom-schema 1
3, (<p—*(y>—*¥>))—*(<p—*<p) 1, 2, Modus Ponens
4, tp—*(tp—*<p) Axiom-schema 1
5 <p—>tp 3, 4, M odus Ponens ■

A x i o m a t i z i n g l o g i c 227

As is evident from this proof, to write down actual derivations in this
axiomatic system is rather cumbersome We will use theorem 2 in the proof
o f the law o f the excluded middle for predicate logic.

(8 -49) Theorem 3, (Vx)(ip(x) V ~</>(x))
P roof:

1, ~^?(a)—>~^(a) by theorem 2
2, <p(a) V ^ (o) 1, definition o f disjunction

3 , (1/3(0) V V ^ (a))))

Axiom-schema 1
4, ((̂ />—>(̂ />—>^))—>(1/3(0) V ~</j(a))) 2, 3, Modus Ponens
5 ((ifi-*(ifi-*ifi))—>(yx){ip(x) V ~~<p(x))) 4, R2
6 (V1—>(V’~ A x i o m - s c h e m a t a 1

7, (Vx)(<p(x) V ~</3(2:))) 5, 6, Modus Ponens ■

8.6 .4 A b ou t completeness proofs

This axiomatization o f first-order predicate logic is complete, i e ., all and
only valid formulas are provable. Although this claim itself has been proven
formally by Kurt Godel and later also by Leon Henkin, these proofs are
quite technical and not directly useful for any linguistic purposes. But the
notion o f completeness is an important meta-theoretical concept and to get
an impression o f its value we discuss the main ideas o f Henkin’s proof semi-
formally here.

The main stages o f Henkin’s completeness p roof are the following three
claims:

(1) if a formula <p is not provable in predicate logic, then the singleton set
1/?} is consistent,

(2) every consistent set o f statements M is contained in a maximally con
sistent set M " „

(3) every maximally consistent set M ” has an interpretation making ex
actly all statements in M * true

We explain the three claims and the notions used in them non-technically:

228 C h a p t e r 8

ad 1) Suppose that <p is not provable in predicate logic. We reason in a
reductio ad absurdum argument If { ~ </?} is inconsistent, then, according to
the definition o f inconsistency, we can derive some formula ip and its negation
hence also the contradiction (~ ip k ip) fiom it. In that case one can show
that ~ ip (~ ip k ip) is provable, and that therefore ~ (~ ip k ip) —> tp is
provable. Since ~ (~ ip k ip) is provable as well, it follows by M odus Ponens
that ip is provable after all, which contradicts the initial assumption that ip
is not provable in predicate logic So the additional assumption that ~ tp is
inconsistent cannot be right, so ~ tp is consistent

ad 2) A set of formulas M “ is maximally consistent if M " is consistent
and for every arbitrary formula tp not in M ", M ” U { ^ } is inconsistent This
means that there is no formula which can be added to M * while keeping it
consistent Any consistent set of formulas M can be extended to a maxi
mally consistent set M " which contains all formulas of M We enumerate the
formulas <pi,<p2-,<pz, in M according to their length and by equal length al
phabetically and enumerate also all the individual constants. Take Mo = M
and form M n+1 for arbitrary n from the set M n by adding the formula
ip (a) —* (Vx)ip(x) i f <pn+i is o f the form (\/x)ip(x)', where a is the first indi
vidual constant in the enumeration which does not occur in <pn+i nor in any
o f the formulas in M n. I f <pn+i is not o f the form (\/x)ip(x) then M n+i — M n.
This procedure produces sequence o f consistent sets M 0, M i , M 2, .. Let M*
be the set consisting only o f all elements o f any M n , Then M n is consistent,
since there is no finite subset which is inconsistent, M * is maximal since any
formula not in M * is excluded because it would make it inconsistent by the
procedure,

ad 3) Every consistent set of formulas has a model in which all formulas
are true. We should describe this precisely for any form o f formula, but the
details are not particularly illuminating In case the formula is universally
quantified, the procedure of constructing M " guarantees that all assignments
to the quantified variable give formulas which are still in M " .

Now if tp i,.. , tpn —■> ip is valid in predicate logic, then the proof o f ip
from premises (pi, , , tpn must exist in our axiomatization o f predicate logic,
For if tp i,....,tpn ip is valid, then tpi —> (<p2 —> . (<pn —* ip)) ,) is true
and hence provable. W ith Modus Ponens applied n times we prove ip from
<Pl, ■ ■ ■ ,<Pn-

This sketch o f Henkin’s completeness proof' may give you a taste o f one
o f the most important results in predicate logic. It shows that you may
safely switch back and forth between model-theoretic arguments and proofs,

A x i o m a t i z i n g l o g i c 229

since they aie simply semantic and syntactic counterparts Perhaps the most
important and startling “ side effect” o f the research on completeness was the
discovery o f negative results showing the incompleteness of some systems
To that topic we turn briefly in Section 8 6 6

8.6.5 Decidability

We have seen already that finding a proof for a formula with natural de
duction rules often requires ingenuity and insight. There is no foolproof
procedure we can prescribe which yields a p roof for any provable formula
In the semantics of the statement logic, however, there is the mechanical
truth table m ethod which always answers the question whether a statement
is a tautology or not In predicate logic truth tables do only part o f the
semantic job but we have to consider assignments to variables on possibly
infinite domains as well There is no general procedure which yields a defi
nite yes/no answer to the question whether a predicate-logical statement is
valid or provable. No success in finding a proof may mean either that we
have to try harder or that the statement is not a theorem, but we never
know which is the case!

If you understand the workings o f the Beth Tableaux for predicate logic,
you have seen that the construction o f some tableaux may just never come to
an end by closure or counterexample, Neither can we tell from the form of a
predicate-logical statement after how many steps we will either find a coun
terexample or obtain closure. All we know is that if' the statement is valid it
will eventually end in closure This is why the tableau m ethod, even though
it is more mechanical than natural deduction, does not constitute a general
procedure answering ‘yes’ or ‘n o ’ to the question whether an arbitrary stat-
ment o f predicate logic is a theorem. The fact that membership in the set o f
theorems of predicate logic cannot be decided for every arbitrary formula by
such a mechanical procedure is called the undecidability o f predicate logic
The statement logic, however, is decidable, because o f the existence o f the
mechanical procedures o f truth tables or tableaux which characterize the
valid statements. Another subsystem o f first-order predicate logic, monadic
predicate logic, where predicates can take only one argument, is also decid
able, The proof o f the decidability o f monadic predicate logic is based on
two facts: (l) that any monadic formula can be transformed to a special
prenex normal form in which all existential quantifiers precede the universal
quantifiers (see below on Skolem Normal Forms) and (2) that a tableau for
such formulas always ends after a finite number o f steps in closure or in a

230 C h a p t e r 8

counterexample by enumerating the domain. B oth claims can be proven,
but to do so here would lead us too fax afield

The set o f theorems o f predicate logic is not decidable, but it is enu
merable in a systematic way. The Beth Tableaux method provides such
an enumeration, since we know that every valid theorem eventually leads
to closure The m ethod does not produce a yes/no answer for any arbi
trary formula, but it does produce “yes” answers for all valid theorems We
say that this constitutes an effective enumeration o f the set of theorems of
predicate logic. O f course, the complement o f this set, i.e., the set of all
non-theorems or invalid arguments, is not effectively enumerable. For if it
were, we would have a decision procedure saying “ yes” to all theorems and
“ no” to all non-theorems. The completeness theorem is not in any conflict
with the undecidability o f predicate logic, for if' an argument is valid, there
is a finite p roof o f it, but we have no gener al method o f finding such a proof.
W e return to the relations between decidability, effectively enumerable sets,
different kinds o f functions, and computability in Part E„

8 .6 .6 G od el’s incompleteness theorems

The Peano axioms form the foundation o f mathematical number theory. We
may wonder whether it is complete with respect to its intended interpreta
tion, In 1931, just after proving the completeness o f predicate logic, Kurt
Godel proved the startling theorem that Peano arithmetic is incomplete; i e .,
there is a true statement about natural numbers which is not provable from
the Peano axioms!

The proof o f what is known as Godel’s first incompleteness theorem con
stitutes one o f the most sophisticated proof techniques in logic, Godel’s
first incompleteness result concerned the incompleteness o f Peano arithmetic.
His second incompleteness result stated that any consistent axiomatization
which is strong enough to contain number-theoretic representations o f proofs
does not yield a proof o f its own consistency, The result is shocking when
one realizes that it means that the proof o f the consistency of arithmetic is
as questionable as its consistency itself.

The first incompleteness theorem uses the natural numbers simultane
ously as an object-level system and as its own metalanguage in constructing
a number-theoretic representation o f a statement which says about itself
that it is false, The intutitive background stems from the ancient Cretan
paradox o f the liar, which is easily expressed in natural language by the self-
referential statement, I am a liar Anyone making such a statement runs into

A x i o m a t i z i n g l o g i c 231

semantic paradoxes, for if the statement is true, he is not a liar and hence
what he says is false, but if the statement is false, then he cannot be a liar
and what he says is true. The vicious circularity resides in using a semantic
truth predicate (being a liar = not speaking the truth) in the statement
as well as in applying it to the statement itself The formal p roof o f the
incompleteness theorem is too intricate to even outline here; the interested
reader is referred to Hofstadter (1979) for a generally accessible exposition
or to Bell and Machover (1977), Enderton (1972), or any other textbook in
mathematical logic for all necessary details

Another surprising consequence of the incompleteness theorem is that,
since ZFC is effectively axiomatizable, complete with respect to negation
and thought to be consistent, its supposed consistency can never be proven.

Even though the Godel results deeply shook the foundations of math
ematics and logic, mathematical practice never took much notice and pro
ceeded as usual We m ay take their metaphysical implications as saying that
mathematical reality is too rich ever to get completely captured in a con
sistent and complete axiomatization; or we may conclude more soberly that
formalizations have their limits too, and we had better be aware o f them

8 .6 .7 H igher-order logic

There are different ways in which we m ay enrich the language o f fiist-order
predicate logic by admitting quantification over predicates or functions. The
system we introduced contained quantifiers restricted to individual variables,
which constitute the first-order quantification. But there are many nouns
and verbs in natural language which are not properties o f individuals, but
rather properties o f properties of individuals. I f this vase is blue and blue
is a color, we cannot infer that this vase is a color, but rather that this
vase if o f a color The predicate ‘is a color’ cannot properly be applied to
ordinary individuals, but can be applied to properties of them. Properties
and relations o f these first-order objects are second-order objects, and so on,
A logical system is an re-order logic when it contains at least one re-order
variable (free or bound). Note that an re-order logic may contain quantifiers
o f lower order as well as r elations mixing arguments o f different orders. The
interpretation o f second-order quantifiers must consider all or some assign
ments o f subsets of a domain to the second-order variables, since a first-order
predicate is interpreted by a subset of the domain. The interpretation o f ‘is
a color’ , for instance, is a set o f subsets o f colored objects. The semantics o f

232 C h a p t e r 8

second-ordei quantifiers must hence employ the full power-set o f the domain
o f the m odel W e will not develop a full-fledged syntax and semantics of
higher-order systems here but discuss some aspects of second-order logic of
interest in linguistic applications

Two examples o f familial notions illustrate the expressive power o f second-
order logic

(1) A well-ordering is an ordering relation in which every non-em pty set
has a least element. This is expressed in second-order logic by

(V X)((3 w)X w -+ (3 y) (X y k {\ / z) ((X z k z ± y) -* y < z)))

(2) The induction axiom in Peano’s axiomatization o f artithmetic can be
translated into a second-order formula It says that a set o f natural numbers
which contains 0 and is closed under the successor function, constitutes the
set o f all natural numbers. In a second-order formula, where X is a second-
order variable and S is the successor-relation, a relation between a set and
a natural number, this is expressed as

(VX)(X(0) k (Vjf(X(jf) - S(X,y)) -> (Vy)X(y)))

Any first-order formula can be translated to a logically equivalent second-
order formula which has a special form: it is prenex and all existential re
order quantifiers precede universal first-order quantifiers. This is called its
Skolem Normal Form (SNF) after the logician Skolem who proved the gen
eral theorem that such a normal form exists for any first-order formula. We
discuss some examples as illustration of the method. The value o f Skolem
Normal Forms lies in their explicit representation o f quantificational depen
dencies of assignments to variables The simplest example is the equivalence
o f (V®)(3y)R (x ,y) <=> (3 F)(y x)R (x , F (x)) . The individual variable y is
assigned a value by a function F depending on the assignment to the uni
versally quantified x.

To see that (3 F)(V x)R (x , F (x)) implies (' ix)(3 y)R (x , y) , suppose we
have an interpretation M with an assignment g which verifies (V®)(3y)R {x ,y).
We know that for any a in the domain o f M there is at least one b such that
[# (» , y)JM’3 is true. We obtain a function / on the domain of M by choosing
one such b for each a and taking f (a) = b. This uses the A xiom of Choice,
Then F (x))]sM'3 is true where g' is exactly like g with f substi
tuted for F. This function f is called a Skolem function , or a choice-function,
for the formula (V®)(3y)R (x ,y) in the interpretation M , This illustrates the

A x i o m a t i z i n g l o g i c 233

general m ethod: an existential first-ordei quantifier is translated to an ex
istential second-order function quantifier, which binds a function taking as
arguments all individual variables bound by universal quantifiers preceding
it. One more example o f this procedure may suffice as illustration, Suppose
we have a formula

(3y)(V x)(3z)(V u)(V y)(3w)R (y , z, w)

(presumably other variables occur in the matrix, but they are irrelevant for
the present example). The first existential quantifier precedes the universal
quantifiers, so is already in SNF, Consider the remainder o f the formula:

(V®)(3z)(Vtt)(Vw)(3w)iJ(2/, z, w)

The second existential quantifier (3 z) depends on (V®), and we translate
the formula to

(3 F)(V x)(V u)(V v)(3 w)£ (y , F (x) , w)

What remains is

(V x)(V u)(V v)(3w)I£(y , F (x) , w)

This is logically equivalent to

(3G)(V x)(V u)(V v)R (y, F (x) ,G (x , u, v))

Here G is a Skolem function with thiee arguments The original formula is
hence equivalent to the SNF

(3 y)(3 F)(3 G)(V x)(V u)(V v)R (y ,F (x) ,G (x ,u ,v))

Linguistic applications o f Skolem-functions have been primarily in the se
mantics o f question-answering A multiple question like “ W hich student got
which grade?” is interpreted as a set o f statements which constitute true an
swers to it, which must give a specific grade for each student. The answer to
the wh-quantifier “which grade” depends on the answer to “which student” .
This dependency can be captured by a Skolem-function and implemented in
a Montague style semantics or in other model-theoretic frameworks

234 C h a p t e r 8

The same considerations which showed that first-order predicate logic
is undecidable apply to higher-order logics which contain first-order logic.
There cannot be a procedure which answers ‘n o ’ in every case in which a
formula is not a theorem. But we have seen that the Beth Tableaux method
provided a procedure to enumerate the valid theorems No such effective
enumeration exists for the theorems o f higher-order logics, however. For
if there was such an enumeration, it could be turned into a ‘n o ’-answering
procedure for first-order logic by replacing names and predicate constants by
appropriate variables, universally quantifying these and negating the entire
second-order formula We know first-order logic is undecidable, so there
cannot be such a ‘n o ’-answering procedure. So there is no tableau method
for second-order logic, no effective procedure identifying all theorems

Second-order logic, and hence any higher-order logic, is incomplete. The
proof cannot be discussed here, but it is based on the fact that an incom
plete fragment of arithmetic can be represented in it, showing that Godel’s
incompleteness result may be applied to higher-order logics. This means
that there are valid theor ems which cannot be pr oven from any axiomatiza
tion o f higher-order logic. It is an interesting open question just how much
higher-order expressive power can be admitted into first-order logic while
preserving its completeness.

Type theory is the system of' logic with quantifiers and variable o f any
order. Montague Grammar is based on a type theory but usually employs
only a limited fragment with third-order quantification in the interpretation
of natural language. New research is developing more flexible forms o f type
theory which may have important applications in linguistics and computer
science

Exercises

1. Give a recursive definition of the well-formed strings in the statement
calculus in Polish parenthesis-free notation (Chapter 6, Exercise 13).
Give a p roof CENApppp is a well-formed string using your definition.

2. Let / be a function that maps each n in Z = 0 ,1 ,2 ,3 ,. ,. into 2zn; e.g.,
/ (I) = 22 = 22 = 4 Given a recursive definition of / , and use it to
compute the value of / (4) .

3. Suppose we were to take the successor o f any positive number x as
being x + 2. Show that the four Peano Axioms (Section 8 4) would

E x e r c i s e s 235

then specify the set o f natuial numbers as the set o f even numbers
0,2, 4, 6 ,8, . . . W ould the Principle o f Mathematical Induction still be
a reasonable rule o f inference when defined over this set?

4. Prove by induction that the power set o f a set with ra members has 2n
members, for any finite positive integer n.

5. Prove by induction the generalized distributive law o f multiplication
over addition; i.e., for all ra, a X (6j + b2 + . . + bn) = (a X &i) + (a X
b2) + . + (a X bn).

6. W hat is wrong with the following inductive p roof that all hor ses are o f
the same color? For a set containing only one horse, the base clearly
holds, since that horse has only one color Now assume that all sets o f
n horses contain only horses o f the same color. We show that it follows
that the same is true o f all sets o f n + 1 horses Choose a set o f ra + 1
horses and select any n o f them, disregarding the extra horse for the
moment, By assumption, these n horses are all o f the same color. Now
replace one o f the n horses by the extra horse, forming a new set o f
ra horses These again, by assumption, are all o f the same color, and
so the extra horse is the same color as all the others. Therefore, all
hor ses are o f the same color.

7. Consider the following axiomatic system. The “ alphabet” consists of
all well-formed formulas in the statement calculus plus the symbols
—», (, and), There are three axioms:

(A l) p -^ (q - > p)

(A 2) (p - > { q - > r)) ((p -> q) -> (p -> r))

(A 3) (~ p q) -> (q~ * p)

and two rule schemata:

(R I) From any two expressions o f the form A —* B and A , we can
derive B (A and B are variables ranging over the w ff’s o f the
statement calculus)

(R 2) From any expression A we can derive B , where B is the result o f
substituting a w ff x for every instance o f some atomic statement,
i.e ., p, 2, r,etc., in A.

236 C h a p t e r 8

1. { p - * (q ~ * r)) {{p q) -> (p -> r)) (A 2)
2 (p - » ((g - » p) - » r)) -> ((p - » (g - » p)) - » (p - » r))

1, (R 2) (Substituting (q —> p) for g)
3. (p - » ((g ~ * p)~ * p)) - » ((p - » (g - » p)) - » (p p))

2, (R 2) (Substituting p for r)
4 p _» (2 _» p) (A l)
5. p _» ((2 _* p) _» p)

4, (R2)(Substituting (g —> p) for g)
6. (p -* { q -* p)) - * { ? - * p) 3 ,5 , (R 1)
7. p - » p 4, 6, (R l)

Construct a p roof of ~ p —> (p —> ?) in this system, Hint: Begin by
substituting (~ g — p) —> (p —> g) for p and ~ p for g in A l. It
can be shown that the theorems o f this system are all and only the
tautologous w ff’s o f statement logic [see, for example, Massey (1970,
pp, 125-159)],, The connectives & and V, which do not appear in this
system, can be defined in terms o f ~ and —

8. Reformulate the recursive difinition in Exercise 1 as an axiomatic sys
tem having the w ff’s n Polish notation as its theorems. Find an equiv
alent semi-Thue system

9. Construct an extended axiomatic system whose theorems are all strings
in {a }* o f length divisible by 2 or by 3. For example, aa, aaa, aaaa,
aaaaaa, aaaaaaaa are theorems, but a, aaaaa aaaaaaa are not. Can
you see why there is no equivalent axiomatic system without an aux
iliary alphabet?

10. Prove in the axiomatization of predicate logic given in Section 6,3
the following theorems. You may assume that all predicate logical
tautologies are provable in this axiomatization,

(a) P (a) - » (3x)P (x)

(b) from premise (Vx)(ip —» P (x))) that (ip —> (V x)P (x)) if x does
not occur in tp

(c) from premise (V®)(P(®) —> Q {x)) that (V®)P(®) —> (V x)Q (x)

T h e fo l lo w in g is a p r o o f o f p —> p in this system :

11. If the deletion o f a certain axiom from a negation complete system
makes it not negation complete, then the axiom is independent. W hy?

E x e r c i s e s 237

12. The following systems all satisfy Peano’s axioms under appropriate
interpretations. For each case state what interpretation must be given
to ‘O’, ‘is a natural num ber’ , and ‘is a successor o f ’ .

(a) 0 , - 1 , - 2 , - 3 , . . .

(b) 5 ,1 0 ,1 5 ,2 0 ,2 5 ,....

(c) + 1 , - 2 , + 4 , - 8 , + 1 6 , - 3 2 , . .

13. Consider the following formal system W,
Primitives: set P o f objects called “points” , a set L o f objects called
“lines” .
Axiom s:
(1) every line is a set o f points; i.e. L 6 p (P)
(2) there exist at least two distinct points
(3) if p and q are distinct points, then there is one and only one line
o f which p and q are both members.
(4) i f I is a line, there exists a point not in I
(5) i f Z is a line, and p is a point not in I, then there exists one and
only one line containing p and disjoint from I.

(a) Find a model for W in which P has exactly four objects.

(b) Prove from the axioms that every point is in at least two distinct
lines

(c) Prove that the empty set cannot be a member o f L.

(d) Show that there can be no m odel for W in which P has exactly
two members.

(e) I f we added as sixth axiom “every line contains exactly one point”
would the resulting system be consistent?

14. Give the Skolem normal forms for the following formulas:

(a) (V x) (3 y) (V z) R (x , y , z)

(b) (V x) (3 y) (3 z) R (x , y , z)

(c) (V x) (3 y) (R (x , y) ^ (3 z) (S (x , z) & S (y , z))))

(d) (V x X V y) (3 z) (R (x , y) & ~ P (z) ^ (V u) S (z , y , x , u))

Appendix B-I

Alternative Notations
and Connectives

The logical language we have studied in this chapter is the best known
classical system o f logic o f statements. There are various alternative symbolic
notations for1 the connectives we introduced, the most comm on o f which are
listed below,

Alternative notation for connectives
our symbol alternative(s)

negation
conjunction
conditional

&
~'> -> P
A, •
D (called ‘horseshoe’)

Table B .I .- l :

Furthermore, there are two connectives which we have not introduced, as
they are not part o f the system most commonly used. One, called “ Quine’s
dagger” , j is sufficiently powerful to be the only connective in a system
equivalent to the one given. Its truth table is shown in (B II.-2).

239

240 A p p e n d i x B - I

p Q p I Q
1 l 0
1 0 0
0 1 0
0 0 1

Table B .I.-2 :

Its nearest English correspondent is neither , . , nor, As an interesting ex
ercise one can show that negation can be defined in terms o f this connec
tive, and then that disjunction can be defined in terms of negation and this
connective. W e have already proven (Chapter 6, Exercise 7) that the five-
connective system can be reduced to one containing just V and Therefore
I suffices alone for the five connectives

Similarly, there is another connective, written as |, which is called the
“ Sheffer stroke” , whose by the truth table is as follows:

p Q p \Q
1 l 0
0 l 1
1 0 1
0 0 1

Table B .I.-3 :

Appendix B-II

Kleene’s Three-valued Logic

TKe logic o f statements and the predicate logic are two-valued, since there
are but two truth values and every formula is either true or false. This is
based on the assumption that the semantic assignments used in an inter
pretation are total functions. In some linguistic applications and especially
in computational contexts, that assumption seems much too strong, since it
requires that there is a clear semantic procedure which decides for any given
x whether fvK®)! is true or false for any arbitrary <p. But i f we allow a partial
interpretation function o f predicates, such a procedure may not always exist
since its value on <p(x) may be undefined for some x. Kleene developed a
semantics for predicate logic with such partial functions which yield values
true or false when defined, but which may also be undefined. Since it has
certain linguistically useful aspects, we discuss it here briefly.

In case a partial function is undefined for an argument it m ay be because
we lack information, or we may take it to mean that we disregard its value
as it is does not matter to our interpretation. The following truth tables
represent the strong Kleene semantics for the connectives, where 1 is ‘true’ ,
0 is ‘false’ and * means the truth value is undefined.

241

242 A p p e n d i x B - I I

From this table we can see that if sufficient information is available to
verify or falsify a statement, the undefined part does not alter it But i f the
value o f a part must be known to determine the value o f a complex statement,
the latter remains undefined until we know the value o f its parts This means
that the value o f a complex statement may be determined even when we do
not know the value o f all o f its parts For instance, as soon as we know
that the antecedent of a conditional is false, we know that the conditional
is true, irrespective o f what the consequent may be Kleene’s operations
are m onotonic in the sense that any valuation function preserves its initial
assignments when the domain is extended and new objects are added to
the interpretation o f the partial predicates I f we understand the undefined
cases as arguments o f which we have not yet determined the value, it is
an unnatural consequence of these truth tables that a classical tautology
such as p V ~ p remains undefined until we know the value o f p There
are ways to escape such consequences and preserve the classical tautologies
and contradictions in a partial truth definition, but we cannot go into such
systems here.

Three-valued logics have primarily been applied in linguistics in semantic
theories o f presuppositions There is a lively controversy surrounding the
analysis o f presupposition in philosophy and linguistics, which cannot be
surveyed here. For illustration we define this notion in semantic terms:

Any statement p is a presupposition o f a statement q iff i f p is not true
(but false or undefined), q is undefined

The truth o f a presupposition p is in some sense an assertability condi
tion for1 q. In our everyday use o f natural language we rely uncommonly

K l e e n e ’ s t h r e e - v a l u e d l o g i c 243

often on such presuppositions. We use names to refer to people under the
assumption that they exist; we use definite NPs like the students who passed
their exams with the common understanding that we mean to say something
about a particular non-empty set o f students. We also presuppose that it is
raining, when we say John knows it is raining or Jane does not regret that it
is raining. Characteristic o f presuppositions is that if p is a presupposition
o f q, p is also a presupposition o f ~ q. This means that presuppositions are
preserved under negation, and this is captured in the fact that * is preserved
under negation according to the truth tables above. It is a m ajor research
question how the presuppositions o f com plex sentences are to be charac
terized in terms o f the presuppositions o f its component sentences and this
is called the projection-problem o f presuppositions. Kleene’s system goes a
long way, since it recognizes that the presuppositions o f a com plex sentence
may not be just the sum o f the presuppositions o f its parts. Presuppositions
o f sentences may for example be cancelled in sentences o f which they are a
constituent Consider for instance the conditional I f there is a president o f
the U.S., the president is elected. This sentence contains two sentences (1)
There is a president o f the U.S. and (2) The president is elected. (1) is a
presupposition o f (2), since if (1) is false, (2) must be undefined, because
it does describe anyone in that case. The Kleene interpretation o f the con
ditional captures this nicely, since p —> q is true even when q is undefined
and p is false. So the entire conditional sentence does not have (1) as pre
supposition. But Kleene’s interpretation can be seen to lead to problems in
the following sentence (3) I f revolutions are unconstitutional, the president
is elected. Now (l) does seem to be a presupposition o f (3), since if (1) is
false, the consequent o f (3) is undefined and hence (3) must be undefined
The antecedent may, however, very well be false, when (1) is false, since they
are independent. I f the antecedent is false, (3) is true. But if there is an
assignment making (3) true and (1) false, (1) cannot be a presupposition of
(3). This seems wrong and not in accordance with our intuitions, Generally
speaking, in a conditional with a contingent antecedent whose truth value is
independent o f the presuppositions o f its consequent, the presuppositions of
the consequent are incorrectly cancelled in the Kleene interpretation o f the
connectives. There are ways to mend this problem, but none has yet found
general acceptance. The suggested further reading for this chapter contains
some main references to the literature on presuppositions..

teview Exercises

1. Suppose that P <— > Q is true, what is P V g ?

(a) P (b) p ^ q
2

2. Prove:

q k r
. . ~ p

(k)
~ r k ~ (s —> g)

_________________ ~ g V p
(p & g) V r

(c) p - > (g - > -----r) (d) p V g
P k ~ p\/ r

2
. . V

(e) p k (q —> (r V ~ ~ s)) (f)

2________________________ r V p
p f c (s v r)

p - * g
p -> (g -> r)
g —» (r —» s)

(S) P 2 (h) r -> (p V s)
P - » (2 - » » 0 g - » (« V t)

. p —> s (~ p & ~ t) —> (~ r

0) P - 2 (j) p v g

. . ~ p

3. Show that the following set o f statements is inconsistent

(a) r f e (p V g)

(b) ~ (p k r)

(c) ~ (g & r)

246 R e v i e w e x e r c i s e s

4. Does conjunction distribute over conditionals? I.e., is (p k q) —» (p k r)
equivalent to p k (q —» r)?

5. Translate the following expressions to predicate logic,

(a) A ll horses are quadrupeds, but some quadrupeds are not horses.

(b) Distinct utterances must have distinct phonem ic transcriptions,

(c) Not all trees are deciduous

(d) Some politicians are honest men

(e) No ducks are amphibious

(f) Every cloud has a silver lining

(g) Only Rosicrucians experience complete happiness

(h) Everything I like is immoral, illegal or fattening

(i) I like anything that is immoral, illegal or fattening

(j) Everyone wants everyone to be rich

(k) Everyone wants to be rich

6. For each o f the following formulas give an interpretation in a model
which makes the formula false,

(a) ((3 x)F (x) k (3e)G (2:)) —> (3 e) (F (e) k G (x))

(b) (\/x)(3y)(\Jz)B(x,y, z) -> (3 y) (V x) (V z)B (x ,y ,z)

7. Formalize and prove with natural deduction

(a) A ll linemen for the Green Bay Packers weigh at least 200 pounds.
Mathilda weighs less than 200 pounds. Therefore, Mathilda is
not a lineman for the Green Bay Packers,

(b) All cabdrivers and headwaiters are surly and churlish Therefore,
all cabdrivers are surly.

8. Construct Beth Tableaux for

(a) [(3 e)F (e) - » (V2:)G(e)] (V x)(F (x) -> G(a:))

(b) * (V x)(G (x) k (~ F (x) V B (x))) ==> (V x)(G (x) k (3 x) (F (x) —>
(V*)JET(*))

Part C

ALGEBRA

Chapter 9

Basic Concepts of Algebra

9.1 D efin ition o f a lg eb ra

An algebra A is a set A together with one or more operations /*. We may
represent an algebra by writing

(9 -1) A = (A, A , / 2, . . . , / „)

or by using particular symbols for the operations, such as

(9 -2) A = { A , + , x)

The set A may finite or infinite, and there may be either a finite or an infinite
number o f different operations. However, each operation must be finitary,
i.e unary, binary, ternary Each ra-ary operation must be a well-defined
operation, i.e, defined for all ra-tuples o f elements o f A and yielding a unique
element o f A as a value for each ra-tuple (cf. the mapping condition for
functions in Section 2.3),

These requirements on the operations can be stated in the form o f two
axioms which each operation in an algebra must satisfy, For simplicity, the
axioms are stated in terms o f a binary operation o; their generalization to
arbitrary ra-ary operations is straightforward.

A x io m 1. Closure: A is closed under the operation o, i.e. for any a,b £ A
there is an elem ent c £ A such that a o b = c.

249

250 C h a p t e r 9

A x io m 2. Uniqueness: I f a = a1 and b — b' then a o b = a' o b'.

Closure and uniqueness in appropriate sets are ordinarily considered the
minimal requirements for well-behaved operations. Adm itting partial op
erations in an algebra is comm on in universal algebra and category theory,
which are beyond the introductory scope o f this book. (See Goldblatt (1979),
Gratzer (1971), MacLane and Birkhoff (1983) and for discussion in the con
text o f M ontague grammar especially Janssen (1983).) We shall not be
concerned with operations that do not satisfy closure and uniqueness Vari
ous kinds o f algebras can be obtained by adding farther axioms to these two
basic requirements. We will study a number o f such algebras in this chapter.

W e have already encountered many structures which are algebras in this
sense. The syntax o f the logic o f statements, for instance, can be represented
as an algebra based on the set o f well-formed statements (S) and the con
nectives as operations: A = (S, ~ , &, V, —*, *-*). Similarly, the semantics
o f the logic o f statements can be considered as an algebra, based on the set
o f truth values and the truth tables, interpreting the connectives as opera
tions: B = ({ 0 ,1 } , ~ , &, V, —», *-*), where the connectives are understood
as operations on truth values, not as syntactic symbols. W e will see below
that there is an important connection between the syntactic algebra and the
semantic algebra of such formal languages, which serve as models for the
syntax and semantics o f natural languages.

D e f in i t io n 9,1 An algebra B is a subalgebra o f an algebra A =
{A , f i ■ f% , , / f) i f B satisfies the following conditions:

B = {B , / f , / 2S , , /n)> wiiere

(i) B C A

(ii) For every i, f f = / / TB ; i.e., f f yields the same values as ff" when
restricted to elem ents o f B,

(iii) B is closed under all operations f ?

■

9.2 P ro p e r t ie s o f o p e ra t io n s

In Section 1.8 a number o f properties o f operations on sets were introduced.
We repeat certain o f these definitions here as properties o f operations in

S p e c i a l e l e m e n t s 251

algebras foi easy reference and add a number o f properties o f operations
which are frequently encountered in algebraic operations

A n operation o from A X A to B is associative i f and only i f for all a, b, c in
A, (a o b) o c = a o [b o c). In an associative operation it is immaterial in what
order repeated applications o f it are made. Set-theoretic union and inter
section and function com position are associative, as are logical conjunction
and disjunction Examples o f non-associative operations are set-theoretic
difference and division o f real numbers.

An operation o from A X A to B is commutative i f and only if for all a, b
m A , a o b = b o a Familial' commutative operations are logical conjunction
and disjunction; set intersection and union; and addition and multiplication
o f real numbers Some non-commutative operations are subtraction, division
and function com position

An operation o from A X A to B is idem-potent if and only if for all a
in A, a o a = a. Set-theoretic union and intersection are idem potent, as
are logical conjunction and disjunction. But most o f the operations we have
encountered are not: addition, multiplication, subtraction, division, relative
complementation and function composition are not idem potent operations.

For two operations ox and o 2 both from A X A to B , distributes over o 2

if and only i f for all a, b, c in A, a oi (602 c) = (a ox b) 02 (a o i c)„ We have seen
that set-theoretic union distributes over intersection and vice versa. But,
although arithmetic multiplication distributes over addition (a X (b + c) =
(a X b) + (a X c)), addition does not distribute over multiplication, since in
general a + (6 X c) ^ (a + b) X (a + c).

9.3 Special elements

The next three notions are special properties which certain members o f a set
may have with respect to some operation defined on the set.

Given an operation 0 from A x A to B, an element e; is a left identity
elem ent o f 0 if and only if for all a in A, ei 0 a = a. Similarly, er in A is a
right identity elem ent o f 0 if and only i f for all a in A, a 0 er — a. As we
saw in Section 2 4, for a function F : A —> B , i f the operation 0 denotes
function com position, then idg 0 F — F and F 0 id& = F. Thus for the
operation o f com position o f functions the identity functions idg and id a are
respectively a left and right identity element. Subtraction defined on the set
o f integers and zero has a right identity element, namely zero itself, since

252 C h a p t e r 9

foi all n, n — 0 = n. But there is no left identity element; i.e., there is no
element m in the set such that for all n, m — n = n

For commutative operations, every left identity element is also a right
identity element, and vice versa. To see this, consider a left identity e; . By
definition (Va £ A)(eioa = a). Because the operation is commutative, e ;oa =
a o ei = a, for all a £ A, and so e; is also a right identity element. Similarly,
every right identity is also a left identity for commutative operations. An
element that is both a right and left identity element is called a two-sided
identity or simply an identity element W hile comm utativity o f an oper ation
is a sufficient condition for every right or left identity to be two-sided, it is
not a necessary condition; a two-sided identity may exist for some operations
that are not commutative. An example o f this is found in the operations of
composition o f functions defined on some set o f functions F = {i*1, G, H , , , .} ,
each being a function in A If id a is one o f these function, it is a two-sided
identity, since for each x £ F , id a o x — x o id a — z , but the operation o f
composition o f functions is not in general commutative. For addition the
two-sided identity is 0, but for arithmetic multiplication it is 1, since for
allra, r a + 0 = 0 + r a = r a and b x 1 = 1 x » = b. Given some collection
o f sets, the identity element for intersection is U, the universal set, and for
union it is the empty set (verify!). Relative complementation has 0 as a right
identity but in general it has no left identity,. It is provable that if for a given
operation a two-sided identity exists, then this element is unique

Given an operation o from A X A to B with a two-sided identity element
e, a given element a in A is said to have a right inverse aT i f and only
i f a o ar = e. A given element a in A is said to have a left inverse ai i f
and only if a; o a = e. If a-1 is both a left and a right inverse o f a, i e.
a~l o a — a o a-1 = e, then a-1 is called a two-sided inverse o f a, W hen the
term ‘inverse’ is used without further qualification, we mean that it is two-
sided. Note that inverses are always paired in the following way. b is a right
inverse o f a if and only i f a is a left inverse o f b, since both statements follow
from ao b = e One should observe also that the question o f the existence o f
an inverse can be raised with respect to each element in the set on which the
operation is defined,. In contrast, an identity element, if it exists, is defined
for the operation as a whole,. To illustrate, let addition be defined in the set
Z o f all positive and negative integers and zero. As we have seen, 0 is the
two-sided identity element for this operation. Consider now the number 3,
and let us ask if it has an inverse in Z. Is there an element z in Z that when
added to 3 yields 0? The number —3 is such an element, and, furthermore, it
is both a right and a left inverse, since 3 + (—3) = (— 3) + 3 = 0, F fom this it

M a p s a n d m o r p h i s m s 253

also follows that 3 is a two-sided inverse o f —3 For addition, every member
o f Z has an inverse, since to each integer z, except 0, there corresponds a
negative integer —z, such that z + (—z) = 0. The number 0 is its own inverse,
since 0 + 0 = 0.

Given an operation o from A x A to B, an element 0; is called a left
zero o f o if and only if for all a in A, 0; o a = 0; Similarly, 0,. is called a
right zero o f o i f and only if for all a in A, a o 0 f = 0,.. An element that
is both a left and a light zero is called a two-sided zero , or simply a zero
This terminology derives from the fact that the number zero functions as
a zero element in arithmetic multiplication. There is no zero element for
subtraction or division. The empty set is a zero element for set intersection
and the universal set U is the zero element for set union

9.4 Maps and morphisms

Relations between algebras may be described by functions mapping one al
gebra in another; F : A —» B Such a map is injective if some function
F : A —» B is one-to-one, i.e, F (a) = F(b) implies a = b. F : A —» B is
surjective (or onto) sf {F (a) \ a £ A } = B . And F : A —» B is bijective i f F
is both injective and surjective (or one-to-one and onto), A morphism is a
mapping F : A —» B conceived o f dynamically as a transformation process
o f A into B I f A = {A , A , .. . , / n) and B = {B ,g x, ., . ,gn) then A and B
are isomorphic i f and only if there is a one-to-one correspondence between
their operations (we will assume for simplicity that the correspondence is
fi 9i) a one-to-one and onto function (p mapping A onto B such that
for all s , y, z, ., , in A and all i < n

gi(ip(x),ip(y),<p(z),. „) = tp { f i {x ,y ,z ,.,)),

A homomorphism is a correspondence between algebras with all the prop
erties o f an isomorphism except that the mapping from A to B may be
m any-to-one; the set B may be smaller than the set A.

An automorphism o f an algebra A is an isomorphism o f A with itself.
The identity mapping (^ (s) = x) always provides an automorphism for any
algebra (the “ trivial” automorphism); the question generally asked o f a given
algebra is whether it has any other (“non-trivial”) automorphisms.

For instance, let A = {S, ~ , &,V, —>, <-»), and B = ({0 ,1 } , ~ , &, V, —>, <-»):
as defined above in 9.1

254 C h a p t e r 9

Any assignment o f trath-values to the statements in S is a hom om or
phism F : A —> B. i.e distinct statements p,q may be m apped to the same
trath-value, but

F{p k q) = F(p) k F(q)

F{p V q) = F(p) V F{q)
F(p -> q) = F(p) -> F{q)

F(p h ?) = F(p) F(q)

F(~~ p) = ~ F(p)

Construction o f truth tables for complex statements can now be under
stood as based on the fact that, given an assignment to the atom ic state
ments, the com position preserves the homomorphism from the syntactic al
gebra to the semantic one. This can be considered to be the algebraic coun
terpart o f the Principle o f Compositionality, often also espoused in one form
or another for the syntax and semantics o f natur al languages. The principle
requires the meaning o f a complex expression to be a function o f the mean
ing o f its constituent parts and the way in which they are put together (See
also Ch 13). Homomorphisms can, o f course, relate semantic algebras, e g.
by embedding a given interpretation into an extension of that interpreta
tion, Extensive applications are made o f these embeddings, for instance, in
semantic theories based on dynamic interpretations and in Kripke semantics
(see Ch 12).

A simple example o f an algebra A' which is isomorphic to A is a syntax of
the statment logic which uses instead o f p, q, r etc for statements, a different
alphabet, say the Greek letters <£, tp, x etc , and possibly alternative symbols
for the connectives I f alphabetic variance is the only difference between two
logical systems they are isomorphic from an algebraic point o f view.

Throughout the remainder o f this part o f the book we will encounter more
interesting mathematical examples o f homomorphisms and isomorphisms.

Category theory, a relatively recent and flourishing development o f alge
bra, studies properties o f algebras that can be expressed in terms o f mor-
phisms. It provides a very abstract and universal perspective on the foun
dations o f set theory, algebra and logic, in which cross-fertilization yields
many new insights and results, The interested reader is referred to Gold-
blatt (1979) for an introduction.

E x e r c i s e s 255

Exercises

1. Consider the operation o f intersection defined on some arbitrary col
lection o f sets.

(a) Is there a two-sided identity element?

(b) W hich sets have an inverse element?

2. Given an arbitrary collection o f sets, what elements, if any, have in
verses with respect to the operation o f a) union and b) symmetric
difference?

3. I f for a given operation in an algebra a two-sided identity exists, it is
unique Prove this for the operation o f set-theoretic union.

Chapter 10

Operational Structures

10.1 Groups

A group G is an algebra which consists o f a set G and a single binary
operation, which we will usually write as o, but which may sometimes be
written + or X : G = { G, o)„ To be a group, G must satisfy the following
conditions, the group axioms:

G l: G is an algebra (i e„ o completely defined and G closed under o).
G2: o is associative.
G3: G contains an identity element.
G4: Each element in G has an inverse element.

Note that a group operation does not have to be commutative. A group
whose operation is commutative is a commutative or Abelian group.

We are already acquainted with some models o f these group axioms.

a. The positive rational numbers with multiplication form a group: (G l)
the product o f any two positive rationals is a unique positive rational,
(G 2) multiplication is associative, (G 3) 1 is the identity element, and
(G 4) every positive rational p/q has an inverse q/p. Furthermore this
group is Abelian since multiplication is commutative,

b . The integers {0 ,1 , 2, 3 } form a group with the operation o f addition
m odulo 4. (The sum o f x and y modulo 4 is the remainder after
dividing x + y by 4; e g. 3 + 7 = 2 (m odulo 4)) The verification o f
this will be left to the reader.

257

258 C h a p t e r 10

c. The set of all even integers under addition forms a group, but the set o f
all odd integers does not, since it does not contain an identity element,
and it is not closed under addition

d . The group o f ‘ symmetries o f the square’ is an example o f a different
sort, since the elements o f the set for this group are not numbers but
the following rigid motions o f a square:

R - a 90° clockwise rotation about its center 0
R ' - a 180° clockwise rotation about its center 0
R " - a 270° clockwise rotation about its center 0
I - a 360° clockwise rotation about its center 0
H - a reflection in the horizontal axis through 0

(i e flipping the square about the horizontal axis)
V - a reflection in the vertical axis through 0
D - a reflection in the diagonal in quadr ant I and III
D ' - a reflection in the diagonal in quadrants II and IV

The group operation is the successive performing or com position o f any
o f these motions: eg , R o R = R! This group is not commutative, since, for
instance, R o H = D while H o R = D '.

The best way to compute the products o f this group is to cut out a
square o f paper and label its sides so that the manipulations can actually be
performed. First consider the front o f the square:

D A

C B

Figure 10-1,

Performing the operation defined as R will give the orientation shown in
Figure 10-2:

G r o u p s 259

c D

B A

Figure 10-2.

Starting from the original orientation and performing R! gives the orien
tation shown in Figure 10-3; i f we instead perform R ", the result is as shown
in Figure 10-4.

B C

A D

A B

D C

Figure 10-3. Figure 10-4.

Performing the operation I from the original starting point o f Figure
10-1, or from any other configuration, does not change the orientation at
all; in fact I is the identity operation for the group. The simplest way to
keep track o f these operations is to label the front o f the square as in Figure
10-5,

I

R R "

R '

Figure 10-5.

260 C h a p t e r 10

A t this point, the reader can verify such products as R o R = R ', R o R ' —
R ", R' o R ' = I.

To label the back o f the square, perform each o f the reflections, starting
each time from the I position, and label the side that comes out on top with
the name o f the operation. The relevant axes are as shown in Figure 10-6:

for V

Figure 10-6.

The back o f the square will then be labelled as in Figure 7, with V labelling
the back o f the same side that I labels on the front:

V

D D'

H

Figure 10-7.

Then the rest o f the products can be verified; e g ,, H o R! = V , V o D =
R. Note that when you have, for instance, performed V and then want to
perform D , you must find what is then the appropriate diagonal axis and
reflect the square (i.e., turn it over) through that axis; the product is R,
since the two operations in succession lead to the same orientation that R
leads to directly.

It is recommended that such a square actually be constructed since this
example recurs in several subsequent illustrations and problems.

From the group axioms we can prove the following elementary theorems.

G r o u p s 261

T h e o r e m 10.1 In any group, the equations x o a = b and a o y = b have the
unique solutions x = b o o ' 1 and y = a~ 1 o b respectively ■

Proof ■

(b o a ~ 1) o a = b o (aT1 o a) associativity
b o (aT1 o a) = b o e def inveise

b o e = b def identity

Hence (b o a-1) o a = b, so x = bo aT1 is a solution o f s o a = b. It is also the
unique solution, since

8 = D o c = j o (a o a ~ 1) = (x o a) o a ~ 1

So if ® o a = b, substitute b for (xoa) in the last member o f the equality above
and observe that x = b o a -1 Similarly for the unique solution y = a ~ 1 o b
to a o y = b. ■

The theorem provides an answer to the following general question: Con
sider any two elements o f a group, a and b (they need not be distinct); will
it be possible to find in the group more elements x such that x o a = bl
The theorem says that there will always be exactly one such an element,
namely whatever element is obtained by performing the operation on b and
the inverse o f a

The first part o f the proof shows that b o a ~ 1 is indeed such an x, by
putting b o aT1 in for x in the product x o a and showing from the group
axioms that the result must indeed be b. But this does not show that 6 o a -1
is the only such x. The second part o f the p roo f does this, in an indirect way.
First it is established that for any element x o f a group, x = (x o a) o a~1.
Now consider an arbitrary element x for which x o a = b. (We know already
that there is at least one such element, but so far there could be more than
one) Then since x = (x o a) o a-1 for any x, i f we have an x for which
x o a = b, we see that for such an x we can deduce x = b o a- 1 ; i.e., any
solution o f x o a = b must be identical to the original solution, namely b o a-1 ,

which is to say that the solution is unique,

C o r o l l a r y 10.1 A group has only one identity element. ■

Proof: By the group definition, there is at least one solution to e o x = e,
i.e. x = e. By Theorem 10.1, this is the only solution. ■

262 C h a p t e r 10

C o r o l l a r y 10.2 A group has only one inverse a 1 for each elem ent a ■

P roof: By the group definition, there is at least one solution y = a-1 to
a o y = e By Theorem 10 1, this solution is unique, ■

T h e o r e m 10.2 A group with 4 or fewer elem ents must be commutative, m

P roof:
case (i): 1 element - trivial
case (ii): 2 distinct elements e and a,

e o a = a o e = a (identity)

case (iii): 3 distinct elements e, a and b,

e o a = a o e = a (identity)

e o b = b o e = b (identity)

But a o b ^ a because then b would equal e; and a o b ^ b because then a
would equal e; hence a o b — e. Similarly for b o a hence a o b = b o a — e,

case (iv): 4 distinct elements e, a, b and c,

e o a = a o e = a, e o b = b o e = b and e o c = c o e = c (identity)

Consider any two non-identity elements, e.g., a and b. The product a o b
cannot be either a or b, as above, If a o b = e, then b = a ~ l and hence
b o a — e also. I f ao b = c, then b o a cannot be a or b (violation o f uniqueness
o f identity element), or e; in the last case b would be the inverse o f a, so
a o b = e, but we already have a o b — c Hence b o a = c also. In either case
the group is commutative. ■

From the fact that the theorem only mentions up to 4-member groups,
it should not be inferred that groups with 5 or more members may be non-
commutative. In fact, it is provable, but tedious, that all 5-member groups
must also be commutative. Groups with 6 or more members need not be
commutative, however.

The operation on a finite group is often given by a matrix. Rows and
columns are labelled with members o f the set. The value o f a o b is placed
in the cell at the ath row and the bth column. Because o f its similarity to

S u b g r o u p s , s e m i g r o u p s a n d m o n o i d s 263

the multiplication table of the natural numbers less than 10, such a matrix
is generally referred to as a ‘multiplication table’ . Finding the value o f a o b
is called ‘multiplying a by b’ even when the operation bears no resemblance
to the operation o f multiplication A word o f caution: when constructing
an example o f a finite group by its multiplication table, it is quite easy to
check for closure, the identity element and inverses by direct inspection o f
the table. It is also straightforward to tell from the table whether a group
is commutative or not, i..e the table is symmetric around the diagonal. But
a group operation must also be associative, and there is no simple way to
check associativity by inspection o f the table; rather, one has to check each
instance o f the operation

10.2 Subgroups, semigroups and monoids

We define a subgroup G' as a subalgebra o f G which is itself a group We
give the following examples o f subgroups as illustration,

a. The group o f even integers with addition is a proper subgroup o f the
group o f all integers with addition,

b. The group o f all rotations o f the square ({ I ,R ,R ' ,R " } , o) where o is
com position o f operations as described above, is a subgroup o f the
group o f all symmetries o f the square as in Example (d) above,

c. The system { { / , R, R '}, o) is not a subgroup o f the group o f all symme
tries o f the square; it is not a group and it is not even a subalgebra o f
the original group, because the given set { I ,R ,R ' } is not closed under
the operation o,

d. The set o f all non-negative integers with addition is a subalgebra o f the
group o f all integers with addition, because the non-negative integers
are closed under addition. But it is not a subgroup because it is not
itself a group: it is associative, and has an identity element (0), but all
o f the members o f the set except 0 lack inverses.

The order o f any group G is the number o f members in the set G. An
important theorem o f group theory states that the order o f any subgroup
exactly divides, i e, without remainder, the order o f the parent group. For
instance, only subgroups o f order 1, 2 and 4 are possible for a 4-member

264 C h a p t e r 10

group, these being the integral divisors o f 4. The theorem does not guarantee
that every subset having the proper number o f members will give rise to a
subgroup - only that if a subgroup exists, its order is a divisor o f the order
o f the group. An immediate consequence o f this theorem is that a group
G o f order 5 has only the trivial subgroups o f order 1 (the identity element
itself) and o f order 5 (itself) as subgroup, since 5 has no other divisors.

A second theorem, o f which we omit the proof since it uses notions that
are not introduced here, states that if a group is finite, then all its non-empty
subalgebras are also subgroups The practical consequence o f this theorem is
that in checking whether a given system is a subgroup o f a finite group, one
only needs to verify that the given subset is not empty and is closed under
the group operation, i.e. is a subalgebra. I f these two conditions are met,
there will necessarily be an identity element and inverses for each element.
Example (b) above is such a case. Example (d) above shows the failure o f a
subalgebra to be a subgroup in an infinite case.

A third theorem about subgroups will be proven here.

T h e o r e m 10.3 The intersection G ' D G " o f two subgroups G ' and G " o f a
g r o u p G is itself a subgroup o f G , ■

P roof:

(i) I f a, 6 are in G ' D G " , they must both be in both G ' and G ". G ' and
G " are groups, so a o b is in both, hence a o b is in G ' fl G " .

(ii) I f a is in G ' fl G " , it is in both G ' and G ". G ' and G " are groups, so
a~1 is in both, hence G ' D G " must contain a~1,

(iii) Since G ' and G '' are groups, they both contain e; hence G 'flG ^ m u s t
contain e. ■

There are some useful algebraic structures which are weaker than groups
and satisfy only some o f the group axioms.

A semigroup is defined as an algebra which consists o f a set and a binary
associative operation (G 1 + G2). There need not be an identity element nor
inverses for all the elements

A monoid is defined as a semigroup which has an identity element (G 1,
G2, G 3). There need not be inverses for all the elements. A n Abelian monoid
is a monoid with a commutative operation.

S u b g r o u p s , s e m i g r o u p s a n d m o n o i d s 265

Given these definitions, any group is a subgroup o f itself, and a semigroup
and a m onoid as well, Every monoid is a semigroup, but not vice versa. Here
are some telling examples,

a. The set o f all non-negative integers with addition is an Abelian monoid,

b. The set o f all positive integers (excluding zero) with addition is a semi
group but not a monoid.

Since both ordinary addition and ordinary multiplication are associative,
it can be deduced that addition and multiplication m odulo any n are also
associative. Therefore any system with addition or multiplication, either
ordinary or m odulo some n, is a semigroup if it is closed and is a monoid if
it also contains the appropriate identity element 0 or 1,

c. The set o f all positive even integers with ordinary multiplication is a
semigroup but not a m onoid, since 1 is missing,

d. The set o f all positive odd integers with ordinary multiplication is a
m onoid, (Closed since multiplication o f odd integers yields only odd
integers)

e. The set {0 ,1 ,2 , 3 ,4 } with multiplication m odulo 5 is a monoid.

f. The set o f all multiples o f 10 which are greater than 100, i.e.

{1 1 0 ,1 2 0 ,1 3 0 ,.,,.}

with ordinary addition is a semigroup, but not a monoid.

None o f the above examples are groups; in each example, one or more
elements lack inverses. Note that where multiplication (m odulo n) is involved
no system which contains 0 can be a group, since 0 has no multiplicative
inverse.

Submonoids are defined analogously to subgroups. M is a submonoid of
the m onoid iff M is a m onoid and its identity element is the same as
in M '. The stipulation that the identity elements must be the same is not
necessary for subgroups, since there it is an automatic consequence. It is
possible to find subsets o f a monoid that themselves form monoids, however,
but with different identity elements.

266 C h a p t e r 10

10.3 Integral domains

A n integral domain D is an algebra consisting o f a set D and two binary
operations called ‘addition’ and ‘multiplication’ , written a + b and a ■ b,
respectively; D = { D ,+ ,), which satisfies the following axioms:

D l: D is an. algebra.
D2: The set D with the operation + forms an Abelian group with identity

0,.
D3: The set D with the operation • forms an Abelian m onoid with identity

1, and 1 / 0
D4: (Cancellation Law) If c / 0 and c a = c b, then a = b,
D5: (Distributive Law) For all a ,b ,c in D , a ■ (b + c) — (a ■ b) + (a c).

The assumption in D3 that 1 / 0 eliminates the ‘trivial’ case o f the set
containing only 0, which would otherwise be an integral domain under ordi
nary addition and multiplication. A xiom D4, which says that multiplication
obeys the cancellation law except in the case o f the additive identity 0, in
effect recaptures a great deal o f the structure lost by not requiring multi
plicative inverses. In fact, whenever D is a finite set, A xiom D4 insures that
every element except 0 has a multiplicative inverse

Note that the distributive law is not symmetric between • and + ; it will
not in general be true that a + (b ■ c) = (a + b) (a + c)„ Aside from the
requirement that 1 / 0 , the distributive law is the only axiom which requires
there to be some connection between the two operations. Because integral
domains have two operations, we need to introduce some new notation for
inverses. In a group, where there is only one operation, a-1 unambiguously
designated the inverse o f a with respect to the given operation. For integral
domains, we will use a-1 to designate the multiplicative inverse o f a (if
it has one; since not all elements need have inverses, this notation can be
used only where it can be shown that an inverse exists), We will introduce
the notation —a to stand for the additive inverse o f a, which by D2 always
exists. Thus by definition — a is the element which when added to a gives 0.
For all o f the infinite models mentioned below , this notation corresponds to
our ordinary use o f the minus sign, but it would be advisable to regard that
correspondence as accidental (although clearly it is not) and throughout this
section simply read ‘ —a’ as ‘the additive inverse o f a'.

In integral domains, as in ordinary arithmetic, the minus sign is also
used as a binary operator, corresponding to the operation o f subtraction.

I n t e g r a l d o m a i n s 267

We can define b — a as that element x such that x + a = b By Theorem
10.1 foi groups the equation x + a = b has the unique solution b + (—a), so
the operation b — a is well defined. Thus the two uses o f the minus sign are
closely related W e could also have defined subtraction first, and then define
_ a as 0 — a There is never any ambiguity, since subtraction is a binary
operation, whereas the sign for the additive inverse is always prefixed to a
single element

The standard m odel o f an integral domain is the set o f all integers, pos
itive, negative and 0, with ordinary addition and multiplication. Other ex
amples o f infinite integral domains are the set o f all rational numbers and
the set o f real numbers, again with ordinary addition and multiplication, A
less obvious m odel is the set o f all rational numbers whose denominator is 1
or a power o f 2„ Still other models can be constructed. None o f these sets
form a group with multiplication, because there is no multiplicative inverse
for 0 in any o f them, i.e no number which when multiplied by 0 gives 1. In
the domain o f the rationals or o f the reals, 0 is the only element without a
multiplicative inverse; in the domain o f the integers, however, none o f the
elements except 1 itself has a multiplicative inverse

In Section 8 5.5, we introduced an axiomatic characterization o f several
types o f orderings for sets in general. Here we will show a different approach
to a linear or simple ordering which can be used only for integral domains,
since it makes use o f the notions o f addition and multiplication. The relation
< as defined below is a simple linear ordering, although we will not prove
that assertion here.

Not all integral domains can be ordered; thus the ordered integral do
mains are a much more restricted class o f systems that the integral domains.
More restricted still are the ordered integral domains whose positive ele
ments (to be defined below) are well-ordered. These integral domains in fact
turn out to be isom orphic to the set o f all integers with ordinary addition
and multiplication and, o f course, to each other. For this reason, these no
tions o f ordering are o f central importance in characterizing axiomatically
our ordinary system o f arithmetic with integers

D e f i n i t i o n 10.1 An integral domain D is sa id to be ordered by a relation
< i f the following axioms hold:

(i) A ddition law. For all a,b,c and d i f a < b and c < d, then a + c < b + d

(ii) M ultiplication law. I f a < b and 0 < c, then a c < b ■ c

268 C h a p t e r 10

(iii) Law o f trichotomy. For any a and b, one and only one o f the following
holds: a < b, a = b, or a > b (also called connectedness).

We have already shown that subtraction can be defined in any integral
domain: b — a is equal to b + (— a). We now make use o f subtraction to define
the properties o f being positive 01 negative for elements o f ordered integral
domains

D e f i n i t i o n 10.2 An elem ent a o f an ordered integral domain is positive
i f and only i f a > 0; a is negative i f and only i f a < 0, The three basic
axioms for the ordering relation < are reflected by three similar properties
o f positive elements:

(i1) Addition, The sum o f two positive elem ents is positive.

(ii') M ultiplication. The product o f two positive elements is positive.

(iii1) Trichotomy. For any given element a, one and only one o f the following
holds: a is positive, a = 0 or —a is positive,

The proof o f these is left to the reader.
As remarked above, not all integral domains can be ordered. Among

the integral domains which can be ordered are the familiar infinite ones:
the set o f integers, or the set o f all rational numbers, or the set o f all real
numbers, all with ordinary addition and multiplication and < interpreted
as ‘less than or equal to ’ in the usual sense. I f we add to the axioms for
ordering a further axiom for well-ordering for positive elements only, we will
have a formal system all o f whose models turn out to be isom orphic to the
integers with respect to addition, multiplication and < .

D e f i n i t i o n 10,3 A subset S o f an ordered integral domain is well-ordered
i f each non-em pty subset S' o f S contains a smallest elem ent, i.e. an element
a such that a < x for every x in S'. ■

The new axiom for well-orderings, which depends on the prior introduc
tion o f the axioms for orderings and on the definition o f ‘positive’ already
given, can be stated as follows:

I n t e g r a l d o m a i n s 269

W e ll-o rd e r in g a x io m : The positive elements are well-ordered.

To illustrate the use o f the well-ordering principle, we prove that in any
well-ordered integral domain, there is no element between 0 (the additive
identity) and 1 (the multiplicative identity) For the standar d model, namely
the integers, the theorem may seem obvious, but it is not so obvious how to
prove it from the axioms for the well-ordered integral domains

T h e o r e m 10.4 There is no elem ent between 0 and 1 in any well-ordered
integral domain. ■

Proof: Assume, for a reductio ad absurdum proof, that there is at least one
element c with 0 < c < 1, i.e. the class o f such elements is not empty.
By the well-ordering axiom, there is a least element m in this class, and
0 < m < l , s o 0 < m and 0 < (1 — m). By the multiplication law for positive
elements o f an ordered integral domain, 0 < m (1 — m), i.e. 0 < m — m 2,
so m 2 < m. By the same axiom, 0 < m m , i.e, 0 < m 2 Then by the
transitivity o f < , 0 < m 2 < m < 1. The m 2 is another element in the class
o f elements between 0 and 1, which is, moreover, smaller than m But m was
by definition the minimum element in the class, (contradiction!). So there
is no element between 0 and 1. ■

T h e o r e m 10.5 A set S o f positive integers which includes 1, and which
includes n -f 1 whenever it includes n, includes every positive integer. ■

Proof: We will prove by reductio ad absurdum that the set S', consisting o f
those positive integers not in S, is empty. Assume that S' is not empty, then
it contains a least element m , But m ^ 1 by hypothesis. By Theorem 4
there is no positive integer smaller than 1, so m > 1„ That means m — 1 is
positive, Since m is the smallest positive integer not in the set S, m — 1 is
in the set S, since m — 1 < m. Then, by hypothesis, (m — 1) + 1 is also in
S, but (m — 1) + 1 = m , so m in in S. Contradiction! ■

We can now prove directly that Peano’s fifth postulate (see Sections 8.4
and 8 5,7) holds for the positive integers.

P rin c ip le o f F in ite In d u c t io n , Associate with each positive integer n a
statement P (n) which is either true or false. I f (i) P (l) is true, and (ii) for
all k, P (k) implies P (k + l) , then P (n) is true for all positive integers n.

270 C h a p t e r 10

P roof: The set o f those integers k for which P (k) is true satisfies the hy
pothesis, and hence the conclusion o f Theorem 10.5. ■

To illustrate the application o f the principle o f finite induction in proofs,
we will use it to prove one o f the laws o f exponents in integral domains, for
which we first need to give a definition.

D e f in it io n 10 4 A p o s it iv e p o w e r an o f a in any integral domain D is
defined recursively by (i) a1 = a, (ii) an+1 = an ■ a. n

Using this definition, we can prove by induction that in any integral
domain (a ■ b)n — an bn for all n. First o f all, we view the statement o f the
theorem as expressing a property of n; P (n) = (a ■ b)n = an bn, This is the
first step in setting up any proof by induction, but it is often left implicit

The p roo f itself has two parts: first we prove P (1), and then we prove
that for arbitrary k, P (k) implies P (k f 1).

(f) P (l) :
(a -h)1 = a b by definition

= a1 b1 by definition
P (k + 1) :

(a ■ b)k = ak • bk cond. premise
(a ■ b)k+1 = (a - b)k ■ (a ■ b) by definition

= (ak ■ bk) • (a ■ b) cond. premise
- ak (bk ■ (a b)) associativity
= ak ((bk ■ a) b) associativity
= ak ■ ((a ■ bk) b) commutativity
:: ak (a - (bk ■ b)) associativity
= (ak • a) ■ (bk ■ b) associativity
= ak+1 ■ bk+l by definition

[(a -6)* = ak ■ bk} ->■ [(a . b)k+1 = ak+1 ■ bk+1] cond proof

From (i) and (ii) it follows by the principle o f finite induction that P (n)
is true for all positive integers n, i.e. that for all positive n, (a ■ b)n = an • bn.

We have introduced here the well-ordering principle, and hence induction,
for the positive integers. A n alternative approach is to state both the well-
ordering principle and induction for the non-negative integers, in which case
the first step in an induction proof would be for the case o f n — 0. The two
approaches are interdefinable.

M o r p h i s m s 271

10.4 Morphisms

Since the notions o f homomorphism and isomorphism are defined for algebras
in general, it is possible to define a morphism between algebras o f different
sorts, as long as they have the same number o f operations. Here we give
an example o f a homomorphism between a m onoid and a group, and then
discuss some group isomorphisms and an isomorphism between two integral
domains.

Consider the m onoid M = (TV, +) consisting o f all the non-negative inte
gers with the operation o f ordinary addition M is not a group because o f the
absence of inverses, Let the group G = (G = {0 ,1 ,2 , 3 ,4 } , + m od 5). We
can define a homomorphism from M to G by the function F (n) which maps
each non-negative integer in N onto the element o f G which is congruent
with it modulo 5 (Numbers which are congruent m od 5 leave the same re
mainder after division by 5) For example, ^ (16) = 1, F (23) = 3, F (45) = 0,
etc. The function F establishes a homomorphism, since F (x) + F {y)
((m od 5)) = F (x + y) The kernel o f a hom om orphism F is defined as the
set o f elements o f the domain o f F which are mapped onto the identity ele
ment in the range o f F In this example, the kernel o f the homomorphism
F : M —» G is the set o f all non-negative multiples o f 5 : {0 ,5 ,1 0 ,1 5 , „. ,}.

The definition o f isomorphisms for groups is a direct application o f the
definition o f isomorphisms for algebras in general. Since a group has only
one operation, we can say simply that an isomorphism between two groups
G = (G , o) and G' = (G ', o ') is a one-to-one correspondence between their
elements which preserves the group operation, which may be distinct oper
ations in the two groups. I.e., if a is mapped to a', and b to b' and vice
versa, then a o b is m apped to a' o' b' and vice versa. Putting it more for
mally, an isomorphism between two groups G = (G, o) and G' = (G ',o ')
is a one-to-one correspondence F : G —» G' such that for all x ,y in G,
F (x) o' F (y) = F (x o y). Here are two examples o f such group isomorphisms.

Example 1: The group o f integers {1 ,2 ,3 ,4 } under multiplication m od
ulo 5 is isomorphic with the group o f the integers {0 ,1 , 2 ,3 } under addition
modulo 4, with the correspondence

1 <— ► 0,2 <— ► 1,3 <— ► 3,4 <— » 2

This is best illustrated by the group tables

272 C h a p t e r 10

+ (m o d 4) 0 1 2 3 X (m o d 5) 1 2 4 3
0 0 1 2 3 1 1 2 4 3
1 1 2 3 0 2 2 4 3 1
2 2 3 0 1 4 4 3 1 2
3 3 0 1 2 3 3 1 2 4

Example 2: The group o f integers {0 ,1 ,2 . 3 } under addition m odulo 4 is
also isom orphic with the group o f rotations o f the square: let

0 <— > 1 ,1*— > R, 2<— > R', 3 <— > R "

We can prove that isomorphisms are equivalence relations on the set of
all groups.

T h e o r e m 10.6 The relation ‘is isomorphic t o ’ is a reflexive, sym m etric and
transitive relation between groups. ■

P roof: The reflexive property is trivial, since every group is isomorphic to
itself by the identity mapping, As for the symmetric property, let F be an
isom orphic correspondence between G and G’ Since F is one-to-one, it has
an inverse f 1-1 which is an isomorphism o f G' onto G Finally, if Fi maps
G isomorphically onto G', and F2 maps G 1 isomorphically onto G " , then the
com position o f F2 ° F i, the function whose value for a given argument a is
the value o f F2 applied to -Fi(a), is an isomorphism o f G with G " . ■

A n isomorphism between two integral domains D and D ' is a one-to-one
correspondence o f the elements a o f D with the elements a' o f D ', which
satisfies for all elements a,b in D the conditions

1) (a + b)' = a' + b '

2) (a ■ bY = a1 b1

For an example o f an isomorphism between two integral domains, let us
start from the following facts about reckoning with even and odd numbers.

even + even = odd + odd = even
even + odd = odd + even = odd
even • even = even • odd = odd ■ even — even
odd ■ odd = odd

E x e r c i s e s 273

We can regard these identities as definitions o f operations o f ‘ addition’
and ‘m ultiplication’ in a new algebra o f the two elements ‘even’ and ‘od d ’ .
This algebra is isomorphic to the finite integral domain I 2 o f integers m od
ulo 2, with ordinary addition and multiplication m odulo 2, under the corre
spondence even <— > 0 and odd <— > 1.

Exercises

1. Show that the integers 0,1,2, and 3 form a group with the operation
o f addition m odulo 4, i e. show that each o f the four group axioms is
satisfied. You need not give a full demonstration o f associativity— just
2 or 3 examples.

2. W hich o f the following are groups?

(a) The integers 1,3,5,7,8 under multiplication m odulo 11.

(b) The integers 1,3,4,5,9 under multiplication m odulo 11.

(c) The system described by the following multiplication table:
0 a b c d
a a b c d
b b a d c
c c d a a
d d c b b

(d) The system described by the following table:
0 a b c d
a b d a c
b d c b a
c a b c d
d c a d b

(e) The set o f all subsets o f S = { * 1 , 2:2} with the operation o f set
union.

(f) The same set S as in (e) with the operation o f set intersection.

(g) The set o f rigid motions o f a square { I , H , V, R '} and the operation
o f performing them successively.

(h) The set o f rigid motions o f a square { / , D , R } and the operation
o f performing them successively.

274 C h a p t e r 10

3. (a) Draw the group operation table foi the group o f symmetries of
the square { / , R, R\ R " , H ,V ,D , D '}

(b) There are three different subgroups having exactly four elements.
Find them and draw their group operation tables

(c) There are five different subgroups having exactly two elements.
Find them and draw their tables,

(d) Show which of the subgroups in (b) are isomorphic

(e) Show a non-trivial automorphism for one o f the subgroups o f (b)

(f) Show a homomorphism o f one o f the subgroups o f (b) with one
o f the subgroups o f (c)

4 . Prove that the set consisting o f the identity element alone is a subgroup
for any group

5. (a) Does the set {1 ,2 , 3, 4 ,5 } form a group with multiplication m od
ulo 6? Justify youx answer

(b) Show that the set {1 ,2 , 3 ,4 ,5 ,6 } forms a group with multiplica
tion modulo 7,

(c) Find three different proper subgroups o f the group in (b),

(d) Find a set o f integers which forms a group with addition modulo
some n which is isomorphic to the group in (b),

(e) Can you find a general condition on n which will identify all those
n ‘ s for which the set {1 , 2,, , „, n — 1 } forms a group with multi
plication modulo n? Prove your assertion i f possible, otherwise
explain why you think it is correct,

6. Prove that if S is a subgroup o f S' and S' is a subgroup o f S", then S
is a subgroup o f S"„

7. (a) The set R o f all strictly positive rational numbers with multipli
cation forms a monoid which is also a group. Find a sttfc-monoid
R q o f R such that R q is not a group.

(b) Is the set o f all rational numbers with multiplication a semigroup?
A monoid? A group?

8. Determine whether the set-theoretic operation ‘ symmetric difference’ is
commutative, associative and idempotent. Is there an identity element
for this operation? W hat sets, i f any, have inverses? Given the set

E x e r c i s e s 275

A = {a , b} what sort o f operational structure is formed by the power-
set o f A with the operation o f symmetric difference?

9. Let A = {a ,b } Show that {p (A), U) and (p (A), D) are both semi
groups but not groups Find an isomorphism between them

Prove that if a, b and c are any elements o f an integral domain D ,
then a + b = a + c implies b = c (Hint: make use o f the fact that
a has an additive inverse.)

Prove that for all a in D , aoO = Ooa = 0 (Hint: Use a + 0 = a and
the distributive law to prove that a o (a + 0) = aoa and a o (a + 0) =
(a o a) + (a o 0) Note: o is used here for ‘multiplication’ .)

Justify each step in the following p roo f o f (—a) o (—6) = a o b.
(Note: —a and —b are names given to the additive inverses o f a
and b)

(1) [aob + ao (—6)] + (—a) o (— b) = ao b + [oo (—b) + (— a) o (— 6)]

(2) [a o b + a o (— 6)] + (—a) o (—b) = a o b + [a + (—a)] o (—6)

(3) [ao b + a o (— 6)] + (—a) o (— 6) = a o 6 -)- 0 o (—6)

(4) [ao b + a o (—6)] + (—a) ° (—b) = a o b

(5) [a o b + a o (— b)} + (— a) o (—b) = ao [b + (—b)} + (—a) o (—b)

(6) [a o b + a o (— 6)] + (—a) o (—6) = a o 0 + (— a) o (—6)

(7) [a o b + a o (— 6)] + (— a) o (— 6) = (— a) o (—b)

(8) (—a) o (—b) = a o b

11. Prove the law o f transitivity for < in an ordered integral domain, i.e,
for any a,b, and c, if a < b and b < c then a < c.

10. (a)

(b)

(c)

276 C h a p t e r 10

12. Using the definition o f positive elements, deduce the three basic laws
o f positive elements, (i ') , (ii') and (iii') in D ef 10 2, fiom the laws for
<

13. The definition o f any positive power an o f a in any integral domain D
is given by:

a} = a

(a) Prove by induction that am o an = am+n in any integral domain.
(Hint: Use induction on n; in the second part o f the induction,
assume that am o an = am+n for all m and for n — k and prove
that it must then hold for all m and for n = k + l) .

(b) Prove by induction that in any integral domain (am)n = (an)m.
(Hint: You will probably want to make use o f the theorem that
an o bn = (a o b)n which was proven in this chaptei)

Chapter 11

Lattices

11.1 Posets, duality and diagrams

In the previous chapter we have seen that the arithmetical properties o f ele
ments o f formal systems may be described in operational structures. Opera
tions may serve to generate new elements from a given set o f basic elements,
and thus we may view an operational or an algebraic structure naturally as
a syntactic system which generates elements in a formally precise way. The
relation of this dynamic conception o f such systems and the linguistic notion
o f a grammar which gener ates strings as elements o f a natural or formal lan
guage will be explored in much more detail in Part E The present chapter
is concerned with certain ordering relations between elements o f systems or
domains o f objects and the order-theoretic or ‘topological’ properties o f such
ordered structures. We will see that the concepts introduced in this chapter
provide a universal perspective on set theory and algebra in which impor
tant correlations between the two mathematical theories can be insightfully
described. Recently linguistic applications o f lattices have been made pri
marily to semantic topics such as plural NPs, mass terms and events, using
the ordering relations to structure the domains o f an interpretation o f a lan
guage, The potential usefulness in linguistics o f syntactic applications o f
lattice theory is explored in research on feature systems, for instance In
this chapter we will introduce lattice theory without paying attention to any
particular linguistic applications or motivations

In Chapter 3 we pointed out the set-theoretic im portance of'partial or
derings on sets, i.e. sets o f objects ordered by a reflexive, anti-symmetric
and transitive relation Here we will call any partially ordered set A together

277

278 C h a p t e r 11

with its ordering < , i.e, (A , <), a poset, often writing just A and tacitly
assuming the intended partial ordering, which is widely accepted practice,

A poset which also satisfies the property o f linearity (for all a, b £ A :
a < b or b < a) is called a chain, or a fully or linearly ordered set, A ddi
tional properties and operations may be defined on posets which constitute
a stronger structure. Thus the real numbers form a poset, but also a chain,
disregarding the arithmetical operations

If A is a poset and a, b £ A , then a and b are comparable elements or
comparable objects if a < b or b < a I f a and b are not compar able, they are
incomparable, written as a || b In a chain there are of course no incomparable
elements.

In an arbitrary poset A we define an upper bound o f B C A as an element
a £ A , if it exists, such that for all b £ B , b < a. An upper bound a o f B is
the least upper bound o f B (abbreviated to lub o f B) or the supremum o f B
(abbreviated to sup B) if, for any upper bound c o f B , we have a < c. We
often write a = V B , or a =sup B , since by antisymmetry o f the ordering
relation we know that if B has a least upper bound, this is a unique least
upper bound.

If (A , <) is a poset, then inversion o f the partial ordering preserves
the poset characteristics, i,e. writing a > b for b < a in the given poset we
have defined a new poset (A , >), Verification o f the three requirements on a
partial order in this new poset (A , >) is straightforward: e.g., antisymmetry
holds since if a > b and b > a, the definition o f > gives us b < a and a < b,
and we know that in (A , <) in that case a = b We call (A , >) the dual of
{A , <), which is obviously a symmetric relation between posets. This notion
will come in handy in proving statements about posets, since it allows us to
replace all occurrences o f < in a true statement S by > , thus obtaining the
(equally true) dual S' o f S, without actually carrying out the entire proof
for the inverse o f the partial ordering.

To appreciate the importance o f this duality in posets, we define the dual
o f an upper bound o f B C A, called a lower bound o f B C A, as an element
a £ A such that for all b £ B , b > a which is equivalent to a < b A lower
bound a o f B is the greatest lower bound o f B (abbreviated to gib o f B) or
the infimum o f B (abbreviated to in f B) if, for any lower bound c o f B we
have a > c. We write a = (\ B , or a = in f B Supremum and iniimum are
thus duals; hence whatever we may prove about one o f them holds also of
the other. For instance, we proved above that if a subset B in a poset has
a supremum, it has a unique supremum, so we know by duality that the
infimum o f B , if its exists, is unique

POSETS, DUALITY AND DIAGRAMS 279

Partial orderings may be represented visually by so called Hasse dia
grams The diagram o f a poset {A ,<) represents the elements or objects
by o, and if the ordering relation holds between two elements, they are
connected by a line, reflecting the order from bottom to top in the represen
tation

For instance, writing out the ordering set-theoretically, let the poset
A = { (0 ,0) , (0, a), (0 ,6), (0 ,1), (a, a), (a, 1), (6,6), (6 ,1), (l , 1)}. Assuming re
flexivity and transitivity o f the connecting lines, we represent A by the dia
gram in Figure 11-1 (c f the immediate successor diagrams o f Section 3-5)

1

0

Figure 11-1: The diagram o f a poset
A = ({0 , a, 6 ,1 }, <)

We call a diagram planar or flat i f it does not contain any intersecting
lines, as in Figure 11-1. In general greater clarity o f representation is ob
tained if the number o f intersecting lines is kept as small as possible. From
Figure 11-1 we can read off that 0 < 1 since we assumed transitivity o f the
connecting lines, and also we generally know that x < x for any arbitrary
element x.

We say that a covers b (or that 6 is covered by a) i f a > 6 and for no
c : a > c > 6 (Recall that a < b means a < b and a ^ 6.) By induction on
the length o f chains, we may prove that the covering relation determines the
partial ordering in a finite poset.

Diagrams usually represent finite posets, but infinite posets are sometime
partially represented by diagrams and need further explanation in the text
Note that the real and the rational numbers, despite their essential order-

280 C h a p t e r 11

theoretic differences, are represented by the same linear diagram, due to the
‘poverty’ o f the covering relation which determines the diagram. Dualization
o f a given poset turns the diagram upside down, but preserves the connecting
lines

Set-theoretic inclusion induces a natural partial order on the power set
o f a given set A, i.e , p (A) is a poset. We represent this inclusion relation
on the power set for the set A = {a, b, c } in Figure 11-2

Figure 11-2: The diagr am o f the poset p(A)
for A = {a, b, c}„

Intersecting Lines may not define an element In Figure 11-3 a poset is
represented in which all pairs o f elements have an upper and lower bound,
but these are not always unique. E.g., both c and d are upper bounds for
{a, b}, but neither c nor d is a supremum for {a, &}.

11.2 Lattices, semilattices and sublattices

There is a special class o f posets, called lattices, which have proven to be very
im portant in the general study o f a variety of mathematical theories includ
ing analysis, topology, logic, algebra and geometry. They have led to many

L a t t i c e s , s e m i l a t t i c e s a n d s u b l a t t i c e s 281

Figure 11-3: The diagram o f a poset with
non-unique upper and lower bounds

fruitful interactions and new results in various theories and to a productive
development o f universal algebra and more recently category theory. Lin
guistic applications o f lattice theory are currently being developed in syntax
and semantics

There are two ways o f defining lattices, one from a given poset and
the other, more in line with the group-theoretic definitions, by requiring
properties on operations We present the two definitions in this order

A poset {A, <) is a lattice i f sup{a, b} and in f{a , b} exist for all a,b £ A.
We will introduce two new operations a K b — in f {a , b }, calling a A b the
meet o f a and 6, and a V b = su p {a , 6}, calling a V b the join o f a and b. In
lattices the operations o f meet and join are always binary, i.e ., we may view
them dynamically as maps from A x A to A This allows us to characterize a
lattice as an algebra, i e, as a non-empty set with two operations with certain
algebraic properties. The four properties characteristic o f lattice operations
are:

(L I) a A a = a, aM a — a
(L2) a A b = b A a , a \ / b = b \ / a
(L3) (a A b) A c = a A (b A c)

(a V b) V c = a V (b V c)

The im portant fourth property o f lattice operations connects the two
operations. Note first that i f a < b, then in f {a , 6} = a, i e. a A b = a, and

idem potent law
commutative law

associative laws

282 C h a p t e r 11

dually, i f a > b, then sup{a, 6} — a, i e , a V 6 = a. Since a < a V b by
definition o f sup{a, b}, we let aV b substitute for b in the first equations to
derive a A (a V b) — a, Similarly, since a > a A b by definition o f in f{a , b} ,
we derive from the second equations a V (a A b) — a. Thus we have the two
absorption laws:

(L 4) a A (a V b) = a abso rptio n law
a V (a A 6) = a

Any algebra with two binary operations that have these four properties
(L l) - (L 4) constitutes a lattice. It will often be very useful to view lattices
as algebras, since all that we know about algebraic structures can readily be
transferred to lattices. In fact, we often make use o f the following theorem,
provable from (L 1) - (L 4) , about the connection between lattices represented
as posets and lattices represented as algebras.

T h e o r e m 11.1

(i) L et the poset A = (A, <) be a lattice. Set ahb = in f {a , bj and a\/b =
su p {a ,b } Then the algebra A a = (^4,A,V) is a lattice.

(ii) Let the algebra A = {^4, A ,V) be a lattice. Set a < b if f a A b = a.
Then A p = {^4, <) is a poset and the p oset A p is a lattice.

(iii) L et the p oset A = {^4, <) be a lattice. Then (A a)p = A .

(iv) L et the algebra A = (A, A, V) be a lattice. Then (A p)a = A .

■

Proof, (i) We leave it to the reader to verify that the meet and join operations
as defined in (i) satisfy (L l) - (L 4) „ Absorption becomes a = sup {a , in f {a , &}},
which is clearly true since in f{a , b} < a.
(ii) Prom a A a = a follows a < a (reflexive). I f a < b and b < a then
a A b — a and b A a = 6; hence a = b (anti-symmetry). I f a < b and b < c
then a A b = a and b A c = b, so a — a h b — a h (b he) = (a A 6) A c = aAc ;
hence a < c (transitivity). I.e., < is a partial order on A. To show that this
poset is a lattice we verify existence o f sup and in f for any a, b in A From
a = a A (a V b) and b = b A (a V b) follows a < a V b and 6 < a V 6 . So a V i>
is an upper bound o f both a and b. W e now want to show that it is a least
upper bound, i.e., i f for some c, a < c and b < c, then a V b < c, Suppose

L a t t i c e s , s e m i l a t t i c e s a n d s u b l a t t i c e s 283

a < c and b < c then a V c = (a A c) V c = c and similarly for b V c = c,
so (a V c) V (b V c) = c V c = c Hence (a V 6) V c = c. Absorption gives us
(a V 6) A c = (a V 6) A [(a V b) V c] = a V 6, i.e. aV b < c. Thus a V b = su p {a , &}.
Dual reasoning gives us a t\b — in f{a , b}
(iii) and (iv) check to see that the orderings in (A a)p, A and (A p)a are the
same. ■

These facts guarantee a sm ooth transition between lattices as posets and
as algebras. We may choose whatever perspective is most convenient for our
purposes, while knowing that all results will be preserved when the same
lattice is represented differently

Duality in lattices as algebras is simply obtained by exchanging the two
operations in any statement about lattices.

Next we consider parts o f the structure o f a lattice and we will see that
the algebraic definition and the order-theoretic definition o f a lattice show
some discrepancy concerning their substructures.

If L is a lattice and L ' is a non-em pty subset o f L such that for every
pair o f elements a, b in L ' both a A b and a V b are in L ' (where A and V
are the lattice operations o f L), then L ' with the same operations restricted
to L ' is a sublattice o f L. If L ' is a sublattice o f L , then for any a, b in L '
a < b is in L ' iff a < b is in L, But note that for a given lattice L there may
be subsets which as posets are lattices, but which do not preserve the meets
and joins o f L , and hence are not sublattices o f L. An example is given in
Figure 11-4 where L = ({a , 6, c, d, e } , <) and L ' = ({a , c, d, e } , < '), which
is a lattice as poset but which is not a sublattice o f L, since in L c V d = b
whereas in L' c V d = a

In the next section we will come to understand the reason for defining
the sublattice notion algebraically, rather than on the poset representation
o f a lattice. For the present it suffices to note that the algebraic sublattice
notion is stronger than the sub-poset which is also a lattice. It is important
to realize that the above theorem about the equivalences between poset
representation and algebraic representation o f a lattice may break down
once we have to consider parts o f their structure. There are lattice-theoretic
structures which are ‘weaker’ in the sense o f representing just parts o f a
lattice with less o f its structure. The following notions are special cases o f
sublattices called semilattices A poset is a join semilattice i f sup{a, b} exists
for any elements a, b. Dually, a poset is a meet semilattice i f in f{a , b} exists
for any a, b. In a diagram, conventionally, a join semilattice is represented
top-down, and a meet semilattice bottom -up. There are again equivalent

284 C h a p t e r 11

a

Figure 11-4: The sub-poset
L ' = ({ a , c , d , e } , <) is a lattice, and a

subalgebra, but not a sublattice.

algebraic definitions: I f (A, o) is an algebra with one binary operation o, it is
a semilattice i f o is idem potent, commutative and associative. Theorem 11-1
for poset and algebraic representations o f lattices holds with the appropriate
modifications for both kinds o f serrulattices.

T h e o r e m 11.2

(i) L et the p oset A = (A ,<) be a jo in semilattice Set a V b = su p {a ,b }.
Then the algebra A a = (A , V) is a semilattice.

(ii) Let the algebra A = (A , o j be a semilattice. Set a < b iff a o b = b.
Then A p = {A ,<) is a poset and the poset A p is a jo in semilattice.

(iii) L et the poset A = (A , <) be a join sem ilattice Then (A a) p = A .

(iv) L et the algebra A = {A , V) be a semilattice. Then (A p)a = A .

The p roo f is deferred to the exercises

M o r p h i s m s i n l a t t i c e s 285

e b

Figure 11-5: A lattice with examples o f join
and meet semilattices.

11.3 M o rp h ism s in la ttice s

Mappings from one lattice to another compare their structures, algebraically
or order-theoretically.

Two lattices L i = (L 1,A,\/) and L 2 = (L 2, A, V) are (algebraically)
isomorphic if there is a bijection F from L i to L 2 such that for every a, b
in L\

(i) F (a V b) = F(a) V F(b) , and

(ii) F (a A b) = F(a) A F(b)

I f two lattices are isom orphic, F is called the lattice isomorphism , Note
that P -1 is also a lattice isomorphism, i f F is, and that if F : L i — > L 2
and F' : L 2 — > L 3 are lattice isomorphisms, then their composition F ' o F :
L i — > L 3 is also a lattice isomorphism.

Isomorphism o f lattices as posets is defined by requiring the bijection to
be order-preserving. I f P^ - (P1, <) and P 2 = (P 2, <) are two posets and
F : P i — > P 2 , F is called an order-preserving map if F(a) < F(b) holds
in P 2 whenever a < b holds in P i , Sometimes an order-preserving map is
called a m onotone or an isotone mapping.

T h e o r e m 113 Two posets which axe lattices = (L i , <) and L 2 =
(L 2, <) are (order-theoretically) isomorphic if f there is a bijection

F : L i —> L 2 such that both F and P -1 are order-preserving.

286 C h a p t e r 11

Proof. (= ^) If F : L i —» L 2 is an. isomorphism and a < b holds in L i then.
a = a A b, so F(a) = F (a A b) — F (a) A F (6), therefore .F(a) < F (6), and F
is order-preserving. Dually, the inverse o f an order-preserving isomorphism
is also order-preserving.
(<£=) Let F : L i —» L 2 and its inverse i *1-1 be order-preserving. If a, b in
L i then a < a V b and b < a V 6, so F (a) < F (a V b) and F(b) < F(a V b),
therefore F(a) V F(b) < F(a\/ b). Suppose F(a) V F(b) < c, then F(a) < c
and F(b) < c, and then a < F _ 1(c) and b < F ~ 1(c), so (aV b) < F ~ 1(c) and
therefore F { a V b) < c. It follows that F (a) V F(b) = ^ (a V 6) Dually, it is
provable that F (a) A F (6) = F (a A 6), ■

The diagrams can represent such order-preserving mappings clearly. Fig
ure 11-6 shows an order-preserving bisection F(a) = a , . . , , F(d) = d from a
lattice to a chain which is not an algebraic isomorphism.

a

Figure 11-6: An order-preserving bisection
which is not an isomorphism

The following notions are weaker than isomorphisms, and often suffice to
characterize the structural similarity between two domains, especially when
the mappings are intended to represent information-preserving relations.

A homomorphism o f the semilattice = {S 1 , 0) into the semilattice
S 2 = {*52, °) is a mapping F : S i —» S 2 such that F (a 0 b) = F (a) 0 F(b).
Since any lattice consists o f a join and a meet semilattice, this hom om or
phism notion is split into a join homomorphism and a m eet homomorphism.

F i l t e r s a n d i d e a l s 287

A (full) lattice homomorphism is a map that is both a join and a meet
homomorphism, i.e. a map F such that F (a V b) = F(a) V F(b) and
F (a A b) = F(a) A F (b) .

Note that lattice homomorphisms and join and meet homomorphisms
are order-preserving, but the converse is not generally true. In Figure 11-7
the three diagrams show the distinct notions; (11-7 1) is an order-preserving
mapping that is neither a join nor a meet homomorphism (c f Figure 11-
6), (11-7.2) a join homomorphism that is not a meet homomorphism and
(11-7.3) a (full) lattice homomorphism.

(7.1) (7 2) (7,3)

Figure 11-7: A n order-preserving mapping,
a join homomorphism and a lattice

homomorphism

Finally we define an embedding o f a lattice L i into a lattice L 2 as an
isomorphism F from into a sublattice o f L 2 I f such an embedding exists,
L 2 contains a copy or an image o f as sublattice. This notion will be useful
in determining whether a given lattice has a special structure, as we will see
below in Section 11 5.

11.4 F ilte rs an d ideals

In a lattice we may construct various special subsets with nice properties
based on their closure under the ordering relation and the operations.

An ideal I o f a lattice L is a non-empty subset o f L such that both o f
the following hold:

(i) i f a £ / , b £ L and b < a, then b £ I

(ii) i f a, b £ I , then (a V b) £ I

288 C h a p t e r 11

An ideal I is proper i f I ^ L and I is maximal i f it is not contained in
another proper ideal o f L

Dualizing these notions, we define a filter F o f a lattice L as a non-empty
set o f L such that both o f the following hold:

(i) if a € F , b 6 L and b > a, then b 6 F

(ii) if a, b 6 F , then (a Ab) £ F

A filter is proper if F 7= L and F is maximal if it is not contained in another
proper filter of L Maximal filters are often called ultrafilters.

The set o f ideals and the set o f filters o f a lattice are closed under finite
intersection, and under arbitrary intersection in case the intersection is not
empty (proof is an easy exercise). This finite intersection property guaran
tees existence o f the least ideal generated by any non-empty subset X C L,
written as (X], I f X is a singleton { » } C L , then we often write (»] and call
this a principal ideal (Dually, the filter [X) generated by X C L, etc).

I f L is a lattice and I (L) the set o f all ideals in L, then I(L) is a poset with
set inclusion and constitutes a lattice, called the ideal lattice. Together with
the (provable) claim that any non-em pty subset of I(L) has a supremum,
which makes I (L) a complete lattice, we may prove that L can be embedded
in I (L) by an embedding function G (x) = (»]. Sometimes the image o f
this embedding G is called the ideal representation o f a lattice (dually, filter
representation), The p roo f appeals to a form o f the axiom o f choice but
requires no ingenuity and can be found in any standard reference on lattices
(e.g. Gratzer (1971)),,

To illustrate this notion o f an ideal representation, consider the following
simple lattice L = ({ a ,b , c , d } , <) in Figure 11-8,
The set of all ideals in L, I(L) , consists o f {a , 6, c, d}, { b, c, d}, { b, d}, {c , d}
and the principal ideal {d }, (W hy is e.g. {a, b, d} not an ideal?) L can be
embedded into I(L) by the following embedding function: G : L —> I(L)
such that

G(a) = { a , b , c , d }
G(b) = { b , d }
G(c) = { c , d }
G(d) = { d }

The ideal representation o f L is { { a , b, c, d} , { b , d} , {c, d}, {< i } } ,
The following notions provide ‘bounds’ to a lattice in a very general way.

An element a o f a lattice L is join-irreducible if a = b V c implies that a — b

F i l t e r s a n d i d e a l s 289

a

d

Figure 11-8

01 a = c; dually, a is meet-irreducible i f a = b A c implies that a = b 01 a — c.
We call a lattice L = (L , A, V, 0 ,1) a bounded lattice if

(i) (L, A, V) is a lattice

(ii) x A 0 = 0 and x V 1 = 1, for any arbitrary element x,

These notions will again be useful in Chapter 12
The following is an important theorem establishing a connection between

join homomorphisms and ideals.

T h e o r e m 11,4 I is a proper ideal o f the lattice L iff there is a. join hom o
morphism G from L on to the two element chain C = { {0 ,1 } , <) such that
I = G _1(0), i.e I = {x \ G{ x) = 0}, ■

Proof. (= ») / is a proper ideal and let G be defined by G(x) = 0 if x £ I
and G(x) = 1 i f x I, which obviously is a join homomorphism,
(•$=) If G : L —» C is a join homomorphism and I = G _1(0), then for any
a,b £ 1, G(a) = G(b) — 0. So G (a V b) — G(a) V G(b) = 0 V 0 = 0, hence
(a V b) £ I If a £ I and x £ L with x < a, then G(x) < G(a) = 0, i e
G(x) = 0, so x £ I. Furthermore, G is onto, so I ^ L, i.e I is proper ■

O f course Theorem 11.4 may be dualized for proper filters.

290 C h a p t e r 11

11.5 Complemented, distributive and modular lat
tices

In this section we will discuss some particularly well-known lattices which
have additional properties and operations providing more structure.

In a bounded lattice L we call the least element a, i.e a < b for any
b £ L, the bottom or zero of L, conventionally writing it as 0. Similarly,
the greatest element in a bounded lattice is called the top or unit of L,
conventionally written as 1. A bounded lattice L = (L, A, V ,0 ,1) is said to
be complemented if for each a £ L there is a b £ L such that

(C l) a V b = 1

(C 2) a A b = 0

and b is called the complement of a In general an element in a lattice may
have more than one complement or none at all. A lattice L is relatively

complemented if for any a < b < c in L there exists d in L with

(R C l) b A d = a

(R C 2) b V d = c

and d is called the relative complement of b in the interval [a, c], A lattice L
is distributive if it satisfies either one of the distributive laws

(D l) a A (b V c) = (a A b) V (a A c)

(D 2) a V (b A c) = (a V b) A (a V c)

Since (D l) entails (D 2) and vice versa (see exercises), satisfaction of
either one suffices for a lattice to be distributive

It is important to realize that any lattice already satisfies the two lattice
inequalities

(L Il) [(a A b) V (a A c)] < [a A (6 V c)]

(LI2) [a V (b A c)] < [(a V b) A (a V c)]

Hence to check for distributivity of a lattice it suffices to check the in
verses o f these inequalities, which together entail (D l) and (D 2)

A lattice L is modular if it satisfies the modular law

(M) a < b —» [a V (b A c) = b A (a V c)]

C o m p l e m e n t e d , d i s t r i b u t i v e a n d m o d u l a r l a t t i c e s 291

Again since any lattice satisfies a < b —> [& A (aV c) < aV (b Ac)] checking
the inverse inequality suffices to demonstrate modularity in a lattice.

The following theorem is str aightforward.

T h e o r e m 11.5 E very distributive lattice is modular ■

Proof. I f a < b, a\/ b = b and use this in (D 2). ■

Non-m odularity and non-distributivity of a lattice can be verified by
embedding two special five element lattices into it, represented by the dia
grams NM (N on-M odularity) and ND (Non-Distributivity) in Figure 11-9.
These results belong to the core of lattice theory, and are due respectively
to Dedekind and to the founder of lattice theory, Birkhoff

N M N D

Figure 11-9: Diagrams for non-modularity
and non-distributivity

T h e o r e m 11.6 (D edekind) L is non-modular iff diagram N M can be em
bedded into L ■

Proof. (<£=) In NM a < b, but it is not the case that a V (b A c) = b A (a V c),
so L contains a copy of a non-modular lattice and hence cannot itself be
modular.
(= >) Suppose L does not satisfy the modular law, then we will construct
a diagram isomorphic to NM as sublattice. For some a, b, c in L we have
a < b, but a V (b A c) < b A (a V c) Let a i = a V (b A c) and b\ = b A (a V c)

c A b

Then c A &i = c A [b A (a V c)]
= [c A (c V a)} A b commutative, associative laws
~ c A b absorption

and c V a i = c V [a V (b A c)]
= [c V (b A c)j V a commutative, associative laws
= c V a absorption

Since c A b < aj < bj we have c A b < c A < c A J j = c A b, so
c A ai = c A bi = c Ab Similarly for c V bi = c V a! = c V a It is easy to see
that the above diagram is isomorphic to and hence a copy o f NM ■

T h e o r e m 1 1 7 (B ir k h o ff) L is a n o n -d is tr ib u t iv e la t t ic e i f f N D can b e
e m b e d d ed in to L ■

Proof. (^==}a V (b A c) = (a V b) A (a V c) does not hold in N D , so if ND can
be embedded in L, it cannot be a distributive lattice
(= ^) Suppose L is non-distributive, i e for some a,b,c € L, [(aAfe)V(aAc)] <
[a A (b Vc)]. Assume also that L does not contain a copy of NM as sublattice,
i e j £ is modular. Define the following elements, in order to construct a
sublattice in L which is isomorphic to ND,

d = (a A b) V (a A c) V (b A c)

e = (a V b) A (a V c) A (b V c)
aj = (a A e) V d
b\ = [b A e) V d
cx = (c A e) V d

Now d < a i ,b i ,c i < e

C o m p l e m e n t e d , d i s t r i b u t i v e a n d m o d u l a r l a t t i c e s 293

e

With absorption we derive from (a A e) = a A (b V c), that

a A d = a A ((a A 6) V (a A c) V (6 A c))

Modularity allows exchanging a and (a A 6) V (a A c)

= ((a A 6) V (a A c)) V (a A (6 A c))
= (a A 6) V (a A c)

Now it follows that d < e To show that the above diagram is a copy of ND
in L, we prove a\ A b\ = a\ A ci = b1 A Ci = d and dj V b1 = % V Ci =
b\ V Ci = d

We prove this here for one case only, the others are similar.

®i A b\ = ((a A e))l_d) A ((6 A e) V rf)
((a A e) A ((6 A e) V rf) V d
((a A e) A ((b V d) A e) V d
((a A e) A e A (6 V rf)) V d
((a A e) A (6 V d)) V
(a A (6 V c) A (6 V (a A c))) V
(a A (b V 6 V c) A a A c))) V
(a A (6 V (a A c))) V
(a A c) V (6 A a) \J d
d

■

modularity
modularity
comm, assoc
idempotent
absorption
modularity
a Ac < b\/ c
modularity

The following theorems indicate clearly the force of complementation in
distributive lattices and correlate it to the weaker notion of relative comple
mentation.

T h e o r e m 11.8 In a distributive, complemented lattice each element a has
a unique complement a” , ■

294 C h a p t e r 11

Proof. Suppose there were two complements a" and bx of a, then a* =
a" A 1 = a" A (a V b“) = (a* A a) V (a* A &*) = 0 V (a* A &*) = a" A similarly
b* — a* A so a* = 6*. ■

T h eorem 11,9 In a distributive lattice relative complements are unique, if
they exist ■

Proof. Let L be a distributive lattice with a < b < c in L If d and d1 were
both relative complements of b in the interval [a, c], then

d — d A c
d A (b V d')
(d A 6) V (d A d!)
(d A d')

Similarly, d' = (d A d1), so d = d'

T h eo rem 11.10 In a distributive lattice, if a has a complement, then it has
a relative complement in any interval containing it. ■

Proof. Take b < a < c and let d be the complement of a and x = (d V b) A c
the relative complement o f a in [b,c], To prove a A x — b and a V x — c.

a A x = a A ((d V b) A c) = ((a A d) V (a A b)) A c = (0 V b) A c = b,

a V x — a V ((d V b) A c) — (a V d V b) A (a V c) = 1 A (a V c) = c

T h eo rem 11,11 In a distributive lattice, if a and b have complements a“
and 6*, respectively, then a A b and a V 6 have complements (a A b) ' and
(a V 6)*, respectively, and the de Morgan identities hold:

(i) (a A bY = a* V 6*

(ii) (a V 6)* = a ' A 6*

E x e r c i s e s 295

Proof- By Theorem 11.8 we only need to prove (i) by verifying

(a A b) A (a“ V £>“) = 0 and (a A b) V (a“ V b“) = 1

(a Ab) A (a* V 6“) = (a A 6 A a*) V (a A 6 A 6") = 0 V 0 = 0 ,

(a A 6) V (a* V i>”) = (a V a” V T) A (t V a“ V ii") = 1 A 1 = 1

The proof of (ii) is an exercise

Exercises

1. Which of the posets in the diagrams of figures 11-1, 11-2 and 11-3 are
lattices?

2. (i) Which of the following sets of sentences can be formally repre
sented as posets (each name corresponds to an element):

(a) Alan is a descendant of Bob and Carol Carol is a descendant
of David and Eliza, Bob is a descendant of Fred and Gladys

(b) as in (a) adding: Fred and Eliza are descendants of Henry
and Isabella,

(c) as in (a) adding: Everyone is a descendant of Adam,

(d) David and Eliza, who told Fred about it, were told by Bob
and Carol, after Alan told them both,

(e) Jane told Jim and Joseph, who either told Jenny directly or
she heard from Julius who had heard from them.

(ii) Draw diagrams for the posets in (i) and indicate which are semi
lattices and/or lattices,

(iii) For the lattices in (i) compute all meets and joins

3 . Describe the poset formed by the power set of a four-element set and
draw its diagram, W hat corresponds to the set-theoretic operations in
an algebraic representation of this lattice? Check whether they satisfy
(L4)„

4 . Formulate and prove the dual of Theorem 11.2 for meet semilattices.

5. Draw a diagram for a meet homomorphism which is not a join ho
momorphism from a four-element lattice to a four-element chain and
prove it does not represent a lattice homomorphism.

296 C h a p t e r . 11

6. Prove that the distributive laws (D l) and (D 2) are equivalent.

7. Prove that in a complemented distributive lattice a — (a*)’".

8. Prove the second o f the de Morgan identities o f Theorem 11,11.

9. Supply the laws used for each o f the proofs o f Theorems 11,8-11 11

Chapter 12

Boolean and Heyting
Algebras

12.1 Boolean algebras

In this chapter we discuss two well-known algebras as specially structured
lattices and prove some of their properties as well as present some semantic
interpretations of these structures,

A Boolean lattice B L = (L, A, V, *, 0, 1) is a complemented distribu
tive lattice, A Boolean algebra is a Boolean lattice in which 0 , 1 and * (com
plementation) are also considered to be operations; i.e B A = (B , A, V, *,
0, 1) where V and A are the usual binary operations, * is a unary operation
and 0 and 1 are taken to be nullary operations, which simply pick out an
element of B. For easy reference, we repeat and relabel the laws which a
B A = (B, A, V, *, 0 , 1) obeys:

(BO) B A is an algebra

(B l) A ssocia tiv e Laws

(i) a A (6 A c) = (a A b) A c

(ii) a V (6 V c) = (a V b) V c

(B 2) C o m m u ta tiv e Law s

(i) (a A b) — (b A a)

(ii) (a V b) = (6 V a)

(B 3) D istrib u tive Laws

(i) a A (6 V c) = (a A b) V (a A c)

297

298 C h a p t e r 12

(ii) a V (b A c) = (a V b) A (a V c)

(B 4) T op and B o t t o m Law s

(i) a A 1 = a and a A 0 = 0
(ii) a V 0 = a and a V 1 = 1

(B 5) C o m p le m e n ta t io n Law s

(i) a A a* = 0
(ii) a V a* = 1

Often in the literature a special two-element Boolean algebra, called B O O L
or 2 is used to represent the two truth values ‘false’ and ‘true’ where 0 < 1,
0 = 1* and 1 = 0*

In a B A an element a is called an atom when a covers 0, The dual notion
is less frequently encountered, but defined as an element a which covers 1,
called the dual atom A B A is called an atomic B A when it contains an
atom a for each o f its non-zero elements * such that a < x. Any finite B A
is atomic and an atomic B A may not be dually atomic,

We prove some central theorems about B A which illustrate their power
and structural elegance,

T h e o r e m 12,1 In a B A an element is join-irreducible iff it is an atom. ■

Proof: (<£=) If a is an atom then a = 6 V c means that 6 = a or 6 = 0; i f 6 = 0
then a = 0 V c = c; so a is join-irreducible,
(=>) Suppose a is not an atom ox 0, then a > x > 0 for some element x.
W hen x < a, a = a A l = a A (* V **) = (a A *) V (a A * *) = x V (a A **).
Since a Ax* < a and a Ax* = a would imply ® = a A * = aA* >FA* = 0,w e
know a A x* < a, hence a would be join-reducible, ■

The definitions o f ideals and filters in a lattice given in Chapter 11 carry
over directly to ideals and filters in B A , but note the additional fact that in
a B A 0 is an element of every ideal and 1 is an element o f every filter Due
to the strong notion o f complementation and the universal top and bottom
element in any B A we have the following strong correlation between ideals
and filters

T h e o r e m 12,2 In any B A (i) for any I C. B , I is an ideal iff I* is a Rltev;
(ii) for any F C B, F is a filter iff F* is an ideal. ■

B o o l e a n a l g e b r a s 299

Proof (i) Note that 0 £ I iff 1 = 0* £ I* Take a,b £ I then a V 6 £ I iff
(a V £>)* = a * A 6* £ / * If a £ I, we know 6 < a iff a* < 6*; so 6 £ I iff
b* £ /*• The proof of (ii) is obtained dually. ■

Theorem 12 3 If F is a filter in a B A , then F is an ultrafiltei iff for each
b £ B either b £ F or b* £ F ■

Proof. {<=) Suppose foi any 6 £ B either b £ F or b* £ F and take F' to
be a filtei which properly contains F, i e there is some c £ F' — F . Since
c 0 F, c* £ F C F' So F' is not proper Hence F is a maximal proper
filter, an ultrafilter.
(=£•) Let F be an ultrafilter and take b 0 F. Set F' = F U {6 } which is
not propei since F is already maximal So F U {b} does not have the finite
intersection property and for some finite subset X of F, inf(Ar) A b = 0 So
in f(X) < b*. In f(X) is in F and hence b* £ F ■

The following theorem is proven with a form of the axiom of choice, and
shows the existence of a rich class of ultiafilters in any B A .

Theorem 12,4 (The Ultiafilter Theorem) Each filter in a B A can be ex
tended to an ultrafilter. ■

Proof: Let P be the non-empty class o f all filters in some B A , partially
ordered by set-theoretic inclusion. We want to show that every chain in this
ordering in F has an upper bound. Let C - {C i : i £ 1} be a chain in F
and let C = U I f x ,y £ C , then for some i , j £ I , x £ C{ and y £ Cj
Since C is a chain, either Ci < Cj or Cj < Ci', take Ci < Cj Then x ,y £ C j
and since C j is a filter * A y £ Cj £ C I f b £ B and x < b then b £ Cj £ C
Since 0 ^ C; for any i £ I , 0 0 C So C is a filter, which is the upper bound
for C in F. W ith a form o f the axiom o f choice (called Zorn ’s Lemma) we
derive that for any filter F, B A must contain a maximal filter extending
that filter. ■

There is an important connection between ultrafilters and homomorphisms,
as indicated by the following theorem.

Theorem 12,5 Let B A i and B A 2 be two Boolean algebras and consider
a homomorphism F : B A] —> B A 2 If U is an ultrafilter of B A 2 , then
i?_1(!7) is an ultrafilter of B A^ , ■

The proof of Theorem 12,5 is not given here, since it requires a number of
algebraic concepts which have not been introduced.

300 C h a p t e r . 12

12.2 Models of B A

The Boolean laws may already have reminded you of the properties o f set-
theoretic operations, and, indeed, sets provide simple models o f Boolean
algebras Starting from any non-em pty set X a m odel for B A can be con
structed as follows:

* Let B be p (X) , the power set o f X

» Let V be set-theoretic union U

» Let A be set-theoretic intersection fl

• Let * be set-theoretic complementation ' relative to X

® Let 1 be X

» Let 0 be 0

We may verify that all Boolean laws are true under this interpretation.

(12 -1) Let X = { a , b , c } then B = { {a , 6 ,c } , {a , b } , {a, c }, { b , c } , {a } , {b} ,
{ c } , 0}, Union and intersection are as usual and the complements
are: {a , 6, c }* = 0, {a , b}* = { c } , {a , c }* = {6 } and {6, c }* = {a } .

Note that by starting from a set with n elements, we construct a B A with
2n elements, Thus for every positive power o f 2 there is a Boolean algebra
whose set has exactly that cardinality It can be proven, although we will
not do so, that every finite B A has a cardinality o f 2" for some positive n.
In Section 3 we will prove that every finite m odel of B A is isomorphic to
a particular set-theoretic m odel based on the construction described above.
Thus this family o f models is particularly important. For infinite models the
situation is not so simple. Every infinite set leads to a m odel foi B A by the
given construction, but not every infinite B A is isomorphic to one o f these
models There are, for instance, Boolean algebras o f cardinality Koi but Ho
is not the cardinality o f the power o f any set, as we know from Cantor’s
Theorem (see Section 4 4).

We can also show that the logic o f statements familiar from Part B
constitutes a model o f B A . Let L be the logical language whose syntax
was defined in Section 2 1, and S be the set o f statements generated by its
syntactic rules For s and s' £ S we write s ~ s' when s and s' are provably

R e p r e s e n t a t i o n b y s e t s 301

logically equivalent in this logic o f statements Now ~ is an equivalence
relation on S For each s £ S we define the equivalence class

Is] = (s ' e S I s ~ s '}

Let B be the set o f all such equivalence classes o f logically equivalent state
ments. Define a partial ordering on B by

Is] £ IV] iff (s —> s ') is valid

Then { B , <) is a Boolean algebra called the Lindenbaum algebra o f L. The
Boolean operations on B are defined by

M A Is'J = Is & s'J, Is] V Is']] = [s V s '], Is]* = I ~s J .

Top and bottom are then respectively

1 = Is] for any tautology s

0 = Is] for any contradiction s

An ultrafilter in the Lindenbaum algebra o f L can be identified with a
maximally consistent set o f statements, which would constitute the first step
in proving the completeness o f L through its ultrafilter representation. Such
topics belong to more advanced m odel theory and are beyond the scope o f
this book (Reference: Bell and Machovei (1977)).,

12.3 Representation by sets

The first example we gave o f a m odel o f B A was the power set algebra o f
a set, In this section we show that each Boolean algebra is isomorphic to a
subalgebra o f a power set algebra, or, in other words, each Boolean algebra
may be reprsented as a subalgebra o f a power set algebra. This important
theorem is due to M.F, Stone and is called Stone Representation. We first
need to define two new notions:

D e f i n i t i o n 12 1

(1) A ring o f sets is a family o f subsets o f a set X which contains for any
two subsets A and B o f X also A U B and A ft B.

302 C h a p t e r . 12

(2) A field o f sets is a ring o f sets which contains X and the em pty set <
and the com plem ent A ' o f any subset A C X ,

From these definitions it is easy to see that a field o f subsets of X is a Boolean
subalgebra o f the Boolean power set algebra o f X , but that a ring o f subsets
is a sublattice o f the power set algebra o f X , considered as a distributive
lattice, W e will prove that any finite distributive lattice is isomorphic with a
ring o f sets and that any finite Boolean algebra is isomorphic with the field
o f all subsets o f some finite set. (The proof follows essentially B irkhof and
MacLane, 377-380),

From Section 12,1 we need Theorem 12,1 and we define a set 5 (a) = {* |
x < a and x covers 0} o f join-irreducible elements * for an element a in any
finite lattice L Consider the mapping F which assigns each element a its
5 (a),

L e m m a 12 1 In any finite lattice L , F carries m eets in L into set-theoretic
intersections: 5 (a A b) = 5 (a) fl 5(6), ■

Proof. B y definition o f a A 6 we know that for any join-irreducible element
x, x < a A b i f f x < a and x <b, ■

L e m m a 12,2 In any finite distributive lattice L , F carries joins in L into
set-theoretic unions: 5 (a V 6) = 5 (a) U 5(6). ■

Proof. Take any join-irreducible *, then * is contained in a V 6 iff * =
x A (a V 6) = (* A a) V (x A 6), Now x A a — x or x A 6 = x. So (a V b)
contains * iff 5 (a) contains * or 5 (6) contains x. The converse is obvious in
any lattice , ■

These two lemmas show that F is a homomorphism from L onto a ring
o f subsets o f the set X o f join-irreducible elements o f L, Together with the
result o f Exercise 3 at the end o f this chapter we know that F is also a
one-to-one onto homomorphism, So we know

T h e o r e m 12,6 A n y finite distributive lattice is isomorphic with a ring of
sets. ■

H e y t i n g a l g e b r a 303

I n the case o f a finite Boolean algebra we know from Theorem 12,1 that each
e l e m e n t a is the join o f the atoms x < a. W ith the above two lemmas we
know

5 (a) fl 5 (a ') = 5 (a A a*) = 5 (0) = 0

5 (a) U 5 (a ') = 5 (a V a*) = 5 (1) = J

where J is the set o f all join-irreducible element o f L, So [5(a)]* = 5 (a ')
and F as defined above is an isomorphism from any Boolean algebra to a
field o f subsets o f join-irreducible elements o f L. We still need to prove that
this field contains all sets o f join-irreducible elements o f L.

TH E O R E M 12 7 A n y finite Boolean algebra is isomorphic with the Boolean
algebra, o f all sets o f its join-irreducible elements ■

Proof. We need to prove that for any two distinct sets o f join-irreducible
elements o f L the joins o f each set are distinct. The claim that the join o f
all elements in such a set contains all the join-irreducible elements o f that
set and nothing else follows from

L e m m a 12,3 I f A is a set o f join-irreducible elem ents, and there is some
join-irreducible elem ent a such that a < V {* I * 6 A }, then a £ A. ■

Proof, a = a A V {* I x 6 A } = V (a A *) and since a is join-irreducible for
some such * £ A , a A * = a, so 0 < * < a. But then a = x. ■

The significance o f Stone Representations for representing information
and structuring models for the semantic interpretation o f natural language is
discussed in Landman (1986), The mathematical im port o f Boolean algebras
can be illustrated further by relating them to certain topological structures
and so called Boolean spaces, but the interested reader should consult the
exposition o f such topics in Gratzer (1971) or Bell and Machover (1977)

12.4 Heyting algebra

Besides Boolean lattices and algebras which are used to represent such log
ical systems as the classical logic o f Part B, there are other, weaker lattice
theoretic structures and corresponding algebras which represent constructive
reasoning based on a stricter notion o f p roo f by rejecting any use o f reductio
arguments. In the semantics o f natural language attention has recently been

CHAPTER. 12

P (A)

X '

X ' - Y

Figure 12-1.

refocused on theories o f meaning based on verification/falsification condi
tions, or more generally, assertability conditions, which subsume the classical
truth conditions and analyze the informative content o f an expression in the
context o f use. A lthough an account o f the philosophical and mathemat
ical foundations o f such constructivist logics and their potential linguistic
applications is outside the scope o f this book, it is useful to present some of
the basic syntactic and semantic concepts to develop an initial understand
ing o f more epistemically flavored formal systems. We need to define one
additional lattice-theoretic notion.

In a lattice L the (relative) pseudo-complement o f an element a relative
to b is the greatest element c in L such that a Ac < b Note that this pseudo
complementation involves only the meet operation It is easy to see that c
is the pseudo-complem ent o f a relative to b precisely when

(12 -2) for all * in £ , x < c i f f a A x < b

e.g., in the power set lattice with the inclusion ordering, { p(A) , <), for any
sets X , Y E p(A) , X ' — Y is the pseudo-complement o f X relative to Y.
(See Fig, 12-1.) In general, we write a =>■ 6 for the pseudo-complem ent of a

relative to b, and we say that a lattice L is relatively pseudo-complemented
iff a =>■ 6 exists for every a and 6 in L,

A relatively pseudo-complemented lattice { S , A , V) is called a Heyting
lattice (or a pseudo-Boolean lattice) if it contains a bottom element 0. Define

x

Y :

H e y t i n g a l g e b r a 305

a* by setting a* = a => 0 and note that a* is the lub o f {x | a Ax = 0} , i.e. a*
is the pseudo-complement o f a (relative to 0). The dual o f a Heyting lattice is
called a Brouwerian lattice, which is studied in M cKinsey and Tarski (1946).

Correspondingly, an algebra (H , A, V, =>, 0 , 1) is a Heyting algebra
(H A) and it has the following properties:

(H I) {H, A, V) is a distributive lattice

(H 2) a A 0 = 0 and a V 1 = 1

(H 3) a => a = 1

(H 4) (a =>■ 6) A b = 6; a A (a => 6) = a A 6

T h e o r e m 12,8 A Heyting lattice is distributive. ■

Proof. In every lattice, b < b V c and c < 6 V c, so a A b < a A (6 V c)
and a A c < a A (b V c). Hence (a A 6) V (a A c) < a A (6 V c), We know
a A 6 < (a A 6) V(aAc) , so in a Heyting lattice if 6 < a, then b < (aAb)V(aAc)

and if c < a, then c < (aAb)V(aAc) So if bVc < a then (fcVc) < (aAfc)v(aAc),
thus a A (b V c) < (a A b) V (a A c), i.e., a A (b V c) = (a A b) V (a A c). ■

The notion o f a filter in a Heyting lattice can be characterized as follows:

T h e o r e m 12,9 A subset F C H is a filter o f a H eyting lattice H if f (i) F
contains 1 and (ii) i f a £ F and a => b then b £ F . ■

Proof. (<=) Suppose 1 £ F and since in a relatively pseudo-complemented
lattice a < 6 => (a A 6), we have a => (6 => (a A 6)) = 1, I f a,b £ F then
b => (a A b) £ F and a Ab £ F. I f a £ F and a < b then a => 6 = 1 £ F , so
b £ F . This proves F is a filter.
(=>) Suppose F is a filter, then 1 £ F . I f a £ F and a => 6 £ F then
a A b = a A (a => 6) £ F , since a A (a => 6) < b (by substituting a => 6 for c in
the definition o f a relatively pseudo-complemented lattice) and b < a =$■ b,

S o b £ F . m

The notion o f a filter in a Heyting lattice is used to capture closure o f a
set o f statements under their implications, as we will see in the following
section on the semantics o f Heyting algebras. We can define a pre-ordering
(reflexive and transitive) on the elements o f a filter in a Heyting lattice by

a < p b iff (a => 6) £ F

306 C h a p t e r 12

Logically equivalent statements a ~ 6 for which a < p b and b < p a form
again an equivalence class determined by the filter F, A lattice ordering
m ay be defined on elements o f such an equivalence class by |a| < |6| iff
(a =>■ 6) £ F and it is provable that the lattice obtained from this ordering is
also relatively pseudo complemented Details can be found in Rasiowa and
Sikorski (1970), among others.

12.5 Kripke semantics

In 1965 Saul Kripke published a semantic interpretation o f intuitionistic logic
based on Heyting algebras as a corollary o f his semantics for m odal logics
(see Chapter 15). Because some fruitful notions for a theory o f meaning
for natural language based on information conditions may be related to this
Kripke semantics we sketch this semantics here informally without entering
into the axiomatization or metatheory o f intuitionistic logic

The core idea o f Kripke semantics is to relativize the truth o f a statement
to tem poral stages or states o f knowledge. So a statement is not simply
true but rather true at a stage or in a state o f knowledge, which we will
generally call an inform ation-state We take these information-states to
be ordered temporally, i.e. assuming a partial order which represents the
different alternative ways in which we may gradually acquire and extend
our knowledge and information. So the set o f information-states does not
just contain the past stages o f information gathering but also all possible
future states to which we may get from what we now actually know. We
also assume that we share such information-states as a community o f (formal
or natural) language users rather than thinking o f them as internal mental
representations as the founder o f intuitionistic logic, L. Brouwer, suggested.

A sentence which is true at an certain information-state will always be
true at later states, since once we have verified a statement we never lose
that information (this is the idealization of the language user in seman
tics!). Hence we require that truth o f a statement at an information-state
persists through all consecutive information states. More formally, the set
o f information-states in an interpretation forms a poset under the temporal
order called a Kripke-frame P = (P, <). The interpretation o f a statement
corresponds to the subset o f information-states at which the statement is
true. Persistence o f truth is tantamount to requiring such subsets to be
filters on P or hereditarily closed under the tem poral ordering.

The collection of filters on P will be written P + . We define a Kripke-

K r i p k e s e m a n t i c s 307

valuation to be a function from the set o f statements to the set o f filters
y ; S —» P + > assigning to each statement s £ S a filter F (s) C P, i,e. the
ixxformation-states at which s is true. A model based on a Kripke-frame is a
pair M = (P , F) where V is a Kripke-valuation Now we define recursively
the notion o f tiuth at an information-state for all com plex statements (we
leave the syntax o f the statements implicit as it is essentially the syntax o f
the logic o f statements in Chapter 6)

We define a notion M| —p s which is to be read as ‘the statement s is
true at information-state p in the m odel M ,,’

(1) M| = p s for s an atomic statement i f f s £ F (s),

(2) M| = P s & s' iff M| = p s and M| = p s'

(3) M| — p s V s' iff M| — p s or M| = p s'

(4) M| = p~ s iff for all p' such that p < p' not M| = pi s

(5) M| = P s i-> s' iff for all p1, p < p' i f M| = pi s then M| = p> s'

Thus at information-state p the negation o f a statement s is true when the
statement can never become true or verified at any later possible stage.
A conditional statement is true when at all later stages which verify the
antecedent the consquent is verfied as well, The advantage o f introducing
information-states is that they are used to quantify over possible extensions
of the actual information-state in defining verification o f negative statements
and conditionals,

Unrelativized truth can be defined as truth at all information-states and
a statement is valid on a Kripke-frame if it is true on all models based on
that frame.

I f we extend this definition o f truth at an information-state to the full
predicate loigc including the universal and existential quantifiers, we need
to put some further conditions on the clauses for statements as well. I f
we analyze the internal structure o f statements, we can only verify such
quantificational statements when we know ‘what they are about,’ i.e., when
we know the reference o f the terms that occur in such quantified statements,
More informally speaking, we do not know how to verify (or falsify for that
matter) an English sentence John is old when we do not know to whom John

refers or who John is.
For similar reasons we require that (i) each information-state is assigned

a non-empty set o f objects which act as ‘referents’ for individual constants

308 C h a p t e r 12

and variables, and (ii) successive states only add referents. Then clause
(1) above is extended to incorporate the requirement that F (s) picks only
objects from this ‘referent’-set as interpretations o f the individual variables
and constants occurring in s (an atomic formula o f a predicate logic) For
disjunction we require that all terms o f both disjuncts are interpreted by
objects from the referent-set at the stage o f evaluation o f the disjunction
and similarly for conditionals and negations. The quantifier clauses to be
added are defined as follows:

(6) M| —p (V z)^ iff for every p' such that p < p' M| = p< <p(x/t) where t
is an object from the referent-set o f p' .

(7) M| = p (3 x)ip iff M| = p <p(x/t) where t is an object from the referent-
set o f p.

From these recursive clauses we can see that the law o f double negation, al
though valid in classical logic, is not valid in a Kripke semantics. Note how
ever that verification o f a formula entails verification o f its doubly negated
form but not vice versa (if M| = p s then M| = p~ ~ s), and a negative for
mula is equivalent to its triply negated form (M| = P~ s iff M| = p~ ~ ~ s).
Also the classical law o f excluded middle (every formula or its negation is
true) does not hold in Kripke semantics.

On the basis o f a syntactic specification o f the intuitionistic logical sys
tem and this Kripke semantics we can prove the important completeness and
soundness theorems, and Kripke semantics can also be formulated by seman
tic tableau rules (as it originally was) We will not discuss such metatheo-
retic issues o f intuitionistic logic here, but rather point out the connection
between Kripke semantics and Heyting algebras.

Since the intersection and union o f two filters axe filters too, the poset
P+ _ (p +, <) based on the set of filters with inclusion is a bounded dis
tributive lattice with meets and joins given by intersection and union, P~
is indeed a Heyting algebra such that for any A, B £ P + A => B is the
pseudo-complement o f A relative to B. We have for all filters F,

F < A => B iff A(~\F < B

and
A* = A => 0

Now a Kripke-valuation 7 : S h P + for a Kripke-frame P is also a valuation
for the Heyting algebra P + , This connection can be used to show that

ouy

Kripke-validity on the frame P is the same as validity in a Heyting algebra
P+

For a semantics o f natural language Kripke semantics may have to be
extended beyond its verification conditions to include recursive falsification
conditions defining falsity o f a formula in an information-state. This would
allow for a more interesting treatment o f positive and negative facts, as
well as a more adequate analysis o f conditionals An im portant current
research question is how modal verbs and conditionals may be analyzed
as constraining the set o f possible extensions o f a given information-state
as rules or constraints which determine patterns of information growth or
restrictions on possible ways o f gathering new information. The interested
reader will find further references in the suggested further reading for this
chapter

Exercises

1. Prove that in any Boolean algebra i f a A b = 0 and a V b = 1 then
a = 6*

2. Prove the idem potence o f the meet and join operations from the other
Boolean laws.

3. Show that in a finite Boolean lattice every element is the join o f some
join-irreducible elements. (Hint: you need induction on n when n is
the number o f elements * < a for given a, and the base o f the induction
is the bottom element).

4. Prove for any join-irreducible element a o f a distributive lattice, if
a < b V c then a < b or a < c

5. Prove for any relatively pseudo-complem ented lattice with a top ele
ment 1 that

(i) a => a = 1

(ii) a < 6 i f f a = > 6 = l
(iii) b < a b

6. Prove that any finite lattice is a Heyting lattice

7. I f { B , A, V, *, 0, 1) is a Boolean algebra then for any a,b £ B define
a i-> b to be a* Vfc. S h o w th a t (5 , A, V, 0, 1) is a Heyting algebra,

Review Exercises

1. Following the procedure used in Theorem 10 1 prove that in a group,
y = a~1 o b is the unique solution o f a o y = b.

2. Construct a commutative group with five elements.

3. Let the operation * y be defined as * + (y — 3). Show that the set G
o f all integers forms a group with respect to this operation and that 3
is the identity element o f this gr oup . W hat is the inverse element for
an integer z?

4. (a) List four different subgroups of the group o f all integers under
ordinary addition.

(b) For each o f these subgroups, state whether it is isomorphic to the
original group. If so, prove it and if not explain why not

5. Determine all the possible isomorphisms between the group o f the in
tegers {0 ,1 ,2 ,3 } with addition m odulo 4 and the group o f rotations o f
the square { I , R . R 1, R "}.

6. Let A = { a, b , c } Find all the distinct one-to-one correspondences
from A onto A Construct composites o f all pairs o f these one-to-one
correspondences and express your results in the form o f a multiplication
table. W hat sort o f mathematical configuration is represented by this
multiplication table?

7. Let A ” be the set o f all strings formed from some finite set A For all
strings x and y m A* x is said to be a conjugate o f y iff there are
strings u and v such that x = uv and y — vu

(a) Show that conjugacy is an equivalence relation and describe the
partition it induces on A *, For a string xn o f length n what are
the maximum and minimum number o f strings in the equivalence
class containing xn?

311

312 R e v i e w e x e r c i s e s

(b) P iove that if x is a conjugate o f y there is a string 2 such that
xz = zy

(c) Let T = {Ti , T2> I 3 , I 4} be the set of functions each of which
maps a string in A o f length 4 into one o f its conjugates, e.g,, Ti
maps a ia 2a3a4 into 0 ^ 2 0 30 4 and T2 maps 0 ^ 2 0 30 4 into 020304a!.
Show that the operational structure consisting of T and the op
eration o f composition o f functions is an Abelian group

8 . Each o f the following is a system o f the form A = (A, ® , 0) consist
ing o f a set and two binary operations For each system, answer the
following questions:

(a) W hich o f the group axioms are satisfied by (A ,®)?

(b) W hich of the group axioms are satisfied by (A , 0) 1

(c) Is A an integral domain? I f not, which axioms are not satisfied?

(1) A = the set o f all integers
® = ordinary addition
0 = ordinary multiplication

(2) A = the set o f all non-negative integers
® = ordinary subtraction
0 = ordinary multiplication

(3) A = { 0 ,1 ,2 , ,2 4 }
© = addition modulo 25
0 = multiplication m odulo 25

(4) A = { 1 ,2 ,3 , .. ,9 ,1 0 }
® = addition modulo 11

0 = multiplication m odulo 11

(5) A = {1 ,5 ,7 ,1 1 }
® = addition m odulo 12

0 = multiplication m odulo 12

(6) A — the set o f all rational numbers p/q with 0 < p/q < 1
© = ordinary addition
0 = ordinary multiplication

(7) A = the set o f all integers
® = ordinary addition

R e v i e w e x e r c i s e s 313

0 defined by a © 6 = 0 for all a, b £ A

9. Prove the following laws for integral domains. (You may use the results
o f previous problems as well as the axioms and theorems from the text,)

(a) (a + 6) • (c + d) = (ac + be) + (ad + bd) for all a, b, c, d

(b) —0 = 0 (Note: — x stands for “additive inverse o f * _1 stands
foi “multiplicative inverse o f * ”)

(c) I f a b = 0, then either a = 0 or b = 0

(d) - (- a) = a

10. The following correspondences are many-one mappings of the multi
plicative group o f all non-zero real numbers on part o f itself. W hich
are homomorphisms? For those which are not, show why not. (*For
those which are, prove that all the requirements are satisfied,,)

(a) x i—̂ [*[

(b) * i-> — *

(c) x i—̂ 2x

(d) x i-> 1/x

(e) x >-+ x 2

11.* W hich o f the following relations R are equivalence relations? For those
which are, describe the equivalence classes.

(a) G is a group, 5 is a subgroup o f G, and R is the set o f all ordered
pairs (a, b) with a, b in G such that a -1 • b £ S.

(b) J is the integral domain o f all integers and R is the set o f all
ordered pairs (a, b) with a,b in J such that a + (— b) is even,

(c) J is the integral domain o f all integers and R is the set o f all
ordered pairs (a, b) with a,b in J such that a + (—b) is odd-

12. (a) Construct a group o f symmetries o f an equilateral triangle anal
ogous to the group o f symmetries o f the square (There should be six
elements altogether)

(b) Find all subgroups of that group

314 R e v i e w e x e r c i s e s

(c) Construct a homomorphism between the whole group and one of
its proper subgroups.

13. Prove using the axioms o f Boolean algebras that the set o f elements of
a Boolean algebra cannot form a group under the union operation,

14. Prove in a relatively pseudo-complemented lattice

(a) a = 6 i f f a = > 6 = l = 6 = > a

(b) 1 =» 6 = b

(c) a < b => (a A 6)

Part D

ENGLISH AS A FORMAL
LANGUAGE

Chapter 13

Basic Concepts

Richard M ontague was the fust to seriously propose and defend the thesis
that the relation between syntax and semantics in a natural language such
as English could be viewed as not essentially different from the relation
between syntax and semantics in a formal language such as the language of
first-order logic W hile M ontague’s claim was and is a controversial one, both
the perspective he offered and the technical apparatus used in developing it
have transformed the study o f natural language semantics, In this section
we focus first on the principle o f compositionality and its central role in
articulating the relation o f semantics to syntax in a formal language. The
principle is also known as Frege’s principle, and Montague took himself to be
formalizing a basically Fregean viewpoint in adopting it. The second topic of
this chapter is the lambda calculus, invented by Alonzo Church in the 1930’s
but introduced to linguists mainly through M ontague’s work. The lambda
calculus has no intrinsic connection to the principle o f compositionality, but
it has proved to be one o f the most important and fruitful tools in the formal
semanticist’s toolbox , and without it, it would be much harder to make a
plausible case for the compositionality o f natural language semantics. For
a linguist interested in semantics, we would suggest that a familiarity with
the basics o f the lambda calculus could be as important as a familiarity with
first-order predicate logic

13.1 Compositionality

The term “semantics” is used in a variety o f ways in a variety o f fields; prob
ably the only com m on denominator among these is that semantics must

317

318 C h a p t e r 13

be concerned with meaning, but “meaning” is i f anything an even vaguer
term Am ong logicians, however, the term “semantics” has had a relatively
precise usage, at least in the dominant Western tradition reflected, say in
Donald Kalish’s article in the Encyclopedia o f Philosophy, and it is out of
that tradition that M ontague’s woik came. If you remember the discus
sion of syntax and semantics in Part B: Logic especially the presentation
o f the syntax and semantics of statement logic in sections 6.1 and 6 2 , and
of predicate logic in 7,1 and 7,2, you might have noted that both systems
are syntactically disambiguated, i.e , no wellformed formula has more than
one derivation, Quantifiers and connectives in formulas always have a de
terminate and fixed scope Furthermore, the semantic interpretation of any
statement oi predicate logical formula is obtained via a systematic semantic
procedure interpreting its parts and the logical symbols connecting them.
The correspondence between the syntactic structure o f a formula and its se
mantic interpretation is in fact very tight, as we will see in this section The
principle of compositionality, oi Frege’s principle, is a way of articulating
the relevant notion of correspondence.

T h e P r in c ip le o f C o m p o s it io n a lity The meaning o f a complex expres
sion is a function of the meanings of its parts and of the syntactic rules by
which they are combined.

Construed broadly and vaguely enough, the principle is nearly uncontro-
versial, but M ontague’s precise version o f it places rather severe constraints
on admissable systems of syntax and semantics. As the wording given above
suggests, the exact import of the compositionality principle depends on how
one makes precise the notions of meaning, o f part, and of syntactic rule, as
well as on the class o f functions permitted to instantiate the “is a function
o f” requirement

In the specification of formal languages, the compositionality principle
is generally satisfied in the following way: the syntax is given by a recur
sive specification, starting with a stipulation of basic expressions of given
categories, and with recursive rules o f the following sort:

Syntactic Rule n: If a is a well-formed expression of category A and @ is a
well-formed expression of category B, then 7 is a well-formed expression of
category C, where 7 = Fi(a,j3).

In such a rule, Fi is a syntactic operation such as concatenation; we will
give illustrations of such rules below

COMPOSITIONALITY 319

The semantics is then given by a par allel recursive specification, including
a stipulation of the semantic values for the basic expressions and for each
syntactic rule a single semantic rule of the following form:

Semantic Rule n: If a is interpreted as a' and (3 is interpreted as /?', then 7
is interpreted as G ^ a 1, ^)

In such a rule, G* is a semantic operation, examples o f which we will see
below.

Note the distinction between syntactic and semantic rules as schematized
above and syntactic and semantic operations, the Fi, G^ that appeal within
the rules. W hen the compositionality requirement is taken as a constraint
on the correspondence between rules, as it is heie, it does not by itself im
pose any correspondence requirement on the operations that occur within
the rules. One might, for example, formulate a rule o f Yes-No Question For
mation for English utilizing a complex syntactic operation built up out of a
combination o f Subject-Aux Inversion, Do-Support, and the imposing o f an
appropriate intonation contour, deriving a yes-no question from its declara
tive counterpart. The task o f giving a uniform semantic interpretation rule
corresponding to such a syntactic rule is obviously very different from the
(presumably impossible) task of giving a uniform semantic interpretation
o f the operation of Subject-Aux Inversion (which occurs in a semantically
heterogeneous variety of constructions in addition to Yes-No Questions,)

13.1.1 A com positional account of statem ent logic

To illustrate, let us recast a part o f the syntax and semantics of the statement
logic o f Chapter 6 and the predicate logic given in Chapter 7 in a form which
makes the semantics explicitly compositional

The syntax o f SL, the language o f statement logic originally presented in
Section 6 ,1 , is restated below,

(13-1) The primitive vocabulary o f SL consists o f the following:

(i) a denumerably infinite set o f atomic statements which we des
ignate by the letters p, q, r, s, with primes or subscripts added
when necessary,

(ii) the following logical constants: ~ , & , V, —>, <-+ The same
symbols are used in the metalanguage to designate these sym
bols in the object language.

320 C h a p t e r 13

(iii) the punctuation symbols (,), These aie also used as names of
themselves in the metalanguage

(13-2) The set o f wffs o f SL is defined recursively as follows:

(1) B a sic C lau se : Every atomic statement is a w ff

(2) R e cu rs iv e C lauses:

(2.1) I f <f> is a wff, then the result o f prefixing ~ to <̂> is a w ff

(2.2) I f (p and ip aie wffs, then the result o f concatenating (,
4>, & , ip, and) in that order is a wff.

(2.3) I f <p and ip are wffs, then the result o f concatenating (,
<p, V, ip , and) in that order is a wff

(2 4) I f <p and ip are wffs, then the result o f concatenating (,
(p, — ip , and) in that order is a wff.

(2 5) I f <p and ip are wffs, then the result o f concatenating (,
<p, +-+, ip , and) in that order is a wff.

The somewhat pedantic way o f stating the recursive rules above is in
tended to emphasize that the operations which apply to wffs to produce
laiger wffs include the introduction o f logical constants and punctuation
marks. Given this syntax, the only relevant parts o f a com plex w ff are its
constituent wffs. In this syntax, the logical constants are not assigned to any
syntactic category; the only category employed in the syntax is the category
o f wffs. The semantics will be stated accordingly, assigning semantic val
ues to complex wffs as functions o f the semantic values o f theii constituent
wffs and of the rules by which they were constructed, (The same language
could be given a different syntax in which the logical constants (but not
the punctuation marks) aie indeed assigned to categories (e g, ‘ one-place
connective’ and ‘two-place connective’) and receive semantic values (which
will be truth-functions); the semantic rules would then treat the connectives
as well as the wffs as parts o f complex wffs and the semantic rules would
be stated in a correspondingly different way See Dowty, W all, and Peters
(1979) or Gamut (1982, vol. 1) for explicit illustration and discussion o f this
contrast.

The semantics o f SL, as stated in Section 6 1, assigns to every complex
wff a truth value, either 1 (true) or 0 (false), based on the truth values of

C o m p o s i t i o n a l i t y 321

its constituent wffs and the syntactic rules by which they were assigned A
specification o f the semantics that meets the compositionality requirement
must therefore include a specification o f semantic values (in this case truth
values) for the atomic statements and a recursive semantic rule correspond
ing to each o f the recursive syntactic rules. Such a semantics can be stated
as follows

(13-3) Assignment o f semantic values to atomic statements: Let / be a
function which assigns to each atomic statement o f SL one o f the
two truth values 0 and 1

(13-4) The semantic interpretation o f the set o f all wffs o f SL, given an
initial valuation / for the atomic statements, is defined recursively
as follows

(1) B a s ic C lau se : I f <̂ >is an atomic statement, then the semantic
value o f 4> is f (</>).

(2) R e cu rs iv e C lauses:

(2.1) (unabbreviated) The semantic value o f the result o f pre
fixing ~ to 4> is 1 iff the semantic value of <p is 0.

(2.1) (abbreviated) The semantic value o f ~ <p is 1 iff the
semantic value o f <p is 0, (The remaining rules will be
written in their abbreviated form)

(2 ,2) The semantic value of (</> & tp) is 1 iff the semantic values
o f (p and tp are both 1.

(2 3) The semantic value o f (</> V tp) is 1 iff the semantic value
o f <p is 1 or the semantic value o f tp is 1.

(2 4) The semantic value o f (<p "0) is 1 iff the semantic value
of <p is 0 or the semantic value o f tp is 1

(2,5) The semantic value of (<f> +-+ tp) is 1 iff the semantic value
o f (p is identical to the semantic value o f tp.

Each o f the recursive semantic rules specifies an operation which applies
to the truth values of the constituent wffs to determine the truth value o f
the resulting wff The operations are those familiar from the truth tables of
Section 6,2, although here they are defined implicitly rather than explicitly

322 C h a p t e r . 13

It is clear from the statement of the syntactic rules and o f the unabbre
viated form o f the first recursive semantic rule that plain English makes a
rather cumbersome metalanguage and some succinct special-purpose nota
tion could prove useful. Notation in this area is not as standardized as in
some other parts of mathematics and logic, but we will introduce some fairly
common notational practices below

The syntax in (13-1) and (13-2) can be used in assigning each SL state
ment a unique derivation tree similarly to the syntactic trees in a Phrase-
Structure component o f a grammar of a natural language The semantic
rules in (13-3) and (13-4) will then give each tree a com positional interpre
tation, following the derivation node by node from the bottom up Here we
only illustrate the kind of tree for this syntax o f SL and its semantic inter
pretation, and defer further discussion and alternative syntaxes to SL to the
exercises o f this chapter.

The derivation of the statement ~ (p V q) is as in (13-5), The tree is
annotated with the number o f the (sub-) rule used in constructing each
node. The compositional interpretation o f (13-5) is as given in (13-6), where
it is assumed that the truth value of the atomic statements is given: false
for p and true for q Note that the annotation remains exactly the same due
to the rule-by-rule compositionality o f SL.

Strictly speaking the semantics could either be defined on wffs the way we
did in (13-1) and (13-2) with bracketing for disambiguation, or we could do
without the auxiliary bracketings and have the syntax generate the derivation-
trees. These kinds of' derivation-trees would then constitute an equivalent
but different way o f disambiguating a formal or natural language and the
com positional semantics would have to take trees rather than formulas as
the objects to be interpreted

(13-5)

~ (p V g) 2.1
I

(P V q) 2 3

/ \
P,1 2,1

C o m p o s i t i o n a l i t y 323

(13-6)

0 2.1

1 2.3

/ \
0, 1 1 . 1

13.1.2 A com positional account of predicate logic

The syntax and semantics o f predicate logic introduce several complexities
related to the greater expressive power o f predicate logic compared with
statement logic. We have to recognize the distinct categories o f predicates,
terms, and formulas, the distinction between constants and variables among
the terms, and the semantics o f variables and of the binding o f variables by
quantifiers, The last of these was presented in a somewhat informal manner
in Section 7.2, with the detailed formulation deferred to this chapter. It
is interesting to reflect on the fact that the category o f closed formulas,
or statements, plays no essential role in the com positional semantics. It is
an insight that can be traced back to Frege that we can compositionally
define semantic values for formulas from semantic values for formulas (and
predicates and terms), and then define semantic values for statements by an
extra step, but that it is impossible to give a compositional semantics for
statements using just statements as the recursive category. We return to
this issue after presenting the explicit syntax and semantics below,

The syntax of PL, the language o f predicate logic presented in Section
7.1, is restated in a different form below.

(13-7) The primitive vocabulary o f PL consists o f the following:

(i) A set o f individual constants, which we designate in the meta
language by the letters a, b, c, with and without primes, (D if
ferent object languages have their own particular sets o f con
stants, which may be finite or denumerably infinite,)

324 C h a p t e r . 13

(ii) A denumerably infinite set of
individual variables, X0, x i , X 2, • The individual constants
and the individual variables together constitute the term s.

(iii) A set o f predicates, each with fixed arity, which we officially
designate in the metalanguage by PJ1 (for the «th n-ary pred
icate) but more frequently represent as P , Q, R with primes
or subscripts as needed and the arity clear from context As
in the case o f the individual constants, particular object lan
guages will have their own particular choices of predicates,

(iv) The logical connectives of SL: ~ , & , V, —>, <-+ ,

(v) The quantifier symbols V, 3.

(vi) The parentheses), (, [,]

Together these symbols form the vocabulary of PL; more precisely, we
should think o f PL as a family o f languages, one for each choice of individual
constants and predicates (the non-logical constants) Each such language is a
language o f predicate logic; when we speak o f the language o f predicate logic
we mean the form that all these languages share, assuming some arbitrary
and representative set o f individual constants and predicates, (Note that
while different languages may use different symbols for the individual vari
ables, this is merely an alphabetic variation. All languages o f predicate logic
have a denumerably infinite set o f individual variables, and their semantics
is fixed by the recursive rules o f the semantics, not stipulated language by
language as the interpretation o f the non-logical constants is)

Given the vocabulary, the set o f formulas o f PL is defined recursively as
in (13-8) below. In the metalanguage for talking about the syntax of PL, we
need variables that range over expressions o f various categories to use in the
recursive rules, As in the statement o f the syntax o f SL, we use (f> and ip as
variables over formulas We use P as a variable over predicates, t, possibly
with subscripts, as a variable over terms (including both individual constants
and individual variables), and v as a variable over variables, (W e don’t need
to introduce any variable over individual constants in our metalanguage
because there are no rules that apply only to individual constants) Also
in our metalanguage for writing syntactic rules, instead o f writing out the
syntactic operations explicitly with mention o f concatenation, prefixing, etc.,

C o m p o s i t i o n a l i t y 325

we follow the comm on convention already illustrated in Chapters 6 and 7 o f
indicating the syntactic operation by writing its result

(13-8) The set P L o f formulas o f predicate logic is the smallest set satis
fying conditions (l) - (8) below: (Note: This “smallest set’! locution
is equivalent to adding a condition (9) which says that nothing is
in the set except by virtue o f a finite number o f applications of
(l)-(8))

(1) I f P is an n-ary predicate and Z1 : , , , tn are all terms, then
P (t ii • yin) is a formula (These are the atomic formulas,)

(2) If <p is a formula, then is a formula.

(3) I f (p and ip are formulas, then (< p & ip) is a formula.

(4) I f (j) and ip are formulas, then (<p V ip) is a formula,

(5) I f (p and ip are formulas, then (<p —> ip) is a formula.

(6) If (p and ip are formulas, then (<p +-+ ip) is a formula.

(7) I f <p is a formula and v is a variable, then (\fv)<p is a formula

(8) If (p is a formula and v is a variable, then (3 v)<p is a formula.

The definition just given is nearly identical to that given in Section 7,1
and yields exactly the same set o f formulas; the only difference is that we
have expanded what was stated as one rule into the five rules (2)-(6) and
another rule into the two rules (7) and (8) We did that in order to be able
to follow the letter o f the compositionality principle and have one semantic
interpretation rule for each syntactic rule. We couldn’t literally do that if,
for instance, rules (2)-(6) were collapsed into one rule, since each o f those
operations yields a distinct interpretation In practice it is more common
than not to collapse such rides anyway, and only if the compositionality o f a
certain grammar is challenged or uncertain is it necessary to be very precise
about the individuation of the syntactic rules and their correspondence with
the semantic rules,

Now we turn to the semantics o f PL, which was given in Section 7 2 but
not fully formally.

Remember that a m odel M for predicate logic consists o f a domain D

326 C h a p t e r 13

o f entities or individuals and F an assignment-function which provides the
interpretation o f the primitive non-logical constants o f the language, i.e. a
function which maps each individual constant to an individual in D and
each n-aiy predicate to P n to a set o f n-tuples o f individuals. (Note that
the domain may be indicated by other capitals; in 13.2.2 we use A, and
E is also commonly found.) Besides the interpretation o f the non-logical
vocabulary, we need a separate function assigning individual variables, call
it g : VAR—̂ D, The reasons why a separate variable-assignment is needed
is that the recursive manipulation of these assignment functions plays a
separate and distinctive role in the compositional semantic interpretation
o f quantified formulas. In effect, we generally have to consider all possible
assignments to the variable in a formula in arriving at the truth conditions
for the whole formula. Hence the semantic rules need to be able to refer
to and change the variable-assignments in the course o f the interpretation.
Any element o f the descriptive vocabulary, on the other hand, is interpreted
once and for all independently o f anything else in the form ula in which
it occurs, hence they are truly descriptive constants for individuals or for
predicates The interpretation o f the entire language o f predicate logic can
now be form ulated compositionally as a rule-by-rule mapping defining the
denotation o f an arbitrary complex formula relative to a given m odel and a
given variable-assignment

The denotation o f an expression a relative to a model M and an assign
ment g, symbolized [a]]M’s , is defined recursively, in parallel to the syntactic
rules given in (13-6) above, as follows:

(13 -9) (0) (a) I f a is a non-logical constant in CON\, then [a]]M’s =
F(a) .
(b) If a is a variable in VARa, then [a]]M’s = <?(a),

(1) If P is an n-ary predicate and t i , t n are all terms, then
l P (h t n) }M'3 = i iff (P J M’S, „ , . , I U M’S) e m M’3

If </), tp £ MEt, then:

(2) = = o

(3) & tp̂ M’9 = 1 iff = 1 and = 1

(4) l<j) V tp1M’9 = 1 iff = 1 or = 1

C o m p o s i t i o n a l i t y 327

(5) (<j> -> = 1 iff M M’g = 0 or M M,g = 1

(6) = 1 iff M M’g = M M,g

(7) If <f> is a formula an v is a variable, then j]Vv<fr]M'9 = 1 iff for
all d £ D , M M'gd/u = 1

(8) If <f> is a formula an t; is a variable, then = 1 iff there
is at least one d £ D such that = 1

The rules just given define semantic values for formulas compositionally
in terms o f the semantic value for their parts; in order to accomplish this,
the semantic values for formulas were taken to be truth with respect to
a m odel and an assignment. Having done that, we can now define truth
with respect to a m odel (independent of assignment) for closed formulas,
or statements. The easiest way to do it will define truth with respect to a
model for all formulas, but it is for the closed formulas that we have the
clearest idea o f what results the definition shall give, (See exercise 4 for an
alternative definition to (13-10) which gives different results for some o f the
open formulas.

(13-10) (1) For any formula <j>, (i.e (j) is a true simpliciter with
respect to M) iff for all assignments g, [4>]M 'S = 1.

(2) For any formula <j), — 0 iff it is not the case that =
1,

When working out the semantic interpretation o f a formula, then, one
first proceeds com positionally through the derivation, using rules from (13-
9); then the last step is the application o f the rules o f (13-10)

Since the semantic rules o f (13-9) m atch one-onto-one with syntactic
rules we now have a rule-by-rule compositional semantics o f Predicate Logic,
Let’s see how some simple examples o f derivations and their compositional
interpretation work out,

We will analyze the following three examples:

(i) Mary is reading a book.

328 C h a p t e r . 13

(ii) Every student is reading a book.

(iii) No student is reading a book

Keeping the quantifier prefixes as close as possible to their corresponding
predicates, their translations to predicate logic are:

(i) (3 *)(b o o k (*) & read(m , *))

(ii) (Vy)[student(y) —> (3z)(book (ic) & read(y, sc))]

(iii) ~ (3 j/)[s tu d en t(j/)& (3 *)(b ook (*)& rea d (j/, *))]

The deiivation tree for (i) according to the syntax in (13-8) is as in (13-
11), annotating each node with the number o f the rule used in constructing
the expression on that node (the lowest nodes are all elements o f the primitive
vocabulary given in (13-7)).

(13-11)

(3 *)(b o o k (*) & read(m , *)) , 8

(b ook (z) & read(m , *)) , 3

b o o k (*) , l read(m , *), 1

/ \ / N
book * read m x

Given this derivation the interpretation o f the formula proceeds from
the bottom up the tree, determining the interpretation o f each higher node
by the semantic rule corresponding to its syntactic counterpart. Let us
assume we are given the following m odel M and variable-assignment g for
the interpretation

M = (D , F }, where D = {mary, jane, M M iL}
F (m) = mary
F(student) = {mary, jane}
.F(book) = {M M iL } (i.e. this book you are reading)

.F(read) = {(m ary, M M iL }}
g (x) = jane
g (y) = mary

Starting at the bottom we determine according to rule (0) in (13-9) that
[bookJM,s = F (b ook) = {M M iL }, and = g (x) = jane Furthermore,
we can determine Jbook(*)JM,s = 0 according to the semantic rule (1) in
(13-9), since jane is not an element o f the denotation o f book, Next we
proceed to the interpretation of [read]M,g = F(read) = {(m aiy , M M iL }},

= F (m) =m ary, and = g (x) =jane. Applying rule (1) once
again we have [read(m ,*)]]M ’S = 0, since (mary,jane) is not in [read]]M ’s ,
Now we have two false formulas each with a free variable * as input to
the next node where they are conjoined, and by rule (3) we determine that
[(b ook (z) & read(m , *))]M,S = 0 too.

The interesting part o f the com positional interpretation o f this formula
comes in the final node, where the variable is bound existentially by an appli
cation o f rule 8, According to its semantic counterpart rule 8 [(3 *)(b o o k (*) &
read(m, *))]]M ’S = 1 just in case we can find an assignment to the variable
x o f an individual in D such that the matrix (book (*) & read (m ,x)) with
that individual assigned to the variable * is true. It is clear that the given
variable-assignment g does not fulfill these conditions, since we already found
out that it makes the matrix false. So now we are instructed to look be
yond the given variable- assignment g that comes with the model, and search
among all possible assignment-functions for an alternative g' to g which as
signs to * another individual which is a book and is read by Mary. We call
a variable-assignment function g' an ^-alternative to g if it is identical to g
with respect to all variables other than * , differing from g i f at all only in
the value it assigns to Fortunately our simple m odel makes the search
for such an ^-alternative of g in this case easy. We choose g (x) = MM iL
and determine subsequently that [(b o o k (*)& read(m . ^:))]M ’S, = 1, since g'
assigns M M il to * and M M il is an element in the denotation o f book, and is
paired with mary in the denotation o f the relation read. So by rule (8) we
now have [(3 *)(b o o k (*)& re a d (m ,*))]]M ’S = 1, since we have shown that
there is an ^-alternative o f g, namely g', which makes the subformula (book
(*)& read (m , *)) true.

Once we finish working up the tree, however, we still have to apply
(13-10) to establish a truth value for the whole formula independent of the
assignment. According to (13-10), the formula (3 *)(b o o k (*) & read(m , *))
is true with respect to M iff it is true for every assignment function. One can

330 C h a p t e r . 13

show (with a lot of tedious work; it is m oie common to just convince oneself
and then asseit it) that the choice of starting assignment had no effect on
the outcom e in this example. So, since it came out true for our original g
we can be confident that it will indeed be true for all other possible starting
choices o f assignments as well. So we conclude that our formula (which is
indeed a closed formula) is true with respect to M ,

This concludes the compositional interpretation o f (i). Note at this point
that although we initially used the given variable-assignment g, in the end
it did not play any role in the determination o f truth-value o f the entire
formula. We will return this remarkable fact below.

The second example we want to consider is

(ii) Every student is reading a book

Despite the syntactic similarity of the English sentences (i) and (ii), their
translations to predicate logic are structurally different This difference is
primarily due to the fact that universal quantifiers require a conditional
matrix. O f course, these differences will have their consequences for the
interpretation o f the formula.

(13-12)

(Vy)[student(y) —> (3 *)(b ook (*)& rea d (y , *))], 7

V student(y) —> (3 *)(b o o k (*) & ready(y, *)) , 5

student(y), 1 (3 *)(b o o k (*) & read(j/, *)) , 8

student V x (b ook (z)& rea d (j/, *)) , 3

b ook (z), 1

/ \
book *

read(y, z) , l

/ N
read V *

We will use the same m odel and variable-assignment as for (i) for the
interpretation o f (ii). The style o f presentation is slightly more com pact here
as an example o f how lay-out may make it easier to follow the compositional

C o m p o s i t i o n a l i t y 331

interpretation procedure, Answering the exercises relating this material,
you will have an opportunity to develop your own style and improve on this
illustration

Compositional interpretation o f (13-12):

(1) like (13-11): fb ook]M,s = .F(book) = {M M il}, and j[x]M 'g = g (x) =jane,
(2) Rule (1): fbook (*)JM,s = 0, as jane is not in denotation o f book,
(3) Let U M 'S = g (y) =m ary, freadJM,s = F (read) = {(m ary, M M iL }}
(4) Rule (1): fread(y, *)] M,S = 0, as (mary, jane) is not in |read]M,s
(5) from steps (2) and (4), rule (3) gives 0
(6) Let g '{x) = M M iL, then [(3 x)(b ook (x)& rea d (y , x))]M 's' = 1

(7) fstudentJM,s = F (student) = {m aryjane}
(8) by rule (1), {[student(j/)]]M,s = 1 since g (y) is in f student]M,s
(9) from steps (8) and (6), rule (5) gives |student(y) —* (3 *)(b o o k (*)

& read(j/, ^:))JM ’9, = 1

(10) Rule (7): [(Vy)[student(y) —» (3 x)(b ook (x) & rea d (y ,x))]]M 'g = 0.

Let g ’ (y) = jane, then fstudent(y)]M ’s' = 1, and given g '(x) = MM iL and
f b o o k ^)] ^ 8, = 1, fread(y, x)JjM,g' = 0, and no z-alternative to g', keeping
jane the referent o f y , gives a book read by jane. Hence the formula is false
in the given model,

(Notes: (1) There is nothing against assigning the same individual to
two distinct free variables— functions may be m any-to-one! (2) To evaluate
a formula containing a ‘there is ! within the scope o f a ‘for all’ you need to
have access not only to all alternatives o f the given assignment, but also
to all alternatives to any o f those. Although in small domains as in our
example this remains still feasible, for larger domains the search can get
rapidly more complex, but for infinite domains the search may never end, In
fact, on infinite domains even the evaluation of a simple universal quantifier
may never end, as derivation by exhaustion is impossible, i.e., as long as you
have not yet found a counterexample you may be in one o f two situations;
either' a counterexample is still to come, or there is no counterexample. But
you never know which situation you are in ,)

The final example we will discuss here in detail is (iii) No student is
reading a book. The syntactic derivation is given in (13-13)

332 C h a p t e r 13

(13-13) (3j/)[student(j/) & (3 *)(b o o k (*) & read(j/, *))], 2

(3j/)[student(j/) & (3 *)(b o o k (*) & read(j/, *))], 8

V student(y) & (3 *)(b o o k (*) & ready(j/, *)) , 3

student^), 1 (3 *)(b o o k (*) & iead(j/, *)) , 8

student V * (b ook (z) & read(y, *)) , 3

b ook (*), 1

/ \
book * read V *

Using the same m odel and starting variable-assignment as before:
(1) [b o o k (*)& r e a d (j/,*))]M,s = 0

(2) Let g '(x) = MMil, then [b ook (*) & read(j/, a;))J'M' = 1, so [(3 *)(b o o k (*)

& read(y, x))]M,g = 1
(3) {[student (j/)JM,s = 1
(4) Rule (3): [student(y) & (3 *)(b o o k (*) & read(j/, *))|M,S = 1,
(5) Rule (8): [(3y)[student(y) & (3 *)(b o o k (*) & read(j/, *))]]M ’S = 1.
(6) Rule (2): J ~ (3 j/)[student(j/) & (3 *)(b o o k (*) & read(j/, *))]M,S = 0.

(Note: the logically equivalent formula (Vj/)[student(j/) — (3 *)(b ook (*)
& rea d (y ,*))] would require more interpretation steps, since here we need
to consider all ^-alternatives to g' to see whether they all falsify the formula
in the scope o f this universal quantifier (one of them will not, but the others
will). Prom a semantic point o f view it is in general simpler to evaluate
formulas where the negation has widest scope, which can be obtained by
applying the quantifier laws given in (7-7) through (7-16),)

We have seen now that in interpreting a quantified formula you first
work with the given variable-assignment, but then you are often required
to search for an alternative o f it for a particular variable, This interpretive
procedure requires not only that all alternatives for any variable to the given
assignment are in some direct way available, but whenever the formula con

C o m p o s i t i o n a l i t y 333

tains n successively nested quantifiers, an equal number o f distinct levels o f
alternatives to alternatives needs to be accessed. Despite the compositional
formulation we gave this Predicate Logic, in the course o f an interpretation
you may change what you had, if the given variable- assignment did not
give you the right value in the first place (e.g, the application o f rule 8 in
the interpretation of (i))„ It is clear that rule-by-rule compositionality seems
at first to be a very strong requirement on the relation between the syntax
and the semantics o f a formal system. Yet it seems to allow information
which is gained fust, to be lost later, In other words, it does not require by
itself that the meaning o f the parts is still a recognizable part o f the final
result This seems almost a flagrant contradiction o f the Fregean Principle
of Compositionality, i f it is interpreted in a static way as adding primitive se
mantic objects to compose the meaning o f the whole without any interaction
between the parts. Compositionality can be understood more dynamically
as a requirement on the process o f interpretation, stating that the syntac
tic structure will guide the semantics, while having access to all possible
variable-assignments, Current research in semantic theory explores various
forms o f interpretation processes which are compositional in different ways
to different degrees.

To conclude this subsection we should return to Frege’s insight men
tioned at the beginning. We have seen in detail now how the compositional
interpretation o f Predicate Logic defines the denotation of any quantified
formula in terms o f the denotations o f a set o f formulas in which the rele
vant variable is free. At a time that Aristotelian syllogistic logic was still
the best available theory o f quantification on the market it constituted a
tremendous innovation that universal and existential noun-phrases could be
treated semantically on a par, if they were ‘decom posed’ into a variable and a
quantifier prefix and the crucial but small difference o f the conditional versus
the conjunction in the matrix. The conditions for this new understanding
were created by the mathematical development a more abstract concept of
a function and the fundamental separation of the syntax o f a formal system
from its semantic interpretation,

13.1.3 N atural language and com positionality

When it comes to natural languages such as English, there are obvious prima
facie obstacles to compositionality that make it not surprising that both
linguists and philosophers before Montague doubted that English could be
given a com positional semantics, One o f the most obvious obstacles is the

334 C h a p t e r i i i

phenomenon o f quantifier scope ambiguity in English: the semantic inter
pretation is certainly not uniquely determined by the syntax if we take the
relevant syntactic structure to be surface structure (much less deep structure
or D-structure.) Indeed the treatment of quantifier scope has been one of
the most controversial issues within and across theories of syntax and se
mantics from the time o f the generative-interpretive semantics split in the
late 1960’s down to the present. Some theories posit a distinct syntactic
level (such as the LF o f M ay (1977) or the underlying representations of
generative semantics) on which quantifier scope is disambiguated and on
which a compositional semantics could potentially be defined (see Cooper
and Parsons (1976)), M ontague’s rule-by-rule version of the compositional
ity requirement makes possible a treatment in which the syntactic derivation
rather than any level o f representation disambiguates quantifier scope (see
Paitee (1975), Dowty, Wall and Peters (1981),,) Other theories (e,g Cooper
(1983)) opt for a more nearly context-free syntax and a weakening o f the
compositionality requirement. We mention these issues to give some indi
cation o f the complexity and controversy surrounding the application o f the
compositionality principle to natural language semantics.

The mathematical formulation of the compositionality principle in Mon
tague’s version of it involves representing both the syntax and the semantics
as algebras and the semantic interpretation as a homomorphic mapping from
the syntactic algebra into the semantic algebra The technical working out
o f this idea in the general case is somewhat complex; the details are given in
Montague (1974) and explications can be found in Halvorsen and Ladusaw
(1979), D W P (1981, Chapter 8), Link (1979), Janssen (1983), For the logic
o f statements, whose syntax and semantics are quite simple, the relevant
algebras and homomorphism can be specified quite straightforwardly,

(i) The syntax algebra: A = {A ,F 0,. . ,F 4} is defined as follows: Let Xo
be the set o f sentential constants {p ,q ,r ,p ' ,q ' , and let F0,, , , be
syntactic operations defined as follows:

*bl;«) = ~Q
F!\[a, 13) = Q & (3
f2\[a, 13) = a V f3
Fz(a>P) = a —> (3
Fa 1 = a +-+ (3

(Note: Here a and j3 are
stants. These operations should be read as e.g. ’take a sentential constant
and execute Fq by prefixing it with the negation-sym bol’ , etc.)

C o m p o s i t i o n a l i t y 335

Then the set A , the set o f all well-formed expressions o f the logic o f state
ments, is defined as closure o f the set X o under the operations F o ,. . , ,F±.
Note that this gives exactly the same effect as the corresponding set o f five
recursive rules, one for each o f the operations. This language is particularly
simple by virtue o f containing only one syntactic category, that o f sentences,
and in having a one-one correspondence between syntactic rules and syntac
tic operations that allow us to conflate the two notions.

(ii) The semantic algebra B = (B ,G q, , G 4} is defined as follows: B =
{ 0, 1 } , the set o f truth values. Go, ■ ,C?4, the semantic operations corre
sponding to the syntactic operations F o ,,, . ,F^, axe the unary and binary
functions from truth values to truth values defined by the usual truth ta
bles for the respective operations Fo,. . . ,F i„ So Go, for example, is the
function from {0 ,1 } to (0 ,1 } defined by (13-13), and Gi the function from
(0 ,1 } X (0 ,1 } to (0 ,1 } defined by (13-14).

(13-14) G o (l) = 0
G o (0) = l

(13-15) G i (l , l) = l
G i(l , 0) = 0
G i (0 , l) = 0
G i (0, 0) = 0

(iii) Semantic interpretation as a homomorphism from A to B: An
interpretation for the statement logic must assign a truth value to each
sentential constant, and must recursively assign truth values to complex
statements on the basis o f their syntactic structure. Let / be an assignment
o f truth values to the constants, i.e. a function from X 0 to (0 , 1 } , and let g
be the interpretation function defined as follows:

If <f> is a sentential constant, then g(<f>) = /(^>).
g {~ <f>) = 1 iff g{4>) = 0
g((</)&ip)) = 1 iff g {4) = 1 and g(tp) = 1
g((<t>\/ip)) = 1 iff g{4>) = 1 org {ip) = 1
9 ((<£->■ i ’)) = 1 iff 9 W = 0 org (tp) = 1
g((<t> +-+ %j>)) = 1 if f g(<j)) = g(ip)

We can then see that g is indeed a homomorphism from A to B every
formula in A is m apped by g onto a truth value in B , and the mapping is

336 C h a p t e r 13

structure-preserving with respect to all the corresponding operators, G{ in
B corresponding with F{ in A ; this is established by showing that (13-15)
and (13-16) below are valid.

(13-16) g(F 0(<l>)) = G 0{g{<}>)) fo r every formula <f>

(13-17) g{F{{<l>,%l>)) = G{(g(4>),g(tp)) fo r i = 1 ,. „. ,4 and all formulas <f>,ip

The homomorphism requirements (13-15) and (13-16) may also be schema
tized by a pair o f diagrams as in (13-17) and (13-18), where g x g in (13-18)
stands for the function mapping pairs o f formulas ($, tp) onto the correspond
ing pairs o f truth values (g (</>), g(ip)).

(13-18)

*0

{ 0, 1} { 0, 1}

(13-19)

A x A ----------------- ------------------ - A

{ 0 ,1 } x {0 ,1 } { 0 , 1}

C o m p o s i t i o n a l i t y 337

A further important property o f grammars that conform to the com posi
tionality principle in this strong homomorphism sense is that it is possible to
think o f such grammars as generating expressions and their interpretations
in tandem; one need not conceive o f the syntax generating an entire expres
sion “before” the semantics interprets it, The small piece of a schematic
interpreted derivation tree in (13-20) illustrates this point,

(13-20)

(F2{F0(F3(a,P)),i),G2{G0(G M *)A m ,9 b)))

(F0(Fa(a ,P)) ,G0(G3(g(a) , g m))

(F3{a,0),Gs{g{a),gm)
/ \

(a , g (a)) (0 , g (0)) (7 , f f (r))

Returning to the issue of compositionality in natural languages, we con
clude this section with an informal, intuitive discussion o f a core example of
quantifier-scope ambiguity and the way in which it is connected to anaphoric
binding in discourse. The purpose is here merely to illustrate the importance
and extent of the issue, rather than to legislate on the best possible solu
tion. It should be clear from Chapter 7 and this chapter that the syntactic
structure of a logical formula determines the set o f possible interpretations
in which it is true, given an interpretation to the non-logical constants. But
syntactically different formulas may have some models, though not all (un
less they are logically equivalent), in which they are true in common. For
instance, consider (i) and (ii)

(i) (V x) (3 y) (P (x) -> R (x ,y))

(ii) (32 /)(V *)(P (*)-^ iZ (* ,2 /))

In a m odel in which there is at least one variable-assignment to y such that
every x which is a P bears the relation R to it, both (i) and (ii) are verified
(cf, exercise 3). O f course, (i) is true in other models as well, since (ii) entails
(i) but not vice versa, So (i) leaves in a manner of speaking more open or
undetermined as to what the m odel has to look like for it to be true, whereas

338 C h a p t e r 13

(ii) is more demanding. If' we use an English sentence corresponding to (i),
e.g Every student loves som eone (domain : People), we may well mean that
every student loves the same person, although we could have expressed that
also with The students all love the same person or something like this. We
should consider it a virtue rather than a vice that natural language allows
us different ways of describing the same situation, especially since further
context often provides a clue as to which kind of situation is intended For
instance, we could continue with Maria is her name Now we understand
that the students must all love the same person, since both the proper name
and the possessive pronoun dependent, on it require a unique referent, (Let’s
forego the far fetched interpretation in which Maria could name any woman
loved by a student as if it was used as a generic proper name for student
loved women) So it is this second sentence that serves to ’disambiguate’ the
first, and from a semantic point of view cuts down the set of possible models
in which just (i) is true to the subset in which (ii) is true as well

Now we could require that the first English sentence should be repre
sented as the logical formula of (ii), if it is followed by this second sentence.
This would mean that the first simple English sentence would be translated
to two distinct logical formulas If we also want to adhere to compositional
semantics for English, this would have as a consequence that there should
be two distinct syntactic derivations of this English sentence. This option is
taken by quite different contemporary theories of quantifier scope e g. May
(1985) and Montague (1974), but not by e g. Cooper (1983), We should,
however, realize that this syntactic disambiguation o f English sentences is
really a syntactic reflection of a semantic process, namely determining the
set of models in which a sentence is true or the set of situations which can
be correctly described by the sentence. Quantifier scope can be encoded
syntactically in the order of the quantifiers in the prefix or by coindexing in
various ways, but it is the choice of variable assignments which do the real
work of characterizing the dependencies between individuals.

13.2 Lambda-abstraction

13.2 .1 T ype theory

The lamb da-operator, A, was introduced by Alonzo Church (Church (1941))
to permit the construction of expressions which unambiguously and composi
tionally denote functions, W ithout the A-operator, function names can only

L a m b d a - a b s t r a c t i o n 339

be introduced by contextual definition, as in “ Let / be the function from
R to R such that / (*) = x 2 + 3 ” There also tends to be equivocation in
ordinary notational practice, using expressions like f (x) or x 2 + 3 to denote
either a function or its value at argument *, an equivocation that is hard to
avoid without a systematic way of building descriptive names of functions,
In the A-calculus, the function / such that f { x) = x 2 + 3 would be denoted
by the expression A * ,*2 + 3 (or \ x[x2 + 3] or (\ x (x 2 + 3)); notation is not
uniform), and the application of that function to an argument z would be
expressed as (A*,,*2 + 3)(z), which as we shall see below is equivalent to the
expression z 2 + 3,

W hat has made A-abstraction so valuable a to o lin contemporary seman
tics is the recognition that many of the most basic syntactic constructions of
English can be interpreted compositionally as involving function-argument
application, and that many of the apparently less basic constructions can be
given a com positional semantics involving A-abstraction, We will illustrate
some of the linguistic applications at the end o f this section.

As a preliminary, we need to introduce some basic notions of type theory,
(There exist both typed and untyped versions of the lambda calculus, but it
is the typed version that has become familiar to linguists from M ontague’s
work) A type system is a system of semantically m otivated categories de
signed so that restrictions on well-formedness stated in terms of types can
guarantee that any well- formed expression will be semantically well-defined,
Russell introduced the notion as a way of regimenting the language of set
theory so as to make the paradoxical “ sets” mentioned in Chapter 1 unex-
pressable. The type theory we introduce here is just one among many, but
is a comm on basic one.

The set o f types is defined recursively as follows:

(13-21) (1) e is a type.

(2) t is a type,

(3) I f a and b are types then (a, b) is a type.

Sometimes rule (3) in the formation of types is replaced by the more
general rule (3 '):

(3 ') I f a i , On and b are types, then (a i , . „ , , an , b) is a type.

340 C h a p t e r 13

Since functions o f more arguments can be reduced to unary functions, the
type (a j, ,a n,b) may be replaced by (a1, { a2, {. , {an ,b)) , . . and there
fore one does not need to postulate types for such n-ary functions explicitly.

A typed language is a language each of whose well-formed expressions is
assigned a type by a compositional syntax whose semantics conforms to the
following principles, where D a stands for the set of possible denotations of
expressions of type a.

(13-22) Let A be a given domain o f entities Then

(1) D e = A

(2) Dt = {0 ,1 } , the set of truth-values

In other words, expressions of type e denote individuals, expressions of
type t denote truth values, and expressions of type (a, 6) denote functions
whose arguments are in D a and whose value is in Df,.

Examples:

(1) Suppose A , and hence D e, is the set o f real numbers. Then the
expression mentioned in the previous section, (A * (* 2 + 3)), is of type (e, e),
since it denotes a function from numbers to numbers

(2) Sets in a typed language are identified by expressions denoting their
characteristic functions, Consider, for instance, the set of numbers greater
than 7, Its characteristic function / is defined by (13-23),

(3) D(̂ a ^ = the set o f functions from D a to Df,

In case an n-ary type is defined, its intended interpretation is:

D/ the set o f functions from D ai x , X D an to Df,
V Q-1 ■ - « ft 10 1

(13-23)

In A-notation, / can be expressed as (A *(* > 7)),. Since / is a function from
numbers to truth-values, the type o f the expression is (e ,t); this is the type
for any expression denoting (the characteristic function o f) a set o f entities.

L a m b d a - a b s t r a c t i o n 341

(3) The predicate calculus can be given as a typed language; individual
constants and variables are o f type e, formulas are o f type t, one-place pred
icates (which denote sets) are of type (e ,f) , two-place predicates are of type
(e ,(e ,f)) , etc

13.2.2 The syntax and semantics of A-abstraction

The A-operatoi and the rule of A-abstraction give us a means for forming
compositionally interpretable names o f functions Compare, for example, the
schematic letter name / with the structurally descriptive name (A* (* 2 + 3)) .
Now, how in general does one form an expression like the latter? Start with
an expression that denotes the value of the desired function for a variable
argument: in this case, (x 2 + 3) To form the name o f the function which
applies to an arbitrary number * and gives as value the number (* 2 + 3),
we “abstract on” the argument variable * and form the A -abstract (A* (* 2 +
3)), consisting of the prefixed X-operator Ax and the body (x 2 + 3). More
generally, we have the syntactic formation rule in (13-24).

(13-24) X-abstraction, Syntax.
If u is a variable of type a and a is an expression o f type b, then
(Awq) is an expression o f type (a, 6).

The A-operator, like the quantifiers, is a variable-binding operator. And
like the quantifiers, its semantics makes crucial appeal to variable assign
ments

But note that the A-operator can change the type of its argument, e g,
from t to some functional type, whereas quantifiers take formulas to make
formulas and hence do not change their argument-type,

(13-25) A-abstraction, Semantics:
Given u of type a, a o f type b, [[(Awq)Jm,s is that function / from
D a to Dj, such that:

for any object k in D a, f (k) = Ja]M,s ,
where g' is just like g except that g '(u) = k.

To take our earlier example, |(A* (* 2 + 3))JM,S is that function / such
that for any number n in D e, f (n) — | (* 2 + 3)]M,S . That is, we find the

342 C h a p t e r 13

value of the function for a given argument n by evaluating the bod y o f the
A-abstract with respect to an assignment that assigns n to *, Suppose n = 5 ,
Then / (5) = [(z 2 + 3)]M,S\ where g' {x) = 5; supposing the expressions in the
formula have their standard semantics, the value of the expression (* 2 + 3)
on the assignment o f 5 to * will be the number 28, where g' is the variable-
assignment which assigns exactly the same values to all variables other than
x as g does, but assigns the number n to *

The process we have just illustrated is called lambda-conversion: it com
putes the value o f the lamb da-expression for the argument the function is
applied to It is important to realize that lambda-conversion is fundamen
tally different from the syntactic process o f substituting a constant for a
variable in a formula, The former is a semantic and computational process
o f executing an algorithm for a given argument, the latter should be viewed
as a syntactically defined ’transformation’ on formulas or a rule o f inference
which supposedly guarantees that truth is preserved in a particular deductive
system, Lambda-abstraction gives us the important means to distinguish a
function from the set of its values, which has proven tremendously useful for
linguistic applications, especially where intensional aspects o f meaning play
a crucial semantic role (cf, section 13.2.5),

There is an important restriction on lambda-conversion that should be
adhered to for (\ u a)(P) to be logically equivalent to a ', where a ' is just like
a but with the assignment of j3 to the variable u. We have to make sure that
in case /3 contains any free variables of some type, they do not accidentally
get bound by any quantifiers occurring in a For instance, we cannot convert

(A ^ z (P (z) M)) (£ (*)

to
3 x (P (x) t Q(x))

The reason why this conversion would not always be logically equivalent is
that Q(x) is interpreted by the given variable assignment in the first formula,
but could be interpreted by an ^-alternative to it in the second formula re
sulting in different truth-conditions. O f course, to avoid accidentally binding
free variables one seeks recourse to logically equivalent alphabetic variants
o f the argument the lambda-term is applied to (cf, section 7 3 for the notion
o f alphabetic variants), Similar restrictions apply when the formal language
contains operators which have quantificational force, as the intensional lan
guage defined in Chapter 15, But we will not discuss these any further
here.

L a m b d a - a b s t r a c t i o n 343

Less accurately but quite mnemonically, one can say that (A ua) denotes
a function with % as argument and [a] as value,

13.2.3 A sample fragment

Drawing together the notions we have introduced thus far, we present the
syntax and semantics of a sample formal language-schema TL, a schema for
typed languages whose logical constants include all those o f the predicate
calculus with equality, plus the lambda operator Particular languages L
falling under this schema differ in the choice of (non-logical) constants and
their interpretation

I. S y n ta x o f T L (13-26) The set T o f types o f TL is the smallest set such t

(i) e ,t £ T

(ii) I f a,b £ T , then (a ,b) £ T

(13-27) The primitive vocabulary o f TL consists o f the following:

(i) The connectives ~ , & ,V ,—♦,<-*

(ii) The quantifiers V, 3

(iii) The lamb da-operator A

(iv) The equality symbol =

(v) The parentheses), (, [,]

(vi) For every type a, a denumerably infinite set VARa containing
variables b„ i0 for each natural number n

(vii) For every type a, a (possibly em pty) set CON% o f (non-
logical) constants of type a

Note: the symbols introduced in (i)-(iv) are called logical constants; their
meaning is fixed for all languages in the family TL, The non-logical constants
of (vii) are language-particular, and their interpretation must be specified in
a model for a particular language L„

344 C h a p t e r 13

(13-28) S y n ta c t ic ru les o f T L
The set MEa o f meaningful expressions o f TL o f type a is defined
recursively as follows:

(i) For each type a, every variable in VARa and every constant
in CONLa is in MEa

(ii) For any types a and 6, if a £ ME^ab ̂ and (3 £ MEa, then

a (0) e M E b .

(iii) For any types a and 6, if u is a variable of type a and a 6
then (Awq) 6 ME^aby

(iv) If (p and ip are in M E t (aie formulas), then the following are
also in MEt'- ~ <p,(<p& ip), (<p V ip), (<p V0> ^0

(v) For any type a, if <p 6 MEt and u is a variable o f type a, then
\/u<p and 3u<p are in MEt■

(vi) For any type a, if a and (3 are both in MEa, then (a = ft) £
MEt.

As a particular instance of this schema which we will use for examples
in the text and in the exercises, let T LA (“ typed language of arithmetic”)
be syntactically defined by the following choice o f constants:

(13-29) C o n s ta n ts o f T L A .

C 0 N TLA = { 0 ,1 ,2 , }

C O N = {e v e n , o d d , p r im e }

c o n (, M) = <g r >

COn TY = { s u c c }
\e,e/

C0 Nl l(i)) = {pIus}

Note that, e.g , 0 is a syntactic name, not a number. In (13-35) these

L a m b d a - a b s t r a c t i o n 345

In practice it is com m on to drop outermost parentheses, and to drop
other parentheses where there is no danger o f ambiguity, We will also follow
a common practice in using the following, more readable, variables in place
of the official ones:

(13-30) V a ria b le co n v e n tio n s

nam es are assign ed th eir n a tu ra l referents

Type Variable
€ x , y , z (also with subscripts or primes)
(e ,f) P , Q
(e>(e>0) R , S
(e>e) f

Examples of well-formed expressions of various types of TLA follow.

Expression Type

(i) o d d (z)V e v e n (z) t

(ii) s u c c (s u c c (*)) €

(iii) g r (3) (e ,f)
(iv) g r (3)(z) t

(v) (A zg r(3)(x)) (e, t)
(vi) (A * g r (3)(*))(s u cc (3)) t

In order to parse a complex A-expression, it is often helpful to construct
a tree that displays its derivation according to the syntax, just like the
derivation trees in 13.1.1 and 13 1.2 for the two logical languages Such a
tree structure is sometimes called a derivation tree or an analysis tree. A
derivation tree for (13-31) is given in (13-32).

In the derivation trees for TLA , it is useful to annotate each node first
with the type of the expression on that node and, second, with the number of
the rule that we applied in constructing that expression. The construction of
such a derivation tree can also be valuable aid in working out the semantics
of complex expressions, since the semantic interpretation rules correspond
rule-by-rule to the syntactic derivation rules. We give the semantics for TL
in general below, followed by the language-particular interpretation of the
constant of TLA

346 C h a p t e r 13

(1 3 - 3 2) (A * g r (3) (*)) , (e , t) , 3

/ \ _
x ’ e g r (3) (x) , t , 2

/ \
g r (3) , { e , Z) , 2 x , e

/ \ _
g r , (e , (e , t)) 3 , e

II . S em a n tics o f T L

(13-33) Given a non-em pty set A , the domain o f entities, the set D a o f pos
sible denotations of expressions o f type a is given by the following
definition:

(i) D e = A
Dt = {T R U E , FALSE (or 1 and 0 conventionally)}

(ii) For any a,b £ T , = D f 0-, i.e. the set of all functions
fiom D a to Df,,

The denotation of an expression of a language L o f the family TL is
defined relative to a model M and an assignment g o f values to variables.
A model fo r L is an ordered pair M = (A ,F), such that A is a domain of
entities and F is a function which provides an interpretation to the primitive
non-logical constants o f L, i.e. a function which maps each constant of type a
onto a denotation in D a, An assignment g of values to variables is a function
which assigns to each variable un,a a value from the set D a-

(13-34) S em a n tic ru les o f T L
The denotation o f an expression a relative to a model M and an
assignment g, symbolized is defined recursively, in parallel
to the syntactic rules given in (13-28) above, as follows:

(i) (a) If a is a non-logical constant in CON\, then =
F (a),
(b) If a is a variable in VARa, then |aJM,s = g(a) .

(ii) If a £ ME^ab ̂ and /3 £ MEa, then Ja(/3)]]M’S =

M M’s (M Mn ° ’

L a m b d a - a b s t r a c t i o n 347

(iii) = the A-rule given in (13-25),

(iv) If d>, ip £ MEt, then:
[[~ = i iff = o

tpJM’3 = 1 iff 14>]M,S = 1 and = 1
V tp\M'9 = 1 iff \4>}M’g = 1 or {ip\M’g = 1

[[̂—> ^JM,S = 1 iff = 0 or = 1
(̂b <-> = 1 iff = M M,S

(v) If 4> £ M E t, u £ F-AiZo, then
(a) JVu<]̂M,s = 1 iff for all d £ D a, = 1
(b) l3u<j>}M,g = 1 iff there is at least one d £ D a such that

= 1.

(v i) If a,/3 £ M E a, then [a = /3}M’9 = 1 iff [a]M,s = 1/3}M'9.

Note that the only language-particular part o f the interpretation of a lan
guage L of the family TL resides in the choice o f a m odel M , i.e. in the choice
o f a domain A o f entities and an interpretation F of the language-particular,
i.e. non-logical, constants. The specification of the set o f constants and their
interpretation F can be thought of as the lexicon of the language. Given the
model, the semantic interpretation of the infinite set of expressions o f the
language is fixed by the recursive semantic rules, which are the same for all
typed languages of the family TL.

The semantics for the sample language TLA is fixed by the following
specification of a model:

(13-35) A model M fo r TLA
M = (A ,F), where A = the set of natural numbers {0 ,1 ,2 , 3 , . . . }
and F is specified as follows:

(i) F (0) = 0 ,F (I) = 1, etc.

(ii) .F (even) = (the characteristic function o f) the set of even
numbers
.F (od d) = (the characteristic function o f) the set of odd num
bers.
F (p r im e) = (the characteristic function o f) the set o f prime
numbers.

348 C h a p t e r 13

(iii) F (g r) (“ greater than”) is that function / such that /(a) (6) =
1 iff 6 is greater than a Note that / (a) = the (characteristic
function of the) set of numbers greater than a,

(iv) .F (succ) = the successor function

(v) F (p lu s) is that function / such that / (a) (6) = a + 6; / (a) by
itself is a function which takes a single argument and adds a
to it.

We can now determine the denotation of the expressions given as exam
ples in (13-31); this we do in (13-36). Denotations must be relative to model
M and an assignment g; M was given in (13-35), and for g we will choose,
arbitrarily, an assignment which assigns the number 2 to every variable.
Details are left as an exercise to the reader.

) Expression a

(i) o d d (*) V ev e n (*)
(H) s u c c (s u c c (*))
'iii) gr (3)
'iv) g r (3)(z)
(v) (A* gr (3)(z))
Vi) (A* g r (3) (z)) (s u c c (3))

Denotation [a] ^ ’9
TRU E, independent of assignment
4
the set o f numbers greater than 3
false, since 2 is not greater than 3
the set of numbers greater than 3
TRU E, since 4 is greater than 3

1 3 .2 .4 T h e la m b d a -c a lc u lu s

The pure lambda-calculus is a theory o f functions as rules. It was devel
oped around 1930 to serve as foundation for logic and mathematics in its
type-free version, in which any function m ay be its own argument. (In
Zermelo-Fraenkel set-theory such self-application was ruled out by the ax
iom of foundation.) Despite the paradoxes that arose in such unrestricted
type-free systems, a consistent part o f the theory has turned out to be ex
tremely useful as a formal theory o f (partial) recursive functions. It has
more recently been successfully applied in computer science for instance in
the semantics of programming languages. In linguistics it is not the entire
system of lambda-calculus, but rather its operation of lamb da-abstraction
and conversion that have proven extremely useful as we will discuss in more

L a m b d a - a b s t r a c t i o n 349

detail in the next section. The present section contains a very elementary ex
position of the lambda-calculus itself, illustrating how fundamental a theory
o f functions it really is.

The syntax of the lambda-calculus is very simple. The set A o f lambda-
teims and formulas of the lambda-calculus are defined in (13-37) recursively,

(13-37) S y n ta x o f th e la m b d a -ca lcu lu s

Lexicon: -variable
A -lambda-abstractor
(,) -parentheses

Rules: (i) * 6 A
(ii) if M 6 A then (Ax M) 6 A (abstraction)
(iii) if M ,N 6 A then (M N) 6 A (application)
(iv) if M , N 6 A then M = N is a formula

The axiomatization o f the theory is given in (13-38), Here M , N and Z
are arbitrary lambda-terms

(13-38) A x io m a t iz a t io n o f th e la m b d a -ca lcu lu s

(i) (Ax M) N = M ' which is M with every occurrence of * re
placed by N (conversion)

(ii) = is reflexive, symmetrical and transitive

(iii) if M = N then M Z = N Z

(iv) if M = N then Z M = Z N

(v) if M = N then (Ax M) = (Ax N)

If M — N can be proven from these axioms, we say that M and N
are convertible. It must be noted that there is a certain asymmetry in for
instance the equation expressed in (13-39).

(13-39) (A * su cc (*)) (3) = 4

350 C h a p t e r 13

The statement in (13-39) can be interpreted as “ 4 is the result of com
puting the successor of 3” , but not vice versa. This asymmetry is expressed
overtly by calling the computation a reduction o f (A * su cc (e))(3) to 4, One
of the central theorems of the lambda-calculus, called the Church-Rosser
theorem, says that if two terms can be converted, then there is a term to
which both can be reduced There are many more notions of conversion and
reduction definable in the lambda-calculus than we introduced here Our
rule (13-25) is sometimes called /3-conversion,

The lambda-calculus it itself not a logical, inferential system, but we can
define the usual predicate logical concepts in lambda-terms as in (13-40).
We give here the definitions from Henkin (1963), which are also presented
in Gallin (1975) Here we use a typed language merely for convenience and
coherence with the previous sections: (p and ip are variables o f type t, i.e.
formula-variables, and / is a variable of type (t,t).

(13-40) TRU E =(fc/ {(A<t>4>) = (A #))
FALSE = def ((A4><b) = (A ^TRU E))

~ = * / (A^»(FALSE= <t>))

k = d e f (\ < p \ i p (\ f (f (< p) = ip) = A /(/(T R U E))))

=def (A<M 1p((pk ip = <j>)

v =def (A<pA 1p {~ <() Ip))
x aA ~ def [XxaA = AzaTRU E)
3xaA — j ~ x a ^ A

In (13-40) the definitions of the disjunction and the existential quantifier
are already quite familiar from Chapter 7 In developing an intuition for
what the other definitions do, we can understand for instance the definition
o f conjunction as the operation of assigning the truth-value TRU E to both
formulas and of the conditional as stating that the information that ip is true
is already contained in the information that <f> is true

Church showed that the part o f the lambda-calculus which is concerned
only with functions provides a good formalization o f the intuitive concept o f
‘ effectively com putability’ as lambda-definability. Alan Turing in 1937 ana
lyzed the notion o f machine-computability, which came to be called Turing-
computability, and proved its equivalence to lambda-definability It is re
markable that despite the very simple syntax of lambda-calculus the system
is strong enough to describe all computable functions. This makes it in fact a

L a m b d a - a b s t r a c t i o n 351

paradigmatic programming language, laying out the applicative behavior of
the com putational procedures in their barest form But it is for most prac
tical purposes not a very handy programming language, exactly because o f
its completely transparent structure. Yet several well-known programming
languages have some features which resemble the lambda-calculus. In LISP,
for instance, procedures can be arguments o f procedures, as well as output
o f procedures.

Due to the fact that functions could take themselves as arguments, i e.
the type-free character o f the pure lambda-calculus the question arose what
models o f the theory could look like A set X was needed into which the
entire function space X —* X could be embedded, which was impossible in
ordinary set-theory due to Cantor’s theorem (cf. Chapter 4), Dana Scott in
1969 developed models of the type-free lambda-calculus by taking only the
continuous functions on X Only then did it become clear how a denotational
semantics o f programming languages could be constructed. This has opened
a vast area for innovative research in the common aspects o f the semantics
o f programming and natur al languages, The interested reader is referred to
Baxendregt (1984) for a complete introduction to the mathematical aspects
of’ lambda-calculus and Scott domains.

13.2.5 Linguistic applications

In this section we will briefly discuss a few o f the many applications to natu
ral language semantics that have made lambda-abstraction a basic tool in the
development o f formal semantics. In general, lambda-expressions provide a
means for giving compositionally analyzable names to functions of arbitrary
types. This can be richly exploited in giving a compositional semantics for
natural languages like English which have a large number o f syntactic cat
egories and quite a variety o f recur sive mechanisms that end up embedding
expressions o f one category in expressions o f another or the same category.
Lambda-expressions can make explicit how the interpretation o f a relative
clause is a function o f the interpretation o f a corresponding open sentence,
how predicate negation or conjunction is related to sentential negation or
conjunction, how the meaning o f a passive verb can be defined in terms o f
the meaning o f a corresponding active verb, etc. Lambdas can also be used
to make explicit the interpretation o f various grammatical morphemes or
function words, such as reflexive clitics and other “ argument-manipulating”
devices, logical determiners such as every and no, the comparative mor
pheme -er, etc We will illustrate just a few of these applications below;

352 C h a p t e r 13

for other illustrations and references to more, see Montague (1973), Cress-
well (1973), Partee (1975), Williams (1983), Dowty, Wall and Peters (1981),
Dowty (1979), Janssen (1983), and in fact much o f the formal semantics
literature since the mid-1970’s Lambdas became widely known to the lin
guistic community through the work o f Montague, but Montague was not
their inventor (A lonzo Church was: see Church (1941)), and one does not
have to be a “Montague grammarian” or even a formal semanticist to find
them useful.

W hat does it mean to give compositionally analyzable names to func
tions? The contrast is similar to that between proper names like John and
definite descriptions like the oldest student in the semantics class In much
common mathematical practice, and in most o f this book, functions are re
ferred to with proper names, either coined on the spot or established names
like M eet or + , or with typical variables in place o f names, like / and g In the
language TL and other such typed languages that include lam bda abstrac
tion, we have not only the possibility o f including as many proper names
o f functions as we wish but also the possibility o f building up structured
function- denoting lambda-expressions for which the semantics specifies just
what function each such expression denotes.

I. Phrasal conjunction

One very simple and elegant application o f lam bda-abstraction which
Montague exploited in P TQ is its use in defining the interpretation o f “Boolean
phrasal conjunction, disjunction, and negation in terms o f sentential conjunc
tion, disjunction, and negation respectively, (The term “Boolean” phrasal
conjunction refers, for reasons the reader will appreciate, to the kind of
phrasal conjunction illustrated in the examples below, as opposed to e,g, the
group-forming NP conjunction illustrated by “John and Mary are a happy
couple” , or the irreducibly phrasal conjunction o f adjectives in “ a red and
white dress” ,)

To illustrate this application, we give below a few syntactic rules in sim
ple phrase-structure-rule form together with corresponding schematic trans
lation rules We will comment on the nature of such rules after illustrating
them..

Syntactic Rule Translation Into TL
S -* S and S
S -* S or S
VP -> VP and VP
NP NP or NP

& S'2
S [v S'2

Xx (V P ; (*)& V P ^ (*))
A P (N P ;(P)V N P ^ (P))

LAMBD A-ABSTRACTION 353

First a note on the NP interpretations presupposed here: as we will
discuss later in this subsection, we interpret NPs as generalized quantifiers,
o f type { { e , t) , t } . We use P and Q as variables o f type (e ,f).

Second a note on the nature o f these rules: The syntactic rules are given
in familiar phrase-structure form, but could easily be recast in the recursive
format specified earlier W hen dealing with simple context-free grammars, it
is straightforward to convert a grammar o f one form to one o f the other. The
translation rules are not semantic interpretation rules as defined above, since
they specify expressions in TL as their output rather than model-theoretic
objects The first rule, for instance, says that the translation into TL o f any
expression formed by application o f the first syntactic rule will be formed
by taking the translations o f the two parts and putting an & between them,
(We subscript the S’s in the translation simply to distinguish occurrences)
The resulting formula o f TL will itself be semantically interpreted according
to the semantic rules o f the language TL, which we do not repeat here (see
Section 13.2.3), As Montague showed, as long as the translation rules are
compositional and the semantic interpretation o f the intermediate language
is compositional, the intermediate language could in principle be eliminated
and a compositional model-theoretic semantic interpretation given directly
to the source language (in this case a fragment o f English) But the use o f an
intermediate language is at least convenient; whether such an intermediate
language plays a role in capturing “linguistically significant generalizations”
is a point o f some debate

In any case we will continue to use the conventions illustrated above in
giving short versions o f rules, including the convention o f using primes (') to
indicate the translations o f the parts.

In order to illustrate the workings o f the rules above, we need to combine
them with a few other rules for simple sentences; these follow M ontague’s
treatment in P T Q except for supressing intensionality.

s NP VP N P ' (V P ')
NP som e/a CN A P (3 x) (C N ' (x] 1 & P(x))
NP — ^ every CN \P .(V x)(C N' (x) I ^ P (x))
NP John, Mary, . AP. P(j) , etc
VP — ^ walks, talks, , , „ walk', talk', , ,
CN man, woman, , man', woman', ,

Using these rules and lambda-conversion, the reader can verify equivalences
and non-equivalences like the following,

354 C h a p t e r 13

(13-41) (a) John walks and talks is equivalent to:
(b) John walks and John talks

(13-42) (a) Some man walks and talks is n ot equivalent to:
(b) Some man walks and some man talks

Before linguists had learned to exploit lambdas, Boolean phiasal conjunc
tion was treated syntactically by positing some kind of “ conjunction reduc
tion” transformation oi schema, which would, for example, derive (13-41a)
above from the full conjoined sentence (l3 -41b) But as (13-41) and (13-
42) together illustrate, syntactic conjunction reduction sometimes preserves
meaning and sometimes does not It is now widely appreciated that the
actual distributions o f forms and meanings in such cases o f Boolean phrasal
conjunction can be more systematically explained by directly generating the
phrasal conjunctions syntactically and using semantic rules like those for
mulated above with lambdas to interpret them It thus appears that the
intuition that phrasal conjunction is derivative from sentential conjunction
is best regarded as based on semantic rather than syntactic generalizations.
Direct syntactic generation combined with compositional semantic interpre
tation can, i f all goes well, capture the scopal interactions o f conjunction
with other scopally relevant parts o f the interpretation, without any special
stipulations.

Further linguistic research has been and continues to be concerned with
exploring the limits and generalizability o f such an approach to Boolean con
junction as well as analyzing the various sorts o f non-Boolean conjunctions
(mentioned above) and their interrelations. One major generalization ex
plored by Keenan and Faltz (1985), Gazdar (1980), and Partee and R ooth
(1983) centers on the observation that the particular translation rules given
above for V P-conjunction and NP-disjunction should not have to be stip
ulated: it should be possible to predict them just by knowing (i) the in
terpretation o f sentential conjunction and disjunction and (ii) the semantic
types associated with the syntactic categories VP and NP, Partee and Rooth
propose a schema for generalized conjunction, recursively defined, which has
those properties, and which replaces the individual explicit rules given above,
so that the lambdas no longer play an overt role. But the functions that are
denoted by those lambda-expressions are playing the same central role in
the resulting account, and the lambda notation for denoting them composi-
tionally helped to make the relevant generalizations findable

L a m b d a - a b s t r a c t i o n 355

Another construction whose semantics has been much better understood
since the introduction o f lambdas into the linguist’s toolbox is the relative
clause. While many open problems remain concerning both the syntax and
the semantics o f relative clauses o f various kinds in various languages, we
can at least give one very str aightforward account o f one very basic kind of
relative clause construction as another good sample application o f lambda-
abstraction The account is probably approximately correct for some real-
life cases and at least suggestive o f how to proceed for others We will stick
to the syntactically simplest sorts of examples so as to be able to concentrate
on the central aspects of the compositional semantics o f the construction

There are two parts to the account o f relative clauses; their internal
syntax and semantics, i e how they are formed and interpreted, and the
syntax and semantics o f the construction through which they come to modify
nouns or noun phrases. L et’s look at these in turn,

W hat we call relative clauses are modifiers which play an adjectival sort of
role but which ar e formed in some sense from sentences Lambda-abstraction
provides an explicit way to say exactly that, as long as we assume that the
relevant “underlying sentences” are open sentences, i,e , sentences whose in
terpretation contains a free variable in the “relativized position” (a position
which may end up occupied by a gap or a resumptive pronoun depending on
the construction) So, for example, we might take all the relative clauses in
(13-43b) and (13-44b) below to be derived from something like the sentences
(or almost sentences)in (13-43a) and (13-44a), I f the translations o f the sen
tences are as given in (13-43c) and (13-44c), the translations o f the relative
clauses can be derived by lambda-abstraction on the relativized variable, as
shown in (13-43d) and (13-44d), One can read the expression in (13-43d)
in quasi-English, a bit loosely, as “the property o f being an *3 such that
Mary loves *3 ” (This is loose because “property” is normally an intensional
notion and the literal interpretation is just the characteristic function o f a
set; but when talking about the model-theoretic interpretations in English,
explicit set-talk simply tends to be cumbersome, and the misrepresentation
is harmless as long as the context does not allow real, misinterpretation.)

(13-43) (a) Mary loves e3
(b) w ho(m) Mary loves; that Mary loves; such that Mary loves him
(c) love'(m , * 3)
(d) A*3 .love^m, k3)

II. Relative clauses

356 C h a p t e r 13

(13-44) (a) e2 hates John
(b) who hates John; who2 e2 hates John;

such that he /she hates John
(c) hate/ (* 2, i)
(d) Xx2 hate '(*2, i)

The semantic type o f the open sentences is t, so when we do lambda-
abstraction with respect to a variable o f type e, the type o f the resulting
expressions in (13-43d) and (13-44d) is (e, t) , the type o f functions from
entities to truth values, i.e. the type o f characteristic functions o f sets o f
entities So (l3 -43d) denotes the set o f entities that Mary loves, and (l3 -44d)
the set o f entities that hate John This is the same type that is assigned to
simple predicative adjectives like purple or carnivorous Lambda-abstraction
on open sentences gives us an infinite stock o f such predicates.

Note that we have not actually given explicit syntactic and semantic
rules for forming relative clauses but have simply specified what the effects
of the rules should be. This is for two reasons. The obvious one is to avoid
descriptive complications and maintain theoretical neutrality as regards the
syntax o f relative clauses; the less obvious one is that in the immediately
preceding example it was important to be explicit about the interpretation
o f NPs as generalized quantifiers, while in this example that would just
present extraneous complications (though no substantive problem s), so we
have presented the translations in the form they would have after some steps
o f lambda conversion had replaced the original translations o f the proper
names and the gaps or pronouns by expressions o f type e The one addition
to the previous fragment that does need to be mentioned is the addition of
the gaps or pronouns: the simplest way to add them for our purposes (though
this is an area rife with com peting approaches) is to assume that the syntax
(via the lexicon) contains among its NPs an infinite supply o f indexed gaps
(here represented as e i, e2, etc) and/or pronouns (he\, he2, etc), whose
translations are just like the translations o f the proper nouns John, Mary,
etc,, given in the previous fragment except containing variables like X i , x 2,

etc. instead o f constants like j ,m . The relative clause form ation rule has to
be sensitive to a choice o f relativized variable, since an underlying sentence
might contain more than one, and the rule would not be com positional if
with the same input it could give us two non-synonymous outputs - it would
then not be possible to determine the meaning of’ the whole as a function of

L a m b d a -a b s t r a c t i o n 357

the meanings o f the parts plus theii syntactic mode o f combination Aside
from that, the only complications in the rule are the syntactic ones, the
semantics being simple lambda- abstraction

Now how do relative clauses combine with nouns or noun phrases? This is
also an area o f controversy and possibly o f typological diversity as well But
as discussed in Partee (1973), one can make the case that compositionality
requires that relative clauses combine with comm on noun phrases to form
common noun phrases in older for a determiner like no, every , or most to
have the relative clause as well as the head noun within its scope. While
this claim can be challenged as well, we will assume that the basic external
syntax o f relative clauses is as given in (13-45a); the corresponding semantic
interpretation rule is then just a kind o f predicate conjunction, as given
in (13-45b) The semantic type o f both constituent expressions and o f the
result is (e, t),

(13-45) (a) CN -► CN REL
(b) A* (C N '(k) k R E L '(*))

We can illustrate the combined results o f the relative clause formation
rule and the rule in (13-45) by putting the relative clause in (13-44) together
with the CN woman to form the CN phrase woman who hates John. The
structure is shown in (13-46a) and the translation in (13-46b). The expres
sion (13-46b) is o f a form to which lambda-conversion can apply; applying
it gives (13-46c) as an equivalent but simpler expression

(13-46) (a) [[woman] [who hates John]]
(b) A* (woman'(*) fc A*2 (hate/(*2Ij)) (*))
(c) Xx (w om an '(*) k hate'(®, j))

Since (13-46c) cannot be simplified further, it is an example o f what is
meant by a “reduced translation” : an expression logically equivalent to the
actual translation but simplified as much as possible by applying lambda-
conversion (and any other relevant simplifying rules the given system may
contain). W hether there is always a unique reduced form is a question that
can be remarkably difficult and which depends in any case on what the full
power o f a particular system is.

Other constructions exhibiting unbounded dependencies also appear quite
generally to have interpretations which include lambda- abstraction on the

358 C h a p t e r 13

position corresponding to the gap or pronoun introduced in the construc
tion (if there is one) One such construction is WH-questions (see especially
Groenendijk and Stokhof 1989) As a fust step toward an interpretation,
we might say that the question in (13-47a) is translated as in (13-47b); o f
course (13-47b) itself does not specify an interpretation until one provides
an interpretation for the expression which man M uch o f the debate about
the semantics of interrogatives concerns that last point; most theories agree
on the aspects o f the interpretation represented by (13-47b) (with important
differences, however, concerning the possible scope interactions between op
erators inside the body o f the question and expressions that are part o f the
wfe-pkrase)

(13-47) (a) W hich man does Mary believe that Susan wants to marry e-i?
(b) (which man)'(Aa:i (Mary believes that Susan

wants to marry x i) 1)

Other unbounded dependency phenomena for which analyses using lambda
abstraction have been proposed include focus phenomena, the comparative
construction (Cresswell 1976), topicalization (Gazdar et al 1985)., and the
pseudocleft construction (Partee 1984), Partee (1979) suggests the following
generalization:

(13-48) A ll and only unbounded syntactic rules are interpreted semantically
by rules that bind variables which were free in one or more o f the
input expressions

The generalization as proposed allows that such variable binding may be
either by quantification or by lambda-abstraction; in terms o f primitiveness,
it is worth noting that it is possible to have lambda-abstraction as the only
primitive variable-binding operator and define the quantifiers in terms o f it
(see (13-40)), but not vice versa Although the generalization is too the
ory dependent to admit o f direct confirmation or refutation, its plausibility
suggests that lambda-abstraction can provide a valuable tool for capturing
important semantic generalizations

III. Generalized quantifiers

Generalized quantifiers will be the topic o f the next chapter; here we just
introduce them briefly as one o f the linguistically very important innovations

L a m b d a - a b s t r a c t i o n 359

that is crucially dependent on having higher types available than are found
in predicate logic. Lam bda abstraction provides a good way o f giving the
explicit semantics for generalized quantifiers and for the determiner meanings
that may go into building them up

As indicated implicitly in earlier examples, we can treat N P ’s as forming
a semantic as well as a syntactic constituent within a typed logic like M on
tague’s, and this was one o f the most influential of M ontague’s innovations in
his classic paper “P T Q ” (M ontague 1973), The N P ’s every man, some man,
John, and Mary given in the earlier fragment are interpreted as generalized
quantifiers; the reader should convince herself that their type is ((e, t) t) (e.g
by drawing a derivation tree for the logical expression which translates each
o f them and labelling each node with the type o f the expression)

Given those interpretations o f every man and some man, it is possible
to abstract on the CN position and get back a statement o f the meaning of
the Det W e do this for som e in (13-49a-b) and for every in (13-50a-b)„

(13-49) (a) some CN: AP.(3a:)(CN/(a:) & P (x))
(b) some: \Q \ P . (3 x) (Q (x) & P (x))

(13-50) (a) every CN: AP (Va:)(CN/(a:)-^P(a:))
(b) every: A<5,AP.(Ve)(<5(2:)—>P (z))

The reader should immediately verify that applying the determiner mean
ing given for some or every to a CN translation like man! will indeed give
an expression equivalent to the specified translation for som e man or' every
man One lambda-conversion step should show the equivalence

We can now replace the two earlier rules which introduced every and
some syncategorematically (i e without assigning them to any category) by
the single rule “NP —> Det CN” together with lexical entries for the specific
Dets, More members o f the category Det will be discussed in Chapter 14

We will go through the translation and simplification via lambda conver
sion o f the sentence Some man walks, whose syntactic structure is given in
(13-51),

360 C h a p t e r 13

(1 3 -5 1)

NP VP

Det CN walks

some

(13-52) (i) some: XQ XP. (3x) (Q(x) & P (s))
(ii) man: man'

some man: XQ.XP (3x) (Q(x) & P (z))(m a n ')
(reduce by lambda conversion before continuing:)

XP (3a:)(man'(a:) & P (e))
walks: walk'

(v j some man walks: (A P ,(3e)(C N '(s) & P(a:)))(w alk ')
(reduces to:) (3a:)(m an'(E) & waLk'(z))

m

iv

We see from the last line that the translation o f Some man walks in
this system ends up, after lambda conversion, the same as its translation in
predicate logic. The difference is not in the interpretation but in whether
or not that interpretation is arrived at compositionally on the basis o f a
reasonable natural language syntax In predicate logic there is no way to
view the interpretation o f the NP as a c o n s t itu te n t ; in a more richly typed
system there is. The treatment o f NPs as generalized quantifiers has turned
out to yield a very fruitful domain o f resear ch; some o f the work in this area
is reported in Chapter 14.

IV . V P -d e le t io n

Yet another early recognized application o f lam bda-abstraction was in the
analysis o f VP-deletion, and in particular to capture the distinction between
the so-called “strict identity” and “sloppy identity” readings o f sentences
like (13-53),

(13-53) John believes he’s sick and Bill does too.

L a m b d a - a b s t r a c t i o n 361

The first step in the analysis is to recognize that the first conjunct, re
peated in (13-54), is ambiguous even excluding the possibility o f he refer
ring to someone other than John, an ambiguity involving a bound variable
reading o f the pronoun, as represented in (13-54a), vs a “pragm atic” or
“ coreferential” reading o f the pronoun, represented in (13-54b) by simply
translating the pronoun as the constant j Although (13-54a) and (13-54b)
yield the same truth conditions, they involve differences in what corresponds
to the VP believe h e ’s sick that do lead to truth-conditional differences in
VP-deletion sentences like (13-53)

(13-54) John believes he’s sick
(a) (Aa:.believe/(a:,sick/ (a :)))(j)
(b) believe'(,7, s ick '(j))

The corresponding pair o f interpretations for the VP believe h e ’s sick
are given in (13-55a-b), In effect, the VP in the interpretation in (13-55a)
denotes the property o f believing oneself to be sick, while that in (13-55b)
denotes the property o f believing John to be sick.

(13-55) believe he ’s sick
(a) Xx believe7̂ , sick^a:)): call this Pi
(b) A z.believe^z,sick '^ ')): call this P2

The ambiguity in the original sentence (13-53) is then accounted for by
the ambiguity o f the antecedent VP, as represented in (13-55a-b), together
with the principle that the missing VP is interpreted as semantically iden
tical to the antecedent VP. The reader is invited to work out that lambda-
conversion yields the two appropriate readings for Bill does too from the
representations in (13-56).

(13-56) Bill does too
(a) P , (6)
(b) P2(6)

It has been noted by many semanticists, including Dahl, McCawley, and
Keenan in the early 1970’s, that the term “sloppy identity” is a bit o f a
misnomer resulting from the early syntactic approaches to the problem (the
term was coined by J.R Ross) and the possibility o f gender differences in

362 C h a p t e r 13

examples like John finished his homework before M ary did and that in fact
the syntactically “ sloppy” identity is a reflection of strict semantic identity.

The semantics o f VP-deletion is basically just identity o f VP interpreta
tion: lambdas simply help articulate the relevant VP interpretations.

V . Passive

Lambdas are also very useful for expressing the interpr etations o f various
rules or operations which manipulate the argument frames o f verbs or verb
phrases and other predicates The passive construction makes an interesting
example, since it was generally regarded as a transformation o f a sentence
structure within transformational grammar' but within contemporary formal
semantics the debate is more over whether passive is a phrasal or a lexical
operation. We will illustrate first the phrasal passive analysis o f Bach (1980)
and then compare it with the lexical approach o f Dowty, Bresnan and others.

In order to focus on the relevant issues, we should make one simplification
and remove one earlier simplification. The simplification we will make is to
treat all N P ’s as o f type e, and restrict the N P ’s in examples to proper nouns
so that no harm can be done by the simplification. The earlier simplifica
tion that we should now undo was never introduced officially but appeared
in examples: in examples like (13-43), (13-44), and (13-45) we followed the
practice o f predicate logic in representing transitive verbs as two-place rela
tions that combine with an ordered pair o f arguments, Here we will follow
Montague and other semanticists in interpreting a transitive verb as a func
tion which applies to the interpretation o f the direct object to yield another
function which applies to the interpretation o f the subject to yield a truth
value. So transitive verbs will be treated as o f type (e, (e, t)) (still assuming
that we are treating all N P ’s as being o f type e.) The rule for combining
them with their object to make a VP is given in (13-57)

(13-57) VP -> T V P NP Translation: T VP'(N P)'

A syntactic derivation tree for the simple sentence John loves Mary is
given in (13-58a); a corresponding semantic derivation tree with its nodes
labeled with the corresponding types and translations is given in (13-58b).

L a m b d a - a b s t r a c t i o n 363

(1 3 -5 8)

(b)

John loves Mary ; S

John ; NP love Mary ; VP

love ; T V P Mary ; NP

lo v e '(m)(j) ; t

j\e love'(m); (e, t)

love'; (e, (e, t)) m i e

Note that what is represented in predicate logic as love'(j, m) is now
written lov e '(m)(j) , reflecting the older in which the function is combined
with its arguments rather than the order o f the N P ’s in the English sentence.
It is customary in Montague grammar to retain the former notation as a
conventional abbreviation o f the latter, however.

Now we can state the phrasal passive rule which derives a passive verb
phrase from a transitive verb (phrase) as proposed by Bach (1980), The
operation written E N in (13-59) is the operation which puts the first verb o f
its argument into the passive participle form, and adds a be before it. Since
the passive rule is not a simple phrase structure rule, we have stated it in
a form closer to the standard recursive format o f the earlier sections o f this
chapter,

(13-59) P h ra sa l p a ss iv e ru le fo r a gen tless passives
Syntax: If a is a TV P, then E N (a) is a P V P (Passive VP),
Semantics: I f a translates as a ', then E N (a) translates as

\ x . (3y) (a ' (x) (y))

The passive verb phrase be loved is then translated as shown in (13-60)

(13-60) be loved: Xx (3 i/)(lov e '(s)(j/))

In the example just given, the T V P was a lexical transitive verb, love,

364 C h a p t e r 13

The rule is also intended to apply to what Bach analyzes as phrasal transitive
verbs (meaning phr ases which function as transitive verbs, not phrases which
contain transitive verbs), such as the italicized (discontinuous) T V P ’s in (13-
61).

(13-61) Phrasal T V P ’s: give a book to John
give John a book
persuade John to leave
buy this book to read to the children

A competing hypothesis is that passive is a lexical rule, as proposed by
Dow ty (1978) and Bresnan. The statement o f the rule could be identical in
its syntax and its semantics to the phrasal rule given above, but restricted to
apply only to lexical items. The difference between the lexical and phrasal
versions o f the rule is subtle, much less than the difference between a syntac
tic and a lexical treatment o f passive in earlier transformational approaches.
The lexical rule in its most basic form does not apply to the phrasal verbs
illustrated in (13-71). But it is not difficult to extend it to a schema applying
to lexical verbs o f all categories T V P /X , i.e all categories o f verbs which
take some kind o f complement to form a transitive verb (phrase). The basic
strategy for doing this is similar to the strategy used in defining phrasal
conjunction in the beginning o f this subsection (In the terminology one
encounters in the literature on categorial grammar and type-changing oper
ations, we would want to “lift” the passive operation from an operation on
T V P -type interpretations to an operation on functions that have TVP-type
interpretations as their values. To write this out explicitly in detail is a bit
too complicated to do here in this case, since T V P ’s are already of a slightly
complicated type, the semantics of the basic passive operation is slightly
complex, and the various complements and adjuncts that enter into phrasal
T V P ’s are of types we have not discussed.)

Whether phrasal or lexical, lambdas help provide an explicit and per
spicuous statement o f the semantics o f the passive construction

V I. Meaning postulates and lexical rules

Dowty (1978, 1979) discusses a wide variety of other governed rules which
he proposes to treat as lexical rules, and lambdas figure prominently in the
semantics. In discussing lexical rules, we should discuss meaning postulates
at the same time, since the two are often closely related in form , and the

L a m b d a - a b s t r a c t i o n 365

choice of which is more appropriate to use in a particular case is generally
an empirical linguistic issue.

Am ong the phenomena that have been analyzed in terms o f meaning
postulates and /or lexical rules are causative verbs, detransitivization, m or
phological reflexives, adjectival tin- prefixation, ob ject raising, “dative move
ment” , the relation between seek and try to find and that between want and
want to have, and many o f the more semantically regular parts o f deriva
tional morphology. The best general reference, and the starting point for
much work in this area, is Dowty (1979),

We will discuss just one o f these phenomena, causative verbs, and use
that discussion to illustrate both meaning postulates and lexical rules and
the relation between them. This will also give us a good opportunity to show
how lambda-expressions are arrived at by specifying what one wants them
to do

Consider the (much-discussed) relation between transitive and intransi
tive break in English, There are differences o f opinion as to just what the
semantic relation between the two is. Many linguists believe (I) that it is
at least true that (13-62a) entails (13-62b) Some believe (II) that (13-62a)
and (13-62b) entail one another, i e are logically equivalent, Others are
doubtful about claim (II) but believe (III) that a similar claim holds true,
but with an abstract and possibly universal causative operator “ CAUSE”
whose interpretation is not exactly identical to that o f the English word
cause Some believe neither (II) nor (III) but believe that (I) (or a variant
of I with CA USE in place o f cause) is the strongest generalization that can
be made; that is, that (13-62b) captures part o f the meaning o f (13-62a) but
does not exhaust it.

(13-62) (a) John broke the window,
(b) John caused the window to break,

In stating the relevant translations o f these sentences, we will use breal^
foi the transitive verb and breal ̂ for the intransitive; we translate the window
simply as an e- type constant w ; and we will introduce without motivating it
an operator TH AT which applies to a form ula to give a proposition- denoting
expression. (Discussion o f such an operator would need notions that will
be introduced in Chapter 15; but nothing relevant in the present example
depends on the occurrence o f this operator in it.) Then we can translate
(l3-62a) (uncontroversially) as in (l3 -63a) and (13-62b) (controversially) as
in (l3 -63b). We ignore tense throughout.

366 C h a p t e r 13

(13-63) (a) b rea k ^ w X i)
(b) cause'(y, n L 4 r(b rea k '1(w)))

Now we can state the three claims (I), (II), and (III) in terms o f three
alternative “meaning postulates” one could write. (See Carnap (1947) for
the introduction o f the term and Partee (1975) for its use to describe what
Montague introduced as restrictions on possible interpretations.) One way to
think o f these meaning postulates is as capturing explicitly some aspects of
the lexical semantics of the elements mentioned in the postulates; the cases
linguists are generally most concerned to make explicit are those in which
the given aspects o f the lexical semantics play a crucial role in some general
inference patterns, especially where whole families of lexical items participate
in common inference patterns (as is the case with causative verbs.)

(13-64) M P I: (Va:)(Vi/)[bieak2(i/)(2:) —> cause'(z, T iL 4T (b ieak i(y)))]
M P II: (Va:)(V2/)[break2(i/)(2:) <-» cause'(z, T iL 4T (b ieak j(?/)))]
M P HI: (VE)(Vy)[break'2(y)(a:) « C A U SE {x , T E A T(break^(?/)))]

W ith respect to the relationship between meaning postulates and lexical
rules, the most important difference among the three meaning postulates
above is that between M P I and MPs II and III: only the latter two, involv
ing full equivalence between the two sides, can be turned into lexical rules
defining transitive break as the causative o f intransitive break.

We will use M P II to illustrate how the conversion from meaning pos
tulate to lexical rule can be done in such cases. First note that there is
an asymmetry in the roles o f breaU ̂ and breaU± in the meaning postulate:
the postulate implicitly gives us a definition of breatf2 in terms o f break ̂ but
not straightforwardly vice versa To see how to turn the meaning postulate,
already an implicit definition, into an explicit definition o f b r e a k look at
breali, as a function which applies to two arguments in turn. The right-hand
side o f the equivalence tells us what the value o f that function is given in
terpretations o f causd and o f break^. But that means the light-hand side is
already perfectly suited to be the body o f a lambda-expression; all we have
to do is abstract in the right order on the two argument variables of break
W hich order? Well, since the transitive verb applies first to its direct object
argument (the y argument in M P II), that should be the argument the first
lam bda-operator binds, (I e. “ fust argument fust” in the lambda-notation

JL/XERCISES 367

we are using. Be careful, since this is not always uniform across different
notational versions o f the lambda-calculus.) The result is the definition in
(13-65),

(13-65) break'2 = Xy Xx cause'(a:, T’iL4T’(breaki(i/)))

A ll we then need to turn this into a lexical rule is to abstract away from
the specific lexical items breaki, breaks and cast this into a rule applying
to a certain class o f intransitive verbs to derive a causative transitive verb
from them, with the similarly generalized form o f (13-65) providing the cor
responding interpretation rule

(13-66) Lexical Rule For Causative Verb Formation (Assuming M P II)

Formation Rule: If a is an intransitive verb with such-and-such
properties, then F (a) is a transitive verb. (F in
English is mostly the identity function.)

Semantic Rule: The translation o f the derived verb F (a) is
Aj/.Az.cause^z, T H A T (a '(y)))

The reader is invited to go back to the earlier applications o f lambda
abstraction mentioned in this subsection and try to see where the lambda-
expressions come from. For the passive, for instance, it might be instructive
to write down a biconditional statement stating the equivalence o f the agent-
less passive sentence to a corresponding active, and then see how the form
o f the lam bda abstract given in the translation rule in (13-59) can be fig
ured out from there. (D o not be discour aged if lambdas seem difficult and a
bit mysterious at first; like many powerful tools, it takes time and practice
before they feel natural to work with.)

Exercises

1. (a) Given the derivation tree for the following statements o f SL ac
cording to the syntax given in (13-1) and (13-2).

(i) ((~ p & g) V p)

368 C h a p t e r 13

(ii) (~ (p & g) V p)

(iii) ~ ((p & g) v p)

(b) Give the compositional semantic interpretation o f the three trees
o f (la), assuming that both atomic statements are true.

2. Assume the alternative syntax for SL, which has. besides the category
for atomic statements, two other categories for connectives: Neg for
negation which combines with only one statement at a time, and Conn
for all four other connectives which combine with two statements at a
time

(a) Write the two new syntactic rules for this syntax o f SL

(b) Give the derivation tree for the three statements given under la.

To give SL with this syntax a compositional semantics we first have to
interpret the connectives according to their truth tables as functions
taking either one oi a pair o f truth values, which is/are the value(s)
o f their constitutive statement(s), and assigning a truth value. For
instance, conjunction is interpreted by the following function:

(1 ,1) -> 1
(1 ,0) -> 0
(0 ,1) -> o
(0 ,0) -> 0

Give the interpretations o f the other connectives o f SL as such
functions.

Write the two compositional semantic rules for SL with this syn
tax. Hint: use the convention o f [PJ standing for the semantic
interpretation o f P.

Show how each o f the statements o f (la) is interpreted composi-
tionally according to the three trees you gave in (2b)),

Give the trees and compositional interpretation o f the following
formulas o f Predicate Logic, according to (13-8) and (13-9) given
in section 13,1.2. Define your own m odel with two individuals
and a non-empty interpretation of the predicates to use in the
interpretation throughout this exercise which makes (i)-(iv) true.

(i) (Va:)(3y)(P(a:) -> R (x , y))

(a)

(b)

(c)

3. (a)

E x e r c i s e s 369

(i i) (3 j /) (V i e) (P (i e) - > R { x , y))

(i i i) { 3y) (P (y) -> (Vx) (R(x , y))
(i v) (Vx) (3y) (P(y) -> R (x , y))

(b) Formulate four English sentences corresponding to (i)-(iv) which
would best express their scope differences

4. In (13-10) we define a formula or predicate logic as true in a model M
i f it is true for all assignments in M , and false otherwise. A common
alternative definition is given in (13-10') below.
(13-10') (1) ■̂'or formula ip, = 1 (i-e V5 is true simpliciter

with respect to M) iff for all assignments g,

(2) For any formula <f>, = 0 iff for all assignments g,
= o,

(3) Otherwise, is undefined.

The two definitions give the same results for all closed formulas, but
they give different results for some open formulas.

(a) Find an open formula which comes out true under both defini
tions ,

(b) Find an open formula which comes out false under both defini
tions.

(c) Find an open formula which comes out false according to (13-10)
but undefined on this alternative (13-10').

(d) Are there any other cases, or does (c) exhaust the ways in which
the results o f the definitions can differ? State your reasons.

5. Give the derivation tree according to the SL syntax in (13-2) corre
sponding to the ‘algebraic’ tree in (13-20) and show its compositional
derivation which makes it true in a simple m odel o f you own choice.

6. Assume the following constants and variables
Type Variables Constants
e x , y , z , j , m
(e, t) P ,Q walks, man
(e , (e , t)) R loves
((e , t) , t) P someone, everyone

Check whether the following expressions are well-formed expressions

370 C h a p t e r 13

o f TL I f so. specify their type. Draw derivation trees for at least three
o f the wellfoimed ones.

Sample: (i) Ax P (x) - yes, type (e, t)
(ii) loves (m) - yes, type (e, t)

(iii) AP walks (P) - no

Derivation tree for (i):
XxP(x) , (e, f), 3

x , e P (x) , t , 2

P ,< M) x , e

(a) Xx loves (m)(z)

(b) AR R (m) (j)

(c) someone(walks)

(d) X P P (j)

(e) Xx som eone(z)

(f) X x (P (x) & Q (x))

(g) A P (P (i)& P (m))

(h) (A P P (;))(w a lk s)

(i) Ax^y loves (x) (y)

(j) A P (V P (P (P) « P (j)))
((j) has extra parentheses, do not judge it illformed on that ac
count)

7. Using the same variable-conventions as above, and the constants and
semantic interpretation o f T LA given in 13,2.3, specify for each o f the
following the type and a description o f the semantic value for M and
g as given in (13-36).

Optional abbreviations: P lu s(a , 6) for P lu s (6)(a)
gr(a ,6) for gr(6)(a)

Sample: (Aa:gr(a:, 5))(8) - type: t, value: TRU E

(a) (Aicgr(iE,5))

E x e r c i s e s 371

(b) (A a :(od d (a :)& g r(s ,5))(8)

(c) (AeP1us(e , 3))(4)

(d) (Xx(Xygr(y, z)))(5)(8)

(e) (Xx(Xygr)y, z)) (5))(8)

(f) Ae 3 j/(P1u s(j/, y) = x)

(g) (A PP(8))(A zgr(iE , 5))

Hint: one o f (d) and (e) is true, the other false

Chapter 14

Generalized Quantifiers

14.1 D e te rm in e rs an d quantifiers

The universal and existential quantifiers o f predicate logic introduced in
Chapter 7 aie in two m ajor respects inadequate for the semantic analysis o f
the rich variety o f quantification in natur al languages, First o f all, as we have
seen in translating from English to predicate logic and as was pointed out
again in Chapter 13, the syntactic structure o f quantified formulas in pred
icate logic is completely different from the syntactic structure o f quantified
sentences in natural language. Quantifying expressions o f natural language
are typically full NPs, where the noun (CN) and possibly additional relative
clauses provide essential restrictions on a quantifier. Not just the determiner
or specifier o f an NP binds dependent arguments or pronouns, but from a se
mantic point o f view the appropriate scope-defining and binding category is
the entile NP It will prove useful for linguistic purposes (too) to distinguish
between quantifying over domains and binding arguments o f predicates —
two jobs conflated by the two standard first-order quantifiers o f predicate
logic. Secondly, many forms o f quantification in natural language are not
expressible or definable in terms o f the first-order logical quantifiers. For
instance, the NP more than half o f the CN is not expressible in terms o f just
fixst-order quantifiers, since its interpretation requires a one-to-one mapping
between two finite or infinite sets dependent on a well-ordering by cardinality
(see Barwise and Cooper (1981) for a complete p roof)

These serious limitations o f the analysis o f quantification in any semantic
framework restricted to a first-order language can be overcome by general
izing the notion o f a quantifier to a higher-order concept: a generalized

373

374 C h a p t e r 14

quantifier is a family o f subsets o f the domain of entities. Richard M on
tague initiated this higher-order analysis o f quantification, as presented in
the fragment o f Chapter 13, for the logical quantifiers in his famous paper
‘The Proper Treatment of' Quantification in Ordinary English’ (Montague
(1 9 7 4) , p. 2 4 7 -2 7 0) , and recent research in model theoretic semantics has
developed his insights considerably for linguistic purposes A lso genuinely
new insights on the logical properties o f quantifiers have been obtained, e.g.,
a new notion o f first-order definability (see van Benthem (1 9 8 6)) . In this
chapter the main linguistic results o f the theory o f generalized quantifiers
are presented as an introduction to a very fruitful ar ea o f linguistic seman
tics where the mathematical methods o f the previous chapters have found
extensive empirical applications.

In the fragment o f Chapter 13, NPs are defined categorially as terms, and
they are interpreted in the semantics as gener alized quantifiers,. The seman
tic type o f any term or NP is {{e, t) , t) , hence they all denote functions from
sets o f individuals to truth values, The fragment in Chapter 13 contained
only the determiners every and some, translated in the formal language with
lam bda abstraction respectively as

XQXP[' ix[Q{x) P (x)]]

and
X Q X P [3 x [Q { x) t P{x)) }

In this functional perspective the subject NP denotes a function taking the
interpretation o f the VP in the sentence as argument For instance, every
man walks is true iff the set o f walkers is a member o f the fam ily o f sets
interpreting every man.

Alternatively we may view the interpretation o f this sentence in a ‘flat
tened’ version as a relation between sets, i.e., o f type (((e , t) , (e , t)) , t) . A
determiner is then analyzed as a relation between the set o f individuals in
terpreting the CN o f the subject NP and the set o f individuals interpr eting
the VP, This leads to the following general definition:

D e f i n i t i o n 14.1 A determ in er is a function D in a m odel M = (^ j [])
assigning to the domain o f entities E a binary relation betw een subsets A
and B .

l D e t [^ l [y P l] E = [D et(A , P)]g = D EA B

C o n d i t i o n s o n q u a n t i f i e r s 375

In the following we first present the main notions in their flattened rela
tional versions for ease o f exposition, and discuss the relational analysis o f
quantifiers further in Section 4. Switching back and forth between a hier
archical functional perspective and a flattened relational analysis will prove
heuristically useful since many of the results o f the theory o f relations o f
Chapter 3 can be brought to bear on generalized quantifier theory.

The m ethodological objectives and linguistic goals o f the theory o f gen
eralized quantifiers are threefold:

(1) to provide a semantical characterization o f the class containing all and
only the possible determiners o f natural language as a proper subset of
the logically possible det ermine.!, s, including a linguistically adequate
classification of types o f natural language determiners

(2) to explain distributional data o f NPs in various contexts by notions
definable in terms o f properties o f generalized quantifiers

(3) to analyze conditions on binding, scope-dependencies, inference and
other informational dependencies between NPs and other categories as
semantic constraints on the process o f m odel theoretic interpretation
as a formal m odel simulating human information processing with its
cognitive constraints

The theory o f generalized quantifiers proves to be a new framework for
the semantic explanation o f linguistic data which have been studied exten
sively in syntactic theory.

14.2 Conditions on quantifiers

In constructing gener alized quantifiers as families o f sets o f entities or in
dividuals in a domain there are four universal conditions which set initial
restrictions on a linguistically useful notion o f a quantifier. Although not
all natural language quantifiers meet these conditions, they serve us here to
carve out an initial domain o f study, providing the foundation for a semantic
analysis o f quantification. Extensions o f the simple cases to more complex
forms o f quantification, including context-dependent or intensional determin
ers, can be obtained by dropping one or more o f these initial m ethodological
assumptions.

376 C h a p t e r 14

Foi the interpretation o f an NP the domain o f entities E is nevei entirely
relevant to the determination o f its value, but rather just certain subsets o f
E are. For instance, when we want to check whether every man runs in a
given model, we are not interested in the women 01 the books in that domain
o f interpretation. To express this rather obvious condition on the subsets
which axe relevant in verification o f NPs we define a first general condition
on determiners in generalized quantifiers:

C l . Conservativity (the ‘live-on ’ property)

If A ,B C E then D EA B <-* D EA (A n B)

A determiner that meets this condition is called conservative or is said
to ‘live on ’ the set A. Subsets o f the domain that contain no members o f A,
no things with the property interpreting the CN in the subject NP, i.e. any
(X — A) C E , hence fall outside the interpretation o f an NP.

English examples that illustr ate this notion are the following equivalences

Many men run <-> M any men axe men who run

Few women sneeze <-+ Few women axe women who sneeze

John loves Mary <-*■ John is John and loves Mary

The English expxession only, for instance, which is sometimes (we think
erroneously) considered to be a determiner, fails to be conservative In eval
uating for instance the sentence Only athletes run in a domain E we do have
to consider the entire power-set o f E, since the sentence is verified or falsified
after we have determined o f everything else in E whether it runs. This is
an argument against treating only as a determiner, which finds additional
support by the fact that other determiners may precede it, as in the only
boy. The relatively free distribution o f only in a sentence also sets it apart
from the category o f determiners, Consider

Only athletes run / Every athlete runs

Athletes only run / * Athlete every runs

Athletes run only / * Athlete runs every

(1 4 -1)

C o n d i t i o n s o n q u a n t i f i e r s 377

But note that some determiners may “float” more easily, e g. all.
The second general condition on the class o f generalized quantifiers that

form our object o f study is the requirement that extensions o f the domain
should not affect the interpretation o f the determiner For instance, if we
know that some men walk in a given model, then adding more books to the
domain o f that m odel will not have any semantic effect. This condition on
determiners is defined as:

C 2 . Extension (C onstancy)
If A ,B C E C E' then D EA B ^ D E, A B

Determiners that satisfy this condition are called extensional or constant
determiners In principle the interpretation o f a determiner may vary with
the extension o f the domain o f interpretation, but Extension says that in
evaluating an NP the entities which fall outside the interpretation o f the CN
and outside the interpretation o f the VP can be left out o f consideration.
This means that the determiners under consideration have to be independent
of the size o f the domain; they are insensitive to domain-extensions In
natural language there are, however, determiners which measure relative
cardinalities and show an im portant dependence on the size o f the domain;
they are the context-dependent determiners like many or more than half.
Although we return to context-dependent determiners below in section 5, it
is easily seen that, for instance, there is at least one interpretation o f many
men walk which means that the number o f men who walk exceeds the number
o f other things in the domain that walk. Under such a globally proportional
interpretation o f many m en , addition o f more things to the domain may
change the truth value o f the original sentence

The two conditions Conservativity and Extension together permit sup
pression o f the parameter E in the interpretation o f an NP, which is defined
as:

C l '. Strong Conservativity
If A ,B C E then D E A B ^ D a A { A n B)

Strong conservativity tells us that the only sets which are relevant to the
evaluation o f a determiner are the CN-interpretation and the VP-interpretatio
For a proof o f the equivalence o f conservativity plus extension to strong con
servativity see Westerstahl (1985a),

The third universal condition on quantifiers requires that only the num
ber o f elements in the relevant sets determine the interpretation o f a quan
tifier. To evaluate in a m odel M , for instance, whether several men walk we

378 C h a p t e r 14

only need to know how many men there are and how many o f them walk.
It is not relevant who they actually are, since the interpretation of that sen
tence should not be affected if we were to substitute other men for the given
ones. No quantifier hence may depend on a specific or particular choice of
individuals in the domain, i.e. the quantifiers under consideration are ‘topic
neutral’ . This condition is formulated as:

C 3 . Quantity (Isom .)

I f F is a bijection from to M 2 , then D e1A B <-+ D e2F (A) F (B)

Quantity requires sameness o f interpretation up to isomorphic models. The
requirement may be weakened to insensitivity to any permutation tt on E or
automorphism F : M j —> M i o f the domain o f a given model, formulated
as:

C 3; . Weak Quantity (Perm)

If 7r is a permutation o f E , then D ^ A B D e { ^ { A)) (tt(B))

If we assume Constancy, then Quantity and Weak Quantity prove to be
equivalent conditions (for a proof see Westerstahl (1985a)) Hence in the
following we disregard this difference and assume Quantity as a constraint

A quantifier D (A) which meets Quantity is said to be a quantitative
quantifier. Note that there is some potential terminological confusion here.
Some authors (a,o. van Benthem) reserve the term ‘quantifier’ for those
NP-interpretations that are conservative, extensional and quantitative, and
others (a.o WesterstaM) call this class the ‘logical’ quantifiers. We call
here any NP-interpretation a (generalized) quantifier and use the universal
conditions as properties o f subsets o f quantifiers

Again there aie expressions in English which are com m only considered to
be determiners, but which fail to meet Quantity. This is not surprising, since
in our ordinary use o f language reference to specific objects and particular
things often matters a great deal In logic it is customary to obliterate
all that is specific, and in setting the stage for the study o f generalized
quantifiers we chose to simplify matters first by disregarding specificity for
the moment as it brings in complex contextual parameters.

Typical specific determiners which are sensitive to the choice o f particular
objects and let the interpretation o f NPs vary across isomorphic models
are the possessive determiners such as John’s, every m an’s. One of the
problems to solve in the interpretation o f possessives is the fact that John’s

C o n d i t i o n s o n q u a n t i f i e r s 379

book should be interpreted equivalently to the book o f John but every m an’s
book should not necessarily be equivalent to the book o f every man. See
for more discussion van Benthem (1986), Keenan and Faltz (1985), Partee
(1984).

The fourth and final universal condition on determiners requires that
determiners must be active in the sense that they must have a detectable
effect on different domains. The ‘universal’ determiner, which is true on any
domain for any two sets, and the ‘em pty’ determiner, false in every domain
and every two sets, axe excluded as trivial. This condition is formulated as:

C 4 . Variation

For each domain E ther e is a domain E ' such that E C E ' , A, B and
C C E', such that D ^ 'A B and ~ D e ’ A C

Variation says that, when you add entities to the domain, a set C can be
found which is not related to A by the determiner. Hence natural language
excludes determiners that just arbitrarily relate any or every two sets. A
weaker condition may be called for when we do not want to exclude the
interpretation of, for instance, at least two CN in a domain with only one
single object,

C 4 '. Non-triviality

For non-empty domains E and E' there exist A ,B C E and A 1, B ' C E'
such that D e A B and ~ D e ’ A 'B '

Again the difference between C4 and C4' may be disregarded for our
purposes as both exclude the trivial quantifiers, and the precise strength o f
the conditions concerns primarily logicians who want to make the weakest
possible gener al assumptions to obtain maximal proof-theoretic elegance.

Conservativity, Extension, Quantity and Variation together define a class
o f determiners which exhibit linguistically interesting semantic properties
We will study these properties in the next section o f this chapter As was
already remarked above, these four conditions together require that the de
terminers under consideration depend only on the cardinality o f two sets A
and B , respectively the CN-interpretation and the VP-interpretation, I f we
assume finite domains, this allows tree-like representations o f these deter
miners, called number-theoretic trees, which are outlined here just briefly,
while relegating most results to the exercises Letting x = \A — B\ and
y = \ A n B\, the tree is built by pairs (x , y) as in Figure 14-1.

380 C h a p t e r 14

x + y = 0 0,0
= 1
= 2
= 3

1, 0 0, 1
2, 0 1, 1 0 , 2

3,0 2,1 1,2 0 ,3
etc,

Figure 14-1: The number-theoretic tiee of
determiners

To illustrate the use o f such number-theoretic trees briefly we can see
directly that every man walks is true only on all right-most pairs on each
line, since, for instance, if x + y = 3 all three elements must be in A n B, i.e.
they all are men and walk. The same argument applies inductively to any
number x + y. There are many other properties o f determiners expressible
in this number-theoretic tree, but these results make good exercises

14.3 Properties of determiners and quantifiers

Assuming the four universal conditions o f Conservativity, Extension, Quan
tity and Variation, we now turn to some linguistically useful semantic char
acterizations o f the types o f determiners which the NPs in this class may
contain, Recent research has uncovered a host o f interesting properties of
determiners and quantifiers, and we can present here only some o f the fun
damental results

The role o f determiners and quantifiers in inferences is one o f the cen
tral explananda o f the theory of generalized quantifiers, The fundamental
question here is how information expr essed in natur al language in inferential
patterns is preserved or lost by manipulating models. The first property
o f determiners is based on increasing or decreasing the number o f entities
in the relevant sets A (CN-interpretation) and B (VP-interpretation), If
we have the information that some men walk, adding more walkers to the
interpretation will not change the initial assignment. But if we have the
information that no man walks, adding more walkers to the interpretation
may very well change it, because some of the walkers may turn out to be
men. Similarly, in the first case, if we add more men we still maintain the
information that some men walk. But, in the second case, if we add more
men, the information that no man walks is not preserved. These facts are
described by attributing to the determiners that allow such addition in either
A or B the property o f being respectively left monotone increasing (in A) or

P r o p e r t i e s o f d e t e r m i n e r s a n d q u a n t i f i e r s 381

right m onotone increasing (in B) The counterpart to increasing determiners
are m onotone decreasing determiners, again in either A (left) or B (right).
For instance, if few men walk, and we restrict the set o f men to a subset, it
is still true that few men walk, since only fewer do walk then; so few is left
monotone decreasing And if we assume that no men walk, and take a sub
set o f the walkers, that set cannot contain any men, so the information that
no men walk is preserved and no is right m onotone decreasing. The intu
itive linguistic tests that discriminate the four different types o f determiners
aie then the following entailments in which the determiner is the same in
antecedent and consequent but either the CN- or the VP-interpretation is
increased or decreased

(1) left monotone increasing
I f D C N l V P , then D C N 2 V P (where CN^ C C N 2)
e.g. I f several women with red hair run, then several women run

(2) right monotone increasing
If D C N VPi , then D C N V P 2 (where F P j C V P 2)
e g. If every man walks fast, then every man walks

(3) left monotone decreasing
If D C N 1 V P , then D C N 2 V P (where C N 2 C C N j)
e g If all women run, then all women with red hair run

(4) right monotone decreasing
If D C N V P i . then D C N V P 2 (where V P 2 C F P j)
e g. I f no man walks, then no man walks fast

These four related properties o f determiners are captured in the following
set-theoretic definition,

P i . M onotonicity
left monotone increasing: (D A B & A C A') —» D A ' B
right monotone increasing: (DABSz B C B') —> D A B '
left m onotone decreasing: (D A B & A! C A) —> D A 'B
right monotone decreasing: (D A B & B ' C B) —* D A B '

Note that left monotone increasing determiners are also called persistent,
and the left m onotone decreasing ones anti-persistent.

A syntactically simple determiner which is increasing in the left argu
ment (A) is increasing in the right hand argument (B), i.e , left m onotone

382 C h a p t e r 14

increasing simple determiners are also right monotone increasing. But left
monotone decreasing simple determiners are not always also right mono
tone decreasing This may be verified easily by considering the following
ent ailments:

Some bald men walk fast —> Some men walk

All men walk A ll bald men walk fast

The m onotonicity properties o f determiners provide a fundamental clas
sification o f inferential patterns. It in fact explains the power o f the Square
o f Opposition o f Syllogistic Logic (a pre-Fregean form o f predicate logic)
with the four traditional logical quantifiers every, some, not every and no
(see van Eijck (1985)),

A simple linguistic constraint on coordination of NPs with conjunction
and disjunction may now be formulated as follows:

Constraint on Coordination: NPs can be coordinated by conjunction
and disjunction iff they have the same direction of monotonicity,

Coordination o f a decreasing determiner and an increasing one is hence
excluded on semantic grounds, which conforms to the intuitive unacceptabil
ity of, e.g.,

*John or no student saw Jane

*A11 the women and few men walk.

O f course, coordination with the connective but requires NPs of differ
ent direction o f monotonicity, but note that this coordination, contrary to
conjunction and disjunction, does not allow iteration freely.

John but no student saw Jane

All the women but few men walk

*A11 the women, few men but several students walk

Conjunction preserves monotonicity, if it is interpreted as intersection of
the two CN-sets, But disjunction does not preserve monotonicity, e.g., all
or no is not monotone. Complex determiners are expressible equivalently as
conjunctions of monotone determiners, even though they might themselves
not be m onotone, e.g., the non-monotone exactly two is equivalent to the
m onotone at least two and at most two

P r o p e r t i e s o f d e t e r m i n e r s a n d q u a n t i f i e r s 383

To obtain a semantic universal stating that all syntactically simple natu
r a l language determiners (in the class meeting the four universal conditions
on quantifiers) are characterized by a certain semantic property, we need
a property which all right m onotone determiners share with numerical de
terminers interpreted as exactly n Such a weaker property is Continuity,
formulated as:

P2 . Continuity

D e A B 1 and D e A B 2 (where B i C B C B 2) —> D e AB

Conjunction still preserves Continuity (the proof is an easy set-theoretic
exercise). Now we can state the first empirical semantic universal o f natural
language determiners:

S I. Universal on simple determiners (van Benthem (1984))
Every simple determiner in a conservative, extensional and quantitative

NP o f any natural language is continuous

The m ethodological role o f such semantic universals is to demarcate the
class o f determiners that are realized in natural languages from the much
wider class o f all logically possible determiners. Semantic universals are
hence o f a genuinely empirical nature and make falsifiable linguistic claims

We can state a general relation between increasing and decreasing deter
miners if we define external and internal negation o f quantifiers as follows.
Here Qe is an abbreviation for D e (A),

D e fin it io n 14.2 I f Q e is defined in a model M with domain E, then:

~ Q e = { X C E \ X 0 Q }(external negation)

Q e ~ = { X C E | (E — X) £ Q }(internal negation)

■

External negation o f an NP prefixes negation on the NP, e.g., Not one man
runs. This should not be confused with full sentential negation, e g , It is not
the case that one man runs Internal negation corresponds to VP-negation,
e g , One man did not run

Now we can see that either kind o f negation reverses the m onotonicity
direction o f a quantifier I e , if Q is m onotone increasing, then ~ Q and
Q ~ are monotone decreasing, and if Q is decreasing, then ~ Q and Q ~ are

384 C h a p t e r 14

increasing. To see that this is true, assume that Q is m onotone increasing
and suppose that Y £ (Q ~) and X C Y Then (E — Y) £ Q and (E — Y) C
(E — X) , so (E — X) £ Q, hence X £ (Q ~) Now suppose Y £ (~ Q)
and X C Y. Then Y $ Q so X £ Q so X £ (~ Q). The p roo f o f the
reversal o f monotone decreasing quantifiers is similar. Also, as we may expect
from the set-theoretic definitions, it is provable (a simple exercise!) that
Q — From this correlation we may conclude that any
decreasing simple quantifier is a negated form o f an increasing simple one.
This result may provide an explanation for the fact that not all NPs can be
negated, e g,, acceptable external negations are:

(1) not every man

(2) not many men

(3) not a (single) man

whereas unacceptable are:

(4) *not few men

(5) *not no man

(6) *not John

Note first that only right m onotone increasing quantifier s allow external
negation Instead of (4) and (5) one could as well use the simpler monotone
increasing many men and some men respectively To explain the unaccept
ability of (6) we define the new notion o f a dual o f a quantifier.

D e f i n i t i o n 14,3 The dual o f a quantifier Q e is the quantifier Q e = { X C
E | (E — X) Q Q }. I f Q = Q~~ then Q is called self-dual. ■

The NP every man turns out on this definition to be the dual o f some
man. We call determiners D and duals if the quantifiers in which they
occur are duals. Furthermore for any a £ E, { X C E j a £ X } is self-dual, so
proper names, for instance, are self-dual Now we can formulate the second
semantic universal:

S2. Universal on negation (Barwise and Cooper (1981))
If a language has a syntactic construction whose semantic interpretation

is to negate a quantifier, then this construction is unacceptable with NPs
with monotone decreasing or self-dual determiners.

P r o p e r t i e s o f d e t e r m i n e r s a n d q u a n t i f i e r s 385

This accounts for the un accept ability of (6) Another linguistic illustra
tion o f this duality between quantifiers in natural language is the following.
For instance, not many men did not leave is often taken to be paraphrased
by quite a few men left Hence quite a few CN should be the dual o f many
CN, To show that this is untenable in general, we first prove a theorem of
generalized quantifier theory

T H E O R E M 14 1 (Barwise and C ooper (1981)) I f D is light m onotone in
creasing, and D A B and D " A C , then B D C / 0. ■

Proof, (reductio) Suppose B n C = 0. Then B C (E — C), so, by m ono
tonicity, D A (E — C). But then (D ~)A £7, so not ~ (D ~)A C , resulting in
a contradiction with the assumption D ^ A C ■

Many is right m onotone increasing (on a non-context-sensitive, i e, ex-
tensional, interpretation); now in some m odel M, let B = \voted for Bush]
and C = \voted for Dukakis]] I f many men voted for Bush and quite a few
men voted for Dukakis, then by Theorem 14,1 we must accept that at least
one man voted for Bush and for Dukakis! This shows that many and quite
a few cannot simply be duals. Possibly a more context-sensitive notion o f
duality could solve this problem

Duality is a fundamental aspect o f both formal and natural languages
The familiar negation laws o f predicate-logical quantifiers are a simple case
o f reversal o f m onotonicity direction, which we also call polarity-reversal.
But in natural languages the correlation between negation and duality is
much more pervasive Negative polarity expressions, for instance, occur
in various syntactic contexts, yet these prima facie disparate and almost
stylistic phenomena can be given a universal semantic explanation (due to
Ladusaw (1979)), The determiner any has been a notorious problem for
semantic analysis, since it is sometimes equivalent to the universal every,
which is called the free choice any as in A ny book is readable, But there are
contexts where it is not equivalent to universal quantification and in other
contexts it is simply unacceptable Closer scrutiny with a semantic eye o f
the acceptable contexts where it is not equivalent reveals that they can be
all interpreted by monotone decreasing sets Consider the data in (8)

(8) (a) John did not read any books
(a ') *John read any books

386 C h a p t e r 14

(b) At most ten students who read anything passed
(b ') *At least ten students who read anything passed
(c) It is difficult to find any book
(c ') It is easy to find any book
(d) Before anyone enters, he must bow
(d ;) * After anyone enters, he must bow
(e) Never may anyone touch it!
(e') * Always may anyone touch it!
(f) I f anyone can do it, (then) you can!
(f) Anyone can do it, so you can! (free choice ‘ any’)
(g) John left without any books
(g ') *John left with any books
(h) John left without having read any books
(h ') *John left (with) having read any books
(i) Not reading any books makes life boring
(i') *Reading any books makes life boring

The data in (8) demonstrate polarity reversal across various categories,
the first case o f negative polarity and the primed case o f positive polarity.
We see that contexts that admit negative polarity items (n.p,) should be
interpreted as monotone decreasing sets based on:

a) verbs for n.p. object NP

b) head NPs for relative clauses with n.p NP

c) adjectival phrases for object n.p, NP in infinitival phrase

d) locating temporal adverbs for n.p, subject NP

e) frequency temporal adverbial for n.p subject NP

f) conditional for1 n.p, subject NP

preposition for n.p NP in PP

preposition for n.p. NP in gerund

negation for n.p, NP in nominalization

Note that in (8f) the negative polarity o f the conditional antecedent
conveys that if it can be done at all, you certainly can do it, i.e,, the task is
difficult to do; whereas the positive counterpart (8 f) admits the free choice

P r o p e r t i e s o f d e t e r m i n e r s a n d q u a n t i f i e r s 387

any but changes the meaning drastically to express that since everyone can
do it, you can, i.e. the task is a very easy one These facts show that
m onotone decreasing sets serve in the interpretation o f expressions from all
these different categories in a compositional model theoretic semantic theory,
but it would lead too far for our present purposes to develop a fragment in
detail

There is another important semantic property o f determiners which has
been the subject o f much recent linguistic research, i.e., the contrast between
definite and indefinite NPs. The following definition captures a relevant
semantic property:

D e f i n i t i o n 14 4

(i) A determ iner D is positive strong i f for every m odel M and every
A C E i f D (A) is defined then D A A

(ii) A determiner D is negative strong i f for every m odel M and every
A C E i f D (A) is defined then ~ D A A

(iii) I f D is not positive or negative strong, it is weak

■

Examples o f positive strong determiners are every, all, both, m ost, the ra;
negative strong is neither, and weak are a, som e, at least ra, many, several,
a few, few, no. A simple linguistic test for strength o f a determiner is to see
whether a sentence o f the form

nri-KT j is a CN D C N < „ . T | are C N s

comes out logically valid, contradictory or contingent In the first case, the
determiner is positive strong, in the second case negative strong and in the
third case weak.

There is a simple theorem o f generalized quantifier theory which shows
that positive strong determiners always include the entire domain E.

T h e o r e m 14 2 (Barwise and C ooper (1981)) I f D is a determ iner in a
conservative quantifier D (A) , then D A A if f D A E . ■

388 C h a p t e r 14

Proof. Since D (A) is conservative, D A E iff D A (E n A), but E n A = A, and
we know D A A . ■

This theoiem can be used to explain why only NPs with weak determin
ers are acceptable in so-called existential contexts with pleonastic subjects
there is/are NP For any positive strong determiner this context makes an
uninformative tautology, whereas for negative strong ones it gives contradic
tions Furthermore, only weak determiners can be used when we deny the
existence o f something with there is not/are not NP.

But, as was pointed out in Keenan (1 9 8 7) , it is not straightforward to
extend Definition 14,4 o f strong and weak determiners to ra-place determin
ers, since it apparently makes the indefinite two-place determiners as many
CN as CN, more CN than CN and fewer CN than CN strong (e g as many
students as students are students is tautologous, more students than students
are students contradictory) Nor does this analysis account for the fact that
There is every student is plainly ungrammatical, whereas Every student ex
ists may be trivially true but not ungrammatical A more explanatory notion
is the following (Keenan’s work presents generalized quantifiers algebraically:
for any two properties p, q, a determiner is interpreted as a function F from
properties to sets o f properties, i e,, D A B is written q £ F (p). Intersection is
meet and union is join in a Boolean algebra o f properties. We limit ourselves
here to extensional properties and give Keenan’s definition in our notation.
It is an interesting research question whether there are empirical arguments
for or against using either set-theoretic or algebraic m ethods).

D e f in it io n 14.5 A determiner is ex isten tia l i f f either it is a basic existential
determ iner (i.e., D A B if f D (A fl B)E is true) or it is built up from basic
existential determiners by Boolean combinations, composition o f adjectives
or the exception determiner operator but NP. I

This notion accounts for the acceptability o f the following sentences:

There are fewer cats than dogs in the yard
There are just as many female as male cats in the yard
There is no cat but Felix (a cat) in the yard

Note also that determiners which do not meet Variation may be used ironi
cally or with special meaning in such existential contexts, e g„ in:

There are fewer than zero solutions to the problem

P r o p e r t i e s o f d e t e r m i n e r s a n d q u a n t i f i e r s 389

Look, there is either no or else at least one solution to the problem

Even though tautologies 01 contradictions may not by very informative from
a logical point o f view, a linguistic theory cannot ignore the fact that they
can be used very meaningfully in perfectly acceptable sentences (see Keenan
(1987)),

The relation discussed above between simple decreasing determiners and
their positive simple counterparts can be specified here more precisely: there
is a syntactically simple m onotone decreasing determiner D iff theie is a
syntactically simple weak non-cardinal monotone increasing determiner D'
(Barwise and Cooper (1981)), From this general correlation between simple
decreasing and increasing determiners we may predict that no language will
have syntactically simple determiners interpreted as not most, not every, not
the or not two, since most, every and the are strong determiners and two is
a weak cardinal determiner.

Furthermore, only NPs with existential or weak m onotone increasing
determiners seem acceptable antecedents of unbound anaphora which escape
c-command domains, and can be unselectively bound by other quantifiers,
as illustrated by the following sentences (see Heim (1982) and Reuland and
ter Meulen (eds) (1987) for recent research on indefiniteness):

(9) (a) Pedro owns many/several/some donkeys He beats them.
(a ') *Pedro owns every donkey He beats it.
(b) If Pedro owns a donkey, he beats it.
(b ') *If Pedro owns every donkey, he beats it.
(c) Every farmer who owns a donkey, beats it
(c ') *Every farmer who owns every donkey, beats it.

Definite determiners constitute a subset o f the positive strong determin
ers, defined as follows:

D e f i n i t i o n 14,6 A determiner is definite i f in every m odel M where D (A)
is defined, there is a, set i? / 0, such that D (A) = { X C E] B C X } . ■

Note that for a definite determiner D the set D (A) is the principal filter
generated by B (see Chapter 11 for the general notion o f a filter in a lattice)
Determiners which are positive strong but not definite are every, more than
half and at least half. Plural definite determiners are the only determiners
that can be embedded in partitive constructions, as we can see from (10).

390 C h a p t e r 14

(10) (a) most of the children
(a ') *most o f some children
(b) several o f the five children
(b ') ^several o f at least five children

Ladusaw (1982) added to this definiteness condition on determiners in
partitives that the embedded plural NP must be interpreted collectively,
since one o f both is unacceptable although both is a filter generated by a set
with two elements The two is a collective determiner, but both is distribu
tive, as can be seen from the fact that both boys lifted, the piano means that
the piano was lifted twice, whereas the two boys lifted the piano does not
specify how many times the piano was lifted, as it is true also when the two
boys once lifted the piano together, i.e , collectively The analysis o f plurals
as generalized quantifiers presents intriguing semantic problems, many still
open, which have been explored in Link (1983), (1984) using lattice-theoretic
domains, Hoeksema (1983), and elsewhere. Other restrictions on determin
ers in partitives can also be described by semantic properties For instance,
in the general syntactic form o f partitives

Deti o f D et2 D et3 C N

Deti must be pronominal, i.e. a determiner which can be interpreted in
isolation o f any CN such as some, several, none , the three but not every,
the, a, no (due to unpublished work o f J. Hoeksema; see also Westerstahl
(1985)). Possessive or demonstrative determiners are also pronominal, but
they should already be excluded from Deti positions in partitives, since they
do not occur in extensional and quantitative NPs. For the D et2 position
we find that only possessives, plural demonstratives and the are admissible,
which are all definite once we allow context-sensitive filters (see Section 5 for
context-sensitive determiners), Det3 can be filled only with weak determin
ers which impose some measure or cardinality condition on the set A (the
CN-interpretation). These results are typical descriptive semantic facts of
generalized quantifier theory, for which further explanation should be sought
in more procedural terms o f verification o f NPs in models, information pro
cessing, or complexity-measures of quantifiers and determiners

Other recent results in generalized quantifier theory include extensions to
many place determiners (few er m en than women) (Keenan and Faltz (1985),
and Keenan and Moss in van Benthem and ter Meulen (1985)), exclusion

D e t e r m i n e r s a s r e l a t i o n s 391

determiners (every man but John), determiners which rely on some order
ing (every other number), adjectival and numerical determiners, temporal
quantification, and comparatives for which we refer the reader to the further
reading suggested for this chapter,

14.4 Determiners as relations

In presenting the main concepts of generalized quantifiers in the previous sec
tion, we switched back and forth between the functional perspective, in which
the VP is interpreted as element o f the second-order NP-interpretation, and
the flattened relational perspective, where determiners are interpreted as re
lations between the sets A and B, In this section we focus on the relational
perspective and study properties o f relations as constraints on determiners,
uncovering some important new semantic insights on the class of possible
natural language determiners, (The relational analysis is extensively stud
ied in Zwarts (1983), whose exposition is followed closely in this section, and
in van Benthem (1986))

Let D be a binary relation in a m odel M = (E , []) on the sets A, B , C C
E\ the following list o f properties o f relations is useful for defining types o f
determiners

reflexivity: D e A A
irreflexivity: ~ D e A A
symmetry: D e A B —> D e B A
asymmetry: D e A B — D e B A
anti-symmetry: D e A B & D e B A —> A = B
connectedness: D e A B V D e B A V A = B
strong connectedness: D e A B V D e B A
almost connectedness: D e A B —> (D e A C V D e C B)
transitivity: (D e AB & D e B C) —> D e A C
euclideanness: (D e ABSz D e A C) - ^ D e B C
anti-euclideanness: (D e A B S z D e C B) —> D e A C
circularity: (D e A B & :D e B C) —> D e C A

For example, the determiner every is reflexive, transitive and anti-sym-
met-ric, and its external negation not every is irreflexive, almost connected
and connected. The numerical determiner the rais transitive, anti-symmetric
but not reflexive. Symmetric determiners are some, no, at least n, at most
n, exactly n But we will see that other properties o f relations like asymme-

392 C h a p t e r 14

tiy, strong connectedness, euclideanness or circularity are not properties of
possible determiners in natural languages.

We assume the four universal conditions on quantifiers Extension, Con
servativity, Quantity and Variation set forth in Section 2 o f this chapter.
There are some useful theorems on equivalences between relational proper
ties and set-theoretic inclusion o f the sets A and B .

T h e o r e m 14.3 The following p a irs o f statem ents are equivalent:

(1) (i) D is reflexive

(ii) A C B —> D AB

(2) (i) D is irreflexive

(ii) D A B -> A % B

(3) (i) D is antisym metric

(ii) D A B —> A C B

(4) (i) D is connected

(ii) A % B -> D A B

Proofs:

(1) (i) —» (ii) Assume D is reflexive, and take A C B. Then D A A and
since A n B = A also D A (A fl B)., By Conservativity then D A B .

(1) (ii) —> (i) follows directly from the reflexivity o f inclusion,

(2) D is irreflexive iff ~ D is reflexive. By (1) D is irreflexive iff A C B —>
~ D A B . Contraposition and double negation gives D A B —> A % B .

(3) (i) —> (ii). Assume D is antisymmetric and take for some domain E,
sets A ,B C E such that D e A B . By Conservativity D e A (A fl B).
Extend E to E ', and take A' C E' such that \A'\ = [A| and A fl
A' = Af\ B. Then D e A (A fl ^4') and by Extension D e 1 A (A fl ^4').
Conservativity gives D e 1 ^4^4'. Now consider a permutation -k o f E'
which yields identical sets for AC\ A* and E' — (^4 U ^4') but permutes
^ 4 -^ 4 ' with A! — A. Quantity gives us D e i'k(A),k (A i), i.e., De< A! A.
So we have now D e 1 A A! and D e 1 A' A , and antisymmetry o f D gives
A — A'. Since A n A' = A fl B it follows that A n B = A , so A C B .

D e t e r m i n e r s a s r e l a t i o n s 393

(3) (ii) —> (i) Assume (ii), let DAB and DBA. Then A C B and B C A,
so A = B.

(4) By definition D is connected iff ~ D is antisymmetric. W ith (3) D is
connected iff ~ DAB — > A C B. So D is connected iff A % B — i> DAB.

Prom these relational characterizations we can now prove that some prop
erties o f relations cannot be properties o f natural language determiners, given
the four universal conditions we have assumed on quantifiers. Such results
demarcate the class o f possible natural language determiners as a proper
subset o f the class o f logically possible determiners.

T h e o r e m 14 4 (van Benthem (1984)) There are n o asymmetric determiners.

Proof. By definition o f asymmetry, to show that there are no asymmetric
determiners amounts to showing that there are no irrefiexive antisymmetric
determiners Suppose D is irrefiexive and antisymmetric, and assume D A B .
From Theorem 14 3, (2) says that A % B but (3) says that A C B. Contra
diction! So D can only be the trivial empty determiner, but that violates
Variety, ■

As a corollary to Theorem 14 4 it follows that there exist no irrefiexive
and transitive determiners, since antisymmetry entails transitivity for de
terminers (see exercises). Since a binary relation which is irrefiexive and
transitive is called a strict partial ordering, we find that no determiners are
strict partial orderings

Similarly we can establish that no determiners induce a weak linear or
dering on E (reflexive, transitive, anti-symmetric and connected), since there
are no antisymmetric connected determiners

T h e o r e m 14.5 (Zwarts (1983)) There are no antisym metric connected de
terminers. ■

Proof. Assume that some D is antisymmetric and connected. From Theorem
14.3, (4) tells us that A <2 B —> D A B and (3) that D A B A C B . But
then A % B —i> A C B. Contradiction! ■

In fact the only determiner which is reflexive and antisymmetric is the
inclusion-determiner every (and its plural counterpart all), since it is evi
dent from Theorem 14,3 (1) and (3) that for reflexive and antisymmetric

394 C h a p t e r 14

D , D A B *-* A C B . Hence even/ is the only determiner which is reflexive,
transitive and anti-symmetric, i.e. induces a weak partial ordering on E.

We prove two more non-existence results on natural language determiners
here

T h e o r e m 14,6 (Van Benthem) There are no symmetric and transitive de
terminers ■

Proof. Since transitive determiners are positive strong (see exercises), and
Theorem 14,2 showed that positive strong determiners always include the
entire domain E , we have D A E Symmetry gives D E E , but that means
that the only symmetric and transitive determiner is the trivial universal
one, which violates Variation, ■

Since equivalence relations are reflexive, symmetric and transitive we
can conclude from Theorem 14 6 that no natural language determiner will
induce an equivalence relation on E Since euclidean determiners must be
symmetric and transitive (see Zwarts (1983)), we can also conclude that a
fortiori there are no euclidean determiners in natural language

THEOREM 14,7 (van Benthem) There are no circular determiners, ■

Proof. We show that circular determiners must be euclidean and hence can
not exist in natural language because o f Theorem 14 6, The reasoning is
similar to the proof o f Theorem 14,1 (3) (i) —> (ii) Assume D is circular
and take for some domain E A, B ,C C E such that D e A B and D e A C .
By Conservativity D e A (A fl B). Extend E to E', and take A' C E' such
that \A'\ = |.A| and A fl A' = A fl B. Then D e A (A fl A ') and by Extension
D e 'A (A fl A'). Conservativity gives D e 'A A ' N ow consider a permutation
it of E' which yields identical sets for A fl A' and E' — (A U A ') but permutes
A — A' with A' - A. Quantity gives us D E nr(A)ir(A '), i.e D e>A' A- So we
have now D e 'A A ' and De>A' A, and circularity o f D gives D e 'A A and by
Extension D e A A Prom this together with the assumption that D e A C and
circularity o f D we infer D e C A Given D e A B , the circularity o f D gives us
D e B C , i.e., D must be euclidean ■

More negative but also positive existence results on possible natural lan
guage determiners based on properties o f relations can be found in Zwarts
(1983)

C o n t e x t a n d q u a n t i f i c a t i o n 395

14.5 Context and quantification

In studying the fundamental properties of NPs interpreted as generalized
quantifiers we initially disregarded any form o f context-dependence o f the
interpretation. Extension required NPs to be insensitive to domain exten
sions, and Quantity made us disregard all that is specific in reference and
quantification In this final section we indicate briefly how the theory may
be extended to include the important forms o f context-dependence found
in natural language, while seeking to extend the explanatory power o f this
semantic analysis o f quantification in terms of more dynamic processes o f in
terpretation and evaluation. (The exposition is partly based on Westerstahl
(1985a) and (1985b))

How many is many? We already alluded to the fact that the determiner
many violates Extension when interpreted by sets of a cardinality greater
than a least number fixed by the size o f the domain E:

manyE A B = manyE A (B n A) where \{B fl A)| > f (E)

Although Extension is clearly violated in this interpretation, Conserva-
tivity and Quantity are not. Let us call this interpretation many1 for the
m om ent.

Another interpretation o f many compares the number o f B ’s that are
A ’s to some constant or normal frequency. For instance, in a class o f twenty
students we say that many students got an A, when we compare the number
o f A-grades to the average score in other classes over some period o f time and
find that five out o f twenty is more than that average ratio. Suppose that by
coincidence there are as many right-handed students as A-grade students,
but they are not same individuals In that situation Many students got an
A is true, whereas Many students are right-handed is false, i.e. D % AB but
~ D e A C although \A fi B\ = \A fl C |, violating Quantity. If we assume in
addition that the students who got an A are the same individuals as the
right-handed students, i.e. D e AB and ~ D e A C although A fl B = A fl C,
we have a context where even Conservativity is violated

W hat counts as many may depend on various contextual parameters
Although five A grades in a class o f twenty might be considered many, if
five out o f twenty people are right-handed this is not considered to be many.
Different contextual parameters are at stake in this example, and we should
ask which properties o f determiners are preserved under addition o f which

396 C h a p t e r 14

parameters. If' we compare the cardinality of B fl A to some contextually
fixed ratio o f As, we get the following interpretation:

m any^AB — many1 A (A fl B) where |(A fl 5)1 < c |̂4|

and c is here a contextual parameter which may be 1 /4 for the A-students
but 3 /4 for right-handed students. This interpretation saves Conservativity,
Extension and Quantity, but introduces an external parameter which must
be given as input to the interpretation. If the dependence on the frequency
o f 5 ’s in the domain E should be represented explicitly, the following would
be required:

I jB I
m ani^A B = m ani?A (A fl B) where |(A fl B)\ > —- ■ |A|

\E\

Conservativity fails since E is now relevant to the interpretation, and
hence Extension fails as well

Finally many may be used to compare to the set o f B ’s, rather than A ’s,
as in the following examples from Westerstahl (1985a).

(1) Many winners of the Nobel prize in literature are Scandinavians

(2) M any Scandinavians have won the Nobel prize in literature

(3) Many Scandinavians are Nobel prize winners in literature

For (1) to be true a number o f external parameters, like the distribution
o f nationality among Nobel prize winners in general, will have to be con
sidered, hence the interpretation many2 is appropriate, The sentence (2) is
either equivalent to (1), or it counts among all Scandinavians the number of
them who won the Nobel prize for literature, and that cannot turn out to
be many. Sentence (3) expresses this latter interpretation o f (2), which is
obviously false. I f (1) and one interpretation o f (2) are equivalent, many in
these contexts is symmetric, but, i f it still is based on an asymmetry in the
cardinalities o f the respective sets, it must be interpreted as comparing to
the set B , i.e. :

many%AB = manyAA (A fl B) where |(A n 5)1 > c \B\

C o n t e x t a n d q u a n t i f i c a t i o n 397

This interpretation satisfies Extension and Quantity, but not Conservativity.
In Barwise and Cooper (1981) many in any o f its interpretations is analyzed
as requiring that |J5| / 0.

To gain more insight into the semantics o f many, it should be contrasted
to most, which appears to allow only two different interpretations. M ost1
compares the number o f A ’s that aie B ’s to the number o f A ’s that are not
B ’s, equivalent (on finite sets) to the complex determiner more than half.

m ostlE AB = m os^A ^A n B) where |(A fl 5)1 > |(A - B)\

This interpretation satisfies Conservativity, Extension and Quantity.

The other interpretation o f most is related to the universal quantifier and
gives it a meaning o f almost all.

m ost2E AB = most2A (A fl B) where |(A fl J5)| > c ■ |A|

Here c is again some contextually given parameter like in many1, which
determines in a given context how many counts as almost all. By using
> instead o f > , most? A are B is always true when A = 0, just as for the
universal determiner, but most1 A are B is always false when A = 0. In
terms o f strength m ost2 is positive strong, whereas most1 is positive strong
only when A / 0. Let us call this property almost positive strong.

The following table summarizes our findings on many and most and lists
their m onotonicity properties

398 C h a p t e r 14

E xt. Cons. Q u an t. Sym m . Right incr. L eftin cr .
many1 - + + + + +
many1 + + + - + -
many* - - + + - -
manyA + - + - - +
most1 + + + - + -
most2 + + + - + -

Figure 14-2: Properties o f many and most

The definite determiner the shares the property o f being almost positive
strong with most1. In fact, all definite positive strong determiners require
that |A| > 0 in order to be interpretable in a model Recall that a determiner
D is definite if it is interpreted as the principal filter generated by a non
empty B in every m odel in which D (A) is defined. The requirement that A is
not empty is a presupposition o f definite determiners on the models in which
their interpretation is defined (see also de Jong and Verkuyl (1985) on the
presuppositions o f definite determiners). The set B determines the truth-
conditions or the interpretation of the definite D , but the set A imposes a
necessary pre-condition on a model for its interpretation: prior context must
have introduced elements o f the set A Indefinite determiners like three or
few which are weak and intersective do not carry such a presupposition on
A , but their interpretation, which is always defined, requires A to be o f a
certain cardinality Indefinite determiners serve to change the context so
that A is o f the required cardinality. But how do we represent such context-
dependency in the notion o f a generalized quantifier? Westerstahl (1985b)
suggests relativizing all determiners to a context set X C E by the following
universal condition.

Restriction. D g A B «-* D e (X fl A)B .

Conservativity and Extension are preserved under this Restriction, and
a local form o f Quantity where the permutation is restricted to X may even
be maintained as well. M any o f the relational properties o f determiners
are preserved as well, but anti-symmetry, for instance, is not. Note that
restriction to a context set X does not add another argument to a binary
determiner, but serves to represent which elements o f the large domain of
entities E have been contextually given. Definite determiners are analyzed
as context set indicators requiring \X fl A\ > 0, and indefinite determiners
extend a given, possibly empty context set with new entities with property

C o n t e x t a n d q u a n t i f i c a t i o n 399

A The determiners which are neither definite nor indefinite, like the posi
tively strong more than half or every , each and all together with their right
monotone decreasing counterparts are truly quantitative over E and do not
depend on any context set. Note that this notion o f a context set solves a
well-known problem concerning the uniqueness o f the referent o f a singular
definite description: A may contain other elements besides those in the rele
vant context set X n A. E.g., interpreting the dog is running in the yard in a
context where there are possibly more dogs around only requires X fl ffdog]
to contain a single dog, but A C E may be o f any non-empty cardinality.

In relation to this semantic analysis o f definite and indefinite determiners
as context-sensitive generalized quantifiers it is worth noting that quantifiers
with definite determiners, whether plural or singular, have unique witness
sets and quantifiers with indefinite determiners may have different witness
sets.

D e f i n i t i o n 14,7 A witness set o f a conservative quantifier D (A) is any
W C A such that D A W . ■

Since D A B with a definite m onotone increasing determiner is interpreted
as principal filter generated by B , the witness set W for D (A) is always non
empty and unique. Furthermore this W is a singleton in case the relevant C N
is morphologically marked as singular, and o f cardinality 2 or more in case
the relevant C N is morphologically marked as plural. Indefinite determiners
introduce new elements o f the domain into X fl A, hence there may be
several disjoint witness sets for a quantifier D (A) with a weak determiner.
The number marking o f the C N again determines whether the witness set
is a singleton or not, but the determiner itself may in addition impose an
exact cardinality on X fl A and hence on any witness set for D (A). In
verifying a quantified sentence in a model we search for such witness sets,
and if one is found, the statement is true in that model. Since quantifiers
with definite determiners have only one witness set, the entire domain E may
have to be searched in an attempted verification, whereas a quantifier with
an indefinite determiner is verified as soon as one witness is found, and the
domain may contain more such witness sets. From this fact we may predict
that experimental verification o f definite monotone increasing NPs requires
in general more search time than indefinite m onotone increasing NPs. Along
these lines it may becom e feasible to give the theory o f generalized quantifiers
in natural language empirical foundations in psycholinguistic research.

400 C h a p t e r 14

Exercises

1. Explain and illustrate in a Venn diagram with two sets A and B in a
domain E what the combined effects of the four universal conditions
on quantifiers are.

2. Represent the following quantifiers and properties o f quantifiers in the
number-theoretic trees by describing the set o f pairs which verify the
quantifier by shading the appropriate area in the tree, and /or by de
scribing the general pattern which the condition imposes on the tree.

(a) no men

(b) not all men

(c) neither man

(d) at most two men

(e) at least one man

(f) exactly one man or exactly three men do not walk (B = walkers)

(g) Variation

(h) Right m onotone increasing

(i) Symmetry

3. Determine the m onotonicity properties o f the following determiners:
several, at most three, none, at least n, some (sing), these, neither,
every, all, each, infinitely many, a finite number of, most, m any

4. (a) Show with some examples o f entailments for some simple left
monotone increasing determiners that they are also:

(i) right monotone increasing
(ii) continuous

(b) Construct an example o f a com plex English determiner which is
left monotone increasing but not right monotone increasing.

5. Show in a m odel with four entities that John’s books is not a quanti
tative quantifier, whereas every book is.

6. Prove set-theoretically that Variation is preserved under external and
internal negation, (i.e. if Q meets Variation, then ~ Q and do).

E x e r c i s e s 401

7. Prove that

(a) if Q is m onotone increasing, Q ~ is m onotone increasing

(b) for any Q, the dual o f Q~ is Q itself

(c) for any Q, Q~ o ~ (Q ~) O (~ Q)

(d) if Q is self-dual, then

8. Prove that every definite determiner is positive strong.

9. We define an intersective determiner as a determiner D for which in
all models M and all B C E : D A B *-* D (A fl B)B .

(a) Prove the following equivalences for intersective determiners:

D A B <-> D (A fl B)E *-* D B A

(b) Give natural language examples o f these semantic equivalences.

10. Prove in the relational analysis o f determiners that

(a) every antisymmetric determiner is transitive

(b) every connected determiner is almost connected

(c) every transitive determiner is positive strong
(i.e. i f { { D A B t D B C) —> D A C) then (D A B —> D A A))

Chapter 15

Intensionality

This chapter is o f a somewhat different nature than the rest o f this book,
since it does not present mathematical tools for linguistic analysis, nor show
successful applications o f such tools to linguistic problems. It is concerned
with some o f the most difficult issues in philosophical and linguistic semantics
which for a long time have been and still are central to the theory o f meaning
and interpretation o f natural language. Various analyses o f these issues
have been proposed using different mathematical tools, but at least in the
present state o f the art there is no single account o f these puzzles which is
commonly received and recognized as the right solution. The core o f these
issues is outlined here without much formalization only to provide some
initial understanding o f what is at stake. In Section 3 a simple m ethod is
presented to analyze intensionality in natural language, and the discussion in
subsequent sections may aid in appreciating the possibilities and limitations
o f different mathematical methods for linguistic analysis.

15.1 Frege’s two problems

Two semantic puzzles which preoccupied Frege, the founder o f modern logic,
still constitute m ajor foundational problems of contemporary linguistic and
philosophical theories o f meaning and interpretation, The first puzzle con
cerns the information expressed in identity statements with preferential
NPs, The classical discussion is based on the question why

(15-1) Hesperus is Phosphorus

403

404 C h a p t e r 15

would have been an informative identity statement to the Babylonian as
tronomers who did not know it was true, whereas

(15-2) Hesperus is Hesperus

would to them be completely uninformative, even though (15-1) and (15-2)
are both true statements and the NPs, all proper names, corefer to the same
object, the planet Venus, The same puzzle is also often formulated with
complex referential NPs like definite descriptions, as in the informative

(15-3) The Morning Star is the Evening Star

and the uninformative

(15-4) The Morning Star is the Morning Star

If coreferential expressions have the same semantic value, they must be
substitutable for each other in any context without changing its semantic
value. Substitution o f semantic equivalents is an important rule o f inference
in any logical system. But how can (15-1) and (15-3) then be informative,
whereas (15-2) and (15-4) in which coreferential expressions are substituted
are completely uninformative? If a semantic theory is to account for such
facts it must allow coreferential expressions to have different semantic values.
For this purpose Frege introduced the fundamental distinction between the
reference (Bedeutung) o f an expression and its sense (Sinn), Proper names
and other referential NPs may refer to the same object or individual, but
they differ in their sense, Since we use natural language to communicate our
thoughts, the meaning o f any linguistic expression must at least in part be
accessible to all its users. This objective part o f meaning is what Frege called
the sense of an expression Identity statements are informative when they
contain expressions with different senses, and they are true when their NPs
are coreferential. Conditions o f ‘informativeness5 hence cannot be identified
with truth conditions. Perhaps there is more to the semantic value o f an
expression beyond its sense and reference, like its psychological associative
power, connotation or ‘color,’ but that part o f its meaning will be subjective
and should be disregarded in semantics, according to Frege, for it cannot be
the source o f communicable information.

The sense o f an expression determines its reference in different situations,
but even when the reference o f an expression in every situation is determined,

j - i t u i j D o X VV %»/ C I L U D L r j 1VL 3 4 U 0

this does not fix its sense uniquely. If we assume, as Frege did, that the
reference of a sentence is its truth value, two sentences that necessarily have
the same truth value in all situations, e.g.

(15-5) R obin won the race

(15-6) Everyone who did not compete or lost in the race has done some
thing R obin did not do

still differ in their Fregean sense (the example is adapted from Bigelow
(1978)). Similarly two distinct tautologies which are both always true may
contain different information In a proof, for instance, we use the logical
laws and inference rules to construct a sequence o f tautologies, yet new in
formation is inferred from its premises Reasoning in ordinary language is
also based on the manipulation o f old information to gain new information.
If the semantics o f natural language is to account for coreference, inference
and reasoning, it should contain a mathematically satisfactory analysis o f
the Fregean notions o f sense and reference.

The second problem Frege presented as a central question to semantics is
related to the first one o f informative identity statements. If such statements
or any other two statements with the same truth values are embedded as
sentential complements o f certain verbs, the resulting statements may differ
in truth value. For instance,

(15-7) R obin believes that Hesperus is Phosphorus

(15-8) Robin believes that Hesperus is Hesperus

(15-7) may be false, whereas (15-8) must be true even when R obin knows
nothing o f Babylonian astronomy, or when he is not even aware o f what the
name ‘Hesperus’ refers to. For Frege this meant that sentences embedded
in that-clauses do not refer, as they ordinarily do, to their truth value but
refer indirectly, i.e. they refer to their customary senses. Substitution of
preferential or equivalent expressions in such that-claaises does not preserve
the truth value o f the entire statement. Only if the believer knows that two
NPs are preferential can they be substituted in his belief reports.

Contexts where substitution o f preferential or equivalent expressions
does not preserve reference are called opaque, as opposed to transparent
contexts where the laws o f predicate logic hold without restrictions. To

406 C h a p t e r 15

appreciate the extent o f this semantic problem in natural language consider
the following versions of the same problem in different opaque contexts.

(15-9) The Babylonian astronomers did not observe or compute that Hes
perus was the same planet as Phosphorus

(15-10) The Babylonian linguists did not realize that ‘Hesperus’ and ‘Phos
phorus’ are coreferential NPs, but they called Venus both ‘Hespe
rus’ and ‘Phosphorus’ (based on Soames (1985))

(15-11) Someone found out that the Morning Star and the Evening Star
are the same planet

(15-12) John told me that the Babylonians referred to Venus as Hesperus
or Phosphorus

(15-13) We know which planet the Morning Star or the Evening Star is,
but the Babylonians did not know that

Another source o f opacity was described originally in Quine (1956) and
based on belief reports grounded in perception. Ralph sees on one occasion
a man in a brown coat and says (o f him) ‘He is a spy.’ On another occasion
Ralph sees a man in a grey coat and says (o f him) ‘He is not a spy.’ Un
beknownst to Ralph, what he sees on these two occasions is the same man
dressed in different coats. Ralph will report about the man he has seen with
the two sentences

(15-14) The man in the brown coat is a spy

and

(15-15) The man in the grey coat is not a spy

Since the two NPs corefer, (15-14) and (15-15) are contradictions, But
Ralph is not aware o f their coreference, since from the two resource situations
in which he used the NPs to refer to an individual he saw, he did not gain
sufficient information to identify their referent as the same man. Someone

F r e g e ’s t w o p r o b l e m s 407

who is aware o f this coreference would explicitly report R alph ’s beliefs as
contradictory by using a proper name (or demonstrative N P) to refer to the
object o f Ralph ’s beliefs. I f the man is called Ortcutt, R alph ’s beliefs would
be described by

(15-16) Ralph believes o f Ortcutt that he is and is not a spy.

The semantics of belief reports must on the one hand allow for people
to have contradictory, incompatible or inconsistent beliefs, due to their mis
information or lack o f information, but it must also be able to indicate on
what grounds their beliefs are contradictory or incompatible. It must ex
plain why Ralph believes (15-14) and (15-15), but does not assent to (15-16)
nor to any other equivalent contradiction about the object o f his beliefs,
even though (15-16) is entailed by the conjunction o f (15-14) and (15-15).
This requires an account o f the sense o f expressions and the way their sense
contributes compositionally to the reference o f a that-clause in an opaque
sentence-embedding construction.

From a more linguistic point o f view we should note that NPs other than
proper names or demonstratives inside opaque contexts cannot in general
be extraposed without changing the interpretation o f the entire statement.
Consider the following existential constructions, disregarding tenses for the
moment. If Ralph has reported his beliefs with (15-14) and (15-15), someone
who heard him may express what Ralph said with (15-17) or (15-18), to
which Ralph himself would still assent

(15-17) Ralph believes that there is a man in a brown coat who is a spy
and that there is a man in a grey coat who is not a spy

(15-18) There is a man in a brown coat o f whom Ralph believes that he
is a spy and there is a man in a grey coat o f whom Ralph believes
that he is not a spy

Since the definite NPs in R alph’s belief reports were grounded in his
perception, we may infer with existential generalization to the existence
of the individuals he saw, now using indefinite NPs to report what Ralph
saw. Although (15-18) and (15-19) may seem (near) equivalents, and Ralph
should assent to both, someone who knows that Ralph saw Ortcutt on both
occasions will take (15-18) to be true but (15-19) to be false.

408 C h a p t e r 15

(15-19) There are two men and Ralph believes o f the one that he is a spy
and o f the other that he is not a spy

Ralph cannot assent to two other sentences, (15-20) and (15-21), which
each entail (15-17), a sentence to which he did assent.

(15-20) There is a man o f whom Ralph believes that he is and is not a spy

(15-21) O f Ortcutt Ralph believes that he is and is not a spy

These sentences all differ in their sense, express different thoughts as
Frege would say, but to provide a full-fledged com positional semantic anal
ysis o f these differences in terms o f their information value is an assignment
that still constitutes a m ajor open research problem . It requires a math
ematically satisfactory account o f equivalence o f ‘semantic value’ which is
sufficiently fine-grained to explain when a statement expresses new informa
tion to someone in a particular context, and what that information is,given
the information that is already available to him.

To see why ordinary predicate logic cannot account adequately for opaque
contexts we should realize that they are characterized by

(15-22) (i) failure o f substitution o f predicate-logical equivalents
(ii) failure o f existential generalization

Although the example o f R alph’s beliefs did admit o f some forms of
existential generalization, because his own reports were grounded in his (non
hallucinating) perception, NPs in opaque contexts in general do not admit
such existential generalization as we see in (15-22) and (15-23)

(15-23) (a) John wants to catch a fish and eat it
(b) There is a fish that John wants to catch and eat

(15-24) (a) Every man seeks a woman who will always love him
(b) For every man there exists a woman who will always love him

if he seeks her

In a situation where (15-23a) is true there may not be a particular fish
that John wants to catch and eat, and from (15-24a) we cannot legitimately

F o r m s o f o p a c i t y 409

infer that for every man there is a woman who will love him if he seeks her
Note that in each example any situation in which the (b) sentence is true
must also verify the (a) sentence, so the (b) sentences entail the (a) sentences
but not vice versa. The (a) sentences are hence semantically ambiguous, i.e,
open to various interpretations, in a way that the (b) sentences are not. If
opaque contexts like the (a) sentences are given an interpretation which is
equivalent to their corresponding (b) sentences, we call this interpretation
its de re interpretation (from Latin, about the ‘res’ (thing or ob ject) itself),
otherwise the interpretation o f opaque contexts is called de dicto (literally,
about what was said or about the word). In a compositional semantics these
entailments will have to be reflected as a relation between the interpretation
o f the sentences, and the difference in their structure will be im portant. In
predicate logic quantificational ambiguities are dissolved by differentiating
the scope o f quantifiers, but in models for opacity phenomena quantifier
scope may depend not only on other quantifiers but also on the interpretation
o f the expressions that create the opacity.

15.2 Form s o f opacity

Opacity phenomena are inherent to natural language, and in fact contribute
im portantly to the efficiency o f communication in ordinary language use.
One and the same expression may be used in different linguistic or extra-
linguistic contexts and express different information. A disambiguated for
mal language is required for the purposes o f formalization, abstract represen
tation and mathematical analysis o f the semantics o f natural language, as we
learned in practicing translations o f English to predicate logic. Interpretation
in mathematical models or translation to a formal language disambiguates
natural language expressions, which is prerequisite for an account o f rea
soning and inference in ordinary language use. Our choice o f mathematical
methods should be determined by the kind o f phenomena we want to study:
for some quantificational ambiguities predicate logic is suitable, but for opac
ity phenomena different mathematical methods may provide analytical tools
suited to different kinds o f opacity.

In the previous section various kinds o f opaque contexts were presented,
and in this section we discuss more systematically but still informally what
kinds o f expressions in natural language may give rise to opacity.

The belief contexts in the previous section show that the epistemic verbs
to believe and to know give rise to opacity The examples were all based on

410 C h a p t e r 15

sentential complements in that-c\anses, but it is important to see that some
epistemic verbs also allow other constructions which may be partly opaque
as well. Consider the following sentences,

(15-25) Ralph believes a man in a brown coat to be spying

(15-26) Ralph knows Ortcutt but does not believe (that) he is a spy

Sentence (15-25) does not contain a that-clause, but the object NP and
infinitival clause may well be interpreted de dicto, i.e dependent on, or in
the scope o f the belief-verb. Sentence (15-26) shows that an epistemic verb
m ay take an object NP which is an antecedent for a coreferential pronoun
in a coordinated sentence containing another epistemic verb. Note that
even when Ortcutt is indeed a spy, (15-26) may well be true. A t least on
some understanding o f what it is to know someone, Ralph may know Ortcutt
although he does not know or even believe everything that is true o f him,. The
verb to believe behaves differently in this respect, since to believe someone is
to believe that what he says is true. Belief in someone is again different, and
borders on metaphoric use, but it is also opaque in that for instance (15-27)

(15-27) Ralph believes in a spy with a brown coat

means that Ralph believes that there is someone who is a spy and wears
a brown coat, but in reality there maybe nobody who actually has these
properties.

Although to believe and to know are typical epistemic verbs, this class of
verbs that give rise to opacity is much larger and includes the stative to be
aware of, and to be conscious oi, besides action denoting verbs as to find out,
to com pute, to calculate, to discover, which are actions of gaining information
and hence epistemic. These verbs belong to the same class on criteria that
are semantic in nature; they do not necessarily enter in the same syntactic
constructions. The non-equivalence o f sentences (15-28) and (15-29) shows
that coreferential NPs cannot be substituted in a context find out who NP
is.

(15-28) Ralph found out who the man in the grey coat was

F o r m s o f o p a c i t y 411

(15-29) Ralph found out who Ortcutt was

Similarly a that-clause reporting the content o f a discovery or o f a com
putation is opaque, as illustrated in (15-30), and the non-equivalent (15-31)
and (15-32).

(15-30) An astronomer discovered that Hesperus and Phosporus are the
same planet

(15-31) An astronomer computed that Hesperus is the planet Venus

(15-32) An astromer computed that Phosporus is the planet Venus

In (15-31) and (15-32) it becomes particularly clear that performing a
certain operation on given objects is sensitive to the description o f the ob
jects, i.e, the way the input is given to the operation.

A class of opacity creating verbs which is closely related to the epistemic
verbs is the class o f perception verbs. However, certain constructions with
perception verbs are transparent as we see from (15-34) and (15-35).

(15-33) Ralph sees that the man in the brown coat is spying

(15-34) Ralph sees the man in the brown coat spy

(15-35) Ralph sees Ortcutt spy

In (15-33) we cannot substitute the coreferential Ortcutt for the definite
NP embedded in the that-clause reporting R alph ’s perception. But in the
naked infinitive constructions in (15-34) and (15-35) coreferential NPs can be
substituted without distorting the content o f the report, (see Barwise (1981),
Higginbotham (1983) and Asher and Bonevac (1985) for more discussion)
The class o f perception verbs includes visual and auditory perception, but
also verbs like to notice , or perhaps even to catch.

412 C h a p t e r 15

Epistemic verbs and perception verbs directly concern the information
o f a person or a ‘system’ , hence, for obvious reasons, communication verbs
like to tell, to say, to announce, to inform, and to indicate give rise to opaque
constructions, not only in that-clauses. Consider the invalid inference in
(15-36)

(15-36) O r tcu tt to ld R a lp h a b o u t his p ro fe ss io n
O r tcu tt is a p ro fe ss io n a l spy
O r tcu tt to ld R a lp h th at he is a spy

Telling someone about or o f something or telling him what something
is brings in prime examples of opacity, as (15-36) shows, since for the first
premise to be true Ortcutt may have told Ralph anything ranging from true
stories about his adventurous life in Casablanca to tales about his cover-up
occupation as real estate agent: the relation o f someone telling something can
be true without the relation truth-telling being true. The verb to indicate has
interesting semantic properties o f its own, but it does require a that- clause for
a de dicto, opaque interpretation o f what is indicated as the invalid (15-37)
and the transparent, valid arguments in (15-38) and (15-38') show.

(15-37) T h e th e rm o m e te r in d ica tes th a t th e te m p e r a tu r e is
n in e ty d egrees F ahren h eit

N in e ty d eg rees F ah ren h eit is th e avera ge su m m er
te m p e ra tu re

T h e th e rm o m e te r in d ica tes th at th e te m p e r a tu r e is
th e a vera ge su m m er te m p e ra tu re

(15-38) T h e th e rm o m e te r in d ica tes th e te m p e ra tu re
T h e te m p e ra tu re is n in e ty d eg rees F ah ren h eit
T h e th e rm o m e te r in d ica tes n in e ty d eg rees

F ahren h eit

(15-38') T h e th e rm o m e te r in d ica tes n in e ty d eg rees F ah ren h eit
N in e ty d eg rees F ah ren h eit is th e a v era g e su m m er

te m p e ra tu re
T h e th e rm o m e te r in d ica tes th e a v era g e su m m er

te m p e ra tu re

F o r m s o f o p a c i t y 413

Besides the epistemic, perceptual and communication main verbs that
give rise to opacity, the m odal auxiliary verbs may, must, and can create
well known opaque contexts, as well as the m odal adverbials possibly and
necessarily and the m odal constructions with pleonastic subjects that take
sentential complements it is necessary that and it is possible that. The logical
aspects o f modalities have been studied thoroughly in systems of modal or
intensional logic, that were developed after the extensional systems of predi
cate logic. (See Hughes and Cresswell (1968) and van Benthem (1985)) The
variety o f such intensional systems cannot be discussed here, but in the next
section it is briefly indicated what general characteristics make them useful
tools for the semantic analysis of opacity phenomena in natural language,

In philosophical logic formal systems have also been designed for verbs
o f permission or obligation, called ‘deontic’ verbs (from the Greek deon-
‘duty ’) like to permit, or to allow, or the auxiliary verbs may and must. One
important feature o f such deontic verbs is that the rule of A ddition (if p then
p V q) which is valid in the logic o f statements cannot be a rule o f deontic
logic, since the following argument is clearly intuitively invalid,

(15-39) J o h n m a y /is a llow ed t o take a p e a r
J o h n m a y /is a llow ed to ta k e an a p p le o r a p e a r

In such deontic contexts disjunction apparently strengthens the informa
tion, rather than weakens it as it ordinarily does in transparent contexts
and extensional inferences. Obviously, existential generalization is not valid
either in deontic statements, since there is not necessarily a particular pear
o f which it is said that John may take it.

Related to the class o f deontic verbs are the main psychological atti
tude verbs to desire, to seek, to want and to search.. We have already seen
some examples of opaque contexts with such verbs. Finally there are the
intentional verbs which describe a mental state o f the subject like to try, to
attempt, to plan, including perhaps to promise. Note that intentions are not
to be confused with intensions; the former are mental states a subject can
be in, whereas the latter are properties o f linguistic or logical expressions to
which we return below. Often the epistemic and perceptual verbs together
with the psychological attitude and intentional verbs are called the verbs of
(psychological) attitudes.

This review o f opacity phenomena in natural language is not intended
as a comprehensive list, but it shows that natural language is far richer

414 C h a p t e r 15

in expressive power than can be captured with the basic tools o f ordinary
predicate logic. The next section introduces some new m ethods to account
for scope ambiguities in opaque contexts and some other opacity phenomena.

15.3 Ind ices an d accessib ility re la tio n s

In Section 12.5 the important idea o f relativizing a predicate-logical truth
definition to possible states o f information was introduced in Kripke models
as semantics for Heyting algebras The same idea underlies the elementary
system of intensional logic which is introduced in this chapter Instead of
the absolute notion o f truth (or falsity) in a m odel that was defined for
predicate logical formulas, we define here a notion o f the truth value o f a
formula relative to an index. The syntax of the system o f intensional logic
will be specified here briefly, but we will not discuss its m ethods o f proof.
The usefulness o f indexing truth values for natural language applications
is illustrated with some examples o f English expressions translated into a
system of intensional logic, concentrating on the semantic aspects o f the
intensional logic.

Eelativization o f truth values to an index is a generalization o f the infor-
mation-states o f Kripke models. An index can be understood as an epistemic
state representing the information available to an agent, or as a ‘possible
w orld1 , i.e., an alternative to the actual world representing a way things
could have been otherwise, or as a mixture o f such interpretations, or we can
give it any other interpretation we want to depending on the kind o f opacity
to be explained by it. We will understand the notion of an index in the most
general way here, leaving aside any metaphysical or philosophical reflection
on its nature, For simplicity we start out taking indices as unanalyzed
primitives of the m odel theory and add a set of indices to the predicate
logical models

If we assume that a sentence expresses a statement at an index, the truth
value o f that statement is either true or false at that index. W e assume for
simplicity that the reference of an expression is always determined, although
an interpretation could be defined partially, leaving the reference o f an ex
pression undetermined at some indices The Fregean reference o f a sentence
is hence defined as its truth value We call the reference o f any expression
here its extension. To account for opacity the Fregean sense of a statement
should also be defined As a first approximation o f Fregean senses let us
define the intension o i an expression as a function or an operation from the

I n d i c e s a n d a c c e s s i b i l i t y r e l a t i o n s 415

set o f indices to the extensions o f the expression, For simplicity we do not
introduce in the syntax o f the intensional logic a particular symbol for the
intension o f an English expression, as is common in Montague Grammar (see
Dowty, Wall and Peters (1981)) Below it will become clear that this notion
o f an intension is not sufficiently fine-grained to account fully for Fregean
senses, as it identifies the intensions o f expressions that should have differ
ent semantic value or senses, since they are not substitutable in all contexts
preserving informative content

Instead o f the partial order on information states that characterizes
Kripke semantics for Heyting algebras, in intensional logic any relation may
be defined on the set o f indices. Such relations are called accessibility re
lations, representing which indices can be reached from a given index in a
model. The accessibility relations characterize the structure o f the models,
and it is a sound m ethodological strategy to impose structure only when
such is required for purposes o f natural language semantics, i e depending
on the nature o f the opacity creating expressions,

The syntax o f this system o f intensional logic is a simple extension of
predicate logic adding two operators that take formulas to produce new
formulas. To define the set o f formulas of intensional logic by extension o f
the recursive set o f rules o f predicate logic the following clause suffices:

(i) i f ip is a formula then U<p and oip are formulas.

Note that this syntactic clause generates for instance (Ve)D ^, (3 x)n{\/y)

Oip, and the iterated nn{\/x)ip and ('\/x)n<>ip,

Although the choice o f semantic primitives is in principle open, we choose
for simplicity to stay close to the predicate logical models and assume as
primitives o f the m odel theory a (non-em pty) set o f indices I, a domain o f
individuals or entities D , an accessibility relation R C I x l , an interpretation
function f , ,] and a variable-assignment function g An intensional model
is then a quintuple = (I, D , R, f ,,] , g) We define recursively the notion
o f the extension o f a formula in a model, relative to the assignment g and
an index i,

Let be an intensional model, i £ I and g a variable assignment, then
an extension o f an expression at an index i in the intensional m odel is defined
as:

(i) for any constant c £ D

416 C h a p t e r 15

(ii) for any variable x = g (x) £ D

(iii) i f P is an ra-ary predicate-letter, then C D n

(iv) if P(t i , t 2, , tn) is a formula, then
. , tn) ju ^ = i i f f

£ [P J ^ ® ’1; 0 otherwise

(v) if tp and ip are formulas, then
[~ ^ J^ ® ’1 = 1 iff = 0; 0 otherwise
Ip k ip J ^ ® ’1 = 1 iff [i^jM ’®'1 = 1 and [^ J ^ ® ’1 = 1; 0 otherwise
[y> V = 1 iff [y>l^'®’1 = 1 oi — l ; 0 otherwise
[ip —> = 1 iff [^ J ^ ® ’1 = 0 or [t/jJM’®’1 = 1; 0 otherwise
[y> <-> = 1 iff [y>|^'®’4 = 0 otherwise
[(V e)^]1̂ ’®’1 = 1 iff for every d £ = 1; 0 otherwise
[(B e)^]^ ’®’1 = 1 iff for some d £ = 1; 0 otherwise
[□ ^ J ^ 1®’1 = 1 iff for every i' such that iR i' [^ J ^ ’®’1 = 1; 0 otherwise
JoysJ-̂ 1’®’1- = 1 iff for some i' such that iR i' d^J^ ’®’1’ = 1; 0 otherwise

Formulas with the new intensional operators □ and o are interpreted as
true by requiring truth o f the remaining formula at all accessible indices or
its truth at some accessible index respectively This resembles the universal
quantifier, and the existential quantifier now ranging over indices instead of
ranging over individuals. These intensional operators consider the extension
o f an expression in their scope on indices accessible from the index o f eval
uation i. All the extensional predicate logical formulas are interpreted on
i itself, but the extension o f intensional formulas depends on extensions of
subformulas at other indices.

As an illustration of this interpretation in an intensional m odel let us
evaluate the quantified formula o (3 x) (P x fa n Q x) in

M * = ({ io , *is *2}s {^Oi di, d2, ds},

R — {{2o ,^ o}j{^ lj^ l}){2*2j22}j{22)2*l}){^ lj^2}}jt ‘1) }

given that

_ 0) ie]M*-®« = 0
fpflM*,®* = {d2)ds}) = { 4 i 4 }

= {do)ds}) | q j M = {dud2>dz}

I n d i c e s a n d a c c e s s i b i l i t y r e l a t i o n s 417

To evaluate a formula we pick an index o f evaluation, say ix, and see
whether we can verify the formula,

j[o(3x)(P x & □ ’9,n is true iff at some i' iR i' and (3 x) (P x & □ Q x)
is true; in the indices i\ and i2 are accessible from *1 ; le t ’s pick i\ and
see whether we can verify the remaining formula.

j[(3x)(P x & □ ’g’H is tiue iff for some g' which is like g except for
assigning d to x, [(P x & □ Q x)] ^ ' ’3'^ ^ '11 = 1

There are in fact two objects in the extension o f P at ix, so there are
two distinct assignments g' and g " which verify the first conjunct P x But
do they also verify the second conjunct? I f g '(x) = d2 and g " (x) = <f3, then
to verify □ Q x, Qd2 should be true at each index accessible from i\, or Qdo,
should be true at each index accessible from i\ „

Since the indices and i2 are accessible from i\, but Qd2 is not true
at ii , we rule out g' as route to verification, and check g" Qdo, is true at
each accessible index since dz £ ,9,n and do, £ So for the
assignment g " (x) = dz we can verify the entire [(P x & □ _

Given this recursive definition o f the extension o f an expression at an
index in an intensional model, two expressions are called coextensive at in
dex i iff they have identical extensions at i. Coreference o f two NPs means
that they are coextensive, so the notion depends on the index o f evaluation.
For instance, the winner o f the race and Robin may be preferential at some
index, but not at others, We call two expressions extensionally equivalent in
an intensional m odel when they have identical extensions at every index o f
that model. Two expressions are logically equivalent when they are exten
sionally equivalent in every possible intensional model. The strongest notion
o f equivalence says that two expressions are intensionally equivalent, when
their intensions are identical, i e ., when their associated functions from or
operations on the set o f indices to the extensions at an index are identical.
This notion o f an intension is best understood dynamically as the procedure
o f computing the extension o f an expression at an index. For instance, the
process o f computing the reference o f the winner o f the race must involve
evaluating the predicates winner and race, but these steps do not play any
role in the process o f computing the reference of Robin. Hence when the two
NPs the winner o f the race and Robin are preferential or even extensionally
equivalent they are not intensionally equivalent Since the intensional logic
does not contain an expression for the intension o f an expression this pro
cedural character o f intensions is not further analyzed in this m odel theory.
Yet it is clear from the recursive definition of the extension o f an expression
in an intensional m odel by which procedure its extension is computed.

418 C h a p t e r 15

Now if we use these different notions of equivalence o f expressions the
following criteria o f substitutability can be defined.

1. Expressions which are coextensive at i are substitutable in a context
with preservation of its extension only at i

2 Expressions which are extensionally equivalent are substitutable in a
context with preservation o f its extension at any index in that model.

3, Expressions which are logically equivalent are substitutable in a con
text with preservation o f its extension at any index in any model.

4. Expressions which are intensionally equivalent are substitutable in a
context with preservation o f its intension

The translation o f English to the intensional logic will not be carried
out here, but we assume that the opacity creating expressions discussed
in the previous section will always involve other indices besides the index
o f evaluation in the determination o f the extension o f an expression. For
instance, to evaluate John believes that Robin is the winner o f the race belief
is analyzed with an accessibility relation on indices, representing the different
epistemic alternatives John entertains and requiring that at least one of these
verifies the embedded statement

Belief contexts require verification o f the embedded expression at some
index which is related to the index o f evaluation by the subject’s epistemic
accessibility relation (c f o) , Knowledge contexts would require verification
o f the embedded expression at all epistemically accessible indices (cf. □).
Similarly exploiting the universal and existential quantification over indices
in the analysis o f opacity, m odal necessities require verification at all acces
sible indices (c f O), m odal possibilities only at some (cf. o).

Some English examples which illustrate the four notions o f substitutabil
ity are the following inferences,
(1) If we evaluate sentential complements o f belief contexts at an index
related by an epistemic accessibility relation to the index o f evaluation, i.e.,
interpret all predicate letters and NPs at that belief index, the following
inference is valid, since the second premise states that at that index the two
NPs are co-referential.

(15-40) John believes that Robin has red hair
John believes that Robin is the winner of the race
John believes that the winner of the race has red hair

In d i c e s a n d a c c e s s i b i l i t y r e l a t i o n s 419

Note that this inferential pattern is only valid with definite, referen
tial NPs in the premise stating the co-reference at the belief-index. The
difference between valid (15-41) and invalid (15-42) is based on just the defi
niteness o f the anaphoric reference in (15-41) to the referent o f the indefinite
NPs introduced in the first premise.

(15-41) J o h n b e lie v e s th a t a m a n has re d ha ir
J o h n b e lie v e s th a t he is th e w in n er o f th e ra ce
J o h n b e liev es th a t th e w in n er o f th e ra ce has red hair

(15-42) J o h n b e lie v e s th a t a m an has red hair
J o h n b e lie v e s th at a m a n is th e w in n er o f th e race
J o h n b e liev es th at th e w in n er o f th e ra ce has red hair

(2) Proper names, i f translated to logical constants as in predicate logic,
have a constant reference according to the first clause in the definition of
extensions in an intensional m odel Kripke introduced the notion of a rigid
designator for this semantic characteristic o f proper names. Names do not
contribute to the information expressed in a statement, but serve merely as
‘pegs’ for properties attributedto the referents. I.e., the extension o f aproper
name is the same entity o f the domain at any index, so evaluating a proper
name at any two indices gives the same extension. This means that aproper
name in an opaque context can be extraposed outside the opacity creating
expression to be evaluated at the index o f evaluation without changing the
truth value o f the entire sentence,

(15-43) J o h n b e lie v e s th at R o b in w o n th e ra ce
O f R o b in J o h n b e liev es th at he w o n th e ra ce

Note that for (15-43) to be valid John himself does not necessarily report
his beliefs with the proper name, but anyone describing John’s beliefs with
the first premise invites the inference Because o f this rigid designation o f
proper names, existential generalization is also valid when based on proper
names. But for other NPs, including definite descriptions, no such inferences
are valid, since their interpretation may vary at the accessible indices from
the index o f evaluation, as the invalidity o f (15-44) and (15-45) show

(15-44) J o h n b e lie v e s th a t a m an w on th e ra ce
O f a m a n J o h n b e lie v e s th a t he w o n th e ra ce

420 C h a p t e r 15

(15-45) J o h n b e lie v e s th a t a m a n w o n th e race
T h e re is a m a n o f w h o m J o h n b e liev es th a t he w o n

th e race

(3) Since predicate logic is contained in the system of intensional logic as
defined above, the tautologies o f predicate logic are also valid in intensional
logic, i.e., they are all logically equivalent, always true at any index in any
model. This means that an inference is valid in intensional logic when a
tautology is conjoined in an opaque context to a true premise.

(15-46) J o h n b e lie v e s th a t R o b in w o n th e race
J o h n b e lie v e s th a t R o b in w o n th e ra ce a n d th a t he

d oes o r d o e s n ot h ave red h a ir

This is an unsatisfactory aspect of the simple system o f intensional logic
we introduced here, since John may simply fail to have any beliefs about
R obin ’s hair color if he believes that R obin won the race. On the other
hand no rational person can fail to believe a tautology when he realizes
its necessary truth. If we maintain the ordinary logical notion o f proof,
inferences preserve truth, but do not necessarily preserve intension. We
return to this problem below to suggest a solution.

(4) Finally there are intensionally equivalent equivalent expressions, %vhich
are equivalent because their extension at any index is calculated in the same
way. To make this strong notion o f equivalence precise a form al account
o f the computational procedures used in determining extensions should be
given which specifies criteria o f sameness for such procedures. We will not
do so here, but a simple example illustrates the main idea.

We learned in Part B that conjunction can be viewed as a commuta
tive operation on statements. Hence when determining the extension o f a
conjunction the order in which the extension o f each conjunct is computed
does not matter In verifying p k q we may start with either p or q, know
ing that the result will not be affected by our choice. Looking at predicate
logical operations in this intensional way the logical equivalence o f p k q and
q k p should be attributed to their intensional equivalence. Some laws of
extensional logic may be viewed as determining sameness conditions on op
erations, especially those that merely permute the order o f connectives or

I n d i c e s a n d a c c e s s i b i l i t y r e l a t i o n s 421

their arguments (Associative, Distributive and Commutative Laws) On the
other hand laws like the Complement Laws, De M organ’s Laws or the Con
ditional Laws are valid because o f the particular truth-functional meaning
we assigned to the connectives in this system o f classical predicate logic, but
there are extensions! systems in which they would not be valid. I f we would
incorpor ate a for mal definition o f intensions along these pr ocedural lines and
define which logical laws wer e valid due to the intensional equivalence o f their
arguments, the following statements could be considered logically equivalent
on the basis o f intensional equivalence o f conjunction. Premise and con
clusion are interchangable in any context because they are ‘informationally
equivalent’ and never give rise to informative identity statements

(15-47) John believes that Robin won the race and that
Robin has red hair

John believes that Robin has red hair and that
Robin won the race

To account for the full variety o f opacity phenomena discussed in the
previous section more sophisticated intensional models would be required,
but the examples illustrate how some aspects o f these opaque contexts can
be analyzed with these simple intensional models. It should be clear that the
predicate logical laws o f existential generalization and substitution o f exten-
sionally equivalent expressions do not hold universally in this interpretation
in intensional models.

To conclude this section we discuss briefly some o f the limitations o f this
formalization o f intensional interpretations for natural language.

As we remarked earlier in this system o f intensional logic the predicate-
logical tautologies are all logically equivalent, although not necessarily also
intensionally equivalent, and similarly for contradictions This is partly due
to the fact that we assumed that all functions are total, i,e defined for all
arguments. I f that assumption were dropped it would become possible to
distinguish functions that are logically equivalent when defined, but which
are not defined for the same arguments. For1 instance, the truth value of
the predicate-logical tautology Robin did or did not win the race would only
be defined if the name Robin had a reference at the same index, i.e. if the
domain contained someone called Robin, The interpretation o f names could
still be constant but partially defined, which is compatible with their being
rigid designators. The interpretation o f another tautology Jane did or did

422 C h a p t e r 15

not win the race could similarly be partially defined, i e true at every index
where Jane is interpreted. But the two tautologies would not necessarily be
logically equivalent, for a m odel could be given which interpreted the two
names at distinct sets o f indices. Partial functions in semantic interpreta
tions yield already an im portantly finer-grained notion o f logical equivalence.

The second problem with these simple intensional models concerns the
interpretation o f epistemic verbs which give rise to opaque contexts. Any
logical consequence of what is believed by someone must be believed by him
as well. For instance, if John believes that Robin won the race, then he
must also believe that Robin won the race and that two plus two is foux,
assuming that names of numbers always refer. This issue is often called the
problem o f logical omniscience. W hat we know or believe is not ordinarily
closed under its logical consequences, for we often discover new implications
o f information we have had for a long time Only if totally defined functions
with constant extensions were absolutely forbidden in an interpretation in
intensional models could this problem be adequately, though not insightfully
be solved A more promising way would attempt to analyze the subject
matter o f beliefs and require that entailed beliefs must have the same subject
matter. Another improvement would be to acknowledge the fact that on the
one hand people have well understood beliefs which may be represented by a
set o f statements closed under some sufficiently fine-grained notion o f logical
consequence, but on the other hand they have a chunk o f unanalyzed and
only partially understood beliefs to be represented in a coarser way and not
closed under any logical operation. The problem has not yet been solved
in any definitive way for all epistemically opaque constructions which would
still allow for people who have inconsistent beliefs to be rational in not just
believing anything

The third aspect in which these simple intensional models need improve
ment is the interpretation o f proper names. Even when we let the functions
interpreting proper names be partial, this still would not account for two
natural facts: first, different people may have the same name and only a
name in a sufficiently specific context can be said to refer uniquely, and
second, people may use the same name intending to refer to the same indi
vidual when in fact they refer to distinct individuals, for instance, because
they were wrongly introduced or forgot their true names, A proper solu
tion would require major modifications in the intensional models: a formal
representation o f contexts and a general m ethod to incorporate parameters
o f language use, in particular for cases in which speakers may hook up the
same name to a different person. If functions interpreting expressions could

T e n s e a n d t i m e 423

be speaker-sensitive, we could explain how three communicative situations
differ essentially although what two speakers say, respectively ‘Robin has red
haii’ and ‘R obin does not have red hair,’ is exactly the same. In the first
situation they would contradict each other, in the second they would merely
refer to two different individuals called Robin, and in a third situation one
o f them or both could wrongly connect the name to the same individual or
to different individuals

The final point in which these intensional models are too simple is in
their failure to account for genuine synonymous predicates Although there
are not too many examples in natural language o f truly synonymous descrip
tive predicates, an interpretation would have to discriminate them, although
they are logically equivalent and, if syntactically simple, even intensionally
equivalent, For instance, John may believe that woodchucks are marmots,
whereas he may not believe that groundhogs are marmots, although wood
chuck and groundhog are synonyms. The only option open to repair this
shortcoming is to assume a set o f primitive properties, as extensions o f pred
icates, instead o f giving predicates an extensional set-theoretic interpretation
as the set individuals in the domain with the property.

These suggestions to improve upon the intensional models outlined in this
section are all currently subject o f new research. Various formal accounts o f
interpretations are being developed motivated by these and other problems
that were encountered with the simple intensional models. The interested
reader is referred to the readings suggested for this chapter.

15.4 Tense and time

Another important linguistic application o f relativizing extensions o f expres
sions to indices is the interpretation o f verbs, tenses and temporal adverbs.
In this section some elementary aspects o f the semantics o f temporal refer
ence are outlined briefly and we discuss what modifications the interpreta
tion in intensional models requires in order to accomm odate some aspects o f
temporal reference

The simple past tense inflection on a verb, for instance, creates an opaque
context, requiring the sentence to be interpreted in its present tense form at
an index in the past o f the index o f evaluation. E g , Robin had red hair is
interpreted as true at an index i when there is an i' temporally located before
i at which Robin has red hair is true. This means that for the interpretation

424 C h a p t e r 15

of tenses the set of indices is ordered by an asymmetric and transitive acces
sibility relation representing the passage o f time. The tenses expressed by
inflection and the temporal auxiliary verbs require interpretation along this
tem poral axis. Some classes o f tem poral adverbs are interpreted along this
line as quantifying in the meta-language over temporally ordered indices.
Always is a universal quantifier, sometimes an existential one and adverbs
o f frequency like often, every week or twice a week require more complicated
forms o f quantification over indices,

The set o f tem poral indices may be structured by additional assump
tions motivated by linguistic considerations. Besides auxiliary verbs and the
inflectional m orphology on VPs main verbs themselves describe changes in
the world called events A sentence like Robin won the race describes an
event which took place over a period of' time in the past o f the index of
evaluation. W hen we consider the indices to represent periods o f time o f ar
bitrary length, rather than smallest ‘points’ or atomic moments, we may also
want to assume a symmetric temporal overlap relation on the indices and
construct smallest ‘periods’ as maximal sets o f pairwise overlapping periods
(see van Benthem (1983), Kamp (1979) and (1980)).

The tem poral adverb now has a special semantic function, since in any
context, transparent or heavily opaque, it refers to one and the same index,
the time of utterance, in an intensional model. Each intensional model
has to contain one designated index representing the current time, i e, the
‘now ’-index, from which past and future coordinates are fixed Consider for
instance

(15-48) You will once be grateful for what I tell you now

The future auxiliary verb takes the interpretation from the index o f eval
uation, the designated ‘now ’-index io, to a future index i\, at which you are
grateful for what I told you at the original ‘now ’ index io, not for what I tell
you at the new ‘now ’-index i\ So when tenses require the interpretation
to consider extensions at other indices, in any context the adverb now takes
the interpretation back to the designated index, A contextual parameter
‘time o f utterance’ can be represented in an intensional m odel as a specially
selected index, and no matter at which index now is evaluated, its exten
sion will always be that designated index. The difference between the two
sentences

T e n s e a n d t i m e 425

(15-49) A child was born who would be king

(15-50) A child was born who will be king

can be analyzed by requiring for the interpretation o f (15-50) that the ‘now ’-
index be located between the past index at which a child is born is true and
the future index at which the child is king is true, whereas the interpretation
o f (15-49) does not put any requirements on its location

The ‘n ow ’-index is identified in each m odel with the time at which the
evaluated statement is uttered. But each intensional m odel represents then
in fact a static picture o f the world at that time, and the past and future
coordinates are fixed with respect to that index. I f we want to do justice to
the flow o f time in an intensional m odel a series o f indices would have to be
designated as consecutive ‘now ’-indices. And to interpret a discourse consist
ing o f temporally ordered utterances a chain o f such ‘now ’-indices would be
required within each model, This cannot be incorporated straightforwardly
into a simple intensional m odel if what was once true could later becom e
false in one and the same model, and hence any analysis o f valid inference
would be lost. The problem can be solved if we introduce in the formal lan
guage variables for the indices which can then be referred to and quantified
over at the level o f the object language. But a more satisfactory solution
would take the need to represent contextual parameters seriously and define
a context-sensitive notion o f meaning and interpretation which does justice
to the dynamics o f context change and processing information. This would
require syntactic and semantic adaptations which cannot be specified fur
ther here, but in current research several frameworks are developed in which
events and periods as their tem poral substratum constitute a domain o f ob
jects in the interpretation (see Dowty (1979), Kamp and Rohxer (1983), Lo
Cascio and Vet (1986), and Linguistics and Philosophy 9.1)

The verbs which describe changing events create opaque contexts for
some o f their arguments. A by now classical form o f opacity, known as
M ontague’s ‘temperature puzzle’ is the following invalid inference:

(15-51) T h e te m p e ra tu re is n in e ty
T h e te m p e ra tu re rises
N in e ty rises

426 C h a p t e r 15

In this usage the verb to rise cannot have ordinary individuals in its
extension, but must be interpreted as a property o f intensional objects like
functions or operations that determine extensions at an index. Verbs in the
same semantic class include to change, to decrease, to increase, to grow, to
diminish. In contrast to names o f numbers, proper names o f individuals
apparently can take such change-denoting predicates notwithstanding their
rigid designation Rather than cop out of the puzzles by treating these verbs
as lexically ambiguous, it would further our understanding o f intensionality
and opaque contexts considerably if we analyzed how changes in an indi
vidual must be distinguished from changes in measurable properties such as
volume, size, weight, warmth or relative location

Another class o f verbs which create interesting opaque contexts is formed
by verbs describing actions of creation or destruction, e g, to build, to write,
to construct, to cook, and to destroy, to demolish, to devastate, to burn.
The object NPs o f these verbs are opaque since the extension o f these NPs
gradually comes into existence or ceases to exist during the period at which
the action takes place, and existential generalization cannot be valid in an
unrestricted form The progressive tense is typically used to describe such
actions as they are going on. The interpretation o f these verbs must hence
add new objects to the domain o f the interpretation, and withdraw objects
or parts o f them from it. The simple intensional models were based on one
static domain o f individuals which were taken to ‘exist’ at any index in the
model. An analysis o f this form o f opacity must allow the domain of objects
over which quantifiers range to depend on the index. Verbs o f creation shift
the index and add new objects to the domain, and verbs o f destruction
shift the index and drop objects from the domain. But if more structure is
imposed on the domains to represent part-whole relations between objects
and a related relation between events, the invalidity o f the following inference
can be analyzed

(15-52) John was writing a poem
John wrote a poem

and contrasted to the validity of the inference

(15-53) John was writing poetry
John wrote poetry.

I n d e x i c a l i t y 427

These inferential patterns known as the ‘Imperfective Paradox’ receive
much attention in recent research on tense and aspect.

In early work on tem poral reference by the logician H, Reichenbach (Re-
ichenbach (1947)) used besides the time o f utterance, and the index at which
the event took place, a third tem poral index, the reference time to repre
sent the tem poral ‘point of view ’ o f the speaker. The difference between
the simple past tense sentence Robin won the race and the present perfect
tense sentence Robin has won the race is accordingly analyzed by requiring
the interpretation of the simple past tense to shift the reference time as well
as the event time to a past index relative to the time o f utterance, whereas
the present perfect tense only shifts the event time, leaving the reference
time at the time o f utterance Note, however, that not all simple past tense
sentences shift the reference time but only those which describe ‘bounded’ or
completed events This leads into the semantic analysis o f aspect and verb
classes which is an important focus o f ongoing research. In frameworks of
dynamic interpretation the notion o f reference time has come to be crucial
in accounting for temporal dependencies and tem poral anaphora (see Kamp
and Rohrer (1983) and Partee (1984))

15.5 Indexicality

In the previous section it was pointed out that in any linguistic context the
temporal adverb now refers to a fixed contextual parameter, the time of
utterance. The class o f expressions in natural language which serve such a
semantic function, the indexical expressions, is much larger and includes the
personal pronouns I, you, and we, besides the locative expressions here and
there The demonstrative or deictic expressions this, that, these, those, and
the deictic pronoun he are also often included in this semantic class.

The semantic interpretation o f indexicals is essentially dependent on the
extra-linguistic situation o f use. An indexical refers in any linguistic context,
i.e., on any index, directly to a value o f a contextual parameter, e g, /refers
to the speaker who utters the sentence, here to the location o f utterance and
that to what is being pointed at by the speaker But I cannot be interpreted
synonymously with the speaker since the reference o f a definite description
is always dependent on the index. So on the one hand the reference o f an
indexical does not depend on its linguistic sentential context, on the other
hand it shifts when the context o f use changes. The value o f a contextual
parameter, i.e., who is the speaker at an index, where something is said and

428 C h a p t e r 15

what is being pointed at changes constantly. The context o f use determines
the content o f an indexical expression. For instance, when I say

(15-54) I am speaking

what I said differs from when you utter (15-54) The com ponent o f the
Fregean sense o f an expression which determines how the content is deter
mined by the context o f use is called the character o f the expression This
is what competent speakers o f a language have to know if they axe to un
derstand (15-54) in any context o f use The content o f an expression may
be identified with what we called intension in the previous section, i.e., the
context-independent procedure which determines its extension at an index.
Now we may explain that any utterance o f (15-54) is true, but that by utter
ing (15-54) I am not expressing a logically necessary truth, but a contingent
statement, whose truth value varies from index to index Non-indexicals
have a constant character and express the same content in every context.

To incorporate this account o f the semantics o f indexicals and their direct
reference to elements o f the context of use, the interpretation by indexing the
extension o f an expression in an intensional model is extended by contexts,
i.e., a set o f contextual parameters representing elements o f a context of use
and containing at least parameters for the speaker, the hearer, the utterance
time and the utterance location: context c = (sc ,h c, t c, l c). O f course, the
set o f contextual parameters can be extended upon need. This is called the
fleshing out strategy, supply contextual parameters when indexical linguistic
expressions refer to them,

In such a double-indexing interpretation the indexical I, for instance, is
interpreted by a function from contexts to the parameter sc, the speaker at
that context, and the extension o f sc is determined at an index by identifying
it with the extension o f the predicate speaking at that index This explains
why

(15-55) The speaker is the one who is speaking

is an uninformative identity statement, whereas

(15-56) I am the one who is speaking

E x e r c i s e s 429

may express new information to others beside oneself
Proper names interpreted as Kripkean rigid designators are expressions

with constant contents They are also independent o f contextual parameters
so their character is also constant The identity statement

(15-57) I am Robin

is informative in two different ways: first, when it gives a hearer a new
way o f rigidly referring to the speaker when he is not present and second,
when the hearer already has information about someone called Robin, but
is not acquainted with him from his own experience. In the first case, the
information stabilizes the character, in the second case it hooks up a stable
content to the external context o f use

To provide a satisfactory mathematical modelling o f these issues lies at
the heart o f contemporary research in the semantics o f natural language. We
have attempted to show that the tools offered in the first three parts o f this
book provide a choice o f mathematical methods to tackle such problems in
a linguistic theory o f meaning and interpretation.

Exercises

1. I f the intensional m odel M * defined in Section 15.3 had an irreflex-
ive accessibility relation, is the formula J(3x) (P x & O Q x)}M .‘r’g,n still
verifiable? I f so, define the assignment.

2 . Compute in M * defined in Section 15.3 the truth value o f

ff(3 x){P x t Q x) -* o(Vx) ~ -Pa:)jM*’s’io

3. I f the following formulas are assumed to be valid in a system o f inten
sional logic they characterize a property o f the accessibility relation.
Find out which property by drawing relational diagrams o f small in
tensional models, making the formula true at each index and verifying
it.

(i) Dtp -+ ip

(i i) Dtp —> ODtp

(i ii) oO ip —> ip

Part E

LANGUAGES,
GRAM M ARS, AND

AUTOM ATA

Chapter 16

Basic Concepts

16.1 Languages, grammars and automata

At one level o f description, a natural language is simply a set o f strings—
finite sequences o f words, morpheme, phonemes, or whatever. Not every
possible sequence is in the language: we distinguish the grammatical strings
from those that are ungrammatical, A grammar, then, is some explicit
device for making this distinction; it is, in other words, a means for selecting
a subset o f strings, those that are grammatical, from the set o f all possible
strings formed from an initially given alphabet or vocabulary.

In this chapter we will consider two classes o f formal devices which can
function as grammars in this very general sense: (1) automata, which axe
abstract computing machines, and (2) string rewriting systems, which gen
erally bear the name “grammar” or “formal grammar” .. The latter will be
familiar to linguists inasmuch as grammars in this sense have formed the
basis o f much o f the work in generative transformational theory.

We begin by considering certain properties o f strings and sets o f strings.
Given a finite set A, a string on (or over) A is a finite sequence o f occurrences
o f elements from A. For example, if A — {a , b, c }, then acbaab is a string on
A. Strings are by definition finite in length. (Infinite sequences o f symbols
axe also perfectly reasonable objects o f study, but they axe not suitable as
models for natural language strings.) The set from which strings axe formed
is often called the vocabulary or alphabet, and this too is always assumed
to be finite. The length o f a string is, or course, the number o f occurrences
o f symbols in it (i.e., the number o f tokens, not the number o f types). The
string acbaab thus is o f length 6 .

433

434 C h a p t e r it>

Because we are dealing with tokens o f an alphabet, there is an impor
tant difference between the linearly ordered sequences we call strings and a
linearly ordered set If the set A = {a ,b ,c } were linearly ordered, say, as
b —* a —» c, each element o f A would occupy a unique place in the ordering.
In a string, eg, , acbaab, tokens of a, occur in the first, fourth, and fifth
positions

To be formal, one could define a string o f length n over the alphabet
A to be a function mapping the first n positive integers into A, For exam
ple, acbaab would be the function { (l , a) , { 2 , c) , { 3 , 6) , { 4 , a) , {5, a),{ 6 , 6)}
There is little to be gained in this case by the reduction to the primitives of
set theory, however, so we will continue to think o f strings simply as finite
sequences o f symbols, A string may be o f length 1, and so we distinguish the
string 6 o f length 1 from the symbol 6 itself. We also recognize the (unique)
string o f length 0 , the empty string, which we will denote e (some authors
use A). Tw o strings are identical if they have the same sym bol occurrences
in the same order; thus, acb is distinct from abc, and strings o f different
length are always distinct

An important binary operation on strings is concatenation, which
amounts simply to juxtaposition. For example, the strings abca and bac can
be concatenated, in the order mentioned, to give the string abcabac. Some
times concatenation is denoted with the symbol thus, abca'~'bac. Con
catenation is associative since for any strings a , / ? ,7, (a /-' j0) /- ' 7 = 7),
but it is not commutative, since in general a^/3 ^ The empty string is
the identity element for concatenation; i e ., for any string a , a ^ e = e ^ a =
a.

Given a finite set A, the set o f all strings over A, denoted A*, together
with the operation o f concatenation constitutes a monoid. Concatenation is
well-defined for any pair o f strings in A* and the result is a string in A*; the
operation is associative; and there is an identity element (A * ,) fails to be
a group since no element other than e has an inver se: no string concatenated
with a non-empty string x will yield the empty string. Since concatenation
is not commutative, (A*,"- ') is not an Abelian monoid,

A frequently encountered unary operation on strings is reversal. The
reversal o f a string x, denoted x R, is simply the string formed by writing the
symbols o f x in the reverse order. Thus (acbab)R = babca The reversal of
e is just e itself, To be formal, we could define reversal by induction on the
length of a string:

L a n g u a g e s , g r a m m a r s a n d a u t o m a t a 435

D e f in i t io n 16.1 Given an alphabet A:

(1) I f x is a string o f length 0, then x R = x (i.e., eR = e)

(2) I f x is a string o f length k + 1, then it is o f the form wa, where a £ A
and w £ A*; then x R — (w a)R — awR.

m

Concatenation and reversal are connected in the following way: For all
strings x and y, (2'^ ''y)R = y R '~'x R. For example,

(16-1) (bca'~' ca)R = (ca)R^ (b c a)R = a c^ a cb = acacb

Given a string x, a substring o f x is any string formed from continguous
occurrences o f symbols in x taken in the same order in which they occur
in x For example, bac is a substring o f abacca, but neither bcc nor cb is
a substring. Formally, y is a substring o f x iff there exist strings z and
w such that x = z'~'y'~'w. In general, z or w (or both) may be empty,
so every string is trivially a substring o f itself. (Non-identical substrings
can be called proper substrings.) The empty string is a substring o f every
string; i.e.., given x we can choose z in the definition as e and w as x so that
x = e e x.

An initial substring is called a prefix, and a final substring, a suffix.
Thus, ab is a (proper) prefix o f abacca, and cca is a (proper) suffix o f this
string.

We may now define a language (over a vocabulary A) as any subset o f
A ”. Since A * is a denumerably infinite set, it has cardinality its power
set, i.e., the set o f all languages over A, has cardinality 2^° and is thus non-
denumerably infinite. Since the devices for characterizing languages which
we will consider, viz., formal grammars and automata, form denumerably
infinite classes, it follows that there are infinitely many languages-in fact,
non-denumerably infinitely many-which have no grammar. W hat this means
in intuitive terms is that there axe languages which axe such motley collec
tions o f strings that they cannot be completely chaxacterized by any finite
device, The languages which are so characterizable exhibit a certain amount
of order or pattern in their strings which allows these strings to be distin
guished from others in A * by a grammar or automaton with finite resources.
The study o f formal languages is essentially the investigation o f a scale of

436 C h a p t e r 16

com plexity in this patterning in strings. For example, we might define a
language over the alphabet {a , 6} in the following way:

(16-2) L = { x \ x contains equal numbers o f a ’s and 6’s (in any order)}

W e might then compare this language with the following:

(16 -3) L i = { x £ {a , 6}* | x = anbn(n > 0)} , i.e , strings consisting of
some number o f a ’s followed by the same number o f 6’ s
L 2 = { x £ {a , 6}* | x contains a number o f a ’s which is the square
o f the number o f 6’s}

Is Li or Lz in some intuitive sense more com plex than LI Most would
probably agree that L% is a more com plex language than L in that greater
effort would be required to determine that the members o f a ’s and 6’s stood
the “ square” relation than to determine merely that they were equal In
other words, a device which could discriminate strings from non-strings of
L 2 would have to be more powerful or more “intelligent” than a device for
making the comparable discrimination for L,

W hat o f Li and LI Here our intuitions are much less clear. Some might
think that it would require a less powerful device to recognize strings in L
reliably than to recognize strings in L i, others might think it is the other way
around or see no difference. As it happens, the particular scale o f complexity
we will investigate (the so-called Chomsky Hierarchy) does regard L 2 as more
com plex than L but puts L\ and L in the same complexity class. At least this
is so for the overall com plexity measure. Finer divisions could be established
which might distinguish L\ from L

One linguistic application o f these investigations is to try to locate nat
ural languages on this com plexity scale. This is part o f the overall task of
linguistics to characterize as precisely as possible the class o f (potential and
actual) natural languages and to distinguish this class from the class of all
language-like systems which could not be natural languages. One must keep
clearly in mind the limitations of this enterprise, however, the principal one
being that languages axe regarded here simply as string sets, It is clear that
sentences o f any natural language have a great deal more structure than
simply the concatenation of one element with another. Thus, to establish a
com plexity scale for string sets and to place natural languages on this scale
may, because o f the neglect of other important structural properties, be to
classify natural language along an ultimately irrelevant dimension. Extend

G r a m m a r s 437

ing results from the study o f formal languages into linguistic theory must
therefore be done with great caution.

16.2 Grammars

A form al grammar (or simply, grammar) is essentially a deductive system o f
axioms and rules o f inference (see Chapter 8), which generates the sentences
o f a language as its theorems. By the usual definitions, a grammar contains
just one axiom, the string consisting o f the initial symbol (usually S), and a
finite number o f rules o f the form ip —* us, where ip and us ar e strings, and the
interpretation o f a rule is the following: whenever ip occurs as a substring
o f any given string, that occurrence may be replaced by us to yield a new
string. Thus if a grammar contained the rule A B —* C D A, we could derive
from the string E B A B C C the string E B C D A C C

Grammars use two alphabets: a terminal alphabet and a non-terminal
alphabet, which are assumed to be disjoint. The strings we are interested
in deriving, i.e., the sentences o f the language, are strings over the terminal
alphabet, but intermediate strings in derivations (proofs) by the grammar
may contain symbols from both alphabets. We also require in the rules of
the grammar that the string on the left side not consist entirely o f terminal
symbols. Here is an example o f a grammar meeting these requirements:

(16-4) Vt (the terminal alphabet) = { a , 6 }
Vn (the non-terminal alphabet) — { S ,A ,B }
S (the initial symbol— a member o f Vn)

S —> A B S

R (the set o f rules)

5 -> e
A B -> B A
B A -> A B
A —► a
B 6

A com m on notational convention is to use lower case letters for the terminal
alphabet and upper case letters for the non-terminal alphabet

A derivation o f the string abba by this grammar could proceed as follows:

(16-5) 5 = > A B S ==» A B A B S ==> A B A B = > A B B A = > A B bA = >
aBbA = > abbA = > abba

438 C h a p t e r 16

Here we have used the sym bol “ =>” to mean “yields in one rule application,”
Note that abba is not subject to further rewriting inasmuch as it consists
entirely o f terminal symbols and no rule licenses rewriting strings of termi
nals. The sequence (16-5) is said to be a derivation (o f abba from S), and
the string abba is said to be generated by the grammar. The language gener
ated by the grammar is the set of all strings generated. Here are the formal
definitions:

D e f in it io n 16.2 Let £ = V t U V n • A (formal grammar G is a quadrupJe
{ V t , V at, S, R), where V t and Vjv are finite disjoint sets, 5 is a distinguished
member ofV jv , and R is a finite set o f ordered pairs in £*VatIT x S ‘ . ■

We have written ip —> w above for clarity instead o f (ip, w). The last condition
simply says that a rule rewrites a string containing at least one non-terminal
as some (possibly empty) string.

D e f in it io n 16.3 Given a grammar G = {V t,V iv , S, R), a derivation is a
sequence o f strings x i , x 2, . ■ .,x n (n > 1) such that x\ — S and for each

(2 < i < n), Xi is obtained from X i-i by one application o f some rule in
R. m

To be completely formal, we would spell out in detail what it means to apply
a rule o f J? to a string. The reader may want to do this as an exercise.

D e f in it io n 16.4 A grammar G generates a string x £ V f i f there is a
derivation x \ ,. , . , x n by G such that x n = x. ■

Note that by this definition only strings o f terminal symbols are said to be
generated.

D e f in it io n 16.5 The language generated by a grammar G, denoted L (G),
is the set o f all strings generated by G. ■

The language generated by the grammar in the example o f (16-4) is { 2: £
{a ,b } ” | x contains equal numbers o f a’s and 6’s }

T r e e s 439

Figure 16-1: A typical constitutent
structure tree

16.3 Trees

W hen the rules o f a grammar are restricted to rewriting only a single non
terminal symbol, it is possible to contrue grammars as generating constituent
structure trees rather than simply strings, A n example o f such a tree is shown
in Fig. 16-1.

Such diagrams represent three sorts o f information about the syntactic struc
ture o f a sentence:

1, The hierarchical grouping o f the parts o f the sentence into constituents

2, The grammatical type o f each constituent

3, The left-to-right order o f the constituents

For example, Fig. 16-1 indicates that the largest constitutent, which is la
beled by S (for Sentence), is made up o f a constituent which is a N(oun)
P(hrase) and one which is a V (erb) P(hrase) and that the noun phrase is
com posed o f two constituents: a Det(erminer) and a N (oun), etc. Further,

440 C h a p t e r 16

in the sentence constituent the noun phrase precedes the verb phrase, the
determiner precedes the noun in the noun phrase constituents, and so on.
The tree diagram itself is said to be composed o f nodes, or points, some of
which are connected by lines called branches Each node has associated with
it a label chosen from a specified finite set of grammatical categories (S, NP,
V P, etc.) and formatives (my, sister, etc), As they are customarily drawn,
a tree diagram has a vertical orientation on the page with the nodes labeled
by the formatives at the bottom Because a branch always connects a higher
node to a lower one, it is an inherently directional connection This direc
tionality is ordinarily not indicated by an arrow, as in the usual diagrams of
relations, but only by the vertical orientation o f the tree taken together with
the convention that a branch extends from a higher node to a lower node.

16.3 .1 Dom inance

W e say that a node x dominates a node y if there is a connected sequence
o f branches in the tree extending from x to y This is the case when all the
branches in the sequence have the same orientation away from x and toward
y. For example, in Fig 16-1 the node labeled VP dominates the node labeled
Art, since the sequence of branches connecting them is uniformly descending
from the higher node VP to the lower node Art, The node labeled VP does
not dominate the node labeled Poss, since the path by which they are joined
first ascends from VP to S and then descends through NP and Det

Given a tree diagram, we represent the fact that x dominates y by the
ordered pair (x, y) . The set o f all such ordered pairs for a given tree is said
to constitute the dominance relation for that tree. Dom inance is clearly
a transitive relation. I f x is connected to y by a sequence o f descending
branches and y is similarly connected to z, then x dominates z because they
are also connected by a sequence o f descending branches, specifically, by the
sequence passing through y , As a technical convenience, it is usually assumed
that every node dominates itself, i.e., that the dominance relation is reflexive.
Further, if x dominates y , then y can dominate x only if x — y\ or in other
words, dominance is antisymmetric. Thus, the relation of dominance is a
weak partial ordering of the nodes of a tree.

If x and y are distinct, x dominates y, and there is no distinct node
between x and y, then x immediately dominates y. In Fig. 16-1, the node
labeled VP immediately dominates the node labeled V but not the node
labeled found. A node is said to be the daughter o f the node immediately

T r e e s 441

dominating it, and distinct nodes immediately dominated by the same node
are called sisters. In Fig. 16-1, the node labeled VP has two daughters, viz.,
the node labeled V and the rightmost node labeled NP. The latter two nodes
are sisters. A node which is minimal in the dominance relation, i.e., which
is not dominated by any other node, is called a root In Fig. 16-1 there
is one root, the node labeled S, Maximal elements are called leaves, and in
Fig 16-1 these are the nodes labeled by the formatives, my, sister, etc. Note
that a tree diagram is ordinarily drawn upside down since the root is at the
top and the leaves are at the bottom.

Mathematicians sometimes use the term tree for a configuration with more
than one root, e.g., that shown in Fig. 16-2. For linguists, however, a tree
is invariably singly rooted, the configuration in Fig.. 16-2 being considered
a “forest” o f trees. We shall adhere to linguistic usage and accordingly we
have the following condition:

T h e S in g le R o o t C o n d it io n : In every well-formed constituent structure
tree there is exactly one node that dominates every node.
The root node is, therefore, a least element (and necessarily also a minimal
element) in the dominance relation. We note, incidentally, that the Single
R oot Condition is met in the trivial case o f a tree that has only one node,
which is simultaneously root and leaf. The condition would not be met by
an “em pty” tree with no nodes at all, since it asserts that a node with the
specified property exists in the tree.

16.3.2 Precedence

Tw o nodes are ordered in the left-to-right direction just in case they are not
ordered by donimance. In Fig. 16-1 the node labeled V precedes (i.e., is to

442 C h a p t e r 16

the left o f) its sister node labeled NP and all the nodes dominated by this
NP node; it neither precedes noi follows the nodes labeled S, VP, V , and
found, i.e., the nodes that either dominate or are dominated by the V node.
It is not logically necessary that the relations o f dominance and left-to-right
precedence be mutually exclusive, but this accords with the way in which
tree diagrams are usually interpreted.

Given a tree, the set o f all ordered pairs (x , y) such that x precedes y
is said to define the precedence relation foi that tree. To ensure that the
precedence and dominance relations have no ordered pairs in com m on, we
add the Exclusivity Condition:

T h e E x c lu s iv ity C o n d it io n : In any well-formed constituent structure
tree, for any nodes x and y, x and y stand in the precedence relation P , i.e.,
either (x , y) £ P or (y , x) £ P, if and only if x and y do not stand in the
dominance relation D , i e., neither {x , y) £ D nor (y , x) £ D

Like dominance, precedence is a transitive relation, but precedence is irrefiex
ive rather than reflexive. The latter follows from the Exclusivity Condition,
since for every node x , (x , x) £ D and therefore (x , x) 0 P. I f x precedes
then y cannot precede x , and thus the relation is asymmetric. Precedence,
therefore, defines a strict partial order on the nodes o f the tree.

One other condition on the dominance and precedence relations is needed
to exclude certain configurations from the class of well-formed trees. An
essential characteristic o f a tree that distinguishes it from a partially ordered
set in general is that no node can have more than one branch entering it; i.e.,
every node has at most one node immediately dominating it. The structure
shown in Fig, 16-3(a) has a node d with two immediate predecessors, b and
c, and therefore it is not a tree. Another defining property o f trees is that
branches are not allowed to cross. Figure 16-3(b) illustrates the sort of
structure that is forbidden. Both types o f ill-formedness can be ruled out by
adding the Nontangling Condition:

T h e N o n ta n g lin g C o n d it io n : In any well-formed constituent structure
tree, for any nodes x and y , i f x precedes y , then all nodes dominated by a
precede all nodes dominated by y.

The configuration in Fig, 16-3(a) fails to meet this condition because
b precedes c, 6 dominates d, and c dominates d, and therefore d ought to
precede d. This is impossible, however, since precedence is irrefiexive. In
Fig 16-3(b), b precedes c, 6 dominates d, and c dominates e. Thus, by the
Nontangling Condition, d should precede e, but in fact the reverse is true.

T r e e s 443

a)' a

b c b c

d e d

Figure 16-3: Structures excluded as trees by
the Nontangling Condition

16.3 .3 Labeling

To complete the characterization o f trees we must consider the labeling o f the
nodes. It is apparent from Fig. 16-1 that distinct nodes can have identical
labels attached to them, e.g., the two nodes labeled NP. Since each node
has exactly one label, the pairing of nodes and labels can be represented
by a labeling function L, whose domain is the set o f nodes in the tree and
whose range is a set (in syntactic trees, a set o f grammatical categories and
formatives). The mapping is, in general, an into function. In summary, we
have the following definition:

D e f in i t io n 16,6 A (co n s t itu e n t s tru ctu re j tree is a mathematical configu
ration {N , Q , D , P , L), where

N is a finite set, the set o f nodes
Q is a finite set, the set o f labels
D is a weak partial order in N X N , the dominance relation
P is a strict partial order in N X N , the precedence relation
L is a function from N into Q, the labeling function

and such that the following conditions hold ;

(1) (3x £ N) (Vy £ N) (x , y) £ D (Single R oot Condition)

(2) (Vx, y £ N) (((x , y) £ P V (y , x) £ P) ({x , y) $ D k { y , x) $ D))
(Exclusivity Condition)

444 C h a p t e r 16

(3) {y w ,x > y ,z £ N) (({ w ,x) £ P & (w ,y) £ D & (x, z) £ D) -> (y, z) £ P)
(Nontangling Condition)

Given this definition, one can prove theorems of the following sort:

T h e o r e m 16 1 Given a tree T = (N , Q , D , P , L), every pair o f sister nodes
is ordered by P. ■

Proof: Take x and y as sisters immediately dominated by some node z.
B y the definitions o f ‘sister1 and ‘immediate dom ination,’ x . y , and z must
all be distinct. As an assumption to be proved false, let x dominate y.
Therefore, x must dominate z, since z immediately dominates y But z
also dominates x, and x and z are distinct, so this violates the condition
that dominance is antisymmetric. Therefore, x cannot dominate y. B y a
symmetrical argument, we can show that y does not dominate x. Thus,
{ x ,y) $ D and (y ,x) $ D , and by the Exclusivity Condition it follows that
(x ,y) £ P V (y ,x) £ P\ i.e., x and y are ordered by P. ■

T h e o r e m 16.2 Given a tree T = { N ,Q , D , P, L), the leaves are totally
ordered by P . ■

P roo f : Let M be the set o f leaves, and let R be the restriction o f the rela
tion P to the set M ; i.e., R = { (x , y) £ M X M | {x ,y) £ P } . R is a strict
partial order, since if there were any ordered pairs violating the conditions
o f irreflexivity, asymmetry, and transitivity in R , then because R C P , these
pairs would also appear in P , and P would not be a strict partial order.
B y definition, a leaf dominates no node except itself, and therefore for every
pair o f distinct leaves x and y , (x , y) g D and (y , x) $ D. Thus, by the
Exclusivity Condition (x ,y) £ P V (y ,x) £ P. Since x and y are leaves,
(x ,y) £ R V (y ,x) £ R, by the definition o f R , and thus R is connex. There
fore, R is a strict total order. ■

Every statement about the formal properties of' a constituent structure
tree can be formulated in terms o f the dominance and precedence relations
and the labeling function. For example, one useful predicate on trees is that
o f belonging to A node will be said to belong to the next highest S node
that dominates it. Formally, the definition is as follows:

T r e e s 445

D e f i n i t i o n 16 7 Given a tree T = {N, <3, D, P, L), node x belongs to node
y i f f

(1) x ^ y

(2) { y ,x) £ D

(3) {y, S) £ L

(4) ~ (3w £ N) ((w , S } £ L k w ^ y k w ^ x k (y ,w) £ D k {w , x) £ D),
■

Parts 2 and 3 of this definition specify that the node to which x belongs
is labeled S and dominates x. Part 4 prohibits any S node from standing
between x and y in the dominance relation, and part 1 excludes the case
o f an S node belonging to itself. To illustrate, let us consider the tree in
Fig 16-4.

The node Prn belongs to the circled S node since this is the next highest
S node dominating it. Prn does not belong to the highest S (i.e., the root)
o f the tree because the circled S node is between the root and P m in the
dominance relation

W ith this definition we can easily define some other predicates. Tw o
nodes are called clause mates iff neither dominates the other and both belong
to the same node. In Fig 16-4 the nodes labeled John and him aie clause
mates since neither dominates the other and both belong to the circled S
node, Fred and him are not clause mates since they do not belong to the
same node, and Prn and him are not clause mates since Prn dominates him.

If we let B (x ,y) denote ‘x belongs to y ,’ we can state the definition of
clause mates as follows:

D e f i n i t i o n 16.8 Given a tree T = {N , Q ,D , P, L), nodes x and y are clause
mates i f f (x, y) 0 D k (y ,x) 0 D k (3 z £ N) ((x , z) £ B k (y , z) £ B, ■

A node x is said to command a node y iff neither dominates the other and
x belongs to a node z that dominates y (Langacker, 1969), In Fig, 16-4 the
node labeled Fred commands the node labeled him since neither dominates
the other and Fred belongs to the root node S, which also dominates him
The node him does not command Fred, however, since the node to which him
belongs— the circled S node— does not dominate Fred. Note, further, that
John commands him and vice versa. Formally, the definition is as follows

446 C h a p t e r 16

NP

N

Fred

Figure 16-4: Tree illustrating the definitions
of ‘belonging to ’ and ‘com m and’

D e f i n i t i o n 16.9 Given a tree T = { N , Q , D , P , L), node x commands node
y iff (x ,y) $ D & (y, x) $ D k. (3 z £ N) ((x , z) £ B k (z , y) £ D). ■

Problem: Prove that two nodes are clause mates iff each commands the
other,

16.4 Grammars and trees

As we have said, if a grammar has only rules o f the form A —> ip, where
A is a nonterminal symbol, there is a natural way to associate applications
o f such iules with the generation o f a tree. For example, if the grammar
contains the rule A —» aBc, we can associate this with the (sub)tree in Fig.
16-5.

in which A immediately dominates a,B, and c, and the latter three elements
stand in the precedence relation in the order given. Further, if the grammar

G r a m m a r s a n d t r e e s 447

A

a B c

Figure 16-5.

Figure 16-6

also contains the rule B —> ba, we can apply this rule at the node labelled
B in the preceding tree to produce the tree shown in Fig. 16-6

Let us define the yield o f a tree as the string formed by its leaves ordered
according to the precedence relation,. The yield o f the tree in Fig. 16-6, for
example, is abac; that o f Fig, 16-5 is aBc. We can now say:

D e f i n i t i o n 16 10 A grammar (having all rules o f the form A ^ ip) generates
a tree iff all the following hold:

(i) the root is labelled with the initial symbol o f the grammar

(ii) the yield is a string o f terminal symbols

A

(iii) for each subtree o f the form in the tree, where A immedi-
a i a n

a tely dominates a ian, there is a rule in the grammar A —» or , , a n.

■

448 C h a p t e r 16

Figure 16-7

Thus the grammar G — { { a , b } , { S , A , B } , S , R) where

(S - ^ A B B - » Bb)
R = < A - * a A b B - + b I

J
generates trees such as those in Fig. 16-7. We can further say that a string
is generated by such a grammar iff it is the yield of some tree which is gen
erated, The language generated is, as usual, the set o f all strings generated.
For giammars in which there is only a single symbol on the left side o f each
rule, this definition and the earlier definition o f generation o f a string turn
out to be equivalent: a string is generated (by the earlier definition) iff it is
the yield o f some generated tree.
Problem: W hat language is generated by the above grammar?

Such grammars have interested linguists precisely because o f the possi

G r a m m a r s a n d t r e e s 449

bility o f specifying a constituent structure tree for each string generated In
attempting to write such grammars for natural languages, however, linguists
have noted that often such rules are not universally applicable but may be
allowed only in certain contexts. For example, a rule rewriting Det(erminei)
as many might be applied only if the following noun were a plural form.
Such considerations led to the investigation o f formal grammar rules o f the
form A —► , where the “ / ” is read “in the context” , and where
marks the position o f the A, The interpretation of such a rule is that the
sym bol A can be replaced by the string ip in a derivation only when the
string a immediately precedes A and the string /? immediately follows A
The context specifications are not necessarily exhaustive: additional sym
bols may occur to the left o f the a and to the right o f /?, For example, if the
rule were A —> a B c/ C _ D c , then the string B E C A D c b A could be rewritten
as B E C a B cD cb A

Such rules are called context sensitive in contrast to rules o f the form
A —> ip, which are called context free A context free rule, thus, is a context
sensitive rule in which the context is null

A context sensitive rule A —» ip/a_fi can also be written as aA(3 —» aipfi
in conform ity with the schema for grammar rules generally. So long as
we regard these grammars as string rewriting systems the notations are
interchangeable: in either case we may replace A by ip when we find the
substring aAfl, However, if we want to think o f context sensitive rules
as generating trees, the two representations may not be equivalent. For
example, the rule C A B D —► C A a B D could be construed either as A —>
A a j C _ B D or as B —> a B / C A _ D , and the associated trees would obviously
differ depending on whether an A node or a B node was expanded.

Another problem which arises is how the context restriction is to be
satisfied by the tree. I f we think of the rules as specifying how one tree
is to be converted into the next in a derivation, then does a rule such as
A —» a B c/ C _D mean that the C and D must be leaves immediately to the
left and right, respectively, o f A when the rule is applied, or is it sufficient
that the C immediately precede the A and the D immediately follow, without
necessarily being leaves along with A^ Under the latter interpretation, the
following derivational step would be allowed, but by the former it would not

450 C h a p t e r 16

Note also that in the definition o f tree derivation by means of context free
rules in D ef 16-10 above, we essentially thought o f the trees being somehow
given in advance and then checked for well-formedness by the grammar rules.
That is, the rules served as so-called “node admissibility conditions” rather
than as directions for converting one tree into another In the context free
case, the two points of view are equivalent, but this is not the case for context
sensitive rules. For example, the grammar

(16-6) S -► AB
A —» a/_b
B -► b/a_

will generate the tree

Figure 16-8

if the rules are interpreted as node admissibility conditions but not if they
are interpreted as tree generating rules (the problem being that the A cannot
be rewritten until the B has, and vice versa.

T h e C h o m s k y H i e r a r c h y 451

16.5 The Chomsky Hierarchy

B y putting increasingly stringent restrictions on the allowed forms of rules
we can establish a series o f grammars of decreasing generative power. Many
such series are imaginable, but the one which has received the most attention
is due to Chomsky and has come to be known as the Chomsky Hierarchy
At the top are the most general grammars of the sort we defined above in
Section 16.2, There are no restrictions on the form o f the rules except that
the left side must contain at least one non-terminal symbol (Actually, even
this restriction could be eliminated in favor of one which says simply that
the left side cannot be the empty string. The formulation we have chosen is
essentially a technical convenience) Chomsky dubbed such grammars ‘Type
0,’ and they are also sometimes called unrestricted rewriting systems (urs)
The succeeding three types are as follows:

T y p e 1: each rule is o f the form aAfl —> a ip f } , where ip e.

T y p e 2: each rule is o f the form A —> ip.

T y p e 3: each rule is o f the form A —» x B or A —> x

In the above a , (3, and ip are arbitrary strings (possibly empty unless oth
erwise specified) over the union o f the terminal and non-terminal alphabets;
A and B are non-terminals, and x is a string of terminal symbols

Type 1 grammars are also called context sensitive ; an equivalent form u
lation is to say that each rule is o f the form ip —* u , where u is at least
as long as ip (i e ., the rules are “non-shrinking”). Type 2 grammars are
called context free, and Type 3 grammars are called regular or right linear
for reasons which will becom e apparent in the next section,

Note that these classes o f grammars do not form a strict hierarchy in the
sense that each type is a subclass o f the one with the next lower number.
Every Type 1 grammar is also a Type 0 grammar, but because rules o f the
form A —► e are allowed in Type 2 grammars, these are not properly con
tained in Type 1, Type 3 grammars, however, are properly contained in the
Type 2 grammars, It is nonetheless apparent, technical details concerning
the em pty string aside, that the hierarchy represents a series o f generally
increasing restrictions on the allowed form o f rules.

The question then arises whether the languages generated by such gram
mars stand in an analogous relationship. We say that a language is o f Type

452 C h a p t e r 16

n (n = 0, 1, 2, oi 3) iff it is generated by some grammar o f Type n. For
example, we saw in Section 16.2 that I x contains equal
numbers of a ’s and b’s} is o f Type 0 inasmuch as it is generated by the gram
mar given in 16-4 But one might wonder whether it could also be generated
by a grammar of some other type— say of Type 2 This is indeed the case;
this language is generated by the following Type 2 grammar.

(16-7) G = { { a , b } , { S , A , B } , S , R) where

S -+ e A —» a
S -► aB A - » aS
S -+ b A A bAA
B -► 6 B —> aB B
B -+ bS

This fact immediately establishes this language as Type 0 also, since every
Type 2 grammar is perforce a Type 0 grammar. (It does not at the same
time establish it as a Type 1 language since the given grammar is not Type 1,
because of the rule S —■> e In fact, this language could not be Type 1 since
Type 1 languages can never contain e„)

Is this language also Type 3? It turns out that it is not, but to prove this
is not a simple matter. One must show somehow that no Type 3 grammar,
however elaborate, can generate this language. We will consider techniques
for proving such results in later sections,

Note that if one has two classes o f grammars Gi and G j such that G ; is
properly contained in Gj, it does not necessarily follow that the correspond
ing classes o f languages stand in the proper subset relation. Because every
Type i grammar is also a Type i + 1 grammar it does follow that every Type i
language is also a Type i + 1 language, i e., Li C L{+\, But it might also be
the case that every Type i + 1 language happens to have some Type i gram
mar which generates it. In such a case Li is a subset of Li+i but not a proper
subset. Am ong the earliest results achieved in the study o f formal gr ammars
and languages were proofs that the inclusions among the languages o f the
Chomsky hierarchy are in fact proper inclusions, Specifically,

(i) the Type 3 languages are properly included in the Type 2 languages;

(ii) the Type 2 languages not containing the empty string are properly
included in the Type 1 languages;

(iii) the Type 1 languages are properly included in the Type 0 languages.

L a n g u a g e s a n d a u t o m a t a 453

Some o f the proofs will be sketched in the following chapters

16.6 L anguages an d a u to m a ta

As we mentioned at the beginning of this section, languages can also be
characterized by abstract computing devices called automata. Ultimately we
will define a hierarchy o f automata and establish correspondences between
them and the grammars o f the Chomsky Hierarchy. This gives us yet another
point o f view from which to examine the notion o f ‘com plexity o f a language’
which we hope eventually to put to use in characterizing natural language.

Before turning to the detailed study o f the various classes o f automata,
it would be well to make a few general remarks about these devices.

An automaton is an idealized abstract computing machine— that is, it is
a mathematical object rather than a physical one A n automaton is charac
terized by the manner in which it performs computations: for any automaton
there is a class o f inputs to which it reacts, and a class o f outputs which it
produces, the relation between these being determined by the structure, or
internal organization o f the automaton We will consider only automata
whose inputs and outputs are discrete (e.g., strings over an alphabet) rather
than continuous (e ,g , readings on a dial), and we will not deal with automata
whose behavior is probabilistic

Central to the notion o f the structure o f an automaton is the concept
o f a state. A state o f an automaton is analogous to the arrangement of
bits in the memory banks and registers o f an actual computer, but since
we are abstracting away from physical realizations here, we can think o f a
state as a characteristic o f an automaton which in general changes during
the course o f a computation and which serves to determine the relationship
between inputs and outputs. We will consider only automata which have a
finite number o f states (c f a computer whose internal hardware at any given
moment can be in only one o f a finite number o f different arrangements o f
l ’s and 0 ’s„)

An automaton may also have a memory. For the simplest automata, the
memory consists simply o f the states themselves. M ore powerful automata
may be outfitted with additional devices, generally “ tapes” on which the
machine can read and write symbols and do “ scratch work,” Since the
amount of m em ory available on such tapes is potentially unlimited, these
machines can in effect overcome the limitations inherent in having only a

454 C h a p t e r 16

finite number of states. We will see that the most powerful automata, Turing
machines, are capable in principle o f performing any com putation for which
an explicit set o f instructions can be given

Autom ata may be regarded as devices for computing functions, i.e., for
pairing inputs with outputs, but we will normally view them as acceptors,
i.e., devices which, when given an input, either accept or reject it after some
finite amount o f computation. In particular, if the input is a string over
some alphabet A, then an automaton can be thought o f as the acceptor of
some language over A and the rejector o f its complement. As we will see, it
is also possible to regard automata as generators o f strings and languages in
a manner similar to grammars

Chapter 17

Finite Automata, Regular
Languages and Type 3
Grammars

17.1 F in i te a u to m a ta

A finite automaton (fa), or finite state automaton (fsa), is an abstract com
puting device that receives a string o f symbols as input, reads this string one
sym bol at a time from left to right, and after reading the last sym bol halts
and signifies either acceptance oi rejection o f the input. At any point in its
com putation a fa is in one o f a finite number o f states. The computations
o f a fa are directed by a “program ,” which is a finite set o f instructions for
changing from state to state as the automaton reads input symbols. A com
putation always begins in a designated state, the initial state. There is also
a specified set o f final states; if the fa ends up in one o f these after reading
the input, it is accepted; otherwise, it is rejected.

It may help to visualize a finite automaton as composed o f (1) a control
box , which at any point in the computation can be in one o f the allowed
internal states, and (2) a reading head, which scans a single symbol o f the
input. In Fig, 17-1 we have represented a fa in its initial state, qo, at the
beginning o f its com putation of the input string abaab.

Let us suppose further that the set o f states for this fa is { ? o , ? i } and that
the set o f final states is { 51} (W e could have made the initial state a final
state also, but we have not chosen to do so here,) We specify the program

455

456 C h a p t e r 17

a I) & & b

Jo]

Figure 17-1

for this fa as a set of triples o f the form (q i ,x ,q j) , where qi and qj are states
and x is a sym bol o f the alphabet— heie, {a , 6}. Instructions are interpreted
in the following way: when the fa is in state <?; reading a sym bol x on the
input tape, it changes to state qj (possibly identical to q{) and advances the
reading head one symbol to the right. The instruction for the now current
state and symbol is then carried out, and the process is repeated until there
are no more symbols to be read, Here are the instructions for oui example:

(17-1) (? oj go)
(? o > M i)
(?i> a .? i)
(? i , M o)

Thus, from the initial situation shown in Fig, 17-1 the fa would fir st execute
the instruction (q0, a, qo) and find itself in the following situation:

(17-2)

Now the instruction (50: b, Si) is applied to produce:

(17-3)

and so on. You should now be able to verify that after reading the final
symbol 6, the fa is in state qo, and since this is not a final state, the input

F i n i t e a u t o m a t a 457

is rejected. It should also be easy to determine that the input ab would be
accepted, while aa is rejected.

Problem: Describe the set o f all tapes accepted by this fa

W hat would happen if the fa o f our example were given the empty string
as input? In such a case, the input tape has no symbols on it, and so no
instructions can be applied— there being nothing to read. Thus, the initial
situation is identical to the final situation, and since the initial state, qo, is
not a final state, this input is rejected. Note that to say that a machine
accepts the empty string as part o f its language is far different from saying
that the language accepted is em pty The latter means that it accepts neither
the empty string nor any other string A n automaton with no final states
would, for example, accept no strings and thus would be said to accept the
empty language.

One might wonder how a finite automaton would behave if there were no
instruction applicable at a particular point or if there were more than one
instruction which could be applied. Such questions will arise with the so-
called non-deterministic automata, which we consider below For now, we
will be concerned only with deterministic fa ’s, in which there is one and only
one instruction for each combination o f state and scanned symbol. As the
name suggests, the behavior of such an automaton is completely determined,
given the input tape and the initial state.

17.1.1 State diagrams of finite autom ata

A convenient representation for a fa, called a state diagram, can be con
structed in the following way. Each state is represented by a circle labelled
with the name of the state For each instruction (& , x, qj) an arrow is drawn
from the 5; circle to the qj circle and labelled with symbol x. Final states are
enclosed by an additional circle, and the initial state is marked by a caret
The state diagram for our example fa is shown in Fig, 17-2.

W ith such a diagram it is easy to trace the steps o f a computation like that
for abaab in the example above The fa starts in state qo and returns to qo
reading an a. The 6 takes it to state 51; the next two a ’s leave it in ? i; and
the final 6 returns it to 50 Since qo is non-final, the string is not accepted.

It is also somewhat easier to see from the state diagram than from the
list o f instructions in (17-1) that this fa accepts exactly the strings over the
alphabet {a , 6} containing an odd number o f 6’s

458 C h a p t e r 17

a a

Figure 17-2,

17.1 .2 Formal definition of deterministic finite autom ata

D e f i n i t i o n 17 1 A deterministic finite automaton (dfa) M is a quintuple
(K , 2 ,6 ,q 0,F) , where

K is a finite set, the set o f states

S is a finite set, the alphabet

qo £ K , the initial state

F C K , the set o f final states

S is a function from K x Y l into K , the transition function for next-state
function).

■

Note that the property o f determinism is expressed in this definition by the
fact that 8 is a function; that is, foi all q £ K and all cr £ S , 6(q,<r) has a
unique value.

In order to express formally what it is foi a dfa to accept an input string,
we introduce the notion o f a situation o f a dfa, This is intended to be
essentially a “snapshot” of the dfa and its input tape at any point during
a computation. We represented situations above by diagrams such as Fig.
17-1, but we now want a more compact notation. The essential infoimation
to be captured is (1) the current state o f the automaton; (2) the input tape;
and (3) the position o f the leading head, A convenient representation o f this
information is in the form o f a triple (x, q, y), where q is the current state and
x and y are the portions o f the input string to the left and right o f the reading

F i n i t e a u t o m a t a 459

head, respectively In this notation, the symbol being scanned is the left
most symbol, i f any, o f y. Thus, the diagram in (17-3) would be represented
as (ab, 5i , aab), and the sequence o f situations in the computation o f abaab
would be as follows:

(17-4) (e ,q 0,abaab) h (a,q0,baab) b (ab,qi,aab) h (aba,qx,ab) h
(abaa,qi,b) h (abaab, qo, e)

Here we have used the symbol h (the ‘turnstile’) to indicate that one situation
leads to another by a single move o f the automaton, We will define this
formally below, Note that at the beginning o f the computation the string
to the left o f the reading head is empty, and likewise for the string to the
right at the end o f the computation, In formal terms, a situation o f a dfa is
defined as follows:

D e f i n i t i o n 17.2 Given a, dfa M = {K ,Y ,S ,q o ,F) , a situation o f M is a
triple (x ,q ,y) , where q £ K and x , y £ ■

This definition allows situations for a given M which are not actually at
tainable in the course o f any computation by M . For example, (aa, qlt abb)
would be a situation o f our example dfa, but it is not a situation which can
be reached from the initial situation (e, qo, aaabb) by the given transition
function o f the automaton. It is convenient, nonetheless, to define the notion
o f situation in this overly broad way and to focus on attainable situations in
our definition o f acceptance.

Let us define, for a given dfa M , a binary relation on situations which
we will call produces-in-one-move. Situation A produces situation B in one
move just in case by applying one instruction in 6 to A we produce situation
B. Any two adjacent situations in (17-4) would stand in this relation, for
example. Formally, we have:

D e fin itio n 17 3 Given a dfa M = {K , £ , 8, qo, F) , a situation (x, q, y)
produces situation (x 1, q', y') in one move iff (1) there is a cr £ Yl such that
y = cry' and x' = xcr (i.e., the reading head moves right by one symbol), and
(2) 5(q,cr) = q' (i.e,, the appropriate state change occurs on reading cr). ■

Problem: In general, is the produces-in-one-m ove relation reflexive? sym
m etric? transitive?

460 C h a p t e r 17

As noted above, we indicate by the turnstile that two situations stand in
this relation; thus (x , q , y) H (x ' ,q ' ,y ')

Once again, this definition is permissive in that it allows pairs o f situa
tions to stand in the produces-in-one-m ove relation whether or not either is
attainable from some initial situation in the course o f a com putation For
example, in the dfa above, (aa,qi,abb) 1- (aaa,qi,bb), despite the fact that
neither situation could arise from (e, qo, aaabb).

As a final step before giving a formal definition o f acceptance, we extend
the previously defined relation to a new binary relation: “produces in zero
or more steps,” We say that a situation A produces situation B in zero or
more steps (or simply A produces B) iff there is a sequence o f situations
So I- Si H , . . I- Sit such that A = So and B = Sk (k > 0) (If k ~ 0,
there is only one situation in the sequence, and A = B\ thus, every situation
produces itself in zero or more moves) This relation is reflexive (as we have
just seen) and transitive; in fact, it is in formal terms the reflexive, transitive
closure o f the produces-in-one-move relation. This is just the produces-in-
one-move relation (for a given dfa) with enough pairs added to it to make it a
reflexive and transitive relation. We will denote this relation by h (‘turnstile
star ’) W e may also add a subscript M to this or to the turnstile if necessary
to emphasize the fact that the relation is defined with respect to a particular
automaton M ; thus, 1^ or Referring again to 17-4, we see

(17-5) (a, ?o> baab) ^ (aba,qi,ab) and (ab, q\, aab) ^ (ab,qi, aab)

but neither o f these would be true if 1- were replaced by h Acceptance o f a
string by dfa is now easy to define formally:

D e f i n i t i o n 17 4 Given a dfa M = (K , h , 8,qo, F) and a string x £ £ * , M
accepts x iff there is a q £ F such that (e, qo ,x) Ijf (x ,q ,e) , ■

And finally:

D e f i n i t i o n 17,5 Given a dfa M = (K , S , 8, qo, F) , t ie language accepted
by M , denoted L (M) , is the set o f all strings accepted by M ■

17.1 .3 Non-determ inistic finite autom ata

We now consider what happens if we relax the requirement that the next
m ove o f a fa always be uniquely determined. Departures from determinism
can occur in two ways:

F i n i t e a u t o m a t a 461

(i) for a given state symbol pair, there may be more than one next state
(ii) for a given state symbol pair, there may no next state at all

There is an additional generalization from the deterministic case which, while
it is strictly speaking not a departure from determinism, is often included in
the definition o f non-deterministic fa ’s:

(iii) transitions o f the form (&, w, qj) are allowed, where w £ £*; i.e., the fa
can read a string o f symbols in one move; and in particular,
(iv) transitions o f the form (qi, e, qj) are allowed; i.e., the fa can change state
without moving the reading head.

An example o f a non-deterministic fa which illustrates all four o f these con
ditions is shown in Fig 17-3.

The behavior o f a non-deterministic fa is defined as follows: an input
tape is accepted iff there is some path through the state diagram which
begins in the initial state, reads the entire input, and ends in a final state.
In the fa o f Fig. 17-3, for example, abb is accepted by virtue of the path from
?o (reading ab) to qi and then to qi (reading 6). The fact that there is also a
path reading abb which ends in ?i is irrelevant; only the existence o f at least
one accepting path is required. On the other hand, ba is not accepted since
there is no path through the state diagram which succeeds in reading the
entire string. Likewise, aba is not accepted. Note, however, that the string
a is accepted by the path leading from qo to q2 (reading no input) and then
again to qi (reading an a).

462 C h a p t e r 17

1 7 .1 .4 Formal definition of non-determ inistic finite autom ata

Formally, a non-deterministic fa is identical to a dfa except that the transi
tion function becom es a relation

D e fin itio n 17 6 A non-deterministic finite automaton (nfa) M is a quin
tuple { K , E , A , q o , F) , where K , S , qo, and F, are as for a dfa, and A , the
transition relation, is a finite subset o f K X £* X K (i.e., a relation from
K X £* into K) . a

The fact that A is a relation, but not necessarily a function, allows for
conditions (i) and (ii) above. The fact that it is a relation from K X S ’” rather
than from K X S allows for condition (iii) and its special case (iv). Because
o f the infmiteness o f £*, a relation from K X £* to K is itself potentially
infinite; we stipulate that it must be a finite subset o f K x X K in order to
retain the notion o f a finite machine; i.e., an automaton with a finite number
o f states and a finite number o f instructions in its program. Note that by
this definition dfa’s are aproper subclass o f nfa’s

The definitions o f situation, produces-in-one-m ove, etc. are similar to
those for dfa ’s.

D e f i n i t i o n 17.7 A situation is any tripie in £ * x K xE*. (x ,q ,y)\ - (x ',q',y')
is true iff there exists a string z £ £* such that x' = xz , y = zy ' , and
(q , z ,q ') £ A . ■

D e f i n i t i o n 17,8 Produces, i.e., I- , is the reflexive, transitive closure o f the \-
reiation, and, as before, an nfa M accepts a string x £ £* iff(e,qo,x)\iI (x ,q ,e)
for some q £ F. ■

The language accepted is, o f course, the set o f all strings accepted.

17.1 .5 Equivalence of deterministic and non-determ inistic fi
nite autom ata

One might expect that when fa’ s are allowed the extra degrees o f freedom
inherent in non-determinism, significantly more powerful devices would be
the result. Surprisingly, this is not the case, nfa’ s accept exactly the same
class o f languages as dfa’s; oi in other words, for every nfa there is an

F i n i t e a u t o m a t a 463

a

equivalent dfa— equivalent in the sense that both accept exactly the same
set o f strings. (The equivalence in the other direction is trivial, every dfa
being a fortiori a nfa.) A n example o f a dfa which is equivalent to the nfa
in Fig, 17-3 is shown in Fig, 17-4.

A dfa will typically have more states that an nfa to which it is equivalent.
The dfa works by essentially keeping track, in its states, o f the set o f states
that the nfa could be in if it followed all possible paths simultaneously on
a given input. There is in fact an algorithm for converting any nfa into an
equivalent dfa, but it is too long to be included here. It can be found in
Chomsky and Miller (1958), Rabin and Scott (1959), H opcroft and Ullman
(1979), and Lewis and Papadimitriou (1981).

In view o f the equivalence o f dfa ’s and nfa’s, one might wonder why we
bother to consider nfa’s at all. For one thing, nfa’s are generally easier to
construct than dfa’s Thus, it might be simpler to show that a given language
is o f the sort accepted by a fa by devising an nfa which accepts it. We will
in fact make use of this convenience in proving certain theorems about fa ’s
below, For another thing, determinism and non- determinism are notions
which arise in connection with other classes o f automata to be considered
later, and, as we will see, the two varieties are not always equivalent in these
cases,

464 C h a p t e r 17

17.2 Regular languages

We will say that a language is a finite automaton language (fal) just in case
there is some fa which accepts it. We know, for example, that { x £ {a , 6}* |
x contains an odd number o f b's} is such a language by virtue o f the fact
that we exhibited an fa accepting this language in Fig 17-2 above. Consider,
however, the general problem of’ deciding whether a given language L is a fal
or not. Suppose we try to construct a fa accepting L, but all our attempts
result in failure. We would not be justified in concluding that L is not a fal,
o f couse, since we might succeed in oui attempts with renewed persistence or
perhaps a bit of luck. It would be useful if we had another way to characterize
this class o f languages which does not depend on our ingenuity, or lack o f it,
in constructing fa ’s. To that end, we define a class of languages, called regular
languages, which turn out to be provably identical to the class o f fal’s, Since
these languages are defined (recursively) by reference to operations on sets of
strings rather than to acceptance by automata, we have another interesting
and potentially useful approach to these languages. In the next section, we
prove a theorem which is used primarily to show that a given language is
not an fal We will need a preliminary definition:

D e f i n i t i o n 17,9 Given two sets o f strings, A and B , the concatenation for
set product j o f A and B, denoted A B for ju st A B) , is the set o f strings
{ x ^ y | x £ A and y £ B } . ■

For example,

(17-6) if A ~ {a , 6} and B = {cc, d}, then A B — {acc, ad, bcc, bd}

Note that the concatenation o f two sets o f strings is itself a set o f strings, in
contrast to the Cartesian product o f two sets (o f anything), which is a set of
ordered pairs. We should also note that, according to the definition, if one
o f the sets is empty, the concatenation is also empty.

Recall also that the notation A* is used to denote the set o f all strings
formed over the alphabet A. This is a special case o f an operation called
closure or Kleene star on a set o f strings: given a set o f strings A, the Kleene
star or closure o f A, denoted A * , is the set formed by concatenating members
o f A together any number of times (including zero) in any order and allowing
repetitions For example,

R e g u l a r l a n g u a g e s 465

(1 7 -7) {a , 66}* = {e , a, 66, aa, abb, bba, 6666, aaa, aabb, abba,, . ,} .

Note that our original notation treated the members o f the alphabet as
strings o f length 1. We are now ready to give the definition o f the regular
languages.

D e f in it io n 17 10 Given an alphabet 5L

1 . 0 is a regular language.

2. For any string x £ £*, { x } is a regular language.

3 I f A and B are regular languages, so is A U B.

4. I f A and B are regular languages, so is AB.

5. I f A is a regular language, so is A " .

6. Nothing else is a regular language unless its being so follows from 1-5.
■

For example,

(17-8) Let £ = {a, b,c}. Then since aab and cc axe members o f £*, {aa&}
and {c c } are regular languages. So is the union o f these two sets,
viz., {aab, c c }, and so is the concatenation o f the two, viz., { aabcc} .
Likewise, {aab}*, {c c }* , and {aab, cc}* , axe all regular languages,
etc.

Another way to state the definition is to say that the regular languages
(over a given alphabet) are just those which can be obtained from the empty
language and the ‘unit’ languages (those containing just one string) by re
peated application o f the operations of union, concatenation, and Kleene
stax. Thus, to show that a given language is in fact regular, we indicate
how it can be built up out o f empty or unit languages by these operations.
For example, the language { x £ {a , 6}* | x contains an odd number o f 6’s}
is a regular language since an equivalent representation o f this language is
{a }* ' {&} { a } * - ({ 6} {a }* { 6}"{a }*)*„ In writing such expressions, it is usual to
render them less cumbersome by suppressing the braces around sets and the
dots in concatenation; extra parentheses can also be dispensed with in view
o f the associativity o f union and concatenation. The previous expression in

466 C h a p t e r 17

this pared-down notation would be: a'cbax(ba’‘ ba’‘ Y Such expressions are
called regular expressions We note also that the set o f all strings in {a, 6}*
which contain exactly two or three 6’ s is a regular language since it can be
represented (as a regular expression) as a^ba^ba* U a*ba"ba>cbax , or equiv
alently as a*6a’' 6a“ (e U ba~). Note, finally, that { e } is a regular language
since it is equal to 0“

Having thus characterized the regular languages, we want to show that
they are in fact identical to the finite automaton languages

T h e o r e m 17 1 (Kleene) A set o f strings is a finite automaton language i f
and only i f it is a regular language, m

We will sketch the p roo f o f one half' o f this theorem; i.e , that every fal is a
regular language, The proof o f the converse is too complex to give here, but
can be found in works such as Hopcroft and Ullman (1979) and Lewis and
Papadimitriou (1981).

First, we show that the empty language and the unit languages (for a
given S) are fal’s, The empty language is accepted by the one-state fa in Fig.
17-5(a), and foi each x in £* , a fa o f the form shown in Fig, 17-5(b) accepts
the language { z } , (Note that these fa ’s are in general non-deteim inistic)

?o

Figure 17-5

Next we show that the fal’s are closed under the operations o f union, concate
nation, and Kleene star. From this it will follow that the fal’s are included
in the regular' languages.

We will indicate how, given any two fa’s accepting languages L\ and L 2,
we can construct fa ’s accepting, respectively, L\ U L 2, L\L2, and L\,

Suppose, for example, we are given the following fal’ s:

Li = a6*a; that is, all strings beginning and ending with an a with
any number o f b’s between them,

R e g u l a r l a n g u a g e s 467

L 2 = all strings in {a , 6}* containing exactly two 6’s.

These are fal’s since they are accepted by the fa ’s in Figs. 17-6 and 17-7,
respectively

To form a fa accepting the union o f L\ and L 2 we first relabel the states
o f one o f the fa ’s so that all have distinct names— let us suppose that we
add primes to the states o f M 2, Now we introduce a new start state, q'J,
and establish e-transitions, i.e., changes of state reading the empty string,
from 5q to the old start states, go and q'0, Everything else, including the
final states, remains the same. The resulting automaton M 3 is shown in Fig,
17-8,
Mz o f course is non-deterministic. From its initial state it can go without
reading any input to qo, from which point it acts like M i, or it can go to q'0
and then behave like M 2. Given a string x which is in Li U L 2, there will be
an accepting path in M 3 corresponding to one (or both) o f these possibilities.
If x is not in Li U L 2, it is not accepted on any path in M3.

It should not be difficult to see that the method o f construction is general
and can be applied to any two fa ’s. This is the basis o f the proof that the

468 C h a p t e r 17

fal’ s are closed under union,

The demonstration that the fal’s are closed under concatenation is sim
ilar, except that the automata are hooked together “ in series” rather than
“ in parallel,” To construct a fa accepting L\ L2, we relabel the states of
M 2, if necessary, to make them distinct from those o f M 1 and then run e-
transitions from all final states o f M\ to the initial state o f M 2. Final states
o f Mi now becom e non-final, but final states o f M 2 remain. The result for
our examples Mi and M 2 above, would be as shown in Figure 17-9,

Figure 17-9

R e g u l a r l a n g u a g e s 469

M 3 accepts Li L2 as follows Given x, it will be accepted just in case
x = wz, where w would be accepted by M i (in state 52) and 2 would be
accepted by M 2 (going from state q '0 to state q'2) I f x is not in L\ L2, there
will be no factorization o f x into wz such that w would be accepted by M i
and z accepted by M 2 and thus no accepting path through M 3 , Again, the
m ethod is general and does not depend on the particular characteristics o f
automata M i and M 2 Note, however, that if M i had more than one final
state, we would have e-transitions from each o f them to the initial state of
M 2, and all these states would becom e non-final in the resulting fa

Finally, we want to show that the fal’ s are closed under the Kleene star
operation; that is, we want to take an automaton accepting L and convert
it into an automaton accepting L“ . The strategy here is to establish e-
transitions from all the final states back to the initial state so that the new fa
can “recycle,” accepting an input string X1X2 . . . x n just in case the original
fa would have accepted xi and x 2 . and x n. There is a slight difficulty,
however, in connection with the acceptance o f the empty string, which is of
course a member o f L* for any language L.

One would naturally want to insure that e is accepted by making the
initial state a final state if it isn ’t already However, in certain cases this
can lead to trouble Consider, for example, the following fa accepting the
language a(b U baa)*b:

If we were simply to add an e-transition from qi to qo so that the fa could
“recycle” and make qo a final state, we would have:

470 C h a p t e r 17

M ' accepts e, as required, but it also accepts aba, which is not in (a(b U
baa)*b)* Rather, what we should do is add a new initial state to M , which
will also be a final state, and establish an e-transition from ? 2 back to the
old initial state, qo-

Returning now to the examples M i and M 2 above, we see that this method
o f construction would produce the fa ’ s in Fig. 17-13, accepting L\ and LJ,
respectively.

This completes our informal demonstration that every finite automaton
language is a regular language. As we have said, we will not attempt to show
the converse here. It relies essentially on a procedure for extracting from any
given fa a representation o f the language it accepts. This representation can

R e g u l a r l a n g u a g e s 471

be shown to involve only the empty and unit languages together with the
operations o f union, concatenation, and Kleene star, and thus, that every
fal is a regular language.

17.2 .1 P um ping Theorem for fal’ s

Consider an infinite fal L B y definition, it is accepted by some fa M , which,
again by definition, has a finite number o f states. But since L is infinite,
there are strings in L which are as long as we please, and certainly L contains
strings with more symbols than the number o f states in M . Thus, since M
accepts every string in L, there must be a loop in M — in particular, a loop
which lies along a path from the initial state to some final state. In other
words, in accepting a string longer than the number o f states o f M , M must
enter some state more than once, and a path leading from such a state back
to that state constitutes a loop along an accepting path.

Let i be the string o f symbols which M reads on going from its initial
state to the state at the beginning o f some loop (call it qi), Let y be the
string read by M in going around the loop once, i e , from qi to the first

472 C h a p t e r 17

re-entry to 5,-. Finally, let z be the string read on going from ?,■ to some final
state. Thus, xyz is accepted by M

But now notice that any loop lying along an accepting path can be tra
versed any number o f times— zero or more— and the result will still be an
accepting path. Therefore, if M accepts x y z in the way indicated, it will
also accept xz , x y y z , x y y y z , . . . , in fact all strings of the form x y nz for n > 0 .
Finally, we observe that if I, is an infinite language (so that there is no upper
bound on sentence length), there has to be some loop along an accepting
path in M such that y ^ e Otherwise, M could not accept strings o f length
greater than the number o f states of M. These observations are summarized
in the following theorem, known as the Pumping Theorem (for fal’ s) because
the string y is said to be “pum ped” , i.e ., repeated with each traversal o f the
loop recognizing it.

T h e o r e m 17.2 I f L is an in fin ite fal o v e r alphabet S , then there are strings
x , y , z £ £* such that y ^ e and x y nz £ L for all n > 0. ■

As an example, consider the language

(1 7 -9) { s £ {a , 6}* | x contains an odd number o f 6’ s }

Since this is an infinite fal, the Pumping Theorem applies. Hence, there
exist strings x, y, and z (y e) such that x y nz £ L for all n > 0 Many
examples of such strings could be found; to take just one, let x = e, y — 66,
and z — ab. Then it is true that ab, bbab, bbbbab, bbbbbbab,. . .., are all in L\
that is (66)na6 £ L for all n > 0. For some choices o f x, y, and z, this will
not be true, but that doesn’t matter: the theorem guarantees only that at
least one choice for z , y, and z exists such that the specified condition holds.

The usefulness of this theorem lies in its application to languages which
are not fal’s. Suppose we have a language L which is infinite and for which
we could somehow show that for no choice o f x , y, and z (y ^ e) whatsover
is it the case that x y nz £ L for all n > 0. In such a situation we would be
justified in concluding that L is not a fal. Here we are using the theorem
in its contrapositive form. As stated, it is a conditional: I f L is an infinite
fal, then so-and-so. The contrapositive is: if not-so-and-so, then L is not an
infinite fal. For example, consider the language

(1 7 -1 0) L = {anbn | n > 0 }

T y p e 3 g r a m m a r s a n d f i n i t e a u t o m a t o n l a n g u a g e s 473

and let us show that it is not a fal using the Pumping Theorem, If L were
a fal, there would be some x, y, and z (y / e) such that x y nz £ L for all
n > 0 We show that no such x, y, and z exist.

The string x y z would have to be in L , so what could y consist of? It
can ’t be empty, so it would have to consist o f (1) some number o f a ’s, or (2)
some number o f 6’s, or (3) some number o f a ’s followed by some number of
b’s. It is easy to see that (3) is impossible because any string that contains
more than one repetition o f y, e.g., xyyz , will contain 6!s preceding a’s— the
b’s at the end o f the first y and the a ’s at the beginning o f the next— which
could not be a string in L , So such a choice o f y is not pump able.

W hat about case (1)? Here all the b’s are contained in the z part, and as
y is pum ped, the number o f a ’s in the string will increase while the number of
b’s remains constant Thus, we will continually be producing strings which
have more a’s than b’s in them, which cannot be in the language anbn.

Case (2) is par allel, but here the number o f b’s outstrips the number of
a’s. These are the only logical possibilities for the choice o f y, and since none
meet the condition laid down in the Pumping Theorem, we conclude that
no such x, y, z exist for this language Conclusion: anbn is not a fal.

W hat we have just done, then, is to show that there is no fa accepting
anbn without actually attempting to construct such an automaton.

One should also note that the Pumping Theorem does not yield partic
ularly useful information when one shows that the consequent o f the con
ditional is true, I f we were to consider the language L = {x £ {a , 6}* | x
contains equal numbers o f a’s and b’s in any order } and observe that for
x = e, y = ab, and z = e it is the case that x y nz £ L for all n > 0, this
would tell us nothing about whether L is a fal or not. Given A —» B and
B, we can conclude nothing about the truth or falsity o f A. As it happens,
the language just mentioned is not a fal, The moral is that the Pumping
Theorem may be useful in showing that certain languages are not fal’s but
m ay not prove useful in other cases, even though the languages in question
are in fact not fal’s,

17.3 Type 3 grammars and finite automaton lan
guages

We now want to examine the fal’s from the point o f view of grammars which
generate them. Recall our previous discussion o f formal grammars as con
sisting o f Vt , the terminal vocabulary; Vn , the non-terminal vocabulary; S,

474 C h a p t e r 17

the initial symbol; and R , a set o f rules or productions. The various types
o f grammars differ in the form o f productions they may contain, and here
we want to focus our attention on Type 3 grammars, also called right linear
grammars, in which each production is either of the form A —> x B or A —» x,
where A and B are in Vn and x is any string in V f. That is, each rule of a
Type 3 grammar has a single non-terminal on the left side, and on the right
a string of terminals (possibly empty) followed by at most one non-terminal
symbol A n example is shown in (17 -1 1)

(1 7 -1 1) G = {V t ,V n ,S ,R) , where V t = {a , b}', Vjv = {S ,A ,B }\ and

' s - » aA
A -► aA
A - » bbB
B -► bB
B - * b

An example o f a derivation by this grammar is shown in (1 7 -1 2):

(1 7 -1 2) S => aA => aaA => aabbB => aabbbB => aabbbb

The phrase-structure tree associated with this derivation is shown in Pig,
(1 7 -1 4),

It is evident from this tree why the Type 3 grammars are also called
right linear: the non-terminal symbols form a single linear sequence down
the right o f the tree. (There is also a class o f grammars called left linear
in which every rule is o f the form A —» B x or A —> x. The more general
class o f linear grammars has every rule o f the form A —» x B y or A —» x,
i.e., the right side o f each rule has at most one non-termini sym bol but
it need not to be left-most or right-most in the string. W hat we will say
here about right-linear grammars could equally well be formulated in terms
o f left-linear grammars— they are equivalent in generative capacity. Linear
grammars, however, generate a larger class of languages.)

Note that in a derivation by a right-linear grammar there is exactly
one non-terminal symbol at the right end o f each string until the last one,
at which point a rule of the form A —» x is applied and the derivation
terminates. This observation suggests an analogy to finite automata: the
one non-terminal symbol at the right side o f a string is like the state o f a fa

T y p e 3 g r a m m a r s a n d f i n i t e a u t o m a t o n l a n g u a g e s 475

in that the future course o f the derivation or computation can depend only on
the identity o f that state or sym bol and the given productions o f the device
in question. In particular, the past history, i.e., the string already read by
the fa or the string already generated by the grammar, has no influence on
the future course o f events.

Let us then associate with each rule o f a Type 3 grammar o f the form
A —» x B a transition in a (non-deterministic) fa from state A to state B
reading x. Further, let us associate each rule o f the form A —> x with a
tranisition from state A reading x to a designated final state F, The initial
state o f the automaton will, o f course, be S. Carrying out this construction
for the grammar in (17-11) gives:

It should be reasonably easy to convince oneself that this fa accepts the
same language as that generated by the grammar in (17-11), Moreover,
the m ethod is general and can be applied to any given Type 3 grammar to
produce an equivalent fa. ‘Equivalent,’ o f course, means that the language
accepted by the fa is the same as the language generated by the Type 3
grammar.

On further consideration, we see that there is no reason why we should

476 C h a p t e r 17

consider fa ’s only as acceptors o f languages, We might as well think o f an
fa as a language generator which starts in an initial state, moves from state
to state emitting, or writing, symbols on an output tape, and halting at
will in either a final or non-final state. I f the fa halts in a final state, the
output string is said to be generated; otherwise, it is not genei ated. The state
diagram of a fa is the same whichever way we want to look at it, and the same
language would be accepted by a given fa acceptor as that generated by the
fa regarded as generator. From this point o f view, then, non-deterministic
fa ’s and Type 3 grammars are virtually isom orphic representations.

Problem: How could one construe a Type 3 grammar as accepting rather
than generating strings, i.e., how would the rules and derivations be inter
preted?

W hat we have just argued (without giving a formal p roof) is that every
Type 3 language is a fal. To show the converse is equally easy, but the
construction proceeds in the opposite direction. Given a fa, we use its in
structions to create the rules o f a Type 3 grammar in the following way. For
each transition (<?;, x , <?j), we put in the grammar a rule <?; —» xqj, Thus,
the states o f the fa becom e non-terminal symbols of the grammar, and the
alphabet o f the fa becomes the terminal alphabet o f the grammar Finally,
for each transition (q { ,x ,q j) where qj is a final state, we also add to the
grammar the rule 5; —► a. If we carry out this construction on the fa in
(17-1), we get the following grammar:

(17-13) G = { VT,VN,q0, R), where Vt = {a,b}\ VN = {g o ,? i } ; and

f qo -» a q0 ?i -> b q0 1
q o ~ * b q i qn -* b >

Qi~* a Qi h a J

T y p e 3 g r a m m a r s a n d f i n i t e a u t o m a t o n l a n g u a g e s 477

A derivation o f the string aaba by this grammar would be as follows:

(17-14) qo => aqo => aaqo => aabqi => aaba

The reader may find it instructive to compare this with an accepting com
putation for aaba by the fa in (17-1).

To be rigorous we would have to give a p roo f that the method o f construc
tion just outlined does indeed produce a grammar equivalent to the original
fa, but we will not do so here since the equivalence is intuitively evident
The main point is that we now have three quite different char acterizations
o f the same class o f languages: the languages accepted (or generated) by
(deterministic or non-deterministic) finite automata, the regular languages,
and the languages generated by Type 3 grammars It is always useful to
view mathematical objects from different perspectives; our understanding
is enhanced, and new methods o f p roof are opened up. We also come to
realize that we are dealing with a coherent, and in some sense “natural”
mathematical class.

17.3 .1 Properties of regular languages

We also gain in understanding o f mathematical objects when we ascertain
their behavior under various sorts o f operations. Since languages are sets,
it is natural to ask how they behave when subjected to certain set-theoretic
manipulations. W e have already seen, for example, that the class of fal’s
(= regular languages = Type 3 languages) is closed under the operation of
union: i.e., the union of any two fal’s is also a fal. Similarly, we know that
the fal’s are closed under concatenation and Kleene star. W hat about the
operations o f complementation and intersection?

Given a regular language L £ E “ , its complement, i e., £* — L, is also
regular How can we show it? Given our equivalent characterizations of this
class o f languages, we can make use o f whichever one is most convenient for
what we want to prove. In this case, the desired result is easiest to show
with finite automata.

Let M be a deterministic fa accepting L. Construct a new fa M ' from
M by interchanging final and non-final states. That is, M ' is identical to
M except that all final states are now non-final and vice versa, M ' is also
deterministic. Now M and M ' read any input string in the same way, in the

478 C h a p t e r 17

sense that for a given string they go through the same state transitions. The
only difference is that when M accepts (ends in a final state), M ' rejects
(ends in a non-final state), and when M rejects, M ' accepts. Thus, M ’
accepts the complement o f L , which is therefore also a fal.

For example, applying this construction to the fa o f (17-1), we obtain the
following deterministic fa which accepts { x £ {a , 6}* I ® contains an even
number o f 6’s} This is clearly the complement o f the original language.

a a

Problem; W hy wouldn’t this procedure work in general if the original fa were
not deterministic?

It now follows that the regular languages are also closed under inter
section, since for any sets X and Y , X fl Y — (X ' U Y ’) ’ by DeM organ’s
Laws In more detail, if X and Y are regular languages, then so are their
complements, X ' and Y ' , as we have just seen The union o f the latter,
X ' U Y', is also regular, and the complement o f the last set is also regular,
i.e., (X ' U Y')', which is equal to X fl Y ,

Given then that the regular' languages are closed under union, intersec
tion and complementation, and that the empty language and Ex (for any
given alphabet S) are regular, we have the result that the regular languages
over any fixed alphabet form a Boolean algebra (see Ch, 12), This gives us
some information about the class o f regular languages but does not provide a
complete characterization since there are other sets o f languages which also
form Boolean algebras (e.g., the set o f all languages over a given alphabet)
which are not regular.

Another frequently encountered problem concerning mathematical ob
jects is this: What questions about them can be answered by algorithm?
Or to put it another way, do there exist procedures which can be applied
mechanically to any instance of one o f these objects to yield an answer to a
particular sort o f question in a finite time?

T y p e 3 g r a m m a r s a n d f i n i t e a u t o m a t o n l a n g u a g e s 479

An example o f this sort o f consideration as applied to finite automata
would be: Given a fa M and a string x, can it be determined whether
M accepts x or not? The answer in this case is yes One procedure for
answering this question would be the following. Given M , convert it to an
equivalent deterministic fa M ' (if M is not already deterministic,) There
is an algorithm for performing this conversion, as we mentioned earlier If
x $ £ x, we know it cannot be accepted, since it contains symbols not in
the alphabet o f M ' If x £ £ x, trace the computation o f x by M ' There
is a unique path through the state diagram o f M ' reading x which ends in
some state 5* If & is a final state, x is accepted; otherwise, x is rejected.
Since the first part o f the algorithm will yield an equivalent deterministic
fa in a finite amount of time, the number o f states o f M being finite, and
the second part will be accomplished in a finite number o f steps, viz , the
number o f symbols o f x , the procedure outlined is guaranteed to terminate
after a finite time with the correct answer This is an algorithmic solution
to the so-called membership question for fal’s,

Another example o f a question about fa ’s which has an algorithmic so
lution is the emptiness question, given an fa M , does it accept any strings
at all? One could proceed as follows If M is not deterministic, make it
so. The result is M ', which necessarily has a finite number of states and
a finite number o f transitions, M ' accepts at least one string just in case
there is a path in its state diagram from the initial state to some final state
Furthermore, if there is any accepting path in M ', there is an accepting path
without loops in it (Any path with loops can also be traversed by going
through each loop zero times.) Since the number o f states and state connec
tions is finite, there are only a finite number o f loop-fiee paths to examine to
determine whether any ends in a final state One could imagine systematic
ways o f looking at the paths, but the essential part here is not the relative
efficiency o f the process but only that it is a finite task, Thus, there is an
algorithmic solution to the emptiness question foi fa ’s.

Similarly, one might ask o f a given fa, does it accept all strings in E~?
This can be reduced to the previous question by noting that £ x is the com
plement o f 0, Given M , make M deterministic if it isn ’t already, to produce
M '„ Interchange final and non-final states o f M ' to produce M ". Apply the
algorithm for answering the emptiness question to M ", M " accepts 0 iff M '
accepts ,

Problem: Given two fa’s, M i and M 2, show that there is an algorithm for
answering the question, is L(M\) C L (M 2) (Hint: X C Y iff (X fl Y') = 0.)

480 C h a p t e r 17

Is there an algorithmic solution to the question o f whether two fa ’s accept
the same language?

17.3 .2 Inadequacy of right-linear gram mars for natural lan
guages

Is English a regular language? We can prove that it is not, using the Pumping
Theorem and the fact that regular languages are closed under intersection.

We assume that all the following are grammatical (although in some
cases suiely incomprehensible) English sentences:

(17-15) (1) The cat died,
(2) The cat the dog chased died
(3) The cat the dog the rat bit chased died.
(4) The cat the dog the rat the elephant admired bit chased died,
etc

These are all o f the form:

(17—16) (the + com m on noun)n (transitive verb)n_1 intransitive verb

Let us take some finite set A o f com m on noun phrases o f the form the +
com m on noun:

(17-17) A = {the cat, the dog, the rat, the elephant, the kangaroo,, , }

Let us also choose a finite set B o f transitive verbs:

(17-18) B = {chased, bit, admired, ate, befriended,, , ,}

Thus, the strings illustrated in (17-15) are all o f the form:

(17-19) x nyn ~ 1 died, where x £ A and y £ B.

The language L consisting o f all such strings, o f which the sentences in (17-
15) are members, is easily shown not to be regular. The proof uses the

T y p e 3 g r a m m a r s a n d f i n i t e a u t o m a t o n l a n g u a g e s 481

Pumping Theorem and is very similar to the proof that {a nbn | n > 0 } is
not regular

L is the result o f intersecting English (considered as a set of strings) with
the regular language A " B x{d ie d } , Since the regular languages are closed
under intersection, if English were regular, L would be also. Thus, English
is not regular

The demonstration that English is not a finite automaton language was
one o f the first results to be achieved in the nascent field o f mathematical
linguistics (Chomsky. 1956; 1957, Chapter 3), although Chomsky did not use
this particular method o f proof, nor did he focus on the particular subset
o f English exemplified in (17-15), Rather, he pointed out that English has
a certain number of constructions such as e i t h e r . , , or, i f . , then, and the
agreement between the subject o f a sentence and the main verb, which can
be thought o f as obligatorily paried correspondences or dependencies, (In
sentences o f the form Either Si or S2, we cannot substitute then or and for
or, for example, and similarly, we cannot replace then in I f Si then Si by
and or or, etc , and produce a grammatical sentence) Further, these depen
dencies can be found in grammatical sentences nested one inside the other
and to an arbitrary depth, Chomsky and Miller (1963) cite the following
example in which the dependencies aie indicated by subscripts:

(17-20) Anyonei who feels that if2 so-many3 more4 studentss whom we6
haven’tg actually admitted ares sitting in on the course thaii4 ones
we have that3 the room had to be changed, then2 probably auditors
will have to be excluded, isi likely to agree that the curriculum
needs revision.

This structure o f nested dependencies finds an analog in the strings o f a
language like { x x R | x £ {a , 6 }* } (recall that x R denotes the reversal of the
string x) In strings of this language, the ith sym bol from the left must match
the i th symbol from the right as indicated in the diagram o f Fig, 17-17:

The language x x R can be shown not to be regular by first intersecting it
with the regular language aa'bbaa* to give {a nb2an | n > 1 } and showing
that the latter is not regular by means of' the Pumping Theorem,

This result illustrates one sort of practical result that can sometimes be
obtained from the study o f formal grammars and languages. A linguistic
theory proposes that the grammar' o f every natural language is drawn from
some infinite class Q o f generative devices, (This is just to say that the

482 C h a p t e r 17

a b b a b b a b b a

u

Figure 17-17

linguistic theory specifies, as it should, the form that grammars may take.)
Such a theory is supported, but not of course proven true, by each succesful
prediction, i e„, whenever we are able to show that a grammar from Q is
adequate for some natural language. On the other hand, repeated failure
to find an adequate grammar in Q for, say, Swahili might raise doubts but
would not suffice to prove the theory wrong Since Q is an infinite set, as
it will be in all interesting cases, failure after a finite number of attempts
may reflect only ineptness or bad luck. In certain cases, however, we may be
able to demonstrate conclusively that a linguistic theory is inadequate for
one or more natural languages, as we just did for the theory of right linear
grammars vis-a-vis English, We are then justified in concluding that the
theory is inadequate in principle and can be removed from consideration as
a viable proposal

Exercises

1. Consider the following state diagram:

Figure 17-18,

E x e r c i s e s 483

(a) W hich o f the following strings are accepted by the machine?
(i) 01011
(ii) 0011
(iii) 11001101
(iv) 01010111111

(b) Describe as simply as possible the language accepted by the au
tomaton.

Consider the following set o f transition rules:
(50 .0) —» So (53 ,0) —» So
(50.1) —» S i (53,1) -* S 4
(51 .0) -* S2 (54 ,0) —» So
(51. 1) - 53 (54, 1) - 5 b
(52 .0) —» So (5 s , 0) ^ 5 o
(52. 1) -* Si (55 ,1) —» S5

Final states: Si, S5.

(a) Draw a state diagram for this automaton

(b) Describe the set of input strings accepted by the automaton.

(c) Draw a state diagram for an automaton which is equivalent to
this one but which has four states.

Construct state diagrams for finite automata which accept the follow
ing languages using as few states as possible:

(a) The set o f all strings containing a total o f n l ’s, where n is con
gruent to 1 (m odulo 3) (i.e., the remainder when n is divided by
3 is 1).

(b) The set o f all strings containing a total of exactly two l ’s.

(c) The set o f all strings which contain a block o f at least three con
secutive l ’s, e.g.,

010111001 but not 0101011011
001111100 0011011000
1101110111 1101100101

(Note that once such a block occurs, it is irrelevant what comes
later.)

C h a p t e r 17

(d) The set o f all strings which contain no block o f more than one
consecutive 0 nor any block o f more than one consecutive 1, e.g.,

(e) The set o f all strings which contain the substring 101 anywhere
within them

(f) * The set o f all strings in which the total number o f 0’s is congruent
to the total number o f l ’s modulo 3 (see part (a) above)

Consider non-deterministic finite automata whose input alphabet is
{the, old, man, men, is, are, here, and}.

(a) Construct a state diagram for an automaton which accepts the
following language: {the man is here, the men are here}.

(b) Do the same for the following language: {the man is here, the
men are here, the old man is here, the old men are here, the old
old man is here, the old old men are here,. .

(c) Construct a state diagram for an automaton which accepts all
the sentences in (b) plus all those form ed by conjoining sentences
with and, e.g., the old man is here and the old old men are here
and the men are here.

(a) Construct a state diagram for an automaton which accepts the
terminal language o f the following grammar . (The input alphabet
is {a,b, c }; it does not include S or C)
5 -> SS S -^bb
S -> aCa C -> Cc
S -* b C b C -► c
S —> aa

(b) Draw a diagr am for an automaton whose language is that o f part
(a) plus the empty string

Show how, given any finite automaton, you can construct an equiva
lent one which has no transition arrows leading to the initial state

101
101010
0101

0
e

but not 0101101
11
11010

E x e r c i s e s 485

All automata asked for in exercises 7 and 8 may be non-deterministic,
and o f course must be finite state. The input alphabet is to be {0 ,1 }

7. (a) Construct an automaton A which accepts any string which con
tains no l ’s.

(b) Construct an automaton B which accepts any string which con
tains an odd number o f l ’s, with any number (including zero) of
0 ’s

(c) Construct an automaton C which accepts the union L (A) U L(B).

(d) Construct an automaton D which accepts the complement L(C)'.
(Caution: first find a deterministic equivalent o f C .) Describe
L (D) in words

8. (a) Construct an automaton A which accepts any string which con
tains no block o f four or more consecutive l ’s

(b) Construct an automaton B which accepts any string which con
tains no block o f three or more consecutive 0 ’s

(c) Construct an automaton C which accepts the intersection L (A) fl
L(B),

9. Find a regular expression for the language of:

(a) Exercise 4a (above)

(b) Exercise 4b.

(c) Exercise 4c.

(d) Exercise 3b.

(e) Exercise 3e.

10. Draw a state diagram for a finite automaton corresponding to the
following regular expressions.

(a) 010*1

(b) (010*1)*

(c) (010*1)*1

(d) (010*1)*1(0 U 1)*

(e) 1(010*1)*

486 C h a p t e r 17

(f) 1(010‘“1)*(0 U 1)“ (Hint: this one can be done by a simpler ma
chine than any o f the others.

11. Construct Type 3 grammars that generate each o f the following lan
guages Assume a fixed terminal vocabulary Vr = {«,& }.

(a) Li = {aa,ab,ba,bb}

(b) L 2 = { x \ x contains any number o f occurrences o f a and b in any
or dei}

(c) Lz = { x contains exactly two occurrences o f a , not necessarily
contiguous}

(d) L4 = { x | x contains exactly one occurrence o f a , or exactly one
occurrence o f b, 01 both }

(e) L 5 = {x \ x contains an even number o f a ’s and an even number
o f 6’s } (Zero counts as even)

(f) Lq — Lz fl Lz

1 2 . Construct finite automata (non-deterministic) accepting each o f the
languages in Exercise 11.

Chapter 18

Pushdown Automata,
Context Free Grammars and
Languages

18.1 Pushdown automata

We turn next to a class o f automata which are more powerful than the finite
automata in the sense that they accept a larger class o f languages. These
are the pushdown automata (pda ’s).

A pda is essentially a finite automaton with an auxiliary tape on which
it may read, write, and erase symbols. This tape is organized as a stack or
pushdown store similar in principle to the spring-loaded devices for holding
plates seen in cafeterias. B oth work on the basis o f “last in, first out;” that
is, the most recently added item is the first one to be removed. Items below
the topm ost ones cannot be reached without first removing items above them
on the stack

P d a ’s, like finite automata, lead their input tapes from left to light
and have a finite number o f internal states. There is a designated initial
state, and a set o f final, or accepting, states. The transitions o f a pda,
however, allow the top symbol o f the stack to be iead and removed, added
to, or left unchanged We can represent these transitions schematically as
(q i ,a ,A) —* (qj,"f), where qi and qj are states, a is a symbol of the input
alphabet, A is a symbol o f the stack alphabet (which need not be the same as
the input alphabet), and 7 is a string o f stack symbols Such an instruction

487

488 C h a p t e r 18

is interpreted as follows: when in state q;, reading a on the input tape, and
reading A at the top o f the stack, go to state qj and replace A by the string
7 I f 7 were, for example, the string B C , the A would be removed and

becom e the top symbol on the stack In case 7 is e, the em pty string, the
net effect is to remove (“pop ”) A from the stack. The symbol next below
A , if any, would then becom e the top symbol I f 7 were, for example, AB,
the effect would be to add (“push”) a B on top o f the A. I f 7 were A, the
transition would leave the stack unchanged

We also allow e to appear in the position o f A in the above schema. In
this case the transition does not depend on the contents o f the stack since e
can always be r ead at the top o f the stack whatever it may actually contain.
Note that the e here does not indicate that the stack must by em pty If
A = e and 7 = B , for example, the transition would push B onto whatever
was already on the stack.

The stack is assumed to be empty at the beginning o f a computation
with the pda in its initial state and the reading head positioned over the
left-most symbol o f the input An input tape is accepted if the computation
leads to a situation in which all three o f the following are simultaneously
true:

(i) the entire input has been read

(ii) the pda is in a final state

(iii) the stack is empty

One could define acceptance by empty stack or final state or, as we have done,
by both, and the resulting classes o f automata turn out to be equivalent This
choice is convenient for our purposes. The following is an example o f a pda
which accepts the language {anbn | n > 0 } :

B C added to the stack (in the order B first, C next) so that C would now

(18-1) States: K - {qa,q i }
Input alphabet: S = {a , b}
Stack alphabet: T = { A }
Initial state: go
Final states: F = {<7o j <7i }

Transitions:

P u s h d o w n a u t o m a t a 489

aabb
_ L

g o — * j _ _ J
stack

aabb aabb aabb aabb

go % A
A

?i - A A I - U

Figure 18-1

Fig 18-1 shows how this pda would accept input aabb,
Since the entire input is read and the pda halts in a final state with an empty
stack, this input is accepted.

The leader should also be able to verify the following statements about
the behavior o f this pda:

(i) ba is rejected: the pda blocks in state go and fails to read the entire
input

(ii) aaabb is rejected: the pda halts in state gi with A on the stack

(iii) aabbb is rejected: the pda fails to read the last b since there is no A on
the stack

(iv) e is accepted: the computation begins and ends in g0 with an empty
stack

This machine works by using its stack as a counter for keeping track o f the
number o f a ’s in the initial part o f the input string Once a b is found,
it switches to state qi and begins popping an A from the stack for each b
encountered. Only if the number o f b’s equals the number o f a’s will the
stack be empty at the end (and the entire input string read).
Problem: W hy is it necessary to go to a new state when the first b is en
countered, i.e., why not stay in state go?
Heie is an example o f a pda which accepts the language { x x R | x £ {a , 6 }” }

(18-2) K = {g0 , ?1} , E = {a, b}, T = {A , B } ,

Initial state = g0 , F = {g0 , g i}

f (go, a, e) —> (g0, A) (g0, b, B) —> (gi, e))
A = S (go, b, e) —> (g0, B) (gi, a, A) —> (g i, e) I

[(g o , A) (g i ,e) (q ! ,b ,B) (g i ,e)}J

490 C h a p t e r 18

This machine works by putting an image o f the left half o f its input string on
the stack (in the form o f capital letters), and then, after non-deterministically
“guessing” that the middle o f the string has been reached, comparing each
input symbol in the right half against the top sym bol o f the stack If the
symbols correspond, the stack symbol is removed; if not, the machine blocks.
Since symbols come off the stack in the reverse o f the order in which they
went on, the stack will be emptied just in case the right half o f the input is
the reversal or “mirror image” o f the left half

This pda is non-deterministic since there is more than one move available
to the automaton in certain situations. If, for example, it has just read an a
in state qo (and therefore put an A on the stack) and is now reading another
a, it could execute either the first or the third instruction above The former
corresponds to the “pushing” mode in which the image o f the left half is
being placed onto the stack; the latter corresponds to a decision that the
middle o f the string has just been encountered and that it is time to switch
from pushing to popping mode. As with the finite automata, we say that
a non-deterministic pda accepts if there exists at least one computational
path on which the input is accepted; an input is rejected if there is no such
accepting path. B y this definition, the above machine accepts the language
{ x x R | x £ {a , 6 }“ },

The pda in (18-1), by contrast, is said to be deterministic, in that it has at
most one move available to it for any situation. Unlike the finite automata,
we do not insist that deterministic pda ’s have one move available for every
situation; rather, that in no situation is more than one move allowed One
can determine from inspection o f the instructions o f a pda whether it is
deterministic or properly non-deterministic. A pda is deterministic iff there
are no two distinct instructions (qi ,a,A) —* (q j , j) and (qi ,a,A ') —* (?fc,fi)
such that A = A' or A = e or A' = e , Thus, as with the finite automata,
the deterministic machines are a proper subset o f the non-deterministic.

The question then naturally arises as to whether deterministic and non-
deterministic pda ’s are equivalent, The answer is that they are not, although
it is not a simple matter to give a p roof o f this fact. W e will simply note
that this result agrees with oux intuition that no deterministic pda could be
devised to accept { x x R | x £ {a , 6 }“ } , there being no way in general for a
pda reading strictly left to right to tell with certainty when the center o f the
input string has been reached In contrast, the language { x c x R | x £ {a , 6 }“ }
in which the center o f the string is marked by the c is easily acceptable by
a deterministic pda.

P u s h d o w n a u t o m a t a 491

It is often a matter o f some practical interest to be able to tell whether
a non-deterministic pda language is also accepted by some deterministic
pda. This is so because many programming languages— languages used for
writing instructions for computers to execute— belong to the class o f non-
deterministic pda languages. When programs are compiled, i e ., translated
into sequences o f l ’s and 0 ’s for execution by the computer, the compilation
process is carried out by what is in effect a pda, and if this pda can be made
deterministic, then the process can be made more efficient by avoiding back
tracking or the pursuit o f alternative paths. Most programming languages
in current use are in fact deterministic pda languages (or nearly so), but it
is an unfortunate fact that there is no way to tell in general whether any
arbitrarily given non-deterministic pda language is also a deterministic pda
language.

We end this section by giving formal definitions o f p d a ’s and the related
notions o f situation, acceptance, and so on. Note that in the following we
have generalized the notion o f a transition o f a pda to allow the possibility
that a string o f input symbols and a string o f stack symbols can be read on
a single move. This does not affect the power o f the automata and has the
advantage o f bringing the definitions into a form parallel to those for non-
deterministic finite automata, A non-deterministic finite automaton will
thus appear formally as a non-deterministic pda which never makes use o f
its stack.

D e f in i t io n 18.1 A n o n -d e te rm in is t ic p u s h d o w n a u to m a to n is a sextuple
{K , £ , r , A , s, F) , where K is a Unite set o f states, £ is a Unite set (the input
alphabet), T is a Unite set (the stack alphabet), s £ K is the initial state,
F C K is the set o f final states, and A , the set o f transitions, is a Unite
subset o f K x £ * x T " x K x T * . ■

D e f in i t io n 18.2 A situation o f a pda is a quadruple (x , q , y , z) where q £
K , x , y £ £* , and z £ T*. ■

The intended interpretation is that the pda is in state q with x to the left
o f the reading head, y to the right o f the reading head with the left-most
sym bol o f y currently being scanned, and z is the contents o f the stack.

D e f in i t io n 18 3 Given a non-deterministic pda M , we say that situation
(x , q , y , z) produces (x ' , q', y', z') in-one-move if f x' — xa , y = ay', z = jw ,
z' = 5w, an d (q , a , j) -*■ (q ' ,6) £ A , ■

492 C h a p t e r 18

D e f i n i t i o n 18.4 Produces is the reflexive, transitive closure o f the produces-
in-one-move relation,

%
These are denoted, as usual, by 1^ and 1^, respectively, ■

D e f i n i t i o n 18.5 Given a pda M , a string x E S* is accepted i f f (e , s , x , e)
\~M (x , q , e , e) for some q £ F. The language accepted by M is the set o f all
strings accepted. ■

D e f i n i t i o n 18.6 A pda is deterministic iff for no pair o f distinct transitions,
-*■ and (qk-,xk, y k) -> (<ll,&l) is it the case that g; = qk, and

Xi is a substring o f x k or vice-versa, and 7; is a substring of 7*. or vice-versa,
■

18.2 Context free grammars and languages

Non-deterministic pda ’s accept exactly the languages generated by context
free (Type 2) grammars. Recall that in a context free grammar every rule
is o f the form A —> tp, where A is a non-terminal sym bol and ip is any
string, possibly empty, from the union o f the terminal and non-terminal
alphabets. It follows from this definition that every right-linear grammar is
also a context free grammar, and therefore that the regular languages are
contained in the context free languages. This containment is proper since,
as we have seen, { anbn | n > 0 } is not a regular language, but it can be
generated by the simple context free grammar containing only the two rules
S —> aSb and S —> e.

The proof o f the equivalence o f context free languages and non-determin-
istic pda languages is too long and complex to give here. To give something
o f the flavor o f this proof, we will show an algorithm for1 constructing from
any given context free grammar an equivalent non-deterministic pda (but
we will not prove formally that the constructed pda is actually equivalent).
For the construction in the reverse direction— from non-deterministic pda to
equivalent context free grammar— we refer the reader to Hopcroft and Ull-
man (1979) or Lewis and Papadimitriou (1981), which also contain references
to the original sources

Given a context free grammar G — (Vn ,Vt ,S, R), we construct an equiv
alent non-deterministic pda M as follows. The states o f M are go and qi,
with go being the start state and gi being the only final state. The input
alphabet is Vt and the stack alphabet Vpr U Vr The transitions o f M aie
constructed out o f the rules o f G in the following way:

C o n t e x t f r e e g r a m m a r s a n d l a n g u a g e s 493

(i) M contains the instruction (g0,e ,e) —> (gi, S)

(ii) For each rule o f the grammar A —> ip, M contains an instruction
(q1} e ,A) (qi,rp).

(iii) For each sym bol a £ Vt , M contains an instruction (g j, a, a) —> (gi, e).

As an example, let us take G to be as follows:

(18-3) VN = { 5 } ; VT = {a, &}; R = {S ^ aSb, S -> e }

(This is the grammar we referred to above which generates {a nbn | n > 0 },)

According to the construction procedure just given, M will contain the
following:

(18 -4) K = {g0 !g i} ; £ = {a ,b } ; T = {S, a, b}\ s = g0; F = {g i } ;

(go, e, e) —> (g i, S)
(? i ,e ,5) ->• (qi,aSb)

A = (g i ,e ,5) -»• (g i ,e)
(g i,a , a) -»• (g i ,e)

. (? i , 6, 6) (?i ,e) ,

M accepts the input string aabb by the following computation: (e, go, aabb, e)
I- (e, gi, aabb, S) I- (e ,qi,aabb,aSb) I- (a ,qi,abb,Sb) I- (a,qi,abb,aSbb) I-
(aa, qi, bb, Sbb) h (aa,qi,bb,bb) h (aab, q\,b, b) h (aabb, gi, e, e)

M works by loading S onto its stack and then simulating a derivation
there by manipulations which correspond to the rewriting rules o f G, When
a terminal symbol appears at the top o f the stack, it is popped off i f it
matches the sym bol being read on the input; otherwise the computation
blocks. W hen a non-terminal appears at the top o f the stack it is rewritten
in a way licensed by the rules o f G. Thus, M carries out what is in effect
a left-most derivation (one in which the left-most non-terminal symbol is
rewritten at each step) according to the grammar. I f the derived terminal
string matches the input, the stack will be emptied, the entire input read,
and the string accepted.

Note that p d a ’s constructed in this way will in general be non-determin
istic since there may be in the grammar more than one rule rewriting some
non-terminal A.

494 C h a p t e r 18

18.3 Pumping Theorem for cfl’s

There is a Pumping Theorem for the cfl’s which is similar in form to the
Pumping Theorem for fal’s , It is useful primarily in showing that a particular
language is not context free.

The theorem makes use o f the fact that a derivation by a cfg can be
naturally associated with a paise tree (see Section 16 4), and the fact that
the maximum width o f any such parse tree is constrained by its height. Let
us see what this means in more detail.

Given a cfg G , there is some maximum number o f symbols on the right
hand side o f any rule. Suppose, for example, that no rule has a right hand
side longer than 4 symbols. This means that in one rule application, the
width o f the tree (the number o f symbols in its yield) can have increased
by at most 3. I f each o f the 4 symbols just introduced should happen to
be expanded into 4 symbols, then by these steps the single node could have
grown into 16 symbols, but no more than 16 symbols. I f we define the height
o f a tree to be the length o f the longest path in it extending continuously
downward from the root, then what we have said is that (for a given gram
mar) the maximum width o f a parse tree is bounded by its height. More
specifically, i f n is the maximum length o f a right side o f the rules o f G , then
the maximum width o f a parse tree generated by G o f height h is just nh.
(It may in fact be considerably less than this, depending on the exact nature
o f G, but we are interested here only in setting an upper bound) To phrase
this another way, i f a parse tree for some gr ammar G has width greater than
nm , where n is the maximum length o f the right side o f rules o f G, we can
be sure that the height o f the tree is greater than to.

Let us now suppose that G has to non-terminal symbols in its alphabet.
If we find a parse tree generated by G o f width greater than nm, then there
must be some continuously descending path in the tree o f length greater than
to, and thus some non-terminal symbol must appear at least twice along this
path (there being only to symbols to choose from). Let us represent this
situation by the diagram in Fig. 18-2,

The repeated non-terminal is called A. S dominates a terminal string
w, and so each non-terminal in the tree must also dominate some terminal
string. Let x be the terminal string dominated by the lower A , and vxy the
terminal string dominated by the upper A. (x must be a substring o f this
string since, by hypothesis, the lower A is dominated by the upper A.) Let u
and 2 be terminal strings dominated by S to the left and right, respectively,

P u m p i n g T h e o r e m f o r c f l ’ s 495

5

Figure 18-2

o f vxy. This general situation must obtain whenever there is a repeated
non-terminal along some path in a parse tree,

But note that the lower subtree rooted by A could have stood in the place
in the tree where the upper A-rooted tree stands. The rules o f G are, after
all, context free, so if it is possible to rewrite A in one position ultimately
to yield x, the same is possible in any position in which A appears. Thus,
the tree in Fig, 18-3 must also be generated by G.

S

Figure 18-3.

Further, the lower A in Fig. 18-2 could have been rewritten as the upper

496 C h a p t e r 18

one was, to produce the tree shown in Fig. 18-4.

Figure 18-4.

Since we know that the derivation can be terminated by rewriting the
lowest A , ultimately to give x , it follows that the string u v v x y y z must also
be generated by G. The process just illustrated could, o f course, be carried
out any finite number o f times; thus, u v lx y 1z is generated for all i > 0. We
are now ready to state the Pumping Theorem for context free languages.

T H E O R E M 18,1 I f L is a n in f in i t e c o n t e x t f r e e la n g u a g e , th e n t h e r e is s o m e
c o n s t a n t K s u c h th a t a n y s t r in g w in L l o n g e r th a n K c a n b e fa c t o r e d in t o

s u b s t r in g s w = u v x y z s u c h t h a t v a n d y a r e n o t b o t h e m p t y a n d u v ' x y ' z € L
f o r a ll i > 0 . ■

Note that if L is an infinite language then it is guaranteed to contain strings
longer than any given constant K W hat is K1 It is a number which
depends on the grammar for L and which is big enough to ensure that any
strings longer than K have derivation trees with a repeated non-terminal
along some path. There is always such a K for any cfg since G contains a
finite number o f non-terminal symbols, and there is some maximum to the
degree o f branching allowed on the right sides o f rules.

C l o s u r e p r o p e r t i e s o f c o n t e x t f r e e l a n g u a g e s 497

W hat about the stipulation that v and y are not both empty? I f they
were, we could get from A to A on a branch o f a derivation tree without
generating any terminal symbols either to the left or right. This situation
could arise, since rules o f the form A —* B , B —> C , C —* A are allowed
in a cfg. However, not all the non-terminals in the grammar could appear
only in rules o f this form or else the grammar could not generate an infinite
language. That is, there must be some non-terminal sym bol A which can
be repeated along some path, i.e., A p- v A y , such that not both v and y are
empty, and .further, such a non-terminal must appear in the derivation o f
any string longer than K .

Note that like the Pumping Theorem for fal’s, this theorem is a condi
tional but not a biconditional. Given a language L, it is not particularly
informative to find strings u , v , x , y , z such that uvlx y 1z E L for all i > 0.
Rather, we use the theorem in its contrapositive form: i f there do not ex
ist strings u , v , x , y , z such that, , „, then we can conclude that L is not an
infinite cfl. Let us see how this can be done in the case o f the language
L = {a nbncn | n > 0 }.

Suppose L were context free Since it is infinite, the Pum ping Theorem
must apply, and there would be some constant K such that any string in
L longer than K — let us choose aK bK cK , for example— would be factorable
into u vxyz such that v and y are not both empty and the v and y are
pumpable. We show that no such factorization can exist.

First, v cannot consist o f both a ’s and V s, because when it is pumped,
it would produce strings containing 6’s before a ’s, which cannot be in L,
Similarly, v cannot consist o f both 6’s and c’s, and the same argument applies
to the other pumpable term, y. Therefore, the only possibilities remaining
are for v to consist o f just a’s or just b’s or just c ’s. Then no matter how
we choose y, the result o f pumping v and y simultaneously gives strings
not in L. Suppose, for example, that v consists o f a’s and y o f b’s. Then
on pumping v and y the a’s and b’s increase but not the c ’s, and we get
strings not in L. The other cases are similar. We conclude that there is
no choice o f u , v , x , y , z meeting the conditions o f the Pum ping Theorem for
this language; therefore, L is not context free.

18.4 Closure properties of context free languages

Given the class o f context free languages (identical to the non-deterministic
pda languages), we want to investigate whether this class is closed under

498 C h a p t e r 1 8

operations such as union, intersection, complementation, etc. W e will see
that unlike the fal’s the cfl’s are not so conveniently and tidily closed under
all these operations
Union: Given two cfg ’s G i = (V/v,, , S i , i i i) and G 2 - {Vn2 , Vt7 , S2, R2),
we form grammar G in the following way If the non-terminals o f G i and
G 2 are not disjoint sets, we make them so (by appending primes to every
sym bol o f G 2, say). The start symbol of G we take to be S, and G contains,
in addition to Ri and R 2, the rules S —> Si and S —> S2 G is context free,
and it generates L (G i) l lL (G 2) since the start symbol may be either rewritten
as S i, whereupon G behaves like G i, or as S2, whereupon G behaves like
G 2- A string x E (Vt\ U Vt2T is generated by G just in case it is generated
by G i 01 by G 2 (or both) Since this m ethod o f construction is general (and,
as the reader will have noted, quite similar to that used in showing that the
fal’s are closed under union; see Section 17.2), we conclude that the cfl’s are
closed under union
Concatenation (or Set Product): The m ethod o f construction is similar
to that for union except that instead o f the two rules mentioned there we
add to G the single rule S —> S1S2 Thus, G will generate all strings of
the form xy such that x £ L (G 1) and y £ L (G 2) Further, G will generate
only such strings, and, again, since the method o f construction is general,
we conclude that the cfl’s are closed under concatenation,
Kleene Star: Given G = (V n , V t , S , R), we construct G* as follows: The
start symbol o f G * is S ', and G contains, in addition to all the rules in R,
the rules S' —> e and S' —> S 'S , G* generates all strings in (L (G))* since by
application of the rules rewriting S ', G “ produces strings Sn for all n > 0.
Each such S can be rewritten to produce a string in L (G), and e is produced
by the rule S' —> e. Further, all strings in (L (G))* can be generated in this
way. Thus, the cfl’s are closed under Kleene star.
Problem: W hy was it necessary to introduce the new start sym bol S '? W hy
not just add the rules S —» SS and S —» e?
Intersection: The cfl’s are not closed under intersection To see this, we
note that the languages { a%blc7 | i , j > 0 } and {a kblcl \ k , l > 0 } are both
context free. The former is generated by a giammai containing the rules:

(18 -5) S -> B C
B —* aBb
B —> e
C -> cC
C -► e

D e c i d a b i l i t y q u e s t i o n s f o r c o n t e x t f r e e l a n g u a g e s 499

and the grammar for the lattei is similar The intersection o f these two lan
guages, however, is {a nbncn | n > 0 }, which we proved above by the Pumping
Theorem not to be a context free language

Recall in this connection what it means to say that a set is not closed
under a certain operation. We have shown that the intersection o f two cfi’s
is sometimes not a cfl It is not claimed that the result is never a cfl.
Indeed, this could not be so, since the regular languages are necessarily cfl’s,
and since the regular languages are closed under intersection, the result is
regular, hence, context free.
C o m p le m e n ta t io n : The cfl’s are not closed under complementation. Given
two cfl’s L i and L% over some alphabet S , if their complements L[and L'2
(i e , £* — L\ and £* — L%, respectively) were context free, then so would be
their union, L[U L'2 The complement o f this, in turn, (L[U L'%) ' , would also
be context free, but this is equal by DeM organ’s Laws to L\ fl L%, which is
not necessarily context fr ee. Hence, the complement o f a cfl is not necessarily
a cfl
In te r s e c t io n w ith a R e g u la r L a n gu a ge : Although the intersection o f
two arbitrary cfl’s L\ and L 2 is not in general a cfl, it happens that if
one o f the languages is restricted to being regular, then the intersection is
always a cfl. A demonstration o f this fact is somewhat involved and depends
on constructing a non-deterministic pda accepting L\ fl L2 out o f a pda
accepting L\ and a finite automaton accepting L 2 (The non-closure o f cfl’s
under intersection implies that it is not in general possible to coalesce two
non-deterministic p d a ’s in this way.)

The closure o f the cfl’s under intersection with a regular language can
be a convenience in showing certain languages not to be context free. For
example, the language L = {x £ {a , b, c}* | x contains equal numbers o f a’s,
b’s, and c ’s }, although not context free, resists application o f the Pumping
Theorem However, if L is first intersected with the regular language a*b*c*,
the result is {a nbncn | n > 0 }, which we have shown not to be context free.
Now if L were a cfl, its intersection with a regular language would also be a
cfl; hence, L is not context free.

18.5 Decidability questions for context free lan
guages

Context-free languages differ from fal’s also in respect to which questions can
be answered by algorithm. For the fal’s we saw that there were algorithms

500 C h a p t e r 18

for answering questions such as membership, emptiness, etc. We shall see
that some o f these questions have algorithmic solutions for the cfi’s and some
do not.

M e m b e rs h ip : Given an arbitrary cfg G and an arbitrary string x, is x
generated by G? One might propose an algorithm for answering this question
o f the following sort: Start producing derivations by G in some systematic
fashion, discarding any whose last lines are longer than x. This will be some
finite number o f derivations, If x has not been generated by this point, it is
not going to be

As matters stand, this algorithm might not be successful for two rea
sons: first, the grammar may contain rules o f the form A —> e, which allows
derivations to becom e shorter. Thus, we cannot be sure that we can stop
examining derivations when their last lines reach the length o f x A deriva
tion might produce longer strings which then shrink to produce x Second,
because rules such as A —> B , B —> C , C —> A, etc, might be present in the
grammar, derivations might continue indefinitely without their final strings
getting any longer This subverts our claim that we need to examine only a
finite number o f derivations to see if any generate x. The proposed algorithm
would work, however, if we could somehow contrive to remove all rules of
both types from a cfg while leaving the generative power o f the grammar
unchanged.. We will now show that this can in fact be done.

If there is a rule A —> e in the grammar, this rule can be dispensed with if
we add more rules to the grammar in the following way. W henever A appears
on the right side o f a rule we add another rule identical to it except that the
A on the right is deleted. For example, given rules A —> e and B —> cAbBa,
we would add the rule B —> cbBa. Now what would have been accomplished
by application o f the first two rales in sequence can be accomplished by the
last rule alone. The original rule is o f course preserved since there may be
other rules expanding A. W e continue in this way for every rule containing
an A on the right side, and repeat the process for every non-terminal which
can be rewritten as e„ (Note that if such a non-terminal appeared more
than once on a right side, e.g., B —> aAbAc , we would add rules B —> abAc,
B —> aAbc, and B —> abc,) This process must eventually come to an end
since there are finitely many rules to begin with, there are a finite number o f
non-terminals, and a finite number o f rules aie added at each step. W hen we
are done, we may remove all rules of' the form A —» e from the gr ammar since
they are superfluous,. The one exception is the rule S —> e, if it is present,
which must be retained in order to generate the empty string as a member of

D e c i d a b i l i t y q u e s t i o n s f o r c o n t e x t f r e e l a n g u a g e s 501

the language The presence o f this rule will not interfere with the workings
o f our algorithm, however, since if there is a derivation o f some non-empty
string x which involves one or more applications o f the rule S —* e, there
will also be, after carrying out the procedure just outlined, a derivation o f x
which does not involve any applications o f this rule Thus, we can produce
an equivalent cfg in which derivations are essentially non-shrinking.

W hat about rules o f the fo im A —> B I These can be removed in the
following way. Pick a rule o f the form A —> w, where w is something other
than a single non-terminal symbol. (If there are no such rules, the grammar
generates no terminal strings and the membership question is settled at
once.) Now for each non-terminal C distinct from A, determine whether
C ^ A, i.e., whether C can be rewritten in some finite number o f steps to
give A This can be done by examining all sequences C, B i, B 2, ■ ■ •, Bn, A
(where B\, B2, are single non-teim inals) o f length no more than the number
o f non-terminals in the grammar to see whether they are allowed by the
grammai. The restriction on length of derivations is possible because if
there is such a derivation with repeated symbols C = > , . , = > Bi =>, . . . =>
Bi => B j => . . => A then there is also a shorter one with the section between
repetitions removed: C = > . . . = > B{ => B j = > . . , = > A. Thus, the number
o f non-terminals fixes an upper bound on the length o f such derivations,
and we can effectively determine whether C ^ A. If so, then we add the
rule C —> w to the grammar, and thus the derivation C ^ A ^ w can be
replaced by the derivation C ^ w directly. We continue this process for all
rules o f the form A —> w (w 0 Vjv) and all non-terminals distinct from A,
W hen we have finished, all rules o f the form A —» B can be removed from
the grammar without affecting the terminal strings generated.

Once all these steps have been carried out, the proposed algorithm for
answering the membership question can be executed and is guaranteed to
lead to an answer in a finite amount o f time. No claim is made that this
is particularly efficient way to answer the membership question, but we are
not concerned with relative amounts o f computational labor here— only with
showing that the question can be answered in some finite amount o f time by
mechanical means.

E m p tin ess : Does an arbitrarily given cfg G generate any strings at all?
There is an algorithm for answering this, the emptiness question, and it
depends on the following observation, If G generates any terminal strings, it
generates some terminal string with a parse tree which has no non-terminals
repeated along any path. Refer again to Fig. 18-2 which we used in proving

502 C h a p t e r 18

the Pum ping Theorem. If a parse tree for some terminal string has a repeated
non-terminal A along some path, the subtree rooted by the upper A could
be replaced by the subtree rooted by the lower A, and the result is also a
parse tree for a terminal string generated by the grammar (cf. Fig, 18-3).
Clearly all repeated occurrences o f non-terminals could be removed in this
way. Thus, in order to see whether G generates any terminal strings, all
we have to do is examine the finite number o f parse trees which contain no
repeated elements along any path. The exact number we need to look at
will depend on the number o f non-terminals in the grammar and the degree
o f branching allowed by the rules o f G , but it will be finite I f no terminal
string has appeared as the yield o f a tree by this point, none is ever going
to appear. This answers the emptiness question,
Undecidable questions: Many problems concerning context free languages
have no algorithmic solution. We cannot provide demonstrations o f these
facts here since they require results from Turing machine theory, which we
have not yet examined. We will simply list some o f the more important
undecidable questions:

a. Given an arbitrary context free grammar G, there is no algorithm for
determining:

(i) whether L (G) = Vf> i e• > whether G generates all strings over the
terminal alphabet

(ii) whether the complement o f L (G), i.e., V f — L (G), is empty, infi
nite, regular, or context free.

b. Given two arbitrary context free grammars G i and G 2, there is no algo
rithm for determining:

(i) whether I (G 0 C L (G 2)
(ii) whether L (G i) = L (G 2)

(iii) whether L (G i) fl L (G 2) = 0
(iv) whether L(G\) fl L (G 2) is infinite, regular, or context free.

Recall that the lack o f a single algorithm for deciding every one of an infinite
class o f cases does not preclude the possibility that for certain context free
grammars these questions might be answerable. In fact, for all context free
gr ammars which happen to be regular, there are algorithmic solutions to all
o f the above questions, as we saw in Section 17,3,1.

A r e n a t u r a l l a n g u a g e s c o n t e x t f r e e ? 503

18.6 Are natural languages context free?

In Section 17.3 2 we showed that English could not be a regular language.
Could it or any othei natural language be context fiee? This question has at
tracted considerable attention in the years since Chomsky first outlined the
hierarchical categorization o f formal languages (1963). The prevailing view
has been that natural languages are not context free. Attempts to demon
strate this have usually centered on finding instances o f so-called “ cross-
serial” dependencies o f arbitrarily large size in some particular language. In
a cross-serial dependency, items are linked in left-to-right order as shown in
Fig 18-5.

® 1 ® 2 ' • • ■ 2/1 2/2 • ■ 2/n

Figure 18-5.

(Compare this to the nested dependencies illustrated in Fig 17-17.)
A language such as { x x | x E {a , 6 }“ } exhibits cross-serial dependencies

(for strings o f length 2n in the ith and (n + i)th symbols must match) and is
not context free.

Pullum and Gazdar (1982) review the various attempts to establish that
natural languages are not context free and find all o f them either formally or
empirically flawed. In the latter category are instances in which claims that
certain forms are ungrammatical are unjustified and more probably involve
semantic or pragmatic anomaly. A comm on formal mistake was to assume
that because one has found a subset o f a language which exhibits cross-serial
dependency the language as a whole is thereby shown not to be context free.
Note that the non-context free language { x x \ x £ {a , 6 } ’ } is a subset o f the
context free (indeed, regular) language {a , &}*,

Recently, however, evidence has appeared for the non-context freeness
o f Swiss German which seems unassailable on either formal or empirical
grounds (Shieber, 1985). Swiss German, like its much studied cousin Dutch,
allows cross-serial order in dependent clauses, Sentences like the following
are grammatical:

504 C h a p t e r 18

(18 -6) Jan sait das mer em Hans es huus halfed aastriiche
John said that we Hans-Dat the house-A cc helped paint
“ John said that we helped Hans paint the house ”

(18-7) Jan sait das mer d ’ chind em Hans es huus lond halfe aastriiche
John said that we the children - A cc Hans - Dat the house - Acc
let help paint
“ John said that we let the children help Hans paint the house.”

The N P ’s and the V ’s o f which the N P ’s are objects occur in cross-serial or
der: in (18-7) d ’chind (“ the children”) is the object o f lond (“ let”), em Hans
is the object o f halfe (“help”), and es huus (“ the house”) is the object o f aas
triiche (“paint”). Furthermore, the verbs mark their objects for case: Halfe
requires dative case, while lond and aastriiche require accusative Sentences
in which the case marking does not follow this restriction are uniformly re
jected by native speakers as ungrammatical. (Since case marking is unlikely
to be accounted for semantically or pragmatically, this avoids the empirical
trap mentioned above) It also appears that there are no limits other than
performance constraints on the length of such constructions in grammatical
sentences o f Swiss German, Shieber then intersects Swiss German with the
regular language:

(18-8) R = Jan sait das mer (d ’chind)*(em Hans)* es huus haend wele
(laa)* (halfe)* aastriiche

John said that we (the children)* (Hans)* the house have
wanted to (let)*(help)* paint

(Here the haend wele (“have wanted to”) is present in order to put all the
succeeding verbs in their infinitive forms, Schieber shows that this insertion
does not affect grammaticality judgments,,)

The result of intersecting R and Swiss German is all sentences o f the following
form:

(18-9) L = Jan sait das mer (d ’ chind)71 (em Hans)m es huus haend wele
(laa)71 (halfe)771 aastriiche

where the number o f nouns in the accusative case matches the number of

E x e r c i s e s 505

verbs requiring this case and similarly for the dative case, and all accusative
case nouns (except the constant “ es huus”) precede all dative case nouns and
all accusative-case marking verbs precede all dative-case marking verbs. The
strings o f this sublanguage o f Swiss German are o f the form wanbmx cndmy ,
which can be shown to be non-context free by the Pumping Theorem. Since
the context free languages are closed under intersection with a regular lan
guage, this demonstrates fairly convincingly that Swiss German is not con
text free

Note that the formal difficulty mentioned above has been avoided. The
sublanguage of Swiss German shown to be non-context free is not merely a
subset o f the original but a subset obtained by intersection with a regular
language The latter operation preserves context freeness while the operation
o f simply selecting a subset in general does not.

Attem pts to arrive at the corresponding results for Dutch could not suc
ceed because Dutch does not have verbs with differing case-marking proper
ties which can occur in arbitrarily long cross-serial dependent clauses.

Exercises

1. Construct context free grammars generating each o f the following lan
guages.,

(a) L i = anbman(n ,m > 1)

(b) L2 = anbnambm(n, m > 1)

(c) Lz = { x | x E {a , b}* and x contains twice as many 6’s as a ’s }

(d) Ir4 = { x x R | x £ {a , 6 }* }

(e) L s = { x £ { a , b } x \ x -- x R}

2. Show that for every context free grammar there is an equivalent gram
mar in which all productions are o f the form A —* B C or A —* a
(A , B , C in Vn , a in Vt)- Such a grammar is said to be in Chomsky
Normal Form (Chomsky, 1959).

3. Show by means o f the Pumping Theorem that the following languages
are not context free,

(a) { a " 2 |(ra > 1)}

(b) {a 711 n is prime (i.e., divisible only by 1 and by itself)}

506 C h a p t e r 1 8

4. Given a language L we define the reversal o f L, denoted LR, as { x R I
x £ L } , where x R is the reversal o f x. Show that the context free
languages are closed under reversal,

5. Construct a deterministic pda which accepts the language (ab)n(cd)n
for all re > 1. (The parentheses are not part o f the language nor do
they indicate optionality; they are used in the expression above only
for grouping.)

6. Construct a deterministic pda which accepts every string o f the form
xc, where x is a string o f a ’s and 6’s o f length 0 or more in which the
total number o f a ’s is exactly equal to the total number o f 6’s

7. Construct a non-deterministic pda which accepts every string which is
o f the form anban or o f the form a2nban for all re > 1

8. Is the union o f the languages o f two determinsitc p d a ’s necessarily the
language o f some deterministic pda? Justify your answer

9. Show by means o f the Pumping Theorem for context free languages
that a V c max(1J') is not context free, where m a x (i j ') is the larger o f i
and .j.

Chapter 19

Turing Machines,
Recursively Enumerable
Languages and Type 0
Grammars

19.1 Turing machines

We have seen that a pushdown automaton can carry out computations which
are beyond the capability o f a finite automaton, which is perhaps the simplest
sort o f machine able to accept an infinite set o f strings. At the other end o f
the scale o f computational power is the Turing machine (after the English
mathematician, A. M„ Turing, who devised them), which can carry out any
set o f operations which could reasonably be called a computation.

Like the previous classes of automata, a Turing machine can be visualized
as having a control box, which at any point is in one o f a finite number o f
states, an input tape marked o ff into squares with one symbol o f the input
string being inscribed on each square, and a reading head which scans one
square o f the input tape at a time. The Turing machine, however, can write
on its input tape as well as read from it, and it can move its reading head
either to the left or to the right. As before, a computation is assumed to
begin in a distinguished initial state with the reading head over the leftmost
symbol o f the input string.. We also assume that the tape extends infinitely
to the left and right and that all tape squares not occupied by symbols o f
the input string are filled by a special “ blank” symbol

507

508 C h a p t e r 19

The moves o f a Turing machine (henceforth, TM) are directed by a finite
set o f quadruples o f the form (<?;, oy, <?fc, X) , where g; and qk are states, aj
is a symbol o f the alphabet, and X is either an alphabet sym bol or one of
the special symbols L or R. Such a quadruple is interpreted in the following
way: if the TM is in state g; scanning aj, then it enters state g*. (possibly
identical to g;) and i f X is a symbol o f the alphabet, it replaces aj by that
symbol. If X is L or R, then aj is left unchanged and the reading head is
moved one square to the left or right, respectively,

In the formulation we shall adopt, T M ’s are assumed to be deterministic;
i e., for each state and each alphabet symbol there is at most one move
allowed. We do not insist that there be a move for every state-symbol pair
(this is similar to the formulation o f deterministic p d a ’s), and so if the TM
reaches a point in its computation at which no instruction is applicable, it
halts.

We note that a TM may in general read and write the blank symbol #
and thus may extend its computation into portions o f the tape beyond that
originally occupied by the input string, Since it is not necessarily blocked by
the # ’ s surrounding the input, one possibility open to a TM , but not to fa ’s
or pda ’s, is that it might compute forever. This is an im portant property of
T M ’s, as we shall see.

For example:

(19-1) The set o f states K is {g o ,g i} ; the alphabet S is { a , 6 ,# } ; the
initial state is go; the set o f instructions S is written with an arrow
between left and right halves for clarity:
(go, a) —* (gi,6)
(go,b) —» (gi, a)
(?o,#) -*■ (?1 ,#)
(gi,a) -> (g0, R)
(<7i > t>) — * (g o , R)

This machine scans an input string from left to right, changing a ’s to
6’s and 6’s to a ’s, until it encounters the first # . It then rewrites the #
as changes state to gi and halts (since there is no instruction beginning
(<7i ! #)) Since a # is sure to be found eventually, this TM has the property
o f halting on all inputs. Note, however, that if it had also contained the
instruction (g i ,#) —> (g i , i i) , then it would compute forever once it had
reached the string o f # ’s to the right o f the input. The same result could
also be achieved by the instruction (g i , #) —> (g i ,#) , except that instead

T u r i n g m a c h i n e s 509

o f scanning endlessly to the right, the TA1 would stay on one tape square
forever reading and writing # ,

(19-2) Example o f computation:

We have not designated the states o f a TM as final or non-final. It would
be perfectly feasible to do so and to define acceptance o f an input string in
terms o f halting in a final state. It will be slightly more convenient, however,
to say that a string is accepted if, when it is given to the machine in the
standard starting configuration, it causes the TM to halt after some finite
number o f moves; otherwise, it is rejected (i.e., the TM never halts). In
(19-3) we give a machine which accepts all strings in {a , &}“ which contain
at least one a and which rejects, i.e., computes forever, when given anything
else in {a , &}*. (Note that we are here concerned only with strings in {a , 6}*
not { a , T M ’s are assumed always to be able to read and write the
symbol, but we will ordinarily confine ourselves to strings over alphabets
which do not contain # . A TM which accepts some language in {a , 6}* may
give bizarre results when given a string not in this alphabet, but that doesn’t
matter. We are only concerned with its behavior when given inputs from

510 C h a p t e r 19

th e relevant set

(19-3) M = (i f , S , s, 6)\ K = {g0,gi}; S = {a , 6 ,# } ; s = g0;
'(go,a) -> (gi,J2)
(go, 6) —* (?oi -K)
(go,#) -*■ (go,-K)
(gi,a) -*■ (gi,J2)

. (gi»6) -*■ (gi.-K) ,

This machine scans left to right and stays in state g0 so long as it sees b’s.
Once it encounters an a, it changes to state gj and continues rightwaid in
this state until the first # and then halts It if meets the first # in state g0)
it scans right forever

1 9 .1 .1 F o r m a l d e f in it io n s

D e f i n i t i o n 19.1 A T u rin g m a ch in e M is a quadruple (K , 'S ,s >6), where K
is a finite set o f states, S is a finite set (the alphabet) containing # , s & K is
the initial state, and 5 is a (partial) function from i f x S to K x (S U { L , R }) .

A situation o f a TM will be a quadruple of the form (x ,q , a, y), where q is
the current state, a is the symbol being scanned, and x and y are the strings
to the left and right, respectively, o f the reading head up to the beginnings o f
the infinite strings o f # ’s. This last provision is necessary to insure that a
situation is uniquely specified. The TM in (19-2) is in situation (e, go, a,6a)
at the beginning o f the computation and in (6 a 6 ,g i ,# ,e) when it halts,

D e f in it io n 19 2 A situation o f a TM M = (K , '£ ,s ,S) is any member
(x ,q ,a , y) o f £ * x i i f x S x S " such that x does not begin with # and y does
not end with # . ■

We omit the formal definition o f the produces-in-one-step relation, I
on pairs o f situation since it is rather complex when specified in full detail.
Note that one must allow for cases such as the following: the TM is in
situation (a b b ,q ,# ,e) , as shown in Fig 19-1, and executes the instruction
(g, #) —̂ (g', L). The resulting situation is (ab, q',b, e), as in Fig. 19-2, where
the # originally being scanned has joined the infinite string o f # ’s to the
right and has thus dropped out of the formal specification o f the situation.

T u r i n g m a c h i n e s 511

In a s im ilar v e in , i f th e in s tru c tio n h a d b e e n (g, #) —> (g', R), th e resu ltin g
s itu a tio n w o u ld b e (abb# , g', # , e) w ith a # ta k en fro m th e str in g o f # ’s to
th e r ig h t an d p la ce d u n d e r th e rea d in g head .

b b # #

I

Figure 19-1,

a b b #

i

Figure 19-2,

Given the produces-in-one-step relation, we define the produces relation,
Iĵ - as its reflexive transitive closure.

D e f in it io n 19.3 Given a T M M = {K , S , s, 5) and S i, a subset o f S which
does not contain # , we say that M accepts a string x = a1o2 . . an £ S j if f
(e, s, a i, 02 „. g, 6, y '), where y and y' are strings in b £ S , and
there is no instruction in 5 beginning (q,b) (i .e ., M has halted). (In case
x = e, the initial situation is (e, s , # ,e) J ■

D e f in i t io n 19,4 A T M M a cce p ts a la n g u a g e L £ S j if f M accepts all
strings in L and rejects (i.e., fails to halt on) all strings not in L. ■

Note that we have defined acceptance so that it holds only o f strings and
languages defined over alphabets not containing This is primarily a
technical convenience.

512 C h a p t e r 19

D e f in it io n 19 5 We say that a language is Tuiing acceptable iff there is
some T M which accepts it, ■

In virtue o f Example (19-3) above, we can say that the language L = { x £
{a, bY | x contains at least one a} is Turing acceptable In fact, all the
regular languages and the deterministic and non-deterministic pda languages
are Turing acceptable, (It should not be too difficult to imagine how one
would go about constructing a TM to mimic the behavior o f a fa or a pda)
Are there any languages, then, which are not Turing acceptable? There are,
but it is not easy to exhibit one. We will return to this important question
below

We have seen that a given TM might not halt on certain inputs— indeed,
we make use o f this property in characterizing rejection o f an input string.
But this pr esents us with a problem Suppose we have set a TM to computing
on some input and it has not yet halted. Can we tell in general whether it is
going to halt eventually or whether it is going to compute forever? This is
the renowned Halting Problem for Turing machines, and we will show in a
later section that there is, in general, no way to tell— at least if we mean by
“ aw ay to tell” some explicit procedure which can be computed mechanically
by, say, a Turing machine. Another way to formulate the Halting Problem
is this: Could we take any TM which accepts a language L and convert it
into a machine which halts on all inputs (over the relevant alphabet) and
signals its acceptance or rejection o f the input by, say, the state it is in (or
some special symbol printed on the tape, etc,)? Let us, in fact, make the
following definition:

D e f in it io n 19.6 A TM M = (K ,'S ,s ,S) with some designated set F C K
o f final states, decides a language L C SJ, (where S i C S and does not
contain #) iff for all x £ M halts in a final state i f x £ L and M halts
in a non-final state i f x £ L. ■

D e f in it io n 19.7 We say that a language is Turing decidable iff there is
some TM which decides it, in the sense just defined, ■

It is not difficult to convert the TM of Example (19-3) above into one which
decides, rather than accepts, the language L = { x £ {a , 6}* | x contains at
least one a }—simply remove the instruction (go, #) —> (go,-K) and designate
gi as the only final state. The question is whether such a conversion can
always be carried out. I f so, then every Turing acceptable language is Turing

T u r i n g m a c h i n e s 513

decidable. and, provided that the conversion can be carried out “mechani
cally” , i.e., algorithmically, the Halting Problem is solvable Since this turns
out not to be so, we will have to conclude that there are Turing acceptable
languages which are not Turing decidable. Again, most o f the languages
one ordinarily encounters as examples in formal language theory are Turing
decidable, so one must look further afield to find one which is not

Note that the implication in the opposite direction is easy to establish:
every Turing decidable language is Turing acceptable. Given a T M which
decides a language L, it is a simple matter to convert it into a TM which
computes forever just in case the original machine would have halted in a
non-final state, (Just add instructions which rewrite symbols as themselves
while staying in the same state),

Turing machines are probably most often viewed not as language accep
tors but as devices which compute functions. The initial input string is the
argument for the function, and the expression on the tape when the machine
halts (if it halts) is taken to be the value of the function at that argument
For example, the TM o f (19-1) computes the function / : {a , b}* —> {a , &}*
such that when / («) = v, v is like u with a ’s and 6’ s interchanged. If the
TM does not halt for a certain input, the function is not defined at that ar
gument, Thus, T M ’s in general compute partial functions, but a TM which
halts for all inputs in some set A computes a total function from A to its
range, A TM which decides a language L C £J, in the sense just defined,
computes the characteristic function o f L. A TM which accepts L computes
a different function— one which is defined for all strings in L and undefined
for all other strings in £ j.

By coding natural numbers as strings— say, in binary or in a unary en
coding in which n a ’s represent the natural number n— we can let T M ’s serve
a computers of functions from natural numbers to natural numbers. We can
then ask whether functions such as f (x) = x 2 or f (x) -- x\ are computable
by Turing machine (they are, in fact, as are most o f the functions ordinarily
encountered). We can generalize this approach to functions o f k arguments
by letting the initial string given to the TM be, say, k blocks o f a ’s o f appro
priate size separated by # ’s. The TM which computes the addition function
on natural numbers, for example, would start with , ,, # # a " # a m# # . . . on
its tape and end with . , „ # # a n+m# # , ,

Functions which are computable by Turing machine are called partial
recursive functions (partial, because the T M may not halt for all arguments
and thus may leave some values o f the function undefined). The Turing

514 C h a p t e r 19

computable functions which happen to be total functions ought to be called
“ total recursive functions,” but aren’t. T hey ’re called simply recursive func
tions, A recursive function, thus, is a function which can be com puted by a
Turing machine which halts on all inputs in the domain o f the function

A TM may also be regarded as a device for generating, rather than
accepting or deciding, a set of strings. Let a TM be given as input some
encoding o f a natural number (say, n a ’s representing n) and let it compute
until it halts, if it does, The contents o f its tape between the infinite strings
o f $ ’s is some string over the alphabet o f the TM (which may contain more
than a ’s, o f course), and this string is said to be generated by the TM, The
set o f all such strings generated, given all the natural numbers as inputs,
is said to be the set recursively enumerated by the TM, A set is said to
be recursively enumerable (abbreviated r e) if theie is some TM which
recursively enumerates it in the way just described

It turns out that a set of strings is r.e, just in case it is Turing acceptable.
That is, if A is recursively enumerated by some T M T, there is a TM T 1
which accepts A, and conversely, (W e will omit the p roof of this result.)

Note also that a set which is recursively enumerated constitutes the range
of' a partial recursive function from the natural numbers to the set o f all
strings ovei the alphabet o f A. In fact it is inessential here that the domain
be the natural numbers— any denumerably infinite set would do. Thus, we
can say that a set is recursively enumer able if it is the r ange o f some partial
recursive function. The following three statements, therefore, are equivalent:

(19-4) (i) A is accepted by some TM
(ii) A is the range o f some partial recursive function.
(iii) A is recursively enumerated by some TM.

19.2 E qu ivalen t fo rm u la tio n s o f T u ring m achines

There are many ways in which Turing machines can be defined which turn
out to be equivalent in computational power. The input tape can be stip
ulated to be infinite in one direction only, or the machine can be endowed
with any finite number o f tapes which extend infinitely in one or both di
rections, or the machine may have one multiple-track tape with multiple
reading heads. It may even be regarded as operating on an ra-dimensional
grid extending infinitely in all dimensions, so long as ra is a finite num ber.

U n r e s t r i c t e d g r a m m a r s a n d T u r i n g m a c h i n e s 515

Even making a TM non-deterministic does not change its capabilities
in any essential way Suppose a non-deterministic TM had k distinct moves
allowed from any given situation, Then from the initial situation there could
be at most k possible situations after one step, at most k 2 after two steps,

,,, at most kn after n steps o f the computation. A deterministic TM could
keep track o f all o f these (at some expenditure o f tape and time) I f there is
a halted com putation by the non-deterministic machine, it occurs in some
finite number o f steps r. The deterministic machine will therefore discover
this fact after having examined at most kT possible situations— again, a finite
number— and can then halt, A language accepted by some non-deterministic
TM can therefore be accepted by a deterministic TM,

W hat seems to be essential to the formulation o f a Turing machine,
therefore, is that it has a finite number o f states, a finite alphabet, a finite
number o f instructions, and an unbounded amount o f computational space
available to it.

19.3 Unrestricted grammars and Turing machines

An unrestricted (or Type 0) grammar G — (Vt , Vj\t, S, R) is one in which the
only limitation on the form o f the rules is that the left side contain at least
one non-terminal symbol. Thus, letting upper case letters be non-terminals
and lower case letters be terminals as usual, aAbb —> ba, aAbB —> e, and
A —¥ bCaB would all be allowed rules in such a grammar. Rules such as
ab —> 6a, b —> B A , or e aA would be excluded. Note that because more
than one symbol may be replaced in Type 0 rules, it is in general not possible
to associate a phrase structure tree with a derivation in such a grammar.

Type 0 grammars can generate languages which are not context free
Here, for example, is an unrestricted grammar generating { x E {a , 6, c}* | x
contains equal numbers o f a ’s, 6’s, and c ’s } which, as we have seen, is not a
cfl,

(19 -5) G = ({a , 6, c }, {S, A, B, C } , S, R), where
S -► S A B C A C —> C A A —>
S _» e C A -> A C B —>
A B - + B A B C —> C B C ->
B A —> A B C B —► B C

R =

This grammar works by producing strings of the form (A B C) n then per
muting non-terminals freely by means o f the rules A B —> B A , etc. Finally,

516 C h a p t e r 19

non-terminals are rewritten as the corresponding terminals. Here is a deriva
tion of' cabbca

(19 -6) S => S A B C => S A B C A B C => A B C A B C => A C B A B C =>
C A B A B C => C A B B A C => C A B B C A = > .,..= > cabbca

And here is a Type 0 grammar generating the non-context free language
{ x x | x E {a , 6 }* }:

(19 -7) G = ({ a ,&}, { S ,S ', A , B , # } , S,R), where
5 A cl —> clA # a a #
S' -> aAS' A b -> bA # b -*■ 6#
S' -* bBS' B a —̂ clB A # ->■ # a
S' —> e Bb -> bB B # —> # 6

e

Here is a derivation o f abaaba:

(19 -8) S => => # a A S '# => # a A b B S => f taA bB aAS' =>
a A b B a A # => f ta b A B a A # => f ta b A a B A # => f ia b a A B A # =>
a # b a A B A # => a ftbaA B fta = > .. ,= > a ba##aba => abaaba

This grammar works by generating sequences o f a A ’s and bB ’s between # ’s
as endmarkeis and then letting the non-terminals migrate to the right, where
they can hop over the # and becom e terminals. The terminals in the left
half similarly hop over the left end marker, and when the two # ’s meet in
the middle they are erased

The languages generated by the Type 0 grammars are exactly the lan
guages accepted by Turing machines, i.e., the r e . sets. We will not give
detailed proofs o f this equivalence here but will simply suggest how the
proofs are constructed.

Given a Type 0 grammar G generating L (G) a TM M accepting L(G)
can be constructed as follows, M is non-deterministic and has two tapes.
Its input is given on the first tape where it is stored intact throughout the
computation. The instructions o f M essentially mimic the rules o f G The
initial symbol S is placed on the second tape, and M proceeds to rewrite
as G would After the application o f each rule, M compares the contents of
the second tape with the input on tape 1. If they match, M halts, and thus
accepts its input. If they do not match, M continues applying rules o f G to

C h u r c h ’s H y p o t h e s i s 517

the string on tape 2, and if no rule is applicable, M cycles endlessly in some
fashion. Clearly, if there is a derivation o f the input string by G, there will
be some com putation by M which discovers this fact and thus M will halt
and accept If there is no such derivation, M computes forevei, as required.

The simulation in the reverse direction— making a Type 0 grammar
mimic a Turing machine— depends essentially on the fact that a situation
o f a TM can be regarded simply as a finite string o f symbols and that
to get from one situation to the next, some substring o f these symbols is
rewritten as some other string. For example, a TM instruction of the form
(g, a) —> (g', b) would correspond to the grammar rule qa —> q'b Thus, situ
ation (aab, g, a, bb) becomes (aab, q1, b, bb) in one move by the machine, and,
correspondingly, the string aabqabb is rewritten as aabq'bbb by the grammar.
Left-m oving and right- moving TM instructions require somewhat more com
plicated grammar iules to cover all possibilities The details are tedious and
not too instructive,. Now, given a TM M which accepts language L (M) , we
first convert it to a machine M ' which behaves like M up to the point at
which M would halt M ', however, replaces all non-blank symbols on its
tape by # ’s, then writes S, and halts in some designated state gj Thus, M '
accepts L (M) also but does so in such a way that it always halts in situation
(^ 5 g i 7 *^5 ^) ,

We now construct G so that it simulates the moves o f M ' in reverse. The
initial symbol o f G is S' , and it first rewrites S' as qxS Then, mimicking
the moves o f M ' in reverse it can arrive at the string qQx, where go is the
initial state o f M ' and x was the input accepted. Now all G has to do is to
erase go, thereby generating x. The only complication here is that we don ’t
want to erase g0 unless it is part of an initial situation o f M 1; i.e., go might
be entered at other points in the computation by M ', and we don’t want to
erase it in these cases This difficulty can be taken care o f by adding new
states to M ' to insure that once it has left its initial state go it never enters
it again in the course o f any computation, W ith this repair, the grammar G
generates exactly the strings accepted by M ' (and M). Thus, we can add a
fourth equivalent statement to those given in (19-4) above:

(iv) A is generated by some unrestricted grammar

19.4 Church’s Hypothesis

An algorithm is a fixed, deterministic procedure which can be applied me
chanically to yield a result within a finite amount o f time. For example,

518 C h a p t e r 19

theie is an algorithm for finding the square root o f any positive number to
any desired number o f decimal places, Algorithms are normally designed to
apply to a class o f problems, not to a single problem The algorithm for find
ing square roots can be applied in the same way to any positive number— we
do not have to hunt for a new procedure for every case

Some classes o f problems do not have algorithmic solutions. Ther e is no
algorithm, for example, for supplying proofs for theorems o f geometry. To
find a proof for a given theorem often requires some ingenuity, skill, and
even luck, whereas algorithms, by definition, demand only simple clerical
abilities

The definition o f algorithm given above is not mathematically precise,
relying as it does on such intuitive notions as “mechanical,” In the 1930’s, a
number o f attempts were made to find a precise, formal characterization o f
the notion of algorithm as applied to mathematical problems The Turing
machine was the result o f one such attempt It is clear that a Turing machine
satisfies our intuitive notion o f what an algorithm should be; a TM which
computes a function, for example, determines the value at any agrument
in a fixed, deterministic, mechanical way and in a finite amount o f time.
The question then arises whether all things which we would intuitively call
algorithms can be formulated as Turing machines. The conjecture that this
is indeed the case has been given the name Church’s Thesis or Church’s
Hypothesis (after the logician Alonzo Church). It is not a theorem, since it
relates a mathematical construct— the Turing machine— to an intuitive, im
precise notion— an algorithm. It is nonetheless widely believed to be correct.
The evidence in its favor arises basically from the fact that all independent
attempts to characterize the notion of algorithm by mathematicians such as
Kleene, Post, Markov, Church, and others turned out to be equivalent to
the Turing machine, Rogers (1967) calls this the Basic Result in Recursive
Function Theory:

The classes o f partial functions (and hence total functions) ob
tained by the characterization o f Turing, Kleene, Church, Post,
Markov, and certain others, are identical, i e , are just one class.

Further support for Chur ch’s Hypothesis comes from the fact that m od
ifications and enrichments to the definition o f a Turing machine which keep
intact our view o f it as a mechanical computing device with a finite number
o f states and instructions but with a potentially unlimited amount of' space
for’ computation, always produce an equivalent device,

R e c u r s i v e v e r s u s r e c u r s i v e l y e n u m e r a b l e s e t s 519

These results suggest that the characterizations are not purely arbitrary
but do in fact define a natural concept, i.e,, sets which are recognizable,
or functions which are computable, by algorithm If we accept Church’s
Hypothesis, then, we may add a fifth equivalent statement to the list in
(19-4) above

(v) There is an algorithm for recognizing strings in A.

19.5 Recursive versus recursively enumerable sets

A Turing machine which accepts a set A halts eventually whenever given a
member o f A as input but fails to halt when given a non-member o f A. If we
accept Church’s Hypothesis, this means that an algorithm may work in such
a way that it yields an answer in a finite amount o f time for all members
of’ a particular class but may yield no result for things not in the class. It
may happen, however, that there exist algorithms for recognizing not only
all members o f A but also one for recognizing all members o f S ’1 — A, i e ., the
complement o f A W hen this is so, A is called a recursive set. To state the
definition formally in terms o f Turing machines, a set A is recursive iff both
A and A' are recursively enumerable (= Turing acceptable). It now follows
that the recursive sets are just the Turing decidable languages defined above.
Recall that a language is Turing decidable if there is some T M which halts
on all inputs over the relevant alphabet and signals whether or not the input
was in the language. As we have seen, it is a simple matter to convert a TM
which decides L into one which accepts L (or into one which accepts L ') by
causing it to compute forever on negative outcomes. Conversely, if we were
given two T M ’s, one accepting L and one accepting L ' , we could construct a
TM for deciding L by having it simply alternate the instructions o f the two
machines on two copies o f the input One o f these will eventually halt, since
by assumption both L and L' are Turing acceptable, and then our composite
machine can signal whether the input was in I or I ' Thus it decides L.

Analogous remarks could be made about computation o f functions rather
than recognition o f sets. The functions which aie algorithmically computable
are, by Church’s Hypothesis, just the parital recursive functions. If the
function is properly partial and not total, the algorithm will yield no value
at arguments for which the function is not defined If the function is total,
however, the algorithm yields a value at each argument As we have seen, a
T M which decides a language in effect computes the char acteristic function of

520 C h a p t e r 19

that language. The recursive sets, then, are just those which have recursive
characteristic functions, The recursively enumerable sets have characteristic
functions which are partial recursive functions. We may summarize our
statements about recursive sets as follows:

(19-9) The following statements are equivalent:

(i) A is a recursive set

(ii) A is Turing decidable

(iii) B oth A and A 1 are recursively enumerable

(iv) A has a characteristic function which is (total) recursive.

We do not yet officially know, o f course, whether there are actually any r.e,
sets which are not recursive. We turn our attention to this matter in the
next section.

19.6 The universal Turing machine

Since a Turing machine is defined as a finite set o f quadruples together with
a designated initial state (the set o f states and the alphabet are implicit in
the quadruples), it is possible to enumerate all possible Turing machines To
be somewhat more explicit, we might code the states and alphabet symbols
as sequences o f l ’s and separate them by 0’s. A complete coding for a Turing
machine might, then, look something like this:

We might also agree on a fixed or der o f listing the quadruples so that each
TM has a unique representation in this coding scheme, We could now enu
merate T M ’s by listing them with machines with the smallest number o f
quadruples first in increasing order according to their encodings interpreted
as a binary number. Thus we have a one-to-one correspondence between
T M ’s and the natural numbers, (Incidentally, this fact shows us that there
must be languages which are not Turing acceptable simply by considering
the cardinalities o f the sets involved, Given a finite alphabet A , there are Ho
strings in A*. There are 2^° subsets o f A", i.e., languages over the alphabet
A B y Cantor’ s Theorem, 2^° > Ho and since there are only Ho Turing ma
chines, there is an uncountable infinity o f languages over any given alphabet
which are not Turing acceptable.)

T h e u n i v e r s a l T u r i n g m a c h i n e 521

O i l . .. 11101. . . 11011 ,. 111011.. . 11011110111. . 11011... 1 etc,
c o d in g fo r
in it ia l
s ta te s y m b o l

sym *
b o l or
L or R

c o d in g fo r firs t q u a d r u p le | c o d in g fo r s e co n d
q u a d r u p le , etc,,

Figure 19-3

Let us also assume that input strings are encoded into l ’s and 0 ’s in some
fixed fashion, We may also assume without loss o f generality that whatever
output a TM leaves on its tape can also be encoded into l ’s and 0 ’s. Let
us denote by E (M) an encoding o f a Turing machine M and by E (x) the
encoding o f an input string x. It now turns out that there is a TM U, the
universal Turing machine, which can take as input E (M) E (x) and mimic
the behavior o f M on x. That is, if M halts on x, U halts given E (M) E (x)
and leaves on its tape an encoding o f whatever output M would have left
when it halted; if M does not halt on x, then V does not halt on E (M) E (x)

We will not attempt to give the construction of U here, but it can be
thought o f as a three-tape machine which keeps on its tapes (l) the encoded
instructions o f M , (2) an encoded version o f the non-blank portion o f the
tape M would have at each point in its computation, and (3) an encoded
representation o f the current state. U consults tape 3 for the current state,
examines tape 2 to see which symbol is under the reading head (o f M) and
then consults tape 1 to find the instruction beginning with that state and
symbol. If none is found, M would have halted, and U halts. If one is found,
U makes the appropriate changes to tape 2, changes the state on tape 3 and
repeats the cycle..

To dispel any possible air o f mystery surrounding the universal Turing
machine, let us point out that simulating the moves o f any given TM on
any given input tape falls under the class o f procedures which can be carried
out in purely mechanical fashion. (Think what would be involved if you
were asked to carry out this task yourself.) It is therefore executable by a

522 C h a p t e r 19

Turing machine. The universal character of the machine arises from the fact
that all Turing machines and input tapes are given an encoding over a fixed
alphabet (here, l ’s and 0 ’s, although any convenient alphabet would do).
Thus U needs to be programmed only to find instructions and carry them
out on tapes all coded in the same way.

Another way o f formulating what we have just said is that the language
{ E (M) E (x) | M accepts x } is Turing acceptable. This is a language over
the alphabet {1 ,0 } , and it is accepted by the Turing machine U (actually, a
slight variant o f U which first checks to see if the string which it has received
as input is in fact o f the right form to be a T M encoding followed by a string
encoding; this again is an easily arranged mechanical procedure)

19.7 The Halting Problem for Turing machines

We are now ready to address the problem mentioned above, namely, the
problem o f deciding for an arbitrarily given TM and an arbitrarily given
input string whether the T M will ever halt on that input, Given our method
o f encoding T M ’s and input strings, it is easy to state the halting problem
in terms o f Turing acceptable and Turing decidable languages. W e have just
seen that the language

(19-10) L = { E (M) E (x) | M accepts x }

is a Turing acceptable language. Thus, in order to determine whether M
halts given x, simply give the encoding o f M and the encoding o f x to
(m odified) U I f M halts on x, U will also But now if M does not halt on
x, U doesn’t halt either. We want to know if there is some way to tell that
M will not halt on x when that is the case. In other words, is L Turing
decidable? Is there some TM which will halt and say yes if M halts on x,
and will halt and say no when M does not halt on x?

We will show that this cannot be the case. Assume L is Turing decidable
by some TM M l . Since L is decidable for all E (M) and E (x) , it will be
decidable in the special case in which x happens to be E (M) itself. It may
seem strange to give a Turing machine its own encoding as an input tape,
but since this encoding is just a long string o f l ’s and 0’s, there is nothing
in principle to prevent us from doing so. That is, the following language L\
is Turing decidable if L is:

T h e H a l t i n g P r o b l e m f o r T u r i n g m a c h i n e s 523

(19-11) I i = { E (M) | M accepts E (M) }

It would in fact be decided by a TM M\ which first encodes its input and
copies it directly to the right of the original and then behaves like M l

But now, since is decidable, it follows that its complement is decidable
and hence, Turing acceptable; i.e., there is a TM , call it M *, which accepts
L[.

(19-12) L[= { x £ {0 ,1 }* | x is not a T M encoding, or else x is the encoding
o f a T M T and T does not accept E (T) (i.e., x) }

We now ask whether the encoding o f M " itself is in that is, is M * a
machine which does not accept its own encoding as input?

First case: E (M *) £ L[. Then E (M ><) is one o f the strings accepted by
M ", by the assumption that M “ accepts L[. So M * accepts E (M ~). But
because E (M X) £ L[, it is the encoding o f a Turing machine which does not
accept its own encoding, i e., M " does not accept E (M “). Contradiction

Second case: E (M ”) £ L j Then E (M *) is not a string accepted by
M *, by the assumption that M “ accepts L[. So M “ does not accept E (M *).
Therefore, M " is a TM which does not accept its own encoding; therefore
E (M “) is a member o f L[. Contradiction,

Since E (M *) must either be in L[or not in and either assumption
leads to a contradiction, we conclude that there is no such machine as
thus, L[is not Turing acceptable (our first example o f a set o f this sort).
But the Turing acceptability of L[was implied by its Turing decidability,
which in turn was implied by the Turing decidability o f L\ Therefore, we
conclude that Li cannot be Turing decidable after all. Finally, Turing
decidability was implied by the assumed Turing decidability o f L. Thus,
we conclude that L is not Turing decidable, and the Halting Problem for
Turing machines is not decidable by Turing machine; hence, given Church’s
Hypothesis, not decidable by algorithm

Note that in the process o f proving the undecidability o f the Halting
Problem , we have exhibited a set which is not Turing acceptable (namely,
L [) and sets which are Turing acceptable but not Turing decidable (namely,
L and i i) , We can thus state the following:

T h e o r e m 19.1 There are sets which are not recursively enumerable,

524 C h a p t e r 19

T h e o r e m 19,2 There are sets which are recursively enumerable but not
recursive. ■

As we have seen, these are not ordinary garden variety sets. The latter
are exemplified by the set o f all encodings o f T M ’s which accept their own
encodings as input; the former by the set o f all Turing machines (in encoded
form) which do not accept their own encodings as input However, having
established a foothold in this territory we can use these sets to discover
others o f their class We may also use the undecidability o f the TM Halting
Problem to prove that other problems are undecidable as well, For example,
we will show the following problem for Turing machines to be undecidable:
Problem: For an arbitrarily given TM M , does M halt given e, the empty
string, as input?

We first express the problem as a language:

(19-13) L 2 = {.E (M) | M accepts e}

and ask whether there is a TM M 2 which decides this language. W e show
that there is not, and the p roof technique is to show that if such a machine
existed then it could be modified to produce a machine which decides the
Halting Problem Since the latter cannot exist, neither can M 2„

Suppose we have M 2, which by hypothesis decides L 2, W e show how to
use M 2 to construct a machine M , which decides L, where L is the language
o f the Halting Problem:

(19-14) L = { E (M) E (x) | M accepts x }

First o f all, for any given TM M and any given input string x, one can
m odify M so that if it is started on the empty tape it will first write x on
it and then proceed as M would have, given x. Call this modified machine
M x . M x first checks to see if its input is the empty tape, (If not, it runs
forever in some fashion) If so, it writes x (a finite string, so this is done by
some finite set of instructions added to M) and then positions its reading
head for the start o f a computation and executes the moves o f M thereafter.

Now if we assume that we have a machine M 2 which decides L 2, then
it will work, in particular, if it is given the encoding of any machine M x

E x e r c i s e s 525

constructed in the way just described. (M 2 works for any TM encoding; it
will work i f that encoding happens to be the encoding o f M x.) But notice
that M x accepts e just in case M accepts x. That is, M x halts, given the
em pty string as input, iff M halts given x. Therefore a machine which
decides whether M x halts given e could be used in effect to decide whether
M halts given x. This has been shown to be impossible so there is no such
machine as M 2, and language L 2 is therefore not Turing decidable.

A whole host o f problems concerning Turing machines turn out to be
undecidable: whether an arbitrarily given TM ever enters a particular state,
whether' it halts on any inputs at all, whether it halts on every input, whether
it ever writes a particular symbol on its tape, etc. These and other unde
cidability results can, in turn, be used to establish undecidability results in
other areas, For example, the undecidability o f the TM Halting Problem can
be used to establish the undecidability o f another problem called the Post
Correspondence Problem, This can then be used in showing that certain
problems concerning context free grammars and languages are undecidable.
For example, it is undecidable, given two arbitrary cfg ’s G i and G 2 whether
L (G i) = L (G 2), whether I ^) H L {G 2) = 0, whether L (G i) C L (G 2),
whether L(G\) is inherently ambiguous, etc.

One should note carefully that none o f these undecidability results imply
that for a particular TM , a particular cfg, etc. there is no way to determine
whether it halts given the empty string, whether it is inherently ambiguous,
etc. We have seen examples o f T M ’s, e.g., in (19-1), which can be shown,
quite easily in fact, to halt given the empty string. W hat the undecidability
result says is that there is no single, generally applicable algorithm which
is guaranteed to work for every T M (or every arbitrarily given pair o f cfg ’s,
etc.)

It is also worth noting that in view o f the correspondence shown above be
tween T M ’s and unrestricted grammars, the undecidability results for T M ’s
can be carxied over immediately to grammars. Thus, there is no algorithm
for determining for' an arbitr arily given Type 0 grammar G whether G gener
ates any strings, whether G generates the empty string, whether G generates
all strings in S*, etc.

Exercises

1. Construct a Turing machine that accepts any tape written on the vo
cabulary {0 ,1 } and converts every contiguous string o f two or more l ’ s

526 C h a p t e r 19

to 0 ’ s. Everything else is left unchanged. For example, the input tape
• • #01011011101# ■ ■ should end up as ■ • ■ #01000000001# •

2. Construct a Turing machine with three states {<7o5 <7i 5 <72}: initial state
go, that begins with an input tape consisting entirely o f blanks and
halts with exactly three contiguous l ’s on the tape.

3. Consider the following Turing machine: M = {{go, g i } , {a, b, # } , go, S)
where

(go, a) -> (go, R)

(go,#) -*■ (gi,a)
(qu a) —> (g i ,X)

, (?i, #) ~ y (go,a)

6 =

(a) Write the first twelve situations o f the machine M if it starts in
the situation (e ,g o ,a ,# # a) .

(b) Describe verbally what machine M will continue to do after this
much has b een done

(c) W ill it ever halt?

(d) W ill it use only a finite amount o f tape?

(e) A ie there any squares of the tape that it will scan only a finite
number of times?

(f) W hat will machine M do if started in another situation?

4. (a) Make up a simple Turing machine which never halts no matter
what the initial tape sequence is. Give both the quadruples and
a verbal description o f its behavior. Let the machine be allowed
to start scanning at any square but always start in state go-

(b) Similarly, make up a Turing machine which always halts eventu
ally,,

5. Tell whether the following functions are total or only partial A func
tion is considered to be undefined if it would yield a value outside the
set on which it is specified

(a) Addition on the set o f all even integers.

(b) Addition on the set o f all prime numbers,

(c) Set union on the set {{0}, {1}, {2}, {0,1}}

E x e r c i s e s 527

6. Describe informally an algorithm for converting an integer in binary
notation to decimal notation.

7. Write a Type 0 grammar generating the language {a 2” j n > 0 }.

8. Show that the following problem for Turing machines is undecidable:
For an arbitrarily given TM M , does M accept at least one string?
(Hint: Show that if a TM existed which decided the language { E (M) |
M accepts at least one string}, it could be modified to produce a
machine deciding L 2 in (19-13).)

Chapter 20

Linear Bounded Automata,
Context Sensitive Languages
and Type 1 Grammars

20.1 Linear bounded automata

A linear bounded automaton (lba) is, in effect, a Turing machine whose
computations are restricted to the amount o f tape on which the input is
written, We can imagine it as consisting o f a finite set o f states, a finite
alphabet (including special right- and left- endmarkers [and]), a designated
initial state, and a finite set o f instructions o f the same form as the quadru
ples for Turing machines. We assume, however, that the input to an lba is
given between the designated endmarkers, i.e., as [uj] and that the lba has
no instructions which allow it to move past these endmarkers or to erase or
replace them. Thus, the tape head can move only in the portion o f the tape
originally occupied by w, although an equivalent formulation o f lba ’s sets
the limit on usable tape not as equal to the length o f the input but rather as
a linear function o f the length o f the input. (A linear function in a variable
x is o f the form ax + b, where a and b are constants. Plotting values o f ax + b
for each value o f x on graph paper gives a straight line, whereas plots o f
functions involving x 2, x 3, etc. gives curves.) This is the source o f the name
for these automata— the allowed computational space is bounded by a linear
function o f the length o f the input string.

Lba ’s are thus placed between p d a ’s and T M ’s. They can read and
write, and move left and right on the input tape like T M ’s, but T M ’s have

529

530 C h a p t e r 20

a potentially unlimited amount o f tape available for computation, A pda,
on the other hand, uses a maximum amount o f tape for its pushdown store
which is a linear function of the length o f the input. (This is not obvious
given the way we have formulated pda ’ s since a pda could cycle endlessly
on e-transitions adding m oie and more symbols to its pushdown store. It
can be shown, however, that each pda can be turned into an equivalent pda
which always reads to the end o f its input and which does not loop endlessly
on e-transitions. Such a pda uses at most an amount o f pushdown storage
which is a linear function o f the length o f its input.) But p d a ’s lack the
power o f lba ’s to move left and right and thus to have access to any portion
of the “m em ory” encoded on the tape during a computation.

Lba’s come in deterministic and non-deterministic varieties, defined in
ways analogous to the corresponding types of Turing machines, but it is not
known whether they are equivalent. That is, given language L accepted by
some non-deterministic lba, we don ’t know in general whether there is some
deterministic lba which also accepts L. This problem has remained open for
many years despite the efforts of a good many talented and energetic people
to solve it.

2 0 .1 .1 Lba’ s and context sensitive gram mars

Recall that a context sensitive grammar (csg) is one in which every rule
has the property that the right side is at least as long as the left side. In
particular, rules o f the form a —> e are excluded, and therefore the empty
string cannot be generated as part o f any context sensitive language (An
equivalent formulation states that every rule is o f the form a A/3 —> aip/3,
where A is a non-terminal, a,/3, and ip are strings over (Vt U V/v)"\ and
ip ^ e„ See Section 16.4)

Except for the matter o f the empty string, the languages accepted by
non-deterministic lba ’s are the languages generated by csg’s. We will sim
ply sketch here how this equivalence is established and refer the reader to
H opcroft and Ullman (1979, pp. 225-6) for details.

Given a csg G, we can construct a non-deterministic lba M to simulate
derivations by G. M is given an input string w embedded between the
endmarkers; i.e., [w], and it sets up a work space to the right o f the input of
length equal to the length o f w where it inserts the start sym bol S. M then
non-deterministically carries out a derivation from S according to the rules
o f G, checking after each step to see if the contents o f the work space equal
w. I f so, M halts and accepts; if not, M continues the derivation

C o n t e x t s e n s i t i v e l a n g u a g e s a n d r e c u r s i v e s e t s 531

If there is a derivation o f w by G, it will be found by M , and, furthermore,
it will be found by some computation which uses no more than the allotted
amount o f work space Since rules o f G are “non-shrinking,” no line o f a
derivation is shorter than the preceding one Thus, no derivation o f w by
G contains a line longer than w, and the derivation can be carried out by
M on an amount o f tape which is a linear function of (roughly, double) the
length o f the input .

The construction in the other direction— simulating the moves o f an lba
in reverse by a csg— is similar to that for Turing machines and Type 0 gram
mars. However, because o f the restriction that rules cannot make strings
shorter, a problem arises in getting rid o f the boundary symbols and the
sym bol for the state o f the automaton This can be accomplished by coding
sequences o f symbols as complex non-terminals; for details, see the section
in H opcroft and Ullman (1979) referred to above. Another matter which
must be attended to is that the grammar cannot generate e even if the lba
accepts it; i.e., if L is accepted by a non-deterministic lba M , L — { e } is
generated by the corresponding csg G.

20.2 Context sensitive languages and recursive
sets

Every language generated by a context sensitive grammar is a recursive set
o f strings in the sense defined above in connection with our discussion o f
recursive and recursively enumerable sets. That is, for every context sensitive
language, there is a Turing machine which decides it. We will show this—
appealing to Church’s Hypothesis— by sketching an algorithm for deciding
any csl. It would not be very difficult to give this algorithm explicitly in the
form o f a TM

Given a csg G and a string x, we decide whether or not x £ L (G) as
follows. Construct all derivations beginning with S and whose last lines are
no longer than the length o f x. If any line in a derivation is repeated, the
derivation can be disregarded, since, if there is a derivation o f x beginning
with S, there is one with no repeated lines. The number o f derivations whose
last lines are no longer than the length o f x and which contain no repeated
lines is a finite number. We simply examine this finite list o f derivations to
see if any end in x. I f none do, we can be sure that x is not generated by
G since derivations o f x cannot contain lines longer than x. This follows

532 C h a p t e r 20

from the fact that rules o f a csg never decrease the number o f symbols in
succeeding lines o f a derivation (Note that the possibility o f such a decision
procedure for Type 0 languages is precluded by the possibility that rules
in such grammar may decrease the number o f symbols. As a consequence,
we cannot in general fix an upper bound on the length o f a derivation o f a
string o f given length by a Type 0 grammar This reasoning does not prove
that no decision procedure can be found for Type 0 languages— although in
fact there is none, as we have seen— only that we cannot arrive at one by
enumerating derivations)

The context sensitive languages do not exhaust the recursive languages;
there are recursive languages which are not csl’s. There is a sense in which
this is trivially true since some recursive languages contain e, and no csl’s
do. But even if we consider the class o f all csl’s together with the class of
all csl’s with e added (which are just the non-deterministic lba languages),
there are still recursive languages which are not in this class. W e show this
with respect to lb a ’s for simplicity,

Like a TM , a non-deterministic lba could be encoded as a string over
the alphabet {0 ,1},, We can then enumerate lba ’s in the same fashion as
we did for T M ’s— say, shortest encodings first and with encodings o f the
same length being arranged in increasing order when interpreted as a binary
number. Thus, we have an enumeration o f lba ’s:

(20-1) Mi, M2, , , , ,Mi , . ,

W e also construct an enumeration o f input strings (for example by coding
them in the alphabet {0 ,1 } and arranging them in the order o f increasing
binary number o f the encoding),

(20-2) x 1 , x 2, ,, . , x i }

W e construct the language L in the following way:

(20-3) L = { xi | and Xi is not accepted by M ;}

That is, w is in L iff its encoding is not accepted by the lba at the corre
sponding position in the enumeration, This language is not an lba language
since it is not accepted by any o f the lba’ s in the enumeration. Given any
M j , it cannot accept L because there is a string, namely xj , which is in L
iff it is not accepted by Mj. Thus, L differes from the languages accepted
by each of the lba ’s in at least one string

C l o s u r e a n d d e c i s i o n p r o p e r t i e s 533

L is nonetheless recursive There is a procedure for determining for any
string w whether or not it is in £ Encode w in the prescribed manner
into 0 ’s and l ’s, and find it in the enumeration, This can be done, since
the encodings o f the x i ’s aie listed in order o f increasing length and within
strings o f the same length in increasing order o f size as a binary number.
Having located w in the enumeration, we get its index (by counting from
the beginning) and find the corresponding lba in the enumeration o f lba ’s
We then determine by the algorithm referred to above whether the selected
lba accepts w or not. If it does, w 0 L; i f not, w £ L. Thus L is a recursive
language which is not the language accepted by any non-deterministic lba.

20.3 Closure and decision properties

The csl’s are closed under the operations o f union and intersection, but it is
not known whether they are closed undei complementaiton (this is essentially
the problem o f determining whether deterministic and non-deterministic
lba ’s are equivalent). They are closed under concatenation but not under
Kleene star, inasmuch as L" must contain e, and no csl does. The csl’s,
however, are closed under positive closure L + , defined as L" — {e } . They are
also closed under intersection with a regular language. We omit the demon
strations o f these results here; the interested reader may consult Hopcroft
and Ullman (1979, Chapter 11) and references therein for more details.

A lthough the membership question is decidable for csl’s, almost all the
other standard question turn out to be undecidable:

(i) Is L := 0?

(ii) Is L ■■= S '?

(iii) Is Li

(iv) Is Li C L21

(v) Is h n L 2 = 0?

534 C h a p t e r 20

Exercises

1. Construct context sensitive grammars for each o f the following lan
guages.

(a) anbncn(n > 1)

(b) {x £ {a , 6 ,c}* | x consists o f an equal number (> 1) o f a ’s, 6’ s,
and c ’s}

(c) { x x | x £ {a , 6 }+ } (i.e.,, all non-em pty strings in {a , 6}* with iden
tical left and right halves.)

Chapter 21

Languages Between
Context Free and
Context Sensitive

Most investigators supposed from the time that the Chomsky hierarchy was
first established that natural languages, considered as string sets, would fall
somewhere between the context free and the context sensitive languages
and, further, that they would lie in some sense “ close” to the context free
class. On the one hand, the context sensitive languages seemed much too
inclusive, containing as they do species such as {a nbn'} (ra! is ra factorial, i.e .,
1 x 2 x 3 x . . . x ») and {an : n is prim e}, which seem unlikely candidates
for any sort o f linguistic model. On the other hand, a large part of natural
language syntax seems to be handled quite nicely by a CFG, and the aspects
which seem to cause languages to fall outside the CFL class (as string sets)
could be considered rather isolated and infrequent. After all, it took nearly
thirty years to find one completely convincing example o f a natural language
which was not context free.

Such considerations spawned work on the formal languages which would
be, in Aravind Joshi’s phrase, “mildly context sensitive.” In^th'e following
sections we will survey very briefly a few o f these whose formal properties
have been most thoroughly investigated.

535

536 C h a p t e r 2 1

21.1 Indexed grammars

A ccording to H opcroft and Ullman (1979, p. 389) “ of the many general
izations o f context free grammars that have been proposed, a class called
‘ indexed’ appears the most natural in that it arises in a wide variety o f con
texts.” A n indexed grammar (IG) differs from a context free grammar in
that nonterminal symbols may carry a sequence o f indices chosen from an
initially specified finite set, and its productions allow foi adding or remov
ing these indices in the course o f a derivation. We write A [i , j ,k] for the
nonterminal symbol A bearing the index sequence [t, j , k] Indices can be
added or removed from the left end o f the sequence, and there is no upper
bound on the length Thus, an index sequence is like a pushdown stack
attached to a nonterminal. Further, when a rule o f the ordinary CF form ,
e.g,, A —> aBcdC, is applied, the index sequence on A, if any, is copied onto
each o f the nonterminals on the right, i.e ., B and C, Terminal symbols never
bear indices. If A is rewritten as a string containing no nonterminals, e.g.,
A —> 6c, the indices on A simply disappear.

Productions may also be o f the form A[i] —> a, where i is an index and
a is any string, in which case the rule can only be applied to a nonterminal
A bearing index i at the left o f its index sequence, and if a contains any
nonterminals, then the sequence on A with i removed is copied onto each of
them. For example, the rule A[i\ —> B aC could be applied to the indexed
nonterminal A [i , j ,k] to produce B[j, k]aC[j, k]. The rule could not be ap
plied to A[j,k] or A [j , i] , for example, since neither index sequence has i at
the left. Thus, rules of the ordinary CF form A —> a are accompanied by
index copying, while rules o f the form A[i\ —> a aie “pop and copy” rules.

Finally, rules o f the form A —» B[i\ add index i at the left o f the sequence
already present on A and copy the result onto B (a “push and copy” rule).
Such rules have only a single nonterminal cm the right because we don ’t
want to allow the possibility o f pushing different indices and copying onto
different nonterminals; i.e., A —> 5[z]C [j] is not allowed. W e are following
here the formulation in Hopcroft and Ullman (1979, pp. 389-390) with slight
notational changes. Different but equivalent formulations can be found in
Aho (1968), Salomaa (1973, pp. 257-259) and Gazdar (1985). Thus, the
IG ’s properly include the C F G ’s, since a CFG can be regarded as an IG in
which all index sequences are empty. That the CFL’s are a proper subset
o f the index languages (IL ’s) is shown by the following IG generating the
non-context free language {a nbncn : n > 0 }:

I n d e x e d g r a m m a r s 537

G = { Vt ,Vn , I , S , R) , where
{ a , b , c , } ; Vn = {S ,T , A, B , C } ;

I = {*>.?}> the set o f indices;
R = { S - > T [j } A [i] ^ a A A [j] ^ e

T —> T[i\ B[i\ —> bB B [j \ ^ e
T —> A B C C\i\-^cC C\j\ —> e}

Fig. 21-1 is a derivation tree for a262c2

5

T\j]

T [i , j]

T [i , i , j]

A [i , i , j] B [i , i , j] C [i , i , j]

a A [i , j] b B [i , j] c C [i , j }

a A[j] b B[j] c C [j]

e e e

Figure 21-1.

Note that it is necessary to use an index distinct from i as a “bottom
o f stack” marker in this grammar. Because o f the convention that index
sequences disappear when the right side o f a production contains no nonter
minals, if we had only the rules A[i] —> aA and A[i\ —> a rewriting A, then
A[i, i\ could give rise either to a or aa.

The grammar containing the following rules generates {x x : x £ {a, 6 }“ }:

538 C h a p t e r 2 1

S -+ T [k] f [i] -> aF G[i\-^aG
T —> T[i\ F [j] ^ b F G[j] —> bG
T —> T\j] F [k] ^ e G[k] —» e
T - ^ F G

A derivation tree for abbabb appears in Fig. 21-2.

Figure 21-2.

In the first example, indices are used as counters to ensure that the
numbers o f a ’s, b’s, and c ’s are all equal; in the second, the indices constrain
the rewriting sequence so that the two halves of the string are identical. The
following grammar (henceforth we give just the rules) combines elements of
both techniques to generate { anbmcndJn : m ,n > 0 }, which exhibits the kind
o f cross-serial dependencies found in Swiss German (Sec. 18.6 above):

I n d e x e d g r a m m a r s 539

S-»T[Jfe] A [i\-^aA C\i\-^cC
T - » T[j] A - ^ B C —> D
r - r B \ j] ^ b B D [7] —> dD
f - * r ' [i] B[Jfe]-»e 2?[Jfc] —► e
T ' - ^ A C

Fig, 21-3 is a derivation tree for abbcdd.

Figure 21-3,

It is worth noting here that alternative grammars are possible for the
preceding examples, some o f which will produce very different derivation

540 C h a p t e r 21

trees. For example, the following grammar also generates {a nbncn : n > 0 }
with the derivation tree for a2b2c2 in Fig. 21-4

S -> T [i] A [i] -^ a A B[i] —> bBc
T —> T\i) A[j] —> e B[j] —> e
T —> A B

Figure 21-4.

The context free languages can o f course be generated by IL ’s without
indices, but it is also possible to use the power o f the indices to generate
C FL ’s with right- (or left-) linear derivation trees. See, for example, the
following IG , with an accompanying derivation in Fig. 21-5, which gener
ates strings in anbn with a right-linear rather than a center-embedded tree
structure:

S -^ A [k] A —>aT B [i] -^ b B
T -^ A [i] A —* B B [k] -^ e

I n d e x e d g r a m m a r s 541

5

A[k\

a T[k]

A[i, k]

a T[i,k]

A[i, i, k]

k]

b B[i,k]

b B[i, k]

Figure 21-5.

Aho (1968) was in fact able to prove that the languages generated by IG ’s
with entirely right-linear or left-linear tree structures were exactly the C FL ’s.
Gazdar (1985) suggests that this fact may be o f linguistic significance, cit
ing examples o f nested dependencies which appear to require a right- or
left-linear rather than a center-embedded constituent structure (e.g., nested
comparative constructions and unbounded dependencies in the Scandinavian
languages).

The IL ’s have an equivalent characterization in terms o f automata, viz,,
the nondeterministic “nested” stack automata, A stack automaton is like a
P D A which, in addition to popping and pushing symbols at the top, can also
enter its stack in “read-only” mode, moving up or down without writing or
erasing any symbols. A nested stack automaton has the further capability

542 C h a p t e r 21

o f creating stacks inside its stack, stacks inside these stacks, etc., but it can
only empty a stack after all stacks within it are empty.

It can be shown that the IL ’s (without e) are contained in the context-
sensitive languages and that the containment is proper. That is, we have:

(21-1) CFL’s C IL ’s C CSL’s

Examples of CSL’s which are not IL ’s aie {anl : n > 1 } and {(S u i)^ : w £
{ a , 6 }“ } (Hayashi, 1973). The language {w £ { a ,b,c}~ '■ w contains equal
numbers o f a’s, b’s, and c ’s } is conjectured by Marsh (1985) to be non-IL (we
have already seen that it is CS), The language {anbn : n > 1 } is IL, however,
and is generated by the following grammar (modified from Salomaa (1973)):

S -^ T [k] A [i\ -^aA Z [i] -^ b Z B [i] -^ b B Z Z
T —> T\i\ A [k] -^ a Z [k]-^ b B [k]-^ b
T —> A B

Fig, 21-6 is the derivation tree for a3b9.

The IL ’s are closed under such operations as union, concatenation, inter
section with a regular set, and Kleene closure, but they are not closed under
intersection or complementation. There exists an algorithm for deciding
whether the language generated by an arbitrary IG is empty,

Gazdar and Pullum (1985, pp. 11) state that “no phenomena aie known
which would lead one to believe that the NLs [natural languages] fall outside
[the ILs’] purview... The indexed languages thus provide us, at least for the
mom ent, with a kind of upper bound for syntactic phenom ena.” This is of
course in the context o f the assumption that languages are being regarded
as string sets.

21.2 Tree adjoining grammars

Tree adjoining grammars (T A G ’s) were devised by Joshi and his coworkers
(Joshi, Levy, and Takahashi, 1975) as limited extensions o f C F G ’s They
occupy, in terms of weak generative capacity, a position between C FG ’s and
indexed grammars; i.e.,

(21-2) C FL ’s C T A L ’s C IL ’ s

T r e e a d j o i n i n g g r a m m a r s 543

5

T[k\

T [itk}

T [i , i ,k]

A[i, i, k]

a A[i,k]

a A[k]

B[i,k] Z[i, k] Z[i, k]

b B[k] Z[k] Z[k] b Z[k] b Z[k]

Figure 21-6.

A T A G , unlike the grammars we have seen thus far, does not generate
sentences by rewriting strings of symbols; rather, it begins with a finite set
o f initial trees, which can be enlarged by recursively inserting at appropri
ate positions one o f a finite number o f auxiliary trees. For example, if the
following is an initial tree,

(21 -3) a = S

a b

and /? is an auxiliary tree

544 C h a p t e r 2 1

T

c S T a

then /? can be “ adjoined” to a by

1) excising the subtree rooted by T from a giving

S

A \
a b

2) placing /? in the position just vacated giving

T

c S T a

3) reattaching the excised subtree at the position o f the T node in j3
giving

5

T r e e a d j o i n i n g g r a m m a r s 545

In a TAG initial trees are always sentential in that they are rooted by S
and have a string o f terminals as their yield, Auxiliary trees can have any
nonterminal symbol as root and must have that same symbol occurring once
in its yield (on its “frontier”), all the rest being terminals. Although not part
o f the formal definitions, the intent is that both initial and auxiliary trees
be “minimal” Initial trees should contain no repeated non-terminals along
any path, and auxiliaries should contain no repetitions o f the nonterminal
labeling the root node and the node at the frontier (the “foo t” node) on the
path connecting the two.

Given a tree 7 containing a nonterminal node X , and an auxiliary tree
/? with X as root (hence with X as the only nonterminal on its frontier), we
can represent the operation of adjunction schematically as in Fig. 21-7,

7 = 5 /? = X

Figure 21-7.

(The similarities between the generation o f trees by a TAG and the de
com position o f derivation trees employed in the proof o f the Pumping The
orem for C FL ’s is evident.)

Formally; a TAG G = {I , A) is composed o f finite sets o f initial and
auxiliary trees, I and A, respectively. The set o f trees generated by G is
the set o f trees obtainable from any tree in I by repeated (possibly zero)
applications o f adjunction using trees from A. The language generated , L(G),
is the set o f terminal strings on the trees generated by G

Not surprisingly, for every CFG there is a strongly equivalent T A G (one
which generates exactly the same strings with the same tree structures). In
fact, given any CFG there is a procedure for constructing a TAG which is
strongly equivalent to it. Strong equivalence implies weak equivalence of
course, so the CFL!s are included in the T A L ’s. There are, however, T A G ’s

546 C h a p t e r 21

for which no strongly equivalent CFG exists (see Joshi, 1985, pp. 211-2,
for an example), and, moreover, there are T A L ’s which are not weakly CF,
Since the T A L ’s are such a modest extension o f the C FL ’s, it is difficult to
exhibit a simple example of a non-CF TAL The following is from Joshi (op.
cit , pp. 212-3):

(21-4) Li = {w cn : n > 0 and to is a string o f a ’s and b’s such that (i)
the number of a ’s = the number of b’s = n , and (ii) for any initial
substring o f w, the number o f a ’s is > the number o f 6’ s}

Li can be thought o f as made from the language {(a&)ncn} by displacing
some o f the a ’s to the left. Thus, aabaabbbcccc is in Li but aababbbacccc is
not. Li is not CF since its intersection with a'bxc* is {a nbncn} But Li is
generated by the following TAG :

(21-5) I: a = S

e

A: 0 i = S
/ X

a T

A \
b S c

/?2 = T
/ X

a 5

/ N
b T c

The derivation o f the tree for aabbcc appears in Fig. 21-8.

{anbncn : n > 0 } is an example o f an indexed language which cannot be
generated by a TAG . I f there were a TAG generating this language, each
o f its initial trees would have to contain an equal number o f a ’s, b’ s, and
c ’s in Older (recall that all initial trees are sentential and therefore have
yields which are in the language). Further, each auxiliary tree also would
have to have equal numbers o f a ’s, b’s, and c ’s (because each adjunction of
an auxiliary tree also produces a sentential tree) with all a ’s preceding b’s,
which precede all c ’s. But then adjunction cannot avoid mixing the order of
the elements and thus some strings not in the language will be generated,

Joshi (1985) shows that an extension o f the theory o f T A G ’s to include
local context-dependence for adjunction o f auxiliary trees yields a class of

T r e e a d j o i n i n g g r a m m a r s 547

a T

A \
b S c

a T

a S

b T c

A \
b S c

Figure 21-8.

grammars which can generate such languages as { anbncn} and {w w : w £
{a , &}*},, These grammars are also o f interest since with a suitable notion
o f linking defined between pairs o f nodes in trees it appears that structures
with cross-serial dependencies can be generated The languages o f the ex
tended T A G ’s still do not equal the full class o f indexed languages since
languages such as { a 2 : n > 0 } are beyond theii range. This is evident from
the fact that in any TAG (context restrictions are not relevant here) during
an application of adjunction a terminal string can be increased in length by
only the number o f terminal symbols in an auxiliary tree. The result is that
the growth in length o f terminal strings for any TAL is represented by a
series o f linear progressions, none o f which grows as fast as the exponential
growth rate o f strings in a2 . It has been shown, however, (Vijay-Shankar,
1987) that the T A L ’s are weakly equivalent to a restricted class o f indexed
languages, viz., those generated by IG ’s whose rules limit the inheritance
and manipulation o f index sequences to a single nonterminal daughter on
the right side o f the rule. Gazdar (1985) points out that such a restriction
make IG ’s o f limited interest as natural language grammars since conjunc
tion constructions would seem to require the inheritance o f index sequences
by multiple daughter nodes.

The T A L ’s are closed under union, concatenation, Kleene star, and in

548 C h a p t e r 2 1

tersection with regular languages, but not under inter section or complemen
tation

21.3 Head grammars

Pollard (1984) proposed an extension o f C F G ’s in which each string con
tains a distinguished symbol called the head o f that string. In formal terms,
a headed string can be thought o f as a pair consisting o f a string and a
natural number (up to the length o f the string) indicating the position o f
the head. T w o headed strings can be concatenated, in which case one o f the
heads becom es the head o f the resulting string, and there are “wrapping”
operations as well in which a string is split at its head and a second string
inserted A normal form theorem due to Roach (1987) guarantees that Head
Grammars (H G ’s) need only two concatenation operations (in which the left,
resp. the right, head becomes head o f the result) and four wrapping opera
tions (the second string is inserted either left or right o f the head of the first,
and either the first or second head becomes the new head).

Formally, a HG is a quadruple (Vn ,Vt , S , P) , where Vn and Vp are
finite sets o f non-terminal and terminal symbols, respectively; S , the initial
symbol, is a member o f Vn ; and P is a set o f productions o f the form

A —> £*1
or A —> f (a ia n)

where A 6 Vn; o-i is either a nonterminal or a headed string; and / is a
concatenation or a wrapping operation o f the sort just mentioned

The languages generated by H G ’s, Head Languages (H L ’s), are included
in the T A L ’s (Weir, Vijay-Shankar, and Joshi, 1986). The inclusion in the
reverse direction has not yet been demonstrated owing to technical difficul
ties arising from the notion o f the ‘headed empty string.’ This has led Joshi,
et al„ to define a closely related class o f grammars, the so-called Modified
Head Grammars (M H G ’s) in which these difficulties are avoided and which
are provably equivalent in weak generative capacity to T A G ’s Strings in
M H G ’s have, instead o f heads, a designated position between symbols where
the string can be split and a second string inserted. A “ split string” is de
noted Wi | W2, where wi and to2 are in V£, and in a M HG there are just
three operations: two concatenations and one wrapping.

H e a d g r a m m a r s 549

C i (u > l T ™ 2 l « l T « 2) = W l T W2 U i U 2

C2(w1 f W2,U1 f U 2) = W1W2 Ui T u2

W (w ! f W2,U1 f U 2) = WiUi f U2W2

The form o f the productions and the rest o f the formalism otherwise
remain as in H G ’s except that the a» can be either a nonterminal or a split
string

Here is an example o f a M HG generating the language {a ngbnf c nh | n > 0

Vr = {a, b, c , f , g , h } ; Vn = {S, S1 ,S 2, S3};
P = S —> W (S i , f T) S - + W (S 2, f T)

Si -> C2(a T,S s) s2 - * g f h
Sz —> W (S i ,b T c) S z ^ W (S 2, b U)

Here is a derivation o f aagbbfcch:

S =* W (S 1, f r) =* W (C 2(a T, 53), / T) =*
W (C 2(a T , W i , & T < =)),/T)=>
W (C 2(a T, W (C 2(a T, S3),b T c), / T) =>
W (C 2(a T, W { C 2{a t, W (S 2, b f c)), b T c), / T) =>
P7(C2(a T, W"(C2(a T, W (g T h, b f c)), b f c), / |) =>
P7(C2(a T, W"(C2(a T, <?& T ch), b] c) , f |) =>
^(C'2(oT.Wr(aff6TcA,6Tc),/T)=>
Ŵ (C2(at,a?66T ccA),/T) =>
W(aagbb f c c h , f T) =£• aagbbf | cc/i

The spht marker is ignored in the final string, so the grammar is taken
as generating aagbbfcch

The H L’s are included in the M H L’s, but the converse has not been
shown, again because o f the difficulty mentioned above concerning the headed
empty string, The differences between H G ’s and M H G ’s, however, are
marginal, and the systems are equivalent in all important respects. Thus,
M H G ’s, T A G ’s and IG ’s restricted to inheritance o f indices by a single non
terminal daughter (I G (l) ’s) form a stable class o f weakly equivalent gram
mars in the “mildly context sensitive” domain

550 C h a p t e r 21

21.4 Categorial grammars

Categorial grammars are based on the work o f Ajdukiewicz (1935) on se
mantic categories o f logical languages and were proposed has a system of
syntactic description foi natural languages by Bai-Hillel (1953), M ontague’s
work in natural language semantics assumes a categorial syntax, and this in
part has led to a ievival o f inteiest in such systems

The fundamental idea in a categorial grammar (C G) is that lexical items
may be assigned not only to basic categories such as N and V , but also to
com plex categories like S /V P , V /(N P /S) , etc. Sequences o f categories can
be reduced by a kind of “ cancellation” rule of the form A /B B =»• A That
is, i f x is of category A /B and y is o f category B , then the sequence xy is
o f category A. A “backward cancellation” rule, B A \ B =£• A, is oidinarily
included as well. To take a natural language example, Mary might be of
category S /V P and sleeps o f category V P; then Mary sleeps would be o f
category S. Further, if often were assigned category V P /V P , the sequence
Mary often sleeps would be reduced to category S by the following sequence
o f steps:

S /V P V P /V P VP => S /V P VP => S
Mary often sleeps Mary often sleeps Mary often sleeps

The same information could be represented as a tree structure:

VP

S /V P V P /V P VP

I I I
Mary often sleeps

Notice that in a CG the paucity o f syntactic rules is compensated for by
the complexity o f the syntactic categories to which constituents belong. In
some sense, C G ’s code their syntactic operations into their lexicons One of
the advantages o f such a system lies in the close correspondence o f syntactic
and semantic structures. Parallel to syntactic reduction o f categories X /Y

C a t e g o r i a l g r a m m a r s 551

and Y to X is the semantic operation o f applying a function (from Y-type
things to X -type things) to an axgument (o f type Y) to produce a value (o f
type X) It is for this reason that the reduction rules are often referred to as
rules o f (forward and backward) Function Application, (See the discussion
in Chapter 13 where this is applied to natural language semantics.)

The formal definitions o f what might be termed a classical, bi-directional
CG would be as follows:

W e assume a finite alphabet Va o f category symbols. The set C o f all
category symbols is then given by:

(1) For all x £ Va , x £ C,

(2) I f x and y are in C, then so axe (x/y) and (x\y).

(3) Nothing else is in C.

A CG then is a quadruple G = {Vt , Va , S, F) where

Vt is a finite set o f terminal symbols

Va is as above

S is a designated member o f Va

F is a function from Vt to p(C)', i,e., a function assigning to each
terminal symbol a set o f categories from C .

We define the binary relation =s>, “reduces in one step to ” , on pairs o f
category sequences as follows:

For any categories X , Y in C and any finite sequences o f categories a
and /?,

a X / Y Y /? => aX(3

a Y X \ Y j3 => aXj3

The relation =? “reduces to (in zero or more steps)” is the reflexive
transitive closure o f = .̂

A string w £ V f is generated by G iff w = wj ., . wn and there is some
sequence o f categories Ci ... Cn such that F (w i) = Ci for all 1 < i < n , and
Ci . ,, Cn => S . In other words, w i wn is generated iff there is some choice
o f category assignments by F to the symbols in wi . wn which reduces to
S.

552 C h a p t e r 21

Example: G — {Vt ,Va , S, F) where
Vt = {a, &}; Fa = {5 , B } ; F (a) = { S/B } ; F(b) = { B , B \ S}

The string a363 is generated as indicated by the derivation tree in Fig
21-9

Figure 21-9.

C G ’s have been shown to be identical to C F G ’s in weak generative ca
pacity (Bar-Hillel, Gaifman, and Shamir, 1960) The proof is constructive;
from any given (basic, bi-directional) CG, a weakly equivalent CFG can be
constructed, and vice versa.

More recent work in categorial grammar has focused on systems with
expanded sets o f reduction rules. Some o f those most frequently encountered

(21-6) 1 X / Y Y j Z => X j Z
2, (X / Y) \ Z => (X \ Z) / Y
3, X = > y / (y \ x)
4, X / Y => (X/Z)/(Y/Z)

Function Com position
Commutativity
Type raising
“ Geach Rule”

These rules also have corresponding forms with / and \ interchanged;
e.g.,

C a t e g o r i a l g r a m m a r s 553

Y \ Z X \ Y =£• X \ Z (Backward Function Composition)

A system containing all the rules in (21-6) (in both forward and back
ward versions) together with the two standard rules o f Function Application
was proposed by Lambek (1958) and has come be known as the Lambek
Calculus. Van Bentham (1988) has shown that a particular variety o f this
calculus (in which categories axe non-directional, i e , both X \ Y Y => X
and Y X \ Y => X are valid) generates the permutation closure o f the
C F L ’s The permutation closure o f a language L is the set o f strings obtained
by taking every string L and permuting its symbols in every possible way
For example, the permutation closure o f {a nbn \ n > 0 } is { x £ {a , 6 }“ | x
contains equal numbers o f a ’ s and 6’s } Both these languages happen to
be CF, but the permutation closure o f a CFL is not always CF. For ex
ample, { (abc)n | n > 0 } is CF (indeed regular), yet its permutation closure
{a; £ {a , 6, c } “ | x contains equal numbers o f a ’s, 6’s, and c ’s} is not CF, Thus
the languages o f the non-directional Lambek calculus include some non-CF
languages and do not include all CF languages. Weir and Joshi (1988) re
port that C G ’s with directional categories, forward and backwaxd Function
Application, and a generalized form o f (forward and backward) Function
Com position are weakly equivalent to T A G ’s, and thus also to M H G ’s and
IG (l) ’s

A number of CG systems based on the work o f Ades and Steedman
(1982) and others have been investigated by Friedman and her co-workers
(Friedman et a l , 1982) These systems have unidirectional, parenthesis-
free categories (parenthesization is assumed to the left) and a variety o f
function application and function com position rules Some systems generate
the C FL ’s, others a subset o f the C FL ’s, and still others, depending on the
particular inventory o f reduction rules, generate languages which are “mildly
context sensitive” . A t least all CSL’s discovered thus fax in the languages o f
these systems are generated by I G (l) ’s, which as we saw above are weakly
equivalent to T A G ’s and M H G ’s, and have CF-like growth functions.

The whole area o f C G ’s and their mathematical properties is one cur
rently under active investigation, and it would be premature to try to give a
more thorough summary. A representative collection o f recent work in CG
can be found in Oehrle, Bach, and Wheeler (eds.) (1988).

Chapter 22

Transformational Grammars

One o f the most important developments in the mathematical study o f gram
mars o f linguistic interest was the work o f Peters and Ritchie (1973) and
Ginsburg and Paitee (1969) on the so-called “ standard theory” transforma
tional grammars o f the sort outlined in Chomsky (1965).

The syntactic component of a transformational grammar consists o f two
parts: (1) a base com ponent, which is a CFG or CSG, and (2) a transforma
tional com ponent, com posed o f an ordered set o f transformational rules. The
base generates an infinite class o f trees by recursion through the initial sym
bol S. Each such tree serves as an input to the transformational rules, each
o f which defines a mapping from trees to trees. The transformational rules
are assumed to be linearly ordered, the output o f one forming the input to
the next. I f a given transformational rule cannot apply to a particular tree,
the tree is left unchanged and the next rule in the sequence is considered.

In this version o f transformational grammar, the transformational rules
are assumed to apply in accordance with the principle o f the transforma
tional cycle This specifies that the entire sequence o f transformational rules
applies fast to the lowest S-rooted subtrees (those that properly contain no
S-rooted subtrees). A single pass through all the transformational rules is
said to constitute a cycle, Subsequent cycles take as their domains succes
sively larger S-rooted subtrees, until finally on the last cycle the domain o f
application o f the rules is the entire tree.

The tr ee that is the final output o f the transformational rules is called a
surface structure.

Transformational rules perform elementary operations o f (i) deletion, (ii)
substitution, and (iii) adjunction, but for our purposes here it suffices to

555

556 C h a p t e r 22

observe only that deletion is constrained by a principle o f recoverability
More specifically, any item deleted by a transformation must either' leave
behind a copy in a specified place in the tree or else be a fixed lexical item
mentioned in the specification o f the transformation.

Not every phase marker generated by the base need be m apped into
a well-formed surface structure by the transformational component. For
example, a special boundary symbol # , which is placed on both sides of
every S by the rules o f the base, may be erased by the application o f certain
transformational rules. I f a phrase marker that is the final output o f the
transformational component contains any instance o f # , it is not a well-
formed surface structure, and the phrase marker that form ed the original
input is said to have been filtered out by the transformational rules.

A transformational grammar with this property is called a transforma
tional grammar with filtering. On this view, then, a transformational gr am
mar is a device for pairing base trees with well-formed surface structures.
The language generated by the grammar is the set o f all strings that appear
as a sequence of leaves o f some well-formed surface structur e tree

Peters and Ritchie showed that a transformational grammar formalized
in this way with a context-sensitive grammar as its base has the same weak
generative capacity as the type 0 grammars. That is, the languages gen
erated by context-sensitive based transformational grammars are just the
recursively enumerable sets.

The proof, which we only outline here, proceeds by showing first, for any
given context-sensitive based transformational grammar G, how to construct
a Turing machine that accepts all and only the terminal strings in L(G),
Thus, every transformational language is a r e set, The converse is proved
in the following way. If L is a r e set, then there is some type 0 grammar Go
generating L. Next, a type 1 grammar G\ is constructed from Go such that
for every a; if a; £ L (G n), xbm £ L(G o) for some integer m , and conversely.
This is done by taking each rule in the type 0 grammar whose right side
is shorter than its left side and adding a sufficient number o f 6’s (a special
symbol not occurring in L) to make the rule “no-shrinking,” Then rules
are added which permute the 6’s with the other symbols, allowing the 6’s
to migrate to the right side. Thus G\ generates all the strings in L(Go)
(equal to L) followed by some number o f occurrences o f 6 From G\ it is
possible by using some results o f Kuroda (1964) to construct an equivalent
type 1 grammar G [in which every string xbm generated is assigned the
sort o f tree structure shown in Fig, 22-1, where x = a i , , ., a n_ i a n, and

T r a n s f o r m a t i o n a l g r a m m a r s 557

A , A', A " , A'" etc., are nonterminals distinct from S. G[is then taken as
the base o f a transformational grammar whose only transformational rule
is to delete an occurrence o f b if it is the rightmost terminal sym bol o f the
sentence being processed on that cycle. Since this is the deletion o f a fixed
terminal sym bol in a fixed position, it meets the condition on recoverabil
ity o f deletions. Thus, the transformational com ponent takes as input a
tree o f the form given in Figure 22-1 and deletes all occurrences o f b (to
gether with the nonterminals dominating each b) to produce a tree having
x = c*i . . . as it leaves. This transformational grammar, therefore,
generates all and only the strings o f the original recursively enumerable set
L.

S

/ \
S A

. \ I
5 A b

/ \ I
S A b

A'" a n- 1

Figure 22-1.

Peters and Ritchie were able to show that transformational gram
mars still generate all r.e. sets even if the base is made context free rather
than context sensitive. W ith a context-free base, however, the filtering effect
o f the transformational component must be used extensively; this feature is
not needed at all for context-sensitive based transformational grammars to
generate the r.e. sets.

These results raise serious difficulties for the standard theory. Since it
is comm only supposed that natural languages are properly included in the
recursive sets, which are, in turn, properly included in the r.e. sets, trans

558 C h a p t e r 22

formational grammars, by this formulation, are capable o f generating sets of
strings that are not possible natur al languages. One o f the goals o f linguistic
theory is to give a precise characterization o f the notion ‘possible grammar o f
a natural language, ’ and thus this version of the theory o f tr ansformational
grammar is shown to fail to meet this goal by virtue o f being too broad, i.e.,
allowing too large a class o f grammars

The nonrecursiveness o f transformational languages was shown by Pe
ters and Ritchie (1971) to arise solely from the fact that for any arbitrarily
given transformational grammar G, there is no upper bound on the number
o f S-rooted subtrees that can occur in the base phrase marker underlying
x. This is a consequence o f the fact that the theory allows the transforma
tional rules to pare down base phrase markers containing a large number of
component S trees to produce very short strings without violating the con
dition on recoverability o f deletion In order1 for transformational grammars
to generate only recursive sets they would have to be restricted in such a
way that for any given gr ammar and any given sentence there is a procedure
for determining the maximum number o f cycles that could be involved in
the derivation o f the sentence by the grammar This would be assured
if transformational grammars had, for example, what Peters (1973) has
termed the Survivor Property: “if <f> is the input domain o f any cycle , .
and ip is the output from that cycle, then ip contains more terminal nodes
than any subpart o f <p on which the transformational cycle operated earlier
in the derivation.” Peters argued that existing transform ational grammars
did exhibit this property (with some minor exceptions which do not affect
the overall result), a claim challenged by Wasow (1979), who argued that
existing grammars could be shown to meet the weaker Subsistence Prop
erty (obtained by replacing “more” in the above condition by “ no fewer ”)
This latter property had been shown in unpublished work by M yhill to be
sufficient to guarantee the generation o f only recursive languages

The insufficiently restricted state the theory allowed an even more dis
turbing conclusion to be drawn: Given the sort o f data that linguists or
dinarily consider relevant, the Universal Base Hypothesis (the conjecture
that the gramrpars o f all natural languages have the same base rules) could
not be proved false . The essential part o f the argument comes in showing
that even the trivial base component consisting o f just two right-linear rules,

(22- 1) 1.
2, S ̂ &\ &2 • • • b

together with a small number o f transformational rules, suffice to generate

T r a n s f o r m a t i o n a l g r a m m a r s 559

any recursively enumerable language on the alphabet {a i , a2, .. ,. , a „ } . From
this it is relatively straightforward to show that there are an infinite number
o f such trivial “universal bases.” This result still holds when the grammar
is constrained to be ‘descriptively adequate,’ in the sense that it give the
intuitively correct results with respect to grammaticality, ambiguity, and
paraphrase. Thus, given the powerful nature o f the standard theory, certain
propositions such as the Universal Base Hypothesis, whose truth value ought
to depend on the facts o f natural language, turn out to be trivially true.

Results such as these provide a particularly convincing demonstration o f
the im portance o f finding precise mathematical formulations o f the gram
mars allowed by a linguistic theory, for it is only with the aid o f such for
mulations that the consequences o f the theory can be carefully investigated.
W ithout them, we have little hope o f being able to prove a theory wrong,
much less o f seeing wherein it fails and how it might possibly be corrected.

Appendix E-I

The Chomsky Hierarchy

Figure E.I-1 shows the inclusion relations that hold among the formal lan
guages considered in this section (this is essentially the Chomsky Hierarchy),
Tables E.I-1 and E.I-2 are a summary o f closure and decision properties for
these classes o f languages

561

5 6 2 A p p e n d i x E - I

* The context sensitive languages are the non-deterministic linear bound automaton
languages—{e } It is not known whether the deterministic linear bounded automaton
languages are equal to the non-deterministic lba languages or are a proper subset.

Figure E .1—1: Inclusion relations o f the
classes o f formal languages

T h e C h o m s k y H i e r a r c h y 563

Operation
comple fl with a regu

Class o f languages U n mentation • * lar language
Regular yes yes yes yes yes yes
Det, pda no no yes no no yes
Context free yes no no yes yes yes
Context sensitive yes yes ? yes no* yes
Recursive yes yes yes yes yes yes
Recursively enu
merable

yes yes no yes yes yes

T The context sensitive languages do not contain e and therefore ale never equal to S*

Table E .I-1 : Summary o f closure properties
o f classes o f formal languages

Question
x € L{G) L(G) = L(Gi) C i(G i) = L{Gi)n

Class o f languages L{G)t = 0? £*? £(<?*)? £(<?*)? L(G2) =0?
Regular' yes yes yes yes yes yes
Det. pda yes yes yes no 7 no
Context free yes yes no no no no
Context sensitive yes no yes} no no no
Recursive yes no no no ho no
Recursively enu
merable

no no no no no no

 ̂ This case is trivially decidable (the answer is always no) because the context sensitive
languages do not contain e.

Table E .I-2 : Summary o f decidability
properties o f classes o f formal languages

Appendix E-II

Semantic Automata

Since the earliest days o f modern generative linguistics the theory o f au
tom ata and their relation to formal grammars has been a cornerstone of
syntactic linguistic theories, but recently semantic applications have been
developed by Johan van Benthem for ‘quantifier autom ata’ In this section
the main idea is outlined and illustrated, but for proofs o f the advanced
theorems the interested reader is referred to van Benthem (1986), chapter 8.

A generalized quantifier is interpreted as a functor D e A B which assigns
to each domain E a binary relation between its subsets A and B (see Chapter
14), In the procedural view o f quantifiers the determiner D o f the N P takes
as input a list o f members o f A marked for their membership in B and either
accepts or rejects the list. In its mathematical formulation a determiner D
is presented with finite sequences o f 0 ’s and l ’s, where 0 stands for members
o f A — B and 1 for members o f A f) B , respectively The output o f D is either
‘yes’ or ‘n o ’ , depending on whether or not D e A B is true for the sequence
read

Examples:

E v e r y A B is recognized by the finite state machine in Fig, E.II-1. E v ery
A B is true iff \A — B\ = 0, so the E v e r y automaton should accept all and
only those sequences consisting o f only l ’s.

In all figures So is the initial state, and the square state always marks
an accepting state, so in Fig, E.II-1 So is also the accepting state. For
instance, for e v e r y m a n w alks the l ’s represent men who walk and the
0 ’s men who do not walk. The automaton accepts only l ’s, i.e., whenever
A C A fl B. The negated quantifier n ot e v e r y A B is obtained by reversing
the accepting and rejecting states o f the e v e r y automaton.

5 6 5

5 6 6 A p p e n d i x E - I I

Q 1 -*̂ 0 H

Figure E .II-1 : E v e r y automaton

Figure E .II-2 : N o t e v e ry automaton

The n ot e v e ry automaton accepts sequences that consist o f at least
one A that is not in B. Reversal o f accepting and rejecting states in finite
state automaton for a determiner gives in general the automaton for the
(externally) negated determiner. The automaton for at least o n e (s o m e),
the dual o f e v e ry , should accept any sequence containing at least one 1, i e ,
one A that is also in B. It exchanges 1 and 0 in the initial state o f the e v e ry
automaton and reverses its accepting and rejecting states.

To complete the traditional Square o f Opposition the n o automaton,
the negation o f the at least (s o m e) automaton, reverses its accepting and
rejecting states, and accepts only sequences consisting o f only 0’ s.

S e m a n t i c a u t o m a t a 567

Figure E , II—3: A t least o n e (s o m e)
automaton

Figure E .II-4 : N o automaton

Com parison to the tree o f numbers
There is a clear relation between the finite state automata for these de

terminers and their tree o f numbers representation (see Chapter 14), In a
tree o f numbers a node (x , y) corresponds to x 0’s and y l ’s in the input
for the automaton, since x = \A — B\ and y = \A fl B\, The tree for e v e ry
shows that only the right most pair o f numbers on each line is not in the
quantifier. The trees for at least o n e (s o m e) and n o are related in exactly
the same way. Thus we see that negation o f a quantifier reverses the tree
pattern and switches accepting and rejecting states.

From a given tree the corresponding automaton can be derived by a
reduction algorithm. Let us look at the example for at least on e first.
Nodes in the tree are first identified with states, connected by adding 0 ’s
or l ’s, and accepting states are indicated by squares. This can be shown
equivalent to the simpler automaton in figure E II-3 by the reductions in

5 6 8 A p p e n d i x E - I I

Figure E ,II-5 : The at least on e tree o f
numbers turned into an automaton

Fig. E.II-6.
The procedure which, turns a tree into an automaton is specified as:
(i) look at the downward triangle generated by a node (x , y)

(ii) turn it into a + / — pattern
(iii) if it is identical to the triangle pattern of the node above and to the

right, it should correspond to the same state as that one
(iv) i f it is identical to the node up and left, it is the same state as that

one
(v) the minimum number o f states should be the number o f distinct

triangle patterns in the tree
This procedure may not be completely general for arbitrarily com plex de
terminers, but it works well for the limited cases we consider here. Here is
one more complicated example for e x a c t ly tw o A B ,

In Figure E.II-7 the square states are the accepting states again, and
the bold face states represent the four states needed for the automaton,
corresponding to the four different triangle patterns in Fig. E.II-8. The
e x a c t ly tw o automaton is shown in Fig. E.II-9-

S e m a n t i c a u t o m a t a 569

(1) mark all accepting states with | + | — all rejecting states with | — |

(2) the configuration: +

+ +
corresponds to the a c ce p ta n ce fo r e v e r after-state

(3) the configuration:

0/ \ 1

corresponds to the r e je c t io n fo r e v e r after-state
(4) the configuration: +

0 /

corresponds to the a c ce p ta n ce w ith 0-state
(5) the configuration:

0 /

corresponds to the r e je c t io n w ith 0-state
(6) the configuration: +

corresponds to the a c ce p ta n ce w ith 1-state
(7) the configuration:

corresponds to the r e je c t io n w ith 1-state

Figure E..H—6..

O '

o -

Jx,y

A p p e n d i x E - I I

Figure E J I-7 : The tree/autom aton for
e x a c t ly tw o

S e m a n t i c a u t o m a t a 571

0 ,2 : +
+

/ A/
+

/

0,3:

Figure E.H-8.

Higher order quantifiers
The determiner m ost is not recognized by any finite state machine; this

follows from the Pumping Lemma. The language for m o st is context free
so it can be recognized by pushdown automaton. The idea is that the stack
stores the values read, and that complementary pairs 0,1 or 1,0 o f the top
stack sym bol and the sym bol being read are erased as they occur. W hen
the entire sequence has been read the stack should only contain l ’s. This
is slightly liberal version o f a pushdown automaton accepting with a non
empty stack, but it can be turned into a normal pushdown automaton with
some additional encoding.

5 7 2 A p p e n d i x E - I I

It turns out that higher order quantifiers may need context free languages,
but, for instance, the higher order quantifier a n e v e n n u m b e r o f is rec
ognized by a finite state machine, The following theorem characterizes the
first-order definable determiners.

T h e o r e m E .H .l ('van Benthem (1986)) All and only all first-order definable
q u a n tifiers are computable by permutation-invariant and acyclic finite state
machines. ■

Permutation-invariance means that any permutation in the order o f l ’s and
0’s o f an accepted or rejected list is accepted or rejected, and an automaton is
acyclic when it contains no non- trival loops between states, A proportional
determiner like at least tw o -th ird s is essentially context free A pushdown
automaton for it keeps track o f two top stack positions, comparing them with
the next sym bol read. If it reads 1 with 1,0 or 0,1 on top two positions of
the stack it erases that top and continues. Likewise if it reads 0 with 1,1 on
top. In the other cases the sym bol read is stored on top o f the stack. W hen
the entire sequence is read, the automaton checks if the stack contains only
l ’s, and if so, it recognizes the sequence.

Many other determiners can be recognized by finite state or pushdown
automata. It turns out that natural language determiners venture rarely, if
at all, beyond the context free realm. For the proofs and more substantial
arguments the interested reader is referred to van Benthem (1986),

Exercises

1. Design finite state automata for:

(a) at least th re e A B

(b) a ll bu t o n e A B

(c) a n e v e n n u m b e r o f A B

(d) a lm ost a ll A B (in the sense o f ‘with at most finitely many ex
ceptions’)

leview Exercises

1. Consider the following grammar G:
S —> N seems certain
S —► I am right
N —> that S

(a) List three members o f L (G)

(b) Abbreviating so that £ = { s , c , i , a , r , t } , construct a push down
automaton which accepts L(G).

2. For each language below, construct a non-deterministic finite state
automaton which accepts all and only the specified strings. In all
cases the input alphabet {0 ,1 } .

(a) The terminal language o f the following grammar:
s —¥ 0 A
s — ¥ I B
A — ¥ 0 A
A —¥ IB
B —¥ 1A
B —¥ 1

(b) The set o f all strings two or more symbols long whose first and
last symbols are identical,

(c) The set whose regular expression is (01)*1"1.

3. Find a regular expression for:

(a) The language o f problem 2a above.

(b) The intersection o f the languages o f 2b and 2c.

573

574 R e v i e w e x e r c i s e s

(c) The set o f all strings o f l ’s and 0’s in which every substring of
consecutive 1 ’s is of even length,
e g. include: but not:

011001111000 00100
0000 00110111
1111 01
0111111 111

4. Construct a Turing machine which operates with the alphabet { # , a,b}
which when started in q0 will move to the right until it encounters an
а, change the a into an 6, then move left until it encounters a different
б, change that b into an # , and halt. I f there is no a to the right of
the initially scanned square, or if there is such an a but no b to its left,
the machine will never halt.

Solutions to

selected exercises

P A R T A

C H A P T E R 1

1. (a) t; (b) f; (c) f; (d) t; (e) f; (f) t; (g) t; (h) f; (i) f; (j) t; (k) f
(1) t; (m) f; (n) t; (o) f; (p) f; (q) f; (r) t

2. (a) yes; (b) no; (c) yes; (d) { { S} }

3. (a) Rule: 1. 5 £ A
2 If x £ A, x + 5 E A

Property: A = { x | x is positive and a; is a multiple o f 5 }
(b) Property: B = { x | x + 3 is a positive multiple o f 10}

or B = { x | x is a positive integer whose last digit is 7}
(c) Rule 1. 300 £ C

2 If x £ C and x < 400, x + 1 £ C
(d) Rule: 1, 3 £ D

2 4 E D
3. If x £ D , x + 4 £ D

or 1. 3 £ D
2. If a; £ D and x is odd , x + 1 £ D
3. If x £ D and x is even, x + 3 £ D

Property: D = {x | x is a positive multiple o f 4 or
x + 1 is a positive multiple o f 4}

S o l u t i o n s

(e) Ride: 1, 0 E E
2. I f x £ E, then x + 2 £ E
3 If x £ E, then —x E E

(f) Property: F = { x j x = ^ where n is a non-negative integer}

(c) (0 } ; (d) { { 0 } ,0 } ;
(e) {0, { {a}} , {{&}},{ {a ; &}}, {0}, {0, { { « } } , {0, {6}},{0, {a,6}}, {{a},
{ 6 } } , { { a } , { a , & }},{ {& },{ a , 6 } } , { 0 , { a } , { 6 } } , {0 , {a } , { a , b } } , { 0 , {6 } ,
{a, &}}, { { a } , {6 } , {a, b} } , {0 , {a } , {6 }, {a , 6>>}

(a) {a , 6, c, 2 }, (b) {a , b, c, 2 ,3 ,4 } , (c) { a ,6 , c , { c } } , (d) {a , 6, {a . 6},
{ c , 2 } } , (e) {6 ,c } , (f) { a , 6 }, (g) { a,b} , (h) { c } , (i) 0, (j) 0, (k) 0,
(1) {c , 2 ,3 ,4 } , (m) 0, (n) {2 } , (o) { a ,6 , { c } } , (p) 0, (q) { { a , 6 }, {c , 2 } }

(a) { a , b , c , 2 } , (b) {a ,6 ,c ,2 } , (c) { a } , (d) {2 } , (e) {2 } , (f) { a , b , c , 2 ,
3 ,4 , { c } } , (g) {2 ,3 ,4 , {a, b}, {c , 2 } } , (h) {2 ,3 ,4 , {a , 6 }, {c , 2 } } , (i) 0,
(j) U , (k) { 6 , c , 2 } , (l) (2 } , (m) U , (n) U

(a) (i) {a,b, c ,d}\ (i i) { c } ; (i i i) { a , b , c , d} ; (i v) 0; (v) {c,d}\ (v i) 0;
(v i i) { a , b }

(b) (i) no; (i i) yes

(b) 1 . A n (B - A)
2 A n (5 n i ') Compl.
3. (B fl A') n A Comm.
4. B fl (A' fl A) Assoc.
5 B fl (A n A') Comm.
6. B fl 0 Compl.
7. 0 Ident.

(b) 1 . (A U B) - (A n B)
2. (i u 5) n (A n 5) ' Compl.
3 (A u B) n (A ' u B ') DeM.
4. ((iuB)n i')u((4u5)n5') Distr,
5 { A n A') u { B n A') u (A n B 1) u { B n B') Distr, (twice)
6. 0 u { B n A') u (A n B') u 0 Compl, (twice)
7. (.B n A') u (A n B') Ident, (twice)
8 , { B - A) U (A - B) Compl. (twice)
9. (A - B) U (B - A) Com m (twice)

(c) (IU7)- (X n Y) = (y U X) - (y n X) by the com m utativity of
union and intersection.

P a r t A C h a p t e r 2 5 7 7

(d) (i) 0, (ii) A', (iii) A, (iv) B - A, (v) A U B

(e) 1
2
3
4.
5
6.
7.
8 .

9.

(A - B) + (B - A)
((A - B) ' J (B - A)) - ((A - B) n (B - A)) D ef of A + B
{ A + B) - { { A - B) n { B - A)) D ef of A + B
(A + B) - ((A n B ') n (B n A ')) Compl
(4 + 5)-(Ani'nBn B') Assoc., Comm.
(A + B) — 0 Compl., Ident,
{ A + B) n 0' Compl
(A + B) n U Compl
(A + B) Ident.

(f) 1. (A + B) C B
2. (A + B) U B = B Cons. Prin.
3. ((i u B) - (A n 5)) u B = f l Def. o f A + B
4. ((4 u B) n (A n 5) ') u 5 - 5 Compl,
5. ((4 u f l) n (i ' u B ')) u 5 = 5 DeM,
6. ((A u 5) u 5) n ((4 ' u £ ') u B) = 5 Distr,
7. (A U (B U 5)) fl {A! U (B' U 5)) = B Assoc, (twice)
8. [A U B) fl (A 1 U U) = B Idemp.,, Ident,
9. { A U B) fl U = B Ident-

10. A l l B = B Ident
11. A C B Cons. Prin,

C H A P T E R 2

1. (a) (i) { (6 ,2) , (6 ,3) , (c , 2) , (c , 3) } ;
(i i) { (2 ,6) , (2 , c) , (3 ,6) , < 3 ,c) } ;
(i i i) { (6 ,6) , (6, c), (c ,6) , (c , c) } ;
(iv) { (6 ,2) , (6 ,3) , (c , 2) , (c, 3) , (2 ,2) , (2 ,3) , (3 ,2) , (3 ,3) } ;
(v) 0 (since A fl B = 0); (v i) same as A x B

(b) (i) Tiue; (i i) False; (i ii) False, (c , c) £ (A x A) ; (iv) True;
(v) True; (v i) True; (v i i) Time

(c) (i) dom(iZ) = A, ran(i?) = {6 ,2 ,3 } ;
(i i) R 1 = { (6 , c>, (6 ,3) , (c ,6 > , (c , c) } ,

R~1= { (6 ,6) , (2 ,6) , (2 ,c> , (3 , c) } ;
(i i i) No

5 7 8 S o l u t i o n s

2. In relations from A to B each, o f a, b, and c can be paired with 1,
with 2, with both 1 and 2, or with neither, i e , in four possible ways,
Therefore there 4 x 4 x 4 = 64 distinct relations. In functions from
A to B each, o f a, 6, and c can be paired with 1 or 2, i e.., in two
possible ways. Therefore, there are 2 x 2 x 2 = 8 distinct functions.
Six o f these are onto (only {(a , 1), (6 ,1), (c, 1)} and {(a , 2), (6 ,2), (c, 2)}
are not onto). Since none o f these are one-to-one and onto, none have
inverses that are functions There are 8 X 8 distinct relations from B to
A o f which 3 x 3 = 9 are functions, None are onto, six are one-to-one,
and none have inverses that are functions

3. (a) R 2 o R , = { {1 ,2 } , (1 ,4), (1 ,3), (2 ,2), (2 ,4), (2 ,3), (3 ,4), (4 ,2),
(4 ,3), {4 ,4 }} , R 1 o R 2 = { {3 ,4 } , {3 ,1 }, {1 ,1 }, {1 ,2 }, {1 ,4 }, {2 ,4 }, {2 ,3 },
{2 ,1 }, {1 ,3 }}
(b) R - ' o R , = { {1 ,1 } , {1 ,2 }, {1 ,4 }, {2 ,1 }, {2 ,2 }, {2 ,4 }, {3 ,3 }, {3 ,4 },
{4 ,4 }, {4 ,3 }, {4 ,2 }, {4 ,1 }}

C H A P T E R 3

1. (a) (i i) irreflexive, non-symmetric, non-transitive
Note : In considering transitivity, it can be misleading to consider only
triples o f distinct elements, as this example shows For if a is the
brother o f b(aBb) and bBc, and a, b,c are all distinct, a must indeed
be the brother o f c. But consider a pair o f brothers: aBb and bBa\
now it is false that a is the brother o f a, as one would have to conclude
if the relation were transitive.

2. (a) Irreflexive (no utterance forms a minimal pair with itself), symmet
ric, nontransitive (e g ,, {ca t, b a t} and {bat, b a g } are minimal pairs
but not { cat, b a g }), and nonconnected;
(d) Irreflexive or reflexive (depending on how the term ‘ allophone’ is
interpreted), symmetric, transitive (if “phonem ic overlap” is excluded,
otherwise nontransitive) and nonconnected. If one takes the view that
it is reflexive, symmetric, and transitive, then A is an equivalence rela
tion that partitions the set o f English phones into equivalence classes
corresponding to the (“ taxonom ic”) phonemes of English;
(e) Reflexive, symmetric, transitive, and nonconnected (in general).
Each equivalence class contains all the sets that have the same num
bers o f members;

P a r t A C h a p t e r 4 5 7 9

3. (a) R 1 and R j"1: reflexive, antisymmetric, nontransitive, nonconnected;
R [: irreflexive, nonsymmetric, nontransitive, nonconnected; R 2 and
R2 X: irreflexive, asymmetric, transitive, connected; R '2: reflexive, anti
symmetric, transitive, connected; R& and R^ 1: nonreflexive, symmet
ric, nontransitive, nonconnected; # 3 : nonreflexive, symmetric, non-
transitive, nonconnected; R 4 and R ^ 1: reflexive, symmetric, transitive,
nonconnected; R'4: irreflexive, symmetric, intransitive, nonconnected;
R 4 (= R 4 1) is an equivalence relation. The partition induced in A is
{ { 1 ,3 } , { 2 ,4 } }
(b) { (1 ,1) , (2 ,2) , (3 ,3) , (4 ,4) , (2 ,3) , (3 , 2) }
(c) 15

4. The fallacy lies in ignoring the if-clause in the definition o f symmetry:
i f aRb, then bRa The “p roo f” takes aRb for granted, so a counterex
ample can be constructed by finding a relation R which is symmetric
and transitive on a certain set S where for some a, a does not bear the
relation R to any member o f S Such an example is the following: Let
S be the set o f all humans and let R be defined by ‘aRb i f and only
i f a and b have the same parents and those parents have at least two
children’ Then an only child does not bear R to anyone, including
himself, (A simpler R might be ‘has the same oldest brother as’ , but it
could be objected that the relation is simply not defined, rather than
failing to hold among people who have no older brothers)

5. (a) R = { {1 ,1 } , (2 ,2), (3 ,3), (5 ,5), (6 , 6), (10,10), (15,15), (30,30),
(1 ,2), (1 ,3), (1 ,5), (1 ,6), (1 ,10), (1 ,15), (1 ,30), (2 ,6), (2 ,10), (2 ,30),
(3 ,6), (3 ,15), (3 ,30), (5 ,10), (5 ,15), (5 ,30), (6 ,30), (10,30), (15 ,30)},
which, is reflexive, antisymmetric, transitive, and nonconnected.
(b) 1 is minimal and least; 30 is maximal and greatest.

C H A P T E R 4

1. There is one-to-one correspondence o f every set with itself— for exam
ple, the identity function.. Thus, the relation o f equivalence o f sets is
reflexive If / is a one-to-one correspondence from A to B, then f ~ 1
is a one-to-one correspondence from B to A. Therefore, the relation is
symmetric If / and g are one-to one correspondences from A to B and

580 S o l u t i o n s

from B to C, respectively, then g o / is a one-to-one correspondence
from A to C (This can be easily shown by an indirect proof,) Thus,
the relation is transitive

2. The set can be denoted { 101, 102, 103, 104, . ., }

4. The cardinality is No. A 1-1 correspondence between the set o f all
sentences o f English and the natural numbers could be established as
follows: First, arrange all the sentences into groups according to the
number of symbols in their written form, and order these groups lin
early starting with the group o f the shortest sentences. W ithin each
group, arrange the sentences alphabetically (using some arbitrary con
vention for the punctuation marks and space). This procedure puts
all the sentences into a single linear order, and thus establishes a 1-1
correspondence between the sentences and the natural numbers

5. The hotelkeeper uses his intercom to ask each guest to move into the
room whose number is twice the number o f his present room That
leaves all the odd numbered rooms empty, so each football player can
double the number on his shirt and subtract one to find his room
number,

6. (a) The turtles can be numbered as follows:

0
1 2

3 4 5

Since the turtles can be effectively listed, so can the corresponding m o
notheistic sects, and the cardinality o f the set o f such sets is therefore
No!
(b) Taking the preceding enumeration, it is clear that each sect corre
sponds to a subset of the set o f all natural numbers; the atheistic sect
corresponds to 0, the monotheistic sets to singleton sets. The set of
all sects therefore can be put in one-to-one correspondence with V (N)
and thus has cardinality 2Xo „

7. (a) Let A = { 1 ,2 , 3 , . , , } and B = {0 }
(b) Let A = { 0 ,1 ,2 ,} and B = {a,b} . The set { {0 , a) , (0 ,6) ,

P a r t A R e v i e w P r o b l e m s 5 8 1

{1 , a) , {1 , b) , (2 , a) , (2 , 6), . . . } is mapped 1-1 onto {0,1,2,3,.. } by
f (n , a) = 2n, f (n , b) — 2n + 1.
(c) Let A — {0,2,4,6, , } and B = { l , 3,5,7,.. . }.
(d) Let A = {0,1,2,3,. . } and let B be the set o f “primed” integers
{O', 1', 2', 3', } disjoint from A A x B is equivalent to A x A, which
has cardinality No.

R E V IE W PR O B LE M S, PART A

1. (a) A 4; (b) 0; (c) A 5; (d)A 4

2. Sample answers:
(a) Let aRb be a + b = 5 or | a — b |= 1 or a x b = 24 or ‘ a + b is o d d ’.
(b) Let aRb be a > b or ‘ a — b is positive’ .

3. (a) Antisymmetric, transitive, reflexive
(b) Yes. If n £ N, n = {0,1,2,3,. , . ,n — 1 } . If x £ n, x is a natural
number smaller than x. Then since all the members o f x are natural
numbers smaller than x, they are also smaller than n and therefore
members o f n. Hence a; is a subset o f n. It is a proper subset, i.e , not
equal to n, because x was given as a member of n, and the members
o f n do not include n itself.

5. (a) The set o f all members could be represented graphically in a family
tree diagram:

where left-to-right order o f branches from a single node represents
oldest-to-youngest order among brothers. Then the nodes can be ef-

582 S o l u t i o n s

fectively enumerated proceeding top-to-bottom and left-to-right:

0

(b) Assume that the set o f all clubs is denumerably infinite, so that
the clubs could be listed as Co, Ci , C2, C 3 , •. Then define a new
club C “ by the membership requirement:

man; £ C ‘ i f and only if maiij $ C r

Since C* is thereby made distinct from every club in the putative
listing, the listing could not have been complete, i.e , no complete
effective enumeration is possible.

6. (asterisked entries are discussed below)

PO SO WO
(a) yes yes no
(b) yes yes no
(c) yes yes no*
(d) no* no no
(e) yes yes yes
(f) yes no* no
(g) yes yes yes*
(h) yes yes no*

(c) It is easy to be misled into thinking that the negative rational
numbers with 0 are well-ordered by the relation > , because the whole
set does have a first element, namely 0, But well-ordering requires that
every subset have a first element, and there are in this case infinitely
many subsets that do not. Consider, for example, the subset consisting
o f all the negative rational numbers less than —1, There is no first (i.e.
largest) number in that set, since for any rational number x which is

P a r t A R e v i e w P r o b l e m s 583

less than —1 it is possible to find another rational number y which is
larger than x but still smaller than —1;
(d) The set is not even partially ordered, because two distinct strings
may have the same length— i.e., antisymmnetry does not hold;
(f) The ordering looks like this:

0 , 2 , 4 , 6 , 8 , ..

1 , 3 , 5 , 7 , 9 , .

with no relation holding between any evens and any odds. This sort
o f ordering satisfies the partial ordering definition, but fails to meet
the linear-ordering requirement that R hold in some direction between
every pair o f elements.
(g) The ordering looks like this:

0 , 2 , 4 , 6 , 8 , 1 0 , , ,, , , 1 , 3 , 5 , 7 , 9 , . .

This is a well-or dering; every subset has a first element, which will be
the smallest even number in the subset, if there axe any, and otherwise
the smallest odd number in the subset;
(h) The ordering looks like this:

, 9 , 7 , 5 , 3 , 1 , 0 , 2 , 4 , 6 , 8 , , , , .

This is not a well-ordering, since any subset which includes infinitely
many odd numbers will lack a first member.

7. If | A | > | B | and | B | > | C |, there are functions f : A —i B and
g : B —> C which are onto B and C, respectively. We prove that g o / is
an onto function (from A to C). Assume that it is not onto. Then there
is some z E C such that for no x £ A, (g o f) (x) = z, i.e., g (f (x)) = z.
But g is onto C , and thus there is some y E B such that g(y) = 2 ,
Thus it must be that there is no x £ A such that / (x) = y. But this
contradicts the assumption that / is onto B. Therefore, g o f i s onto
C, and |A| > | C |

S o l u t i o n s

P A R T B

C H A P T E R 6

(Other proposition letters may be used, other interpretations may be
argued for, and other equivalent symbolizations are possible for any
given interpretation.)

(a) j = John is in that room , m = Mary is in that room , j V m
(b) a = the fire was set by an arsonist, e = there was an accidental

explosion in the boiler room , (a V e) & ~ (a& e), or equivalently,
a <-+ ~ e

(c) r = it rains, p = it pours:
(1) I f the statement means that every rainstorm is a big one, then
“ when” must be translated as “if and only if” , since it can’t pour
without raining: 7* <-+ p
(2) In the famous salt advertisement, the second “it” refers to
salt, which, presumably can also pour when it isn’t raining, 7* —> p

(d) s = Sam wants a dog, a = Alice prefers cats, s & a, (The difference
between “but” and “ and” relates to the content o f the conjoined
sentences, not their truth values)

(e) I = Steve comes home late, s = Steve has had some supper, 7* = we
will reheat the stew:
(1) If one interprets the “if” as “if and only if” , then the propo
sition can be symbolized as (/& ~ s) <-+ r
(2) Under the interpretation that the stew may be reheated in
any case, then the symbolic form is (/& ~ s) —> r

(f) c = Clarence is well educated, r = Clarence can read Chuvash,
c —> 7*

(g) c = this cat goes, i = I go, c V i, or equivalently ~ c —> i (The
statement might also be taken to mean ~ c <-+ i.)

(h) m = Marsha goes out with John, b = John shaves off his beard,
d = John stops drinking, m —> (b V d) (The statement might also
be taken to mean m <-+ (b & d).)

(i) n — negotiations commence, b = Barataria ceases all acts o f ag
gression against Titipu, n —> b

P a r t B C h a p t e r 6 5 8 5

2. (a) j = John is going to the movies, b = Bill is going to the movies,
t = Tom is going to the movies, j & 6 &

(b) s = Susan likes squash, t = Susan likes turnips, ~ (s V t) or
equivalently, ~ s & ~ t

(c) p = Peter is going to the party, / = Fred is going to the party,
i — I am going to the party, ~ {p V /) t or equivalently,
(~ p & ~ /) —>~i

(d) I = Mary has gotten lost, a = Mary has had an accident, h —
Mary will be here in five minutes, (~ I & ~ a) —> h or equivalently,
~ (I V a) —> h

(e) b = a bear frightened the boys, w = a w olf frightened the boys,
b y w

(f) p = a party would have amused the children, s — a softball game
would have amused the children, p S z s . (Perhaps p V s could be
argued for, but under the natural interpretation that either one
would have amused them, then one is saying both that a party
would have amused them and that a softball game would have
amused them.)

3. (b) False; (d) True; (f)F alse

4. (a) and (b) axe logically equivalent.

5. (b) p : 1, q : 0, or p : 0, q : 1;
(d) p : 1, q : 0, r : 0 or 1, s : 1;
(e) p : 1, q : 0, r : 1, s : 1, or p : 0, q : 1, r : 1, s : 1

6. (a) tautology; (b) contingent; (c) tautology; (d) contradiction; (e) con
tingent

7. (a) p —> q can be defined as ~ (p & ~ q)
(b) p & q can be defined as ~ (~ p V ~<z)
(c) p <-+ q can be defined as (p —> q) & (q —> p)

8. (a) 1. V { p&q)
2. (~ p V p) & (~ j > V {) Distr.
3. (pV p) k (~ p V q) Comm.
4. T k (- p V q) Compl.
5. (~ p V ?) f c T Comm.
6. ~ p V { Ident.

(b) ~ p ; (c) F; (d) ~ p ; (e) T

586 So l u t i o n s

1 . p - > q (d) 1. * — g
2 . q —> r 2 r 3
3. ~ r 3 ~ r —>5

4 2,3, M T 4. P Auxiliary Premise
5 ^ p 1,4, M.T. 5 q 1,4, M.P.

6 r̂> 7» 2,5, M .T.
7. £ 3,6, M.P.
8. P — » 5 4-7, C.P.

(f) 1. p V (q & r)
2, ~ t
3. (p V q) —> (s V t)
4.
5. (p V q) & (p V r) 1, Distr.
6. p V { 5, Simpl,
7 s V t 3,6, M.P.
8. s 2,7, D.S
9. p V r 5, Simpl,

10. r 4,9, D.S.
11 r & s 8, 10, Conj.

1 . ~ p —> 5

2. r -* (« V i)
3. s —¥ '“•w 7*
4. P --» '■'W t
5. r Auxiliary Premise
6. s V f 2,5, M.P.
7. ~ s 3,5, M.P.
8. t 6,7, D.S.
9. 4,8, M T,

10. 3 1,9, M.P.
11. r -> 3 5-10, C.P.

P a r t B C h a p t e r 6 587

0) 1 p —> (q & r)
2 . q —> s
3. r —> t
4 (s u
5. u
6. P Auxiliary Premise
7 q & r 1,6, M.P,
8. 9 7, Simpl
9, s 2,8, M.P

1 0 . r 7, Simpl.
1 1 . t 3,10, M.P
12 s &zt 9,11, Conj
13. ~ u 4,12, M P
14. u & ~ u 5,13, Conj,
15. 6-14, Indirect P roof

(1) 1 . P
2 (p t q) V { p t r)
3. (P V 9) —
4. p y q 1, Addn
5 rv ̂ 3,4, M.P,
6 . p & (9 V r) 2, Distr.
7. 9 V r 6 , Simpl,
8 . 9 5,7, D.S
9. p k q 1,8, Conj,

1 0 . (p &zq) V (~ p & ~ 9) 9, Addn,
1 1 . P 9 10, Bicond.

10. (a) valid, B — the butler killed the baron, K = the cook killed the
baron, C = the chauffeur killed the baron, S — the stew was poisoned,
Q = there was a bom b in the car:

1. B V K V C
2. (K —> S) & ((7 —► Q)
3. ~ S & ~ 5
4. ~ B 3, Simpl
5 K y C 1 ,4 , D.S.
6 . K - * S 2, Simpl.
7 ~ S 3, Simpl.
8 . ~ K 6,7, M .T.
9 C 5,8, D.S

588 S o l u t i o n s

(b) Valid; (c) Invalid (recall that lp only if q ’ is represented logically
as p —> 5); (d) Valid; (e) Invalid (let it be false that the segment is
voiceless and let all the other elementary propositions be true).

11. (a) R is an equivalence relation since
(1) it is reflexive: x <-+ x is always true
(2) it is symmetric: whenever x <-+ y is true, y <-+ x is true (since
they have the same truth tables)
(3) it is transitive: if x <-+ y is true; y z is true, then x <-+ z
is true; otherwise, if x z, then for some assignment o f truth
values to elementary statements there would be some y which is
both true and false.

(b) {p , (p V p) , (p & (jV ~ ?)) , (p V (? & ~ ?)) }
{(P V ?) , (~ 3 -> P) , (~ P -> ?) }
{(pV ~p) ,(p - > (? - > p)) , (p V (?V ~ ?)) }

TRUE FALSE
1. p —> (q —> r) p k

~ (~f> V r)
2 . p \/
3. P
4. r
5. p
6 . 6 1 q —> r 6.2 6.1 6.2 P

7. 7.n r 7-12 7.11 7-12 <Z

8 . 8121 8-122 8.121 P 8.122 ~ q

9. 9-122 <Z 9.122

All the subtableaux close, so the tableau closes, and the argu
ment is shown to be valid.

P a r t B C h a p t e r 7 589

TRU E FALSE
1, { (p q) & {s V t)) ((P ?)V ~ (s -> q))

(t —> q)
2. (p -> q)
3 (s v t)
4. (.P ->• ?)

5 ~ (s -> q)

This tableau remains open.

13. (a) (i) KKA.pqA.qrA.ps, (i i) CKNpCNpgg, (i ii) CApqKErsp

(b) (i) p V ((~J>& ~ ?) -> (p t (q <-+ r)))
(i i) (~ (((((p <-» 2) <-+ r) & s) V p) & q) V r) & s
(i ii) ~ ((((;> <-+ ?) f c r) V s) - » i)

(c) NApg o KNpNg, NKpg o ANpNg

C H A P TE R 7

1. (a) (\/x)(B(x) V W (̂i®)) : B (x) - ‘ x is black’ , W (x) - ‘ x is white’
(c) (\/x)(D(x) —> Q(x)) : D(x) - lx is a dog ’ , Q(x) - ‘ x is a quadruped’

(e) (\/x)(3y)L(x,y) : L (x , y) - lx loves j/’

(g) (3x) (\/y)L(x,y) : L (x , y) - lx loves 3/ ’
(i) (' i x) (L(x, x) —> (x = j)) : L (x , y) - ‘ x loves y\ j - ’John’

(k) (\fx) ((W(x) & L(g, x)) - (K(g , x) V M(g , x))) :
W (x) - lx is a wom an’ , L (x , y) - ‘ x loves y\
g - ‘ you ’ , K (x , y) - lx kisses y ’ , M (x , y) - lx loses y ’

(m) (\/x)((P(x) & M (x , h)) —► L(x , h)) :
P (x) - lx is a person’ , h - ‘New Y ork ’, L (x , y) - ‘ x loves y\
M (x , y) - lx Hves in y ’

(o) (\f x) (~L(x , h) —> ~ N (x , h)) :
L (x , y) - lx loves y\ h - ‘New Y ork ’, N (x , y) - ‘ x knows y ’

(q) (\f x) (\/y) ((F(y , x) &G{ x , y , g) (3 z) (H(z , y) k l { g , z , x)))
F (x , y) - ‘ x is a finger o f y\ G(x , y , z) - lx gives y to z\
H (x , y) - ‘ x is the whole hand o f which y is a finger’ ,
I (x , y , z) - lx takes y from z\ g - ‘he’

5 9 0 S o l u t i o n s

(s) ((3a;)iV(a;) —► (\/x)A(x)) :
N (x) - lx is noisy’ , A{ x) - lx is annoyed’

(t) ~ (3 x) N (x) k A (j) :
N (x) - lx made noise’ , A{ x) - ‘ x was annoyed’ , j - ‘John’

(v) (Vx) (A(x) B (x)) :
A{ x) - ‘ x causes bad accidents’ ,
B(x) - lx is a drank driver under 18’

(x) (\/x)(A(x) - * B { x)) :
A(x) - lx is drunk’ , B { x) - ‘for x to drive is risky’

2. (a) ~ { 3 x) (P (x) k (\ f y) (Q (y) -> A(x , y)))

(b) (Vx(Q(x) - > (3 y) (P (y) & A (y , x)))

(d) (Bx) (P (x) k (V y) (Q (y) A (x , y))) , although ‘ some people’ migh
also be taken to mean not ‘ at least one person’ but ‘ at least two
persons’ .

(e) L (x , y) - lx likes y \ (Va;)(£(a;,M ary)) <-+ ~ I (x , M ary))
(g) T (x , y) - lx attempted y\

(\/x){{P{x) k {3y) {Q{ y) k A (x , y))) -> (3 z) (Q (z) k T (x , z)))

3. (a) x in P { x) bound, last x and the y free; (b) x free, y and z bound;
(c) everything bound; (d) first x bound, everything else free; (e) ev
erything bound

4. (a) (l) Yes. Applying (7-24) to (Vz) in the translation gives

(V z)((V *)(B »)F (y , x) k (0 (z) - J (z))).

Then (Va;) and (By) can be moved outside by the following se
quence o f equivalences. Note first that P k Q O { P Q) .
Thus, (\/x) P(x) kQ & ~{ (\/x)P(x) - » ~ Q) o

~ (3a ;)(P (a ;) -+ ~ Q) (by Law 11) o
(Va;) ~ (P (x) —> ~ Q) (by Law 1 '") O
{ \ f x) { P { x) k Q) .

The steps for (3 y) are similar.
(2) No. Applying (7-24) in reverse to (Vz) in (2) gives

(B y)(V *)(JP (», *) k (V z)(0 (z) - J (z)))

which, says ‘There is something which is everything’s father, and
all odd numbers axe integers’ .
(3) Yes. Applying Law 6 to (1),

P a r t B C h a p t e r 7 5 9 1

(b) (1) No (1) is equivalent by Law 9 to B(a) —> (Va;) (M (x) -
H{ x)) , which is equivalent by the steps noted in the answer to
(a ,l) to B{a) —> (\/x) (M(x) k ~ H (x)) , which says ‘I f Adam is a
bachelor, then everything is a man and a non-husband’ , or loosely,
‘I f Adam is a bachelor, then everyone is a bachelor’ ,
(2) Yes. Apply Law 10 to (2), then Law 1.
(3) No. ‘I t ’s not the case that if Adam is a bachelor then all men
are husbands.’ (N.B. This is equivalent to: ‘A dam is a bachelor
and not all men are husbands. ’)
(4) Yes.,

(c) (l) Yes (by equivalences concerning — k , and ~).
(2) Yes, (by Law 12)

5. (a) (\/x)(I(x) -> (3 y) (I (y) k L (y , x))) ,
(\fx) (3y) (I(x) -> (I (y) k L (y , x))) ,
~ (3 x) (I (x) k ~ (3 y) (L (y , x))
(and many others; such listings are never exhaustive)

(b) ((Vx) (P(x) -> 0 (x)) V (3 y) (I (y) k ~ 0 (j /))) ,
{3y) ((\fx) {P{x) -> 0 (x)) V (I (y) k ~ 0 (j /))) ,
By various applications o f commutativity and Laws 9-12:
('\/x) (3y) { {P(x) -> 0 { x)) V { I { y) k ~ 0 (y))) ,
(3 j /)(V z)((P (z) -> 0 { x)) V (I (y) k ~ 0 { y)))
(Note that this is one case in which the order o f universal and
existential quantifiers is immaterial; the reason is that there axe
no two-place predicates relating x and y)

(c) ((3 x) (P (x) k ~ 0 (x)) - (V y)((P (y)& < ?(»,7)) - 0 (y))) . It is
natural to try an alphabetic change o f variable and a reinterpre
tation o f —> in terms o f ~ and V, in hopes o f leading to an ap
plication o f Law 3. However, once we get to: ((Va;) ~ (P (x) k ~
0 (x)) V (Va;)((P(a;) k G(x , 7)) —> 0 (x))) , we see that only Law 4,
which is not an equivalence, will apply. W ith two variables, we
can apply Laws 9 and 12 to get: (\/x)(Vy)((P(x) k 0 (x)) -
((P (y) k G (y , 7)) - * 0 (y)))

(d) (Vx) (f f (x) - » M { x)) - » M(s) ,
(3 x)\{H{x) - » M { x)) - » M(s)) ,
~ A f(s) —> { 3 x) { H { x) k ~ A f(a ;)), etc..

5 9 2 So l u t i o n s

1.
({ { 3 x) A { x) k (3 x) B (x)) C7(a))
(((B y) ^) ^) ^)) - ^)) alph, variant

2. (~ ((3 2 /)A (y) -> ~ (3 z) £ (z)) -> C'(as)) put in terms o f ~,
3, (~ (V 2/) (A (y) -> ~ { 3 z) B { z)) -> C(x) Law 12
4, (~(\fy) (A{y) -> (Vz) ~ £ (z)) -> (7(a;)) Law 1
5. (~ (V y)(V z)(A (y) -> ~ 5 (z)) -> (7(a;)) Law 9
6, ((B2/) (B z) ~ (A (2/) - , ~ 5 (z)) - , (7 (S)) Law 1 (2x)
7, (V y)(V z)(~ (A (y) -> ~ B (z)) -> C(a;)) Law 12 (2x)
8, (\ / y) (\ / z) ((A (y) t B (z)) ^ C (x))

(b) (Va;)yl(a;) <-+ (3 x) B (x)
1. ~ (((Vas)yl(a;) -> (By) B(y)) -> ~ ((3 w) B(w) -> (\/z)A(z)))

alph, variants and in terms o f —>
2. ~ ((3x) (3y) (A(x) -> B (y)) -> ~ (V w)(V z)(£ (w) -> A(z)))

Laws 9, 10, 11, 12
3. ~ ((3x) (3y) (A(x) -> B (y)) -> (3w)(3 z) ~ (5 (w) -> A(z)))

Law 1
4. ~ (\fx)(\/y)(3w)(3z)((A(x) -> B(y)) -> ~ (5 (w) -> A(z)))

Laws 10 and 12
5. (3x)(3y)(\fw)(\/z) ~ ((A (x) -> B(y)) -> ~ (5 (w) -> A (z)))

Law 1
6. (3z)(32/)(Vw)(V z)((A (a;) -> B(y)) & (B(w) -> A{ z)))

7. (a) l„ ~ (3 x) (P (x) k Q (x))
2. (B s) (P (s)& ^ (s))
3 . P (w) S z R (w) 2, E.I.
4. (Va;) ~ (P (x) & Q (x)) 1, Quant. Neg,
5„ ~ (P (w) & Q { w)) 4, U.I.
6, ~ P (w) V ~<3(w) 5, DeM.
7. ^ (w) 3, Simpl.
8„~<3(w) 6,7, D.S..
9. .ffi(w) 3, Simpl,

10. R(w) & ~<3(w) 8,9, Conj.
11, (3zO(.K(zO& ~<5(a=)) 10, E.G.

P a r t B C h a p t e r 7 593

(e) 1 (\/x)(P(x) -> Q (x))
2 R (a)
3 P (a)
4, P{ a) -*■ <3(o) 1, U.I
5. Q{a) 3,4, M .P
6 R{a)&zQ{a) 2,5, Conj
7 (3 x) { R { x) k Q { x)) 6, E.G.

(f) 1 . (V x)((P (x) V Q(x)) -> J2(*))
2 . (Va;)((.ffi(a;) V S(a;)) —> n *))
3. P(t>) Auxiliary Premise
4. (p(«) v $ («)) 1,I.U .
5. P(«) V Q (v) 3, Addn.
6 4,5, M.P.
7, (JZ(t>) V 5(w)) -» 2 » 2 , U.I.
8 . i2(«) V S{v) 6 , Addn.
9. T(v) 7,8, M.P.

10. p (v) - » r(w) 3-10, C.P.
11. (v *) (Jp (SB) - r (*)) 10, U.G.

8. (c) D { x) — x is a duck, 0 { x) — x is an officer, P { x) = x is (one of)
my poultry, W { x) = x waltzes

1. (Vz)(Z>(x) -*■ ~ W (x))
2. (V z) (0 (z) - » W (x))
3, (\fx) (P(x) —> D(x))
4. P{ v) —> -£>(«) 3, U.I.
5. -D('w) —> ~ ^ (v) 1, U.I.
6. p (v) - + ^ w { v) 4,5, H.S.
7. 0 (v) —> W(v) 2, U.I.
8. ~W ’r(v) —» ~ 0 (v) 7, Cond.
9. -P(^) —> ~ 0 (v) 6,8, H.S.

10. (V *)(P (a!) - » ~ 0 (*)) 9, U.G.

594 S o l u t i o n s

9. (a) TRUE
1. ~ { 3 x) F { x)
2 .

3.
4. F(a)
5.

FALSE D — { a , . .}
(Vs) ~ F (x)

(3 x) F (x)
~ ^ (a)

F(a)

(b) TRU E
1 (Va;)(By)^(a;,y)

(By)J2(o,y)2
3
4,
5.

6
7,

9.
10

i2(a, a)

(3 y)R{b , y)
R(b, a)

R(b, b)

FALSE £> = {a ,6 }
(B!/)(Vz)J2(z ,!/)

(Va:)i2(k , a)

i2(a, a)

i2(6,a)

i?.(a, 6)

So a counterexample consists o f a m odel with a universe o f dis
course D = {a , 6} and an extension R = {(a , a), (6, 6}}

(c) TRUE
1. (3y) (\/x)R(y,x)
2. (\fx)R(a, x)
3. R(a , a)
4.
5.

6 .

7.

FALSE D = { a , ., .}
(V z)(3 y) R { y , x)

(3 y) R{ y , a)
R(a , a)

(3y)R(y, b)
R(a, b)
R(b,b)

9. i2(a, 6)

P a r t B C h a p t e r 7 5 9 5

10. (a) 1. Fi C F2 & F2 C Fs Auxiliary Premise
2 V2 C Fs 1, Simpl.
3 F2 C Fs & F 2 ^ Fs 2, D ef o f C
4, F2 C Fs 3, Simpl,
5 Fi c f 2 1, Simpl.
6 Fi C F2 & F2 C Fs 4,5, Conj
7. Fi C Fs 6, (7-54)
8 F = Fs 1, Auxiliary Premise
9. Fi C Fs & Fs C Fi 8, (7-52)

10. Fs C Fi 9, Simpl,
11. Fs C Fi & Fi C F2 5,10, Conj.
12 Vz Q V2 11, (7-54)
13. F2 C Fs & Fs C F2 4,12 Conj,
14. F2 = Fs 13, (7-52)
15. F2 ^ Fs 3, Simpl.
16. F2 = Fs & F2 ^ Fs 14,15, Conj,
17. Fi ^ Fs 8-16, Indirect P roof
18, Fi C Fs k Fi ^ Fs 7,17, Conj.
19. Fi C Vz 18, Def. o f C
20, (Fi C V 2 i zV2 C Vs) Fi C V2 1-19, Conditional Proof
21. (V X , Y , Z) ((X C Y & Y C Z)

X C Z) 20, U.G.

11. (a) Assume x £ (A — B) Then x € A and x $ B, from which it follows
that x £ A. Therefore, if a; £ (A — B) , then x £ A. Thus, (A — B) C A.
(b) If A = B , then (A - A) u (A - A) = 0U0 = 0.. I f (A - B) \ j { B - A) = 0,
then both A — B = 0 and B — A — 0 (otherwise the union could not
equal 0). A - B = 0 means ~(3a;)(a; £ A& a; ^ 5) , which by Quant.
Neg., DeM ., and Cond. is equivalent to (Vx) (x £ A —> x £ B), i.e..,
A C B , Similarly, B — A = 0 is equivalent to 5 C A. Thus, A — B,
(e) I f a; £ p(A) U p (B) then x £ p{ A) and x £ p(B) . x £ p(A) iff
x C A and x £ p (B) iff x C I?. I f x C A and x C B, then a; C A fl B,
and thus x £ p (A fl B). The converse is proved by taking these steps
in the opposite order.

5 9 6 S o l u t i o n s

C H A P T E R 8

1. Assume that atomic statement is defined as in (8-7).
Base: Every atomic statement is a P w ff (Polish well-formed formula).
Recursion: For all a and /3, if a and f3 are PwfTs, then so axe

(a) N a, (b) A a/3, (c) K a/3, (d) C af3, (e) Ea/3

Restriction: Nothing else is a PwfF,

2. / (0) = 2 , f (n) = (f (n — l)) 2;
m = 2
/ (I) = (/ (0)) 2 = 22 - 4
/ (2) — (/ (I)) 2 = 42 = 16
/ (3) — (/ (2)) 2 = 162 = 256
/ (4) = (/ (3)) 2 = 2562 = 65,536

4. The power set o f the set with zero members, 0, is {0 } , which has
one member. Since 2° = 1, this establishes the base. To prove the
induction step, let Ak+1, a set with k + 1 members, be formed from
Ak, a set with k members, by the addition o f some element x not in Ak\
i.e., Ak+i = ylfcU{a;},. Let B \, B 2, . , B 2k be the 2fc members o i T (A k) .
V{ Ak+i) contains all these sets plus the sets formed by taking B 2kl i { x} .
This makes an additional 2fc set. Thus, V(Ak+1) has 2(2fc) = 2fc+1
members. The desired result now follows by Mathematical Induction.

6. The induction fails in going from 1 to 2 as the reader can verify by
letting n take on the value 1 in the induction step.

P a r t B C h a p t e r 8 5 9 7

1.
2.

3.
4

5
6
7.

9.

10

P-*{<1-*P) (A l)
p) - * { p-*q)) - +

(^ p - + ((~ q - > ^p) - +(p - +q))) 1, (R2)
(Subst. (~ q—» ^ f o r p and ^ p for q)

[^ p —¥ q) - *(q-+p) (A 3)
(~ g -> ^p) - y (p - y q) 3, (R2)

(Subst p for q and q for p)
~ j> -> ((~ ? -+ ~p) - > (p - >q)) 2,4, (R I)
(p - > (q - i.r)) -^((p->q) ->(p->r)) A2
'̂"ssp-- ̂ ^ p)_^(p_^5)))_^

((~ p -> (~ g -> ~ p)) - » (~ p - » (p - + ?))) 6, (R2)
(Subst for p, (~ 9—> ~ p) for 5 , and (p—>q) for r)

(~ .p -> (~ ? -» ~ p)) - » (~ P - » (p - » ?)) 5,7, (R I)
~ p —> (~ g—> ~j>) 1, (R2)

(Subst. for p and for q)
^p- ^(p - ^q) 8,9, (R I)

8 . The alphabet is (p, ', N, A , K , C, E); the axioms axe the elementary
propositions as defined in (8-7); the productions are:

x —> Na;
x, y —> Aazy
x , y —> K xy
x , y -> Cazy
x , y —> Eazy

where x and y are any strings on the alphabet, A n equivalent semi-
Thue system has a basic alphabet as above, an auxiliary alphabet
{Q> -K}> and axiom set {<3 } , and productions:

Q —¥ N Q
Q —¥ A.QQ
Q —¥ K Q Q
Q — ¥ C Q Q

Q — ¥ E Q Q

Q —¥ R
R —¥ R'
R — ¥ P

9. A = { J , K } , B = { a } , S = { J , K } - ,

598 S o l u t i o n s

P : aJ/3 —> aJaa/3
aJ/3 —> a/3

aK/3 —> aKaaa/3
aK/3 —> a/3

where a,/3 are any strings on { A U B)*.

11. If the axiom had not been independent, it would be provable from the
remaining axioms But then its deletion from the set o f axioms would
have no effect on the total system: anything that could be proved
before could still be proved If that is not the case, the axiom must
have been independent.

12. (c) “ 0” is interpreted as +1; “is a natural number” as “is a power of
—2” ; “ successor o f x ” as “ —2 times x ” Thus the sequence is viewed
as having the form: (—2)°, (—2)1, (—2)2, (—2)3, . . .

13 . (a) In this model, the “ lines” axe not the sides or diagonals o f the
rectangle, but rather pairs o f vertices, by A xiom 1,

a b

(b) Consider an arbitrary point p, By Axiom 2 there is at least one
other point; call it q. By A xiom 3, there is a line containing p and q ;
call it L\, By A xiom 4, there exists a point not in L\\ call it r. By
Axiom 3 again, there is a line containing p and r; call it ■ Thus p is
in at least two lines, Li , and £2

(c) Assume the empty set is one o f the lines.. Consider any point p:
by (b) above, p is in at least two distinct lines Li and L 2 But then
A xiom 5 is violated, because p is a point not in the empty line, but L\
and L 2 are both lines containing p and disjoint from the above empty
line

(d) This was proved in the course o f proving (b) above.

P a r t B R e v i e w P r o b l e m s 5 9 9

(e) No, because Axioms 2 and 3 together contradict the new axiom,

R E V IE W PR O BLEM S, PART B

1 . I f P <-+ Q is true, then either P and Q are both true or P and Q are
both false. In either case P V ~ Q is true.

2 . Other valid derivations are possible in all the following examples:

(a) 1 , p
2 q
3 . p & q 1,2, Conj.
4 . (p & q) V r 3, A ddn

(b) 1 . p <-+ q
2 (p —> q) & (q —> p) 1 , Bicond.
3, (q —i► p) 8z { p —> q) 2, Comm,
4 . q —> p 3, Simpl,
5 V ? 4, Cond.

(c) 1 . p —> (5 —> ~ ~ r)
2. ~ r

3 . p
4. 9 —» r
5 . q —> r
6. ~ r & p
7. ~ r
8 . ~ 9

(d) l , p V {
2 V r
3 ~ 9
4. 9 V p 1, Comm,
5 . p 4,3 D.S,
6 . p —> r 2, Cond.
7. r 5,6, M.P.

2, Simpl.
3,1, M.P.
4, Compl.
2, Comm,
6, Simpl.
7,5, M ,T.

S o l u t i o n s

1, p&z (q —> (r V ~ ~ s))
2 q
3. p 1, Simpl.
4. q —> (r V ~ ~ s) 1, Comm. Simpl

(2 steps)
5. r V ~ ~ s 2,4, M.P
6. ~ ~ s V r 5, Comm.
7. s V r 6, Compl
8. p & (s V r) 3,7, Conj.

1. ~(j> V ~ ?)
2, r V p
3 r'"' q 1, De M
4. 3, Simpl
5. p V r 2, Comm.
6. r 5,4, D.S
7. ~ 3, Comm. Simpl.

(2 steps)
8. q 7, Compl.
9 . q & r 8,6, Conj.

1. p -4 q
2, p -+ (5 -+ r)
3.. q —> (r —> s)
4. P Auxiliary premise
5. 9 4,1, M.P.
6. q —t r 4,2, M.P.
7. r 5,6, M.P,
8. r —> s 5,3, M.P.
9. s 7,8, M,P„

10. p —> s 4-9, Conditional proof

P a r t B R e v i e w P r o b l e m s

(h) 1 r —> (p V s)
2. 1 <

3. ~ s
4, Auxiliary premise
5, ~ p 4, Simpl.
6. ~ s 5,3, Simpl.
7. ~ (p V s) 6, DeM.
8, '•v T 7,1, M .T.
9. 4, Comm. Simpl,

10. ~ 5 & ~ t 3,9, Conj
11 ~ (s V £) 10, DeM
12. 11,2, M T.
13. ^ T Si ~ £ 8,12, Adjunction
14. J? & ~ i) —» (~ r & ~ g) 4-13 C onditional!

(i) 1. p -> q
2, ~ q & r
3 P Auxiliary premise
4. 3,1, M P .
5 2, Simpl.
6, 4,5, Conj.
7. ~ p 3-6, Indirect P roof

(j) 1 P V q
2. r &
3 ~ q Auxiliary premise
4. p 1,3, D.S.
5. & r 2, Comm.
6. 5, Simpl,
7. 4, 6, Conj.
8. 5 3-7, Indirect P roof

602 S o l u t i o n s

3.

(k) 1. p (~ 5 —> 7*)
2. ~ r & ~ (s —> q)
3. P Auxiliary premise
4. (P -> (~ ? r)) 1, Bicond.

& ((~<Z —> r) —> p)
5 p _^ q r) 4, Simpl.
6. —> r 3,5, M P.
7. ~ (s - » ?) 2, Comm. Simpl.
8. s& ~ 5 7, Cond., Compl.,, DeM
9. 8, Comm. Simpl.

10. r 9,6, M.P.
11. rv ̂ 2, Simpl.
12. r k ~ r 10,11, Conj
13. 3-12, Indirect P roof

1, r fe(j) V 5) Premise
2. ~ (p k r)
3. ~ (q k r)
4. r
5. V ~ v
6 . ~ r V
7. r —>
8 .

9—12. ~ g
13.
14. ~ (p V 5)
15. P V q

Premise
Premise
1, Simpl
2, DeM.
3, Comm.
6, Cond
4,7, M.P,
analogous to 5-8
8,12, Conj.
13, DeM
1, Comm., Simpl.

Since 14 is the negation of 15 and both are derived from the premises,
the premises axe inconsistent.

6. (a) (yx) {hx —> qx) k (3y) (qy k ~ h y) or
(\/x)(hx —> qx) k (3x) (qx k ~ h x) or
(\/x)(hx —> qx) k (3a;) ~ (qx —> hx) or
(\/x)(hx —> 5a;) & ~ (x) (qx —> hx) (or yet others);

(b) Let Ixy : x is identical with y , Pxy : a; is a phonemic transcription
o f y , C/®: a; is an utterance, (Vx)(\/y)[(Ux k U y k /a ;y) ->
(Vz)(Vw)((.Pza; & Pwy) —> ~ Jzm))]
or (Va;)(Vy)(Vz)(Vw)((£/'a;&: [fy fe ~ I x y k P z x k P wy) —> ~ I z w)

P a r t C C h a p t e r 9 603

(b) D (x) = x is a cab driver, H{ x) — x is a head waiter, S(x) = x is
surly, C{ x) = x is churlish

(or any o th er log ica l ly equivalent exp ress ion) ;

1. (Vx) ((D(x) V H(x)) —> (S(x) & C(x))
2 D{ v) A ux Premise
3 D{ v) V H(v) 2, Addn,
4, (D { v) V S { v)) -4 (S (v) k C (v)) 1, U.I.
5. S { v) k C { v) 3,4, M.P.
6, S(v) 5̂ Simpl.
7 D(v) —> S(v) 2-6, Cond. P roof
8, (\/x)(D(x) S(x)) 7, U.G.

P A R T C

C H A P T E R 9

(a) The universal set U, the union o f all the sets in the collection, is
the (two-sided) identity.

(b) If U is a member o f the collection, then it is the only element with
an inverse; viz., itself.

(a) (j> is the (two-sided) identity element for union. <f> is the only
element with an inverse; viz., itself.

(b) ^ is also the (two-sided) identity element for symmetric difference
(for all A, A + <f>=<f>+A = A) . Every set A is its own inverse
(A + A = cj>).

Let / j be a (two-sided) identity for union. Then for all A , A U I\ =
Ii U A = A, by definition. Let / 2 be another (two-sided) identity and
11 7^ / 2- But when A = I 2 we have, I2 U Ii — I\ U I 2 = h - But since
12 is also an identity, i j U I 2 — I\, contradicting the assumption that
h ^ h -

604 S o l u t i o n s

C H A P TE R 10

1. Consider the group operation table, or “multiplication table,” for ad
dition m odulo 4:

+ m od 4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Closure is shown by the fact that every ceL1 o f the table if filled with
an element o f the set {0 ,1 , 2 ,3 }, Associativity must be verified by
exhaustion (or else by a general argument, which in this case would
take even longer, since the best general argument would go by way of
proving associativity for addition over all the integers) The fact that
0 is the unique identity element is evident from the fact that the 0-
column and the 0-row match the outside column and row respectively,
and no other rows or columns do. The fact that 1 and 3 are inverses
o f each other and that 2 and, o f course, 0 are each their own inverses
can be seen from the position o f the 0 ’s in the table.

2. (a) No; e.g. 7 o 3 = 10 (m od 11), and 10 is not in the set, so the
closure property fails.
(b) Yes, if it ’s associative, which in fact it is,
(c) No, a is the identity element; c is its own inverse, but has d sis an
additional “right-inverse,” i.e. c o d = a, which violates the uniqueness
condition on inverses (Corollary 10.2); in addition, d has no “right-
inverse,” which violates part o f axiom G4. Also, the operation is not
associative.
(d) Yes, (Remember to check associativity.)
(e) No. The identity element is 0, but no sets other than 0 have
inverses.
(f) No. (g) Yes. (h) No.

3. (a) The convention for multiplication tables is that the entry in the a.th
row and the btfc column shows a o b, not b o a . This makes a difference

P a r t C C h a p t e r 10 605

for non-commutative operations like this one.

b
a o b I R R' R" H V D D'

I I R R' R" H V D D'
R R R' R" I D D' V H
R ’ R' R" I R V H D' D

a R" R" I R R' D' D H V
H H D' V D I R' R" R
V V D H D' R' I R R"
D D H D' V R R" I R'
D' D' V D H R" R R' I

(b) < {/, R, R', R" } , o), { { I , R ', S , V } , o } , { { / , R', D, D' } , o);
(c) The sets are { / , £ ' } , { I , H } , { / , F } , { / ,£ > } , { I , D ’ }, The opera
tion tables all look alike:

I X
I I X

X X I

(d) { { / , R', S , V } , o) and { { / , R', D, D' } , o) It turns out that any cor
respondence which maps I onto I is an isomorphism in this case, e g,,
I —> I , R —> R', H -> D, V - » D' , ax I -* I, R' -* D, H —> D 1,
V —> R', etc.
(e) For the subgroup { { / , R, R ' , R" } , o), the only non-trivial automor
phism is I —» / , R —> R " , R! —» R 1, R" —» R For the other two
subgroups, any of the non-I elements can correspond to any other,
so there are actually five different non-trivial automorphisms for each
o f them, o f which the following is one example for { { / , R', H, V } , o):
I I , R' V , H —> R' , V —> H.
(f) For the subgroup { { / , R, R' , R" } , o) and any o f the subgroups { { / , X } ,
o), the only possible homomorphism is I —> J, R! —> I, R —> X ,
R" -> X .
It may be useful to see why some other correspondences do not give
homomorphisms. Consider, for instance, the correspondence / (/) = / ,
f { R) = R', f (R ') = R', f { R ") — R' - This is not a homomorphism
because, for instance, R o R' = R" but f { R) o f (R ') = R' o R' = I,
and I 7 ̂ f (R") - For either o f the other two subgroups, the one with
{ / , R' , H, V } or the one with { I , R ' , D , D ' } , there are several possible

6 0 6 S o l u t i o n s

homomorphisms with any of the { / , X } subgroups They all have the
following form: Let I and any other one element correspond to / , and
let the other two elements correspond to X , e.g.., for { { / , R', H, V } , o)
and ({ I , D } . o), one possible homomorphism is I — I , R' —> / ,
H -4 D, V —> D.

4. It must be a subset because the original group had to contain an iden
tity element; by definition the identity element is included, associativ
ity is automatic for subsets o f groups, and since the identity element
is its own inverse, all the group axioms are satisfied

5. (a) No The second and third group axioms are satisfied, but 2, 3, and
4 lack inverses, and 2 o 3 = 0, which is not a member1 o f the set
(b) Multiplication is associative, the set is closed under it, 1 is the
identity element, 2_1 = 4, 3_1 = 5, 6_1 = 6.
(c) { { l } , X m od 7), {{1 , 6 }, X m od 7), {{1 , 2 ,4 } , X m od 7).
(d) { {0 ,1 ,2 ,3 ,4 , 5 }, + m od 6} Correspondence:

0 - * l 0 — 1
1 — 3 1 - 5
2 — 2 or 2 — 4 (no others)
3 - 6 3 — 6
4 — 4 4 — 2
5 — 5 5 — 3

(e) Condition: n must be a prime number.

6. S must be a group to be a subgroup o f S'. The only further condition
to be met is that the set o f S be a subset o f the set o f S", and that
follows from the transitivity o f “ is a subset of,” plus the fact that the
subset relation must hold between the sets o f S and S' and between
those o f S' and S"

7. (a) Examples: the set o f all positive rationals o f the form l/n, or the
set o f all positive integers, or the set o f all rational numbers equal to
or greater than 1.
(b) It is a semigroup and a m onoid, but not a group because 0 has no
inverse.

8. Symmetric difference can easily be shown to be comm utative and asso
ciative either by set-theoretic equalities or by Venn diagrams. It is not

P a r t C C h a p t e r 10 607

idem potent since A + A = 0. 0 is the two-sided identity element, and
every set is its own inverse, (V(A) , + } is an Abelian group o f order 4

10. (a) 1. a + b = a + c Premise
2, —a + (a + 6) = —a + (a + c) B y D2, a has an additive in

verse —a and addition is well-
defined and unique

3, (—a + a) + b = (—a + a) + c By D2, + is associative
4, 0 + 6 = 0 + c Def, o f inverse, 0 is the addi

tive identity
5 b — c Def. o f additive identity

(b) 1, o + 0 = o Def. o f identity
2. o o (f l + 0) = f l o o Uniqueness o f multiplication

(i.e. if a + 0 and a are the same
element, then there is a single
element which is that element
multiplied by a

3. a o (a + 0) = a o a + a o 0 Distributive law
4. o o o + o o O = a o a 2,3, Transitivity of =
5. —(a o a) + (a o a + a o 0) =

— (a o a) + a o a Existence o f add. inverse,
Uniqueness of addition

6 . (— (a o a) + a o a) + a o O =

— (a o a) + a o a Associativity o f +
7. 0 + a o 0 = 0 Def. o f inverse
8. a o 0 = 0 Def, o f identity

The p roo f that 0 o a = 0 is similar, 0 o a = 0 also follows directly
from a o 0 = 0.

608 S o l u t i o n s

(c) (l) Associativity o f +
(2) Distributive law
(3) D ef of inverse
(4) By the theorem o f problem b .
(5) Distributive law
(6) D ef o f inverse
(7) By the theorem o f problem b .
(8) From 4, 7, by symmetry and transitivity o f :

11. Given: a < b and b < c Then a + b < b + c, by the addition law. Since
- b = - 6 ,
(a + b) + (—6) < (6 + c) + (—6) by the addition law
a + (b + (—6)) < ((— 6) + b) + c by assoc, and comm,
a + 0 < 0 + c by def. o f inverse
a < c by def. o f 0

13. (a) To show: every positive integer n has the property that for all m,
am o a " = am+n
(i) To show that 1 has that property:

am o a1 = am o a (by def.)
= am+1 (by def.)

(i i) To show that if k has the property, then k + 1 must have it:
am o ak — am+k conditional premise
a o a ■= a o ar o a) by def

= (am o ak) o a by assoc, o f o in integral domains
_ am+k 0 a con(iitional premise
_ 0(m+fc)+1 by def.
_ am+(k+1) ky assoc Qf _)_ in ordinary arithme

From (i) and (i i) the conclusion follows by the principle o f math
ematical induction,

(b) We will use induction on n P (n): for all m , (am)n = (an)m

(i) for n = 1: (a,771)1 = am (by def.)
= (a,1)”1 (since a = a1, by def.)

(i i) To show that P(k) —> P (k + 1):

P a r t C C h a p t e r 11 609

(am) k = (ak)m conditional premise
(a)k+1 = (am)k o a m by def.

= (ak)m o am by the conditional premise
= (ak o a)m an o bn = (a o b)n

(theorem proved in text)
= (ak+1)m by def.

Since P (l) holds and P(k) —> P (k + 1), it follows from the prin
ciple o f mathematical induction that P (n) holds for all n.

C H A P TE R 11

11-1 and 11-2 are lattices; in 11-3 there is no lub for {a,b}, nor any
gib for {c , d}.

(i) (a), (b), and (c) are posets; (d) and (e) are not transitive.
(i i) (a) is a semilattice; (b) and (c) are not lattices.

Let the poset A = (A, > } be a meet semilattice. Set a A b = in f{a , 6}.
Then the algebra A a = {A, A) is a semilattice.

(a) For all a, a A a = a (idem potent), since in f{a , a } = a.

(b) For ah a,b, a/\b = b/\a (com m utative), since in f{o , 6} = inf{6, a},
(c) Let d = in f{a ,in f{6 , c } } and e = in f{in f{a , 6}, c } Then d < a and

d < inf{6, c} Therefore, d < b and d < c. Since d < a and d < b,
d < in f{o ,6 }„ And since d < c, d < in f{ in f{a ,6 } , c }; i.e., d < e.
Similarly, e < d; thus, d = e. Hence, a A (6 A c) = (a A 6) A c
(associativity).

Suppose (D l) holds. Then
a V (6 A c) = (a V (a A c)) V (b A c) (L4)

= a V ((a A c) V (6 A c)) (-^2)
= a V ((c A a) V (c A b)) (L1)
= a V (c A (a V b)) (Dl)
= a V ((a V b) A c) (£1)
= (a A (aV b)) V ((aV b) A c) (LA)
= ((a V 6) A a) V ((a V b) A c) (£1)
= (a V 6) A (a V c) (-^1)

So (D 2) also holds A similar proof shows that if (D 2) holds, so does

610 S o l u t i o n s

7. By Theorem 11-8, a* has a unique complement in a complemented
distributive lattice. Since a" Aa = 0 and o*Vo = 1, a is the complement
of a*, i.e ,, a = (a*)*.

8 . Interchange A and V, 0 and 1 in the proof of Th, 11-11.

9. Th. 11.8: a“ = a* A 1 def, of 1 and A
= a" A (a V 6*) def of compl, (C l)
= (o’” A a) V (ox A 6*) D 1
= O V (a * A 6*) C2
= o* A 6* def, of 0 and V

Th 11,9: d = d A c R C 2, def of V and A
= d A (6 V <f') £ C 2
= (<f A 6) V (<f A <f') D1
= d A d' R C 1, def of V

C H A P T E R 12

If o A b = 0
then a* = a* V (a A 6)

(a* V a) A (a* V 6)
1 A (a* V 6)
a“ V 6; hence a* > b

If a V b = 1
then a* = a* A (a V 6)

(a* A a) V (a* A 6)
0 V (o’* A b)
a* A 6; hence a* < b

So b = a"

2. (Idempotent Law) For all a £ 2?, a U a = a and o fl a = a

Proof: 1. a = a U 0 5 4
2. a = a U (o f l o *) 5 5
3. a = (a l l a) Cl (aU ax) B 3
4. a = (a U a) fl 1 5 5
5. a = a U a BA

a fl a = a can be proved similarly

P a r t C C h a p t e r 12 611

3. (i) I f a — 0, the set o f join-irreducible elements S(a) = { x j x < o } = 0,
and 0 is the lub o f the empty set,
(i i) Let P (n) be the statement that every element is the join o f some
join-irreducible elements if the number of elements x < a in the finite
Boolean lattice L is n.
P(n) is t r iv ia lly true i f a is jo in -irred u cib le.
If a is not join-irreducible and not 0, then a — x V y, where x < a and
y < a. So n(x) < n (a) and n{y) < n(a). By induction on n , it follows
that x and y are joins o f join-irreducible elements: x = V s(a) n {x) and
V - V 5(a) n(y) ’ so a = V n(x) V V n(y).

4. Suppose a < b V c, then
a = (b V c) A a

= (6 A a) V (c A a) (d is tr ib u tiv ity)
= (6 A a) or
= (c A a) since a is join-irreducible

So a < b or a < c,

5. (i) I f L has 1, then a is its own relative pseudo-complement, since by
definition for all x £ L, x < a => a iff x A a < a, so a < a => a,
(i i i) For &]1 x E L, x < a = > b i f f a f \ x < b ; since a A b < b we infer
b < a=> b (provided a => b exists)

6. Since the lattice if finite, it has 0, Given a, b, define

C - { c \ a h c < b } = { c 1,c 2 lc3 l , , , ck}

Let c0 be the lub o f C, so c0 = ci V c2 V , , , V c*.
Then, if a A c < 6, also c < Co-
Conversely, i f c < Co

a A c < a A c0 = o A (c i V c2 V ,, V f t)

= (aA Ci) VV (a A Cfc) (d is tr ib u tiv ity)

But a A c; < 6 for each i, 1 < i < k. Therefore, o A c0 < 6 - Hence
o A c < b. Thus Co satisfies the conditions on o => b So the lattice is a
Heyting lattice

612 S o l u t i o n s

R E V IE W EXERCISES, PAR T C

2. For instance, P = ({0 ,1 , 2 ,3 ,4 } , + m od 5)

3. Care must be taken in this problem to remember that x + (y — 3) is
defined as a single operation on two elements x and y Thus to check
associativity it must be verified that

((* + (y ~ 3)) + (z - 3)) = (x + (y + (2 - 3)) - 3))

which turns out to be true because both sides can be reduced to (x +
+ y + z) — 6. The identity element is 3 and the inverse o f x is 6 — x .

4. (a) The only finite one is ({0 } , + } A ll the others consist o f all the muti-
ples o f any one integer, e.g. {0 ,2 , — 2 ,4 , — 4, .}, {0 ,1 0 , —10, 20, —20,. ...}
etc,
(b) ({ 0 } ,+ } certainly is not. All o f the others are. To set up an iso
morphism between the group with all integers and the group with all
multiples o f a, let n —> an. This correspondence is clearly one-one,
and preserves addition, since

an\ + an2 = a{n~i + 712)

5. There are only two: 0 —* I 0 —* I
1 ->■ R 1 —> R"
2 R' 2 -> R 1
3 —> R " 3 -> R

6. A non-Abelian group of order 6

7. (a) Every string is a conjugate o f itself since x = x ^ e = e~^ x Conju-
gacy is symmetric by the definition. To prove transitivity, let x and y
be conjugate and also y and 2 . Then for some t , u , v , w , x = t ^ u , y =
u~' t , y = v^ 'w , and 2 = w ^ v . Case 1: let u = v and t — w. Then
x = t ^ u = w ^ v = 2 ; thus x and z are conjugate because they are
identical. Case 2: let u be shorter than v, that is, there is some r such
that u~' r — v. Since y = v ^ w = ■uT'r'^'w = u~' t , it follows that
r ^ w = t. Therefore, x = t^ 'u = and z = w ^ v = r\
thus x and 2 are conjugate. Case 3: let u be longer than v; that is, for
some s , v ^ s = u. Since y = vT 't — v ^ 's ^ t = v ^ w , it follows that

P a r t C R e v i e w P r o b l e m s 6 1 3

w — s ~ t Therefore, x — t ^ u = t ^ v ^ s , and 2 = w ^ v = s ^ t ^ v ,
thus, x and 2 are conjugate. This exhausts the possible cases. This
relation partitions A x into equivalence classes, each class containing
all the strings that are conjugates o f each other A string o f length n
may be the only string in its equivalence class (oooo , for example, is
conjugate only with itself) or there may be as many as n strings in the
class (abca for example, is conjugate with itself and with bcaa, caab,
and aabc).
(b) Let x and y be conjugates Therefore, x = uv and y = vu,
for u and v. The string u is a string such that x ^ 'u = u ^ y , since

/ “" “V / “"N r'—V / “"N
x u = u v u = u y,

8. (1) (a) all; (b) all but G4; (c) Yes
(2) (a) none: G l not, because 2 — 4 a non-neg. integer, G2 not,
because (9 — 5) — 4 = 0, 9 — (5 — 4) = 8, G3 not, because there is no e
such that for all x, both x — e — x and e — x = x, G4 not, because G3
not; (b) all but G4; (c) no; D1 not, D2 not
(3) (a) all; (b) all but G4 (5 has no inverse); (c) no: D4 not, because
5 2 = 10 (m od 25) and 5 ■ 7 = 10 (m od 25), but 2 ^ 7 (m od 25)
(4) (a) only G2: G l not, because 1 + 1 0 = 0 (m od 11), and 0 ^ A; G3
not, because 0 ^ A; G4 not, because G3 not; (b) all; (c) no: D1 not,
D2 not
(5) (a) only G2; (b) all; (c) no: D1 not, D2 not
(6) (a) only G2: G l not, because 2 /3 + 2 /3 = 4 /3 , 4 /3 ^ A, G3 not,
because 0 ^ A, G4 not, because G3 not; (b) only G l and G2; (c) no:
D1 not, D2 not, D3 not
(7) (a) all; (b) G3 not, because for no x does 3 0 x — 3, G4 not —
only G l and G2; (c) D3 not, D4 not, because 3 0 4 = 3 0 5 = 0, but
4 ^ 5

9. (a) (o + b) - (c + d) = [(a + b) ■ c] + [(a + 6) <f]
= [e (a + b)] + [<f - (o + 6)] D3 (commut,
= (c a + c ■ b) + (d a + d b) D5
= (o c + 6 c) + (o d + b d) D3

(b) - 0 + 0 = —0 because x + 0 = x for all x (G3)
— 0 + 0 = 0 because — x + x = 0 for all x (G4)
hence - 0 = 0 because —0 + 0 must have a single value (G l)

614 S o l u t i o n s

(c) 1
2.
3
4.
5.
6.
7.

a 6 = 0
a ^ 0
o 0 = 0
6 = 0

a ^ 0 D 6 = 0
~ o ^ 0 V 6 = 0
o = 0 V 6 = 0

premise
auxiliary premise
Problem 10(b) in Chapter 10
1,3 cancellation law (D4)
cond, proof
5, conditional law
double neg.

(d) 1, — a H— (—a) = 0 Inverse law
2, —a + a = 0 Inverse law
3, —(—cl) = a 1,2, problem 10(a) in Chapter 10

|y| = \x ■ y\ and we can show the new system is also a10. (a)Yes
group
(b) No, - 2 ->■ 2, - 4 -> 4, 8 -> - 8 but - 2 - 4 = 8 while 2 4 ^
(c) No. 2 —> 4, 3 —» 6, 6 —> 12 but 2 3 = 6 while 4 • 6 ^ 12.
(d) Yes, 1/x ■ 1/y = 1/x ■ y and the new system is a group
(e) Yes. x 2 y2 = (x y) 2 and the new system is a group,

11.* (a) R e fle x : for all a, a -1 a = e & e £ 5;
S ym : given a 1 ■ b £ 5 , does it follow that 6 1 a £ 5?
(6_1 ■ a) ■ (a -1 6) = 6-1 ■ (a ■ a~1) - b

= 6-1 e b
= 6 - 1 6

= e

Since (6-1 • a) ■ (a -1 b) = e, 6-1 ■ a is the inverse o f a-1 6 Therefore
6_1 a must also be in S.
T rans: given a-1 ■ 6 £ 5 , 6-1 c £ 5 thengiven a

6) ■ (6- £ 5 = a
= o'

(6 6 -

e ■ c
c £ 5= a ■ c so a

It is an equivalence relation. One o f the equivalence classes
is {as | x £ 5 } The others can vary from case to case. For exam
ple, for G = the symmetries o f the square and S = { I , H } , the
equivalence classes are:

Ei ={I,H}
e 2 = { # ' , n
E 3 = { D , R }
E a = { D ' , R " }

P a r t C R e v i e w P r o b l e m s 6 1 5

But for the same G and S = { I , H, V, R' } :
E 1 = { I , H , V , R 1}
E 2 = { D , D ' , R , R " }

(b) R e fle x : a + (—a) = 0 and 0 is even,
S ym : if a + (—6) = c and c is even, then b + (—a) = —c which is
also even,
T rans: if a + (—6) is even and b + (—c) is even, then a + (—c) is
even because it is the sum o f two even numbers, a + (—6)
and b + (—c),

Equivalence classes:

(c) R e fle x : o + (—a) = 0 not odd: no,
S ym : if a + (—6) = c is odd, so is b + (—a) = —c,
T ra n s : if a + (—6) is odd and 6 + (—c) is odd, o + (—c) is not odd,
a + (—c) = (a + (—6)) + (6 + (—c)) = odd + odd = even: No
not an equivalence relation;

Ei = { x | x is odd } (because the difference
o f any two odd numbers
is even)

E 2 = { * | * is even };

(a)

I
R 120° clockwise
R 240° clockwise
Di flip in axis 1
D 2 flip in axis 2
D 3 flip in axis 3

axis 1

616 S o l u t i o n s

y
y I R R' Di d 2 Dz
i I R R' Di d 2 Dz
R R R' I d 2 Dz Di
R' R' I R Dz Di d 2
Di Di Dz d 2 I R' R
d 2 d 2 Di Dz R I R'
D 3 D z d 2 Di R' R I

(b) { I , R, R ' } , { I , D i } , { I , D 2} , { I , D 3} , { I }

I ' I
R R
R'

> - + T R
Di D
d 2 D
Dz J D

14. (a) a < b i S a = > b = l .
(c) b A a < a A 6, and c < a = > 6 i f f a A c < 6 , so a < 6 => (a A 6)

P A R T D

C H A P T E R 13

1. (a) tree (ii)

(~ (p & g) V p), 2.3

~ { p k q) , 2.1 P

{ P k q) , 2 2

X \
p q

(b) interpretation (ii)

1, 2.3

P a r t D C h a p t e r 13 617

(b) tree (ii) (e) interpretation (ii)

Conn (Neg (Conn (p , q))) , p, 2 1

V Neg (Conn (p,q)), 2 P (1 ,1 }-> 1 (0 ,1)
<1,0}-»1 |

~ Conn (p, q), 1 (0 ,1) -* 1 0

A \ (0,0)-k 0
& P 5 l-> 0

0-+1

(M H l (1 ,1)
(l ,0 > -» 0
(0 , l) - » 0
(0 ,0)—>0

(a) A possible m odel making all four formulas true is:
M = (D , F) where D = {a , 6}
F (P) = { a }
F (R) = { {a, a), {b,a) }
with assignment given g(x) = a and g(y) = b

Note that although (iii) is logically equivalent to (iv), the inter
pretation process is quite different.

(b) (i) Every student kissed someone
(ii) There is someone whom every student kissed.
(iii) & (iv) If som eone/anyone is a student then everyone kissed
him, i.e., Everyone kissed every student.

Take a very simple m odel where your choice of statement for 7 is
true The entire statement-schema could be instantiated by e.g., ((~
(p—*q)) V r) , but the choice o f statement constants is yours.

(b) t, FALSE, (d) t, TRU E (convert 5 / x, 8 / y), (e) t, FALSE(convert
5 / y, 8 / x) , (g) t, TRU E

618 S o l u t io n s

C H A P T E R 14

Conservativity: only a and b matter to D A B .
Extension: E and E 1 are irrelevant to D AB .
Quantity: only the cardinalities a ,b , c , e matter to D A B ,
Variety: D (A) $_ p (E) - 0.
Cumulative effect: D { A) is completely specified by the set o f all pairs
(a,b), the cardinalities of A and B.

2. (a)

(b)

(c)

0,3

0,3

1,0 0,1
2 , 0

3,0
1,1 0,2

2,1 1,2 0,3

(d) 0 0
1 0 0 1

2 0
2 1

1 1
1 2

0 2
L3

P a r t D C h a p t e r 14 619

1,0 0 1 '

2,0 . 1 1 0 2
3,0 - / | 2 1 1 2 0

(g) Some part(s) o f the tree must be shaded
(h) Any node to the right o f a node in D (A) is itself in D(A) .
(i) If {a, b) belongs to D (A) then (0,6) belongs to D(A)„

several

ri
T
+

ght
i

left
T I

+ H -
at most 3 - + - +
none - + +
at least n + - + -
some + - +
these + - - -
neither - + - -
every + - - +
aH + - - +
each + - +
infinitely many + - + -
a finite number of - + - +
most + - -
many + - - -

See section 5 for most and many.

4. (a) (i) Some men walk fast —» some men walk.
Several students failed the final test —» several students failed
a test.
Infinitely many numbers are even primes —► infinitely many
numbers are prime.

(ii) Some men sing, dance and laugh —» some men sing and laugh
At least five students got A ’s on their midterms and finals —*

620 S o l u t io n s

at least five students got A ’s on their finals.
(b) \E\ > 2, D (A) = { X C E\A n X ^ 0 and A - X ± 0}
D (A) means ‘ some but not all A ’s ’ . I f A C B, D (A) C D (B) , so D
is left m onotone increasing But D is not right monotone increasing
since E 0. D (A) for all A.

5. M odel should show mapping 7T : A —> A' where at least one a £ A fl X ,
7r(o) 0 A fl X , if X is the set o f entities owned by John.

6. Suppose Q e meets Variation, i.e. X £ Q e ’ and ~ Y £ Q e ’ for some
X , Y C E ' . ~ Q e —def {% S E\Z 0 Q e } B y Extension ~ Z £ Q E’ .
For Q similarly,

7. (a) We know that if Q is m onotone increasing, Q ~ and ~ Q are
monotone decreasing, and if Q is m onotone decreasing, Q ~ and ~ Q
are m onotone increasing Since Q~) it follows by double
negation that if Q is increasing, Q~ is.
(d) If Q = Q ~ , X £ Q +-> (E - X) 0 Q. So if for some Y C
E, (E - Y) E Q then Y 0 Q and if Y 0 Q then { E - Y) e Q

8. Since D is definite, D { A) is the principal filter generated by some
B C E D A E by definition o f principal filter, so by theorem 14,2
D A A Note that D A B - + D A A is the relational definition o f positive
strength, also called the property of quasi-reflexivity

9. (a) (i) D A B <-> D { A f) B) E \
D A B <-> D A (A fl B) (conservativity) <-» D (A fl (A fl B))
(A fl B) (intersective) D (A fl B) (A fl B) (A fl B = A fl (A fl
B)) <-» D (A fl B) E (Theorem 14 2) □

(ii) D A B ^ DBA-.
D B A <-> D (A n B) E (by 9 .(a) (i)) and D A B +-> D (A Cl B) E
(by (a) (i)) so D B A <-» DA B . □

(b) Some students walk —» some walkers are students —> some walking
students are individuals. (There exist walking students,)

10. (a) D A B & D B C , so A C B and B C C by theorem 14.3, so A C C
B y Conservativity D A (A fl B) , so D A A , since A fl B = A. But then
also D A (A fl C), since A fl C = A . So by Conservativity D A C □
(b) I f D is connected, ~ D is antisymmetric by definition o f connect
edness. W ith the result o f (a) , ~ D is transitive. So D is almost-
connected by definition o f transitivity. □

P a r t D C h a p t e r 15 621

(c) Suppose D EA B and D transitive. By Conservativity D EA(AP\B)I
Take E' D E and A' C E' such that \A'\ = |A| and A fl A' = A fl B.
Clearly D EA (A fl A'), and with Extension D E’ A (A fl A'). W ith Con
servativity D e ’AA ' Take 7T a permutation o f E' which leaves A n A'
and E 1 —(A U A') intact, but interchanges A — A' and A' — A. Quantity
gives D E’ 'k{A)'k(Ai), i.e, D E’ A'A. Since D is transitive, D E'AA' and
D e ' A ' A im ply D E’ AA, and Extension gives D EAA. □

CH A P TE R 15

1. g" (x) = <f3, since Pdz is true at i2 which is the only index accessible
from ii i f we drop all reflexive pairs from R, and Qdz is true at i\, the
only remaining accessible index for i2.

2. Evaluating (3 e) P e at i0 gives 0, so the entire antecedent is false at i'o,
and the whole formula hence must be true at i0,

3. (a)

«oo*1
reflexivity

i0T J f true on io , i i , i2

•O
(b)

^- . ----- .»- transitivity
t0 ij i2 V true on i0 , h , i 2

(c)

* o H

symmetry
ip true on io and ij

622 S o l u t io n s

1. (a) (ii), (
where n

2. (c)

P A R T E

C H A P T E R 17

iii), (iv); (b) The set o f all strings containing a total o f n l ’s,
= 2 (m odulo 3)

3. (a) 0 0

P a r t E C h a p t e r 17 623

624 S o l u t io n s

4. (c)

5. (a)

(b)

6. (a) Duplicate the states o f the original machine, and duplicate all the
transitions except those leading to So- A dd a new state S'0. Wherever
the original machine had a transition from a state 5; into So, labelled
a, let the new automaton have a transition from Si into S'0, labelled
a. I f the original automaton had a loop transition on So, add a loop
transition on Sq instead. For every other transition from So to a state

P a r t E C h a p t e r 17 625

Sj, add a transition from S'0 to Sj, with the same label. I f 5 0 was
a final state, make Sq a final state as well. The resulting automaton
starts in So, but for the rest o f the computation, S'0 plays the role
previously played by So

7. (a)

So

(b)

(c)

(d) A deterministic equivalent o f C is:

0 0 0

The complement construction then gives us D:

626 S o l u t io n s

D accepts any string containing a positive even number o f l ’s.

(b)

9. (a) the (man is U men are) here
(b) the old* (man is U men are) here
(c) the old* (man is U men are) here (and the old* (m an is U men

P a r t E C h a p t e r 17 62 7

are) here)*
(d) O’ KTIO'
(e) (0 U 1)“ 101(0 U 1)* or (corresponding to the automaton given as

the answer to the original problem) (0“ 11“ 00)’‘0''11“01(0 U l)*

\) i

628 S o l u t io n s

11. (a) S —> aa (b) S —♦ e (c) 5 —♦ aA A - * a B —*b
S —> ab S aS S —+bS A —> aB B bB

S —*ba S —> a A —> bA
S ->bb 5 —> 65

S -> b

(e) 5 —»e A —* aS B —+bA
S —» aA A —* a B —♦ aC
S - > b C A - > b B C —> aB

C - > b S
C ->b

(f) S - * b A A - + b S C —> bB
S —♦ al? j4 —♦ aC C —» aE

B - * b C D -> b E
B —> aD E —+bD
B —> a E —> b

(d) S - * a A - > b A C - * a C
S - * b A - > a B C - * b D
S —» aC A —» a C —> 6
S -> bA B bB D aD

B —> b D —> a

12. (a) (a ,g0,3 i) (c) (&,9o,9o) (e) (a ,9 o ,9 i) (a, 33,32)
(b, 9 o ,9 i) (a , 9o, 9 i) (ffl,9 i ,9 o) (6 , 93, 9o)
(a, 3 i , g 2) (a ,3 i , 3 2) (6, 9 i ,92) (6 ,9o> 9 3)
(6 ,5 1 ,9 2) (6, 91 ,9 1) (6 ,9 2 , 9 i) **3 II O '-v

'

**3 II to '-v
'

(6 , 9 2 , 9 2) (0 , 9 2 , 9 3)

**3 II to
’

to '-v
'

C H A P T E R 18

1. (a) S - * a S a (b) 5 —> (c) S - * a B B A - * a S B - * b S
S —*a B a A —+aAb S —*bAB A —* b B A A B —* a B B B

B -> bB A —*ab S - > b B A A —> bABA
B —*b S -> e A - > bAAB

P a r t E C h a p t e r 18 629

2. Any rules which are already o f the form A - > a or A —> B C can be left
unchanged Remove all rules o f the form A —♦ B by the procedure out
lined in Sec. 18.5, For each rule o f the form A —» a.\a2 . a n , where
n > 2 and one oi more o f the a t is a terminal symbol, replace each
occurrence o f such an a ; by a new nonterminal Ai that occurs nowhere
else and add the rule Ai —♦ a* (which is o f the allowed form). The
right sides o f all rules now consist either o f a single terminal sym bol or
else a string of two or more nonterminals. Each remaining rule o f the
form A —» Bi B 2 ■ ■ ■ B n (n > 3) is now replaced by the rules A —♦ Bi C\,
Cl -+ B 2c 2, , C n - i -*■ Bn-xBn, where Cl t C2,. . , Cn_i are new non
terminals that occur nowhere else in the grammar. A ll rules are now
o f the required form. Clearly for every derivation o f a terminal string
in the original grammar there is a derivation o f that string in the new
grammar and conversely.

3. (b) I f L is context free, then for some sufficiently long string w £ L,
there exist u , v , x , y , z such that w = uvxyz, v and y not both e, and
uvlxy'lz £ L for all i > 0, Let u — a?, v = aq, x = ar , y = a‘ , z = at,
and call b = p + r + t and c = q + s. Then b + ic must be prime for
all i > 0. W hen i = be2, b + ic = b + (bc2)c = b + be3 — 6(1 + c3) =
6(1 + c) (l — c + c2). Since c > 1, (c + l) > 2 and thus 6 + 6c3 is divisible
by 2 or some large integer This establishes that 6 + 6c3 could not be
prime unless it happened to equal 2 However, in this case 6 = 1 and
c = 1, and it is obviously false that 1 + i ■ 1 is prime for all integral
values o f i. Therefore an (n prime) is not type 2.

4. If L is generated by a cfg G, construct G' by reversing the right sides
o f all rules o f G. G' generates LR

5. M = { K , - £ , T , A , s , F)
K = {q0,qi} A = { (q0,a b , e)~ ^(q 0,A)
£ = { a , b , c , d } (q0 , c d , A) - * (q 1 , e)
T - { A } (q1 , c d , A) ~ ^ (q 1, e) }
s = q 0

F = { l i }

630 S o l u t io n s

6. A = { {q0, e , e) - * { q 1,$)
(qi ,a, $) — (gi, j4$)
(g i, 6, $) —» (q1: B$)
(q1, a , A) - > (q 1, A A)
(<h,b,B) -*■ (q i , B B)
(q i , a , B) - * (q 1, e)
(g i , 6 , A) - * { q 1 ,e)
(? i ,c , $) -* (g i ,e) }

^ = { 9i }

7. The machine will store the number o f a ’s preceding the 6. Then it
will make a choice o f whether to start checking off 1 or 2 a ’s from the
storage tape with each new a o f the input tape, Once made, the choice
must stay consistent for the rest o f the computation,

A = {(go, a, e)~* (g0> A)
(g 0 , 6, e) ~ * { q 1 ,e)
(g 0> 6, e) —> (g 2 , e)
(qu a>A) ^ (q 1 , e)
(q2 ,aa, A) —> (q2, e)}

^ = {91,22}

8. No, Problem 7 provides a counterexample,

9. Choose akbkck in L. Then if L is context free, there exist u , v , x , y , 2 ,
(\vy\ > 1) such that uvxyz = akbkck and uvnx y nz £ L for all n > 0,
But if so, then neither v nor y can contain more than one type o f letter
since “pumping” would produce a string with 6’s preceding a ’s, or c’s
preceding b’s, Therefore, the only remaining possibilities are:

1) both v and y in a*,
2) both v and y in 6” ,
3) both v and y in cx,
4) v in a* and y in 6*,
5) v in ax and y in c*, or
6) v in 6* and y in c“ ,

provided, o f course, that not both v and y are empty. But in cases 1-4
“pumping” v and y produces a string not in L since the a ’s, b’s, and c ’s
will not be in the required proportion o f i a’s, j b's, and m a x (i ,i) c ’s.
In case 5, if y — e, then it is like case 1; if v = e, then it is like case 3; if
neither v nor y is empty then n = 0 (“pum ping” zero times) produces

P a r t E C h a p t e r 19 631

a string not in L. Case 6 is similar. Therefore, no such u , v , x , y , z
exist, and L is not context free.

C H A P T E R 19

1. £ = { (g o , 0) - * (g o , £) 2 * = { (8 b , #) - > (« i , l)
(go, i)-> (gi,i)-*(gi ,R)
(q i , 0) - > (qo, R) (3i,#)-»(?2,1)
(gi > i) (g2 , l) (?2>i)->(32,̂)
(3 2 , l) - » (3 3 , 0) (? 2 , #) - » (g o , l) }
(ffs, o) —+ (34, jR) « = go
(?4,1) - » (? 3 , 0)
(qi,0) (q0, R) }

s — qo

3. (a) qo a # # a (b) The machine moves back and forth
along the tape; each time it encounters an
it changes it to a and reverses direction;
(c) No; (d) No; (e) No; (f) Same as (b)

So a # # a
a So # # a
a Si a # a
Si a a # a
Si # a a # a
a Si a a # a
a So a a # a
a a So a # a
a a a So # a
a a a Si a a
a a Si a a a
a Si a a a a

4. (a) M = ({ g o , g i } , { a , # } , <5,go)
£ = { (g o ,#) - * (go,-ft)

(go,a) —* (?i> R)
(ffi, #) —+ (qi>R)
(? i , a) - > (q i , R) }

(b) M — ({ g o , g i } , {a , # } , < ^ , g o)
(5=0

632 S o l u t io n s

5. (a) Total, since the sum o f any two even numbers is even.
(b) Partial, There ar e some prime numbers whose sum is prime (2+5 =
7,2 + 11 = 13), but unless one of the primes is 2, both primes will be
odd, and their sum will then be even, and hence divisible by 2, i.e. not
prime
(c) Partial

6 . Reading the digits from right to left, multiply the first digit by 2 ° (= 1),
the second by 21, and so on; in general the nth digit is to by multiplied
by 271. Then add the resulting numbers to get the result, e g. 101 ==>
(1 x 2°) + (0 x 21) + (1 x 22) = 1 + 0 + 4 = 5.

7. G = ({ [,] , A, D, S, a } , {a } , R, S)
R = { S - + [A] ,

[- * [£ ,
D A - * A A D ,

[- * e ,
] e >

A —» a}

8. Given arbitrary M , m odify it so that it first erases its input tape
and then proceeds as M would (on the resulting em pty tape). Call
this machine M ' Then M ' accepts its input (in fact, all inputs) iff
M accepts e, Thus, a TM which decided whether an arbitrary TM
accepts at least one input could be applied to M ' to decide, in effect,
whether M accepts e. Since the latter is impossible, the problem is
undecidable.

C H A P T E R 20

1. (a) S —> aSBc
S —» aBc

cB —> Be
aB —» ab
bB —> bb

(b) Replace the rule 5 —» e by 5 —» A B C in the grammar o f (19-5)

A p p e n d ix E II 633

5 -+ aa A a —>aA A'A -+ aA"
S — bb Ab-> bA A'B — aB
S — aAS' Ba —♦aB B 'A — bA'
S - bBS' Bb —>bB B'B - bB'

S' aAS' A A - > aA' A'A" aa
S' — bBS' A B - » aB' A 'B " — ab
S' — a A " B A - > bA! B 'A " — ba
S' bB" B B - » bB' B ' B " bb

A P P E N D I X E II

1. (c)

Q 1
So (

An even number o f automaton.
Note that there is a non-trivial loop between So and Si, so this
automaton is cyclic

(d)

Almost all automaton.
Note that this automaton is not permutation invariant

634 S o l u t io n s

R E V IE W PR O BLEM S, PART E

1. (a) I am right;
That I am right seems certain;
That that that I am right seems certain seems certain seems
certain.

(b) For example:
K = { g o , g i } , £ = { s , c , i , = (0 , - F = {go}
A = {(g0,£, e)-*(go,*)

(go, iar, e) —> (g: , e)
(?i>sc, t) —> (g1; e)}

2. (b) 0,1

0,1

(c)

1

J '

3. (a) (0*11)*011 or 0*11(0*11)*;
(b) 111* or 1*11 or 11*1;
(c) (0*(11)*0*)*

P a r t E R e v i e w P r o b l e m s 635

4. K = {go, 2 1, 22, £3}, £ = {a, b, # } , s = 2o
6 = {(go, b) -*■ (g0,-£)

(go, #) -*■ (go, R)
(go, a) -* (gi,6)
{ < h , b) - > (q 2>L)
{q2, a) - * { q 2, L)

(g2 ,#)-(g2,i)
(g2, &) —+ (gs, *)}

Bibliography

PART A

Introductory textbook:
Halmos, P, R : 1960, Naive Set Theory, Princeton, N. J , Van Nostrand

Set Theory, Paradoxes and Foundations:
Anderson, A. R. (ed): 1964, Minds and Machines, Englewood Cliffs, N, I , Prentice-Hall
Barwise, J, and J. Etchemendy: 1987, The Liar An Essay on Truth and Circularity, New York, Oxford

University Press,
Cohen, P.: 1966, Set Theory and the Continuum Hypothesis, New York, Benjamin.
Copi, I, M,: 1971, The Theory of Logical Type, London, Routledge & Kegan Paul.,
Dauben, J W.: 1979, Georg Cantor His Mathematics and Philosophy o f the Infinite, Cambridge, M,A.,

Harvard University Press,
Fraenkel, A . and Y, Bar-Hillel: 1973, Foundations of Set Theory 2nd edition, Amsterdam, North-Holland.
Godel, K.: 1940, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with

the Axioms of Set Theory, Princeton University Press
Hofstadter, D R : 1979, GSdel, Escher, Bach An Eternal Golden Braid, New York, Vintage Books
Kunen, K: 1980, Set Theory An Introduction to Independence Proofs, Amsterdam, North-Holland.
Martin, R, L : 1984, Recent Essays on Truth and the Liar Paradox, New York, Oxford University Press
Moore, G H : 1982, Zermelo’ s Axiom of Choice Its origins, development and influence, New

York/Heidelberg/Berlin, Springer Verlag,
Quine, W. van Orman: 1963, Set Theory and Its Logic, Cambridge, M, A > Harvard University Press.
Quine, W. van Orman: 1966, The Ways of Paradox, New York, Random House,
Russell, B : 1919, Introduction to Mathematical Philosophy, London, Allen and Unwin,
Smullyan, R,: 1978, What Is the Name o f This Book?, Englewood Cliffs, N J , Prentice-Hall,
Zadeh, L A : 1987, Fuzzy Sets and Applications: Selected Papers, New York, Wiley.

PART B

Introductory textbooks:
Copi, I M: 1965, Symbolic Logic 2nd edition. New Yoik, Macmillan,
Jeffrey, R C : 1967, Formal Logic Its Scope and Limits, New York, McGraw-Hill,
Kalish, D and R Montague: 1964, Logic, New York, Harcourt, Brace and World
Mates, B : 1972, Elementary Logic, 2nd edition, New York, Oxford University Press.
Thomason, R H : 1970, Symbolic Logic, New York, Macmillan.
An innovative method for learning predicate logic on a Macintosh computer: J Barwise and J. Etchemendy,

Tarski’ s World. Available from Kinko’s Courseware 1987,,

Mathematical logic, axiomatization and metatheory:
Barwise, J (ed): 19 7 7, Handbook of Mathematical Logic, Amsterdam, North-Holland,
Bell, J, L : 1978, Boolean-valued Models and Independence Proof s in Set Theory, Oxford, Clarendon Press
Bell, J,, L and M, Machover: 19 77, A Cour se in Mathematical Logic, Amsterdam, North-Holland..
Beth, E,: 1962, Formal Methods, An introduction to symbolic logic and to the study o f effective operations in

arithmetic and logic, Dordrecht, Reidel.
Beth, E„: 1970, Aspects o f Modern Logic, Dordrecht, Reidel
Boolos, G„ and R, Jeffrey: 1980, Computability and Logic, 2nd edition, Cambridge, England, Cambridge

University Press,
Chang, C C , and Keisler, H J,: 1973, Model Theory, New York, American Elsevier and Amsterdam, North-

Holland,
Davis, M : 1965, The Undecidable, Hewlett, N.Y., Raven Press,

637

Davis, M and E J, Weyukei: 1983, Computability, Complexity and Languages Fundamentals of Theoretical
Computer Science, New York/London, Academic Press

Gamut, L, T F : Logica, Taal en Betekenis, vol 1 and 2 (in Dutch), Spectrum, Utrecht (English translation to
appear with the University of Chicago Press),

G5del, K: 1962, On Formally Undecidable Propositions, New York, Basic Books
Kleene,S G : 1967, Mathematical Logic, New York, Wiley
Kneale, W. and M Kneale: 1962, The Development of Logic, Oxford, Clarendon Press
Kreisel, G , and Krivine, I L„: 1967, Elements of Mathematical Logic:. Model Theory, Amsterdam, North-

Holland
Landman, F.: 1986, Towards a Theory of Information The status o f partial objects in semantics, Dordrecht,

Foris.
Malitz, J.; 1979, Introduction to Mathematical Logic Set-theory, Computable Functions, Model theory, N.Y.,

Springer Verlag
Peano, G: 1973, Selected Works of Giuseppe Peano, ed and transl, by H C. Kennedy, Toronto, University o f

Toronto Press,
Quine, W, van Orman: 19 72, Methods o f Logic, 3rd edition, N Y , Holt, Rinehart and Winston, Inc
Rasiowa, H, and R Sikorski: 1970, The Mathematics of Metamathematics, 3rd edition, Warszawa, Panstwowe

Wydawn
Robinson, A,: 1965, Introduction to Model Theory and to the Metamathematics o f Algebra, 2nd edition,

Amsterdam, North-Holland,
Shoenfield, J. R : 1967, Mathematical Logic, Reading, M, A , Addison-Wesley,
Smullyan, R : 1961, Theory of Formal Systems, Princeton, N J , Princeton University Press
Tarski, A. M ,: 1956, Logic, Semantic s, Mathematic s, Oxford, Oxford University Press
Tarski, A. M. and R M Robinson: 1953, Undecidable Theories, Amsterdam, North-Holland.
Tarski, A M and J, C, C McKinsey: 1948, A Decision Method for Elementary Algebra and Geometry, 2nd

edition, Berkeley, U G Press.

PART C

Abbott, J, G : 1969, Sets, Lattices and Boolean Algebras, Boston, Allyn & Bacon
B iikhoff,G : 1961, Lattice Theory, Providence, R I , A M S, Colloquium, vol., 25
Birkhoff, G, and S MacLane: 1977, A Survey o f Modern Algebra, New York, Macmillan
Gill, A : 1976, Applied Algebra for the Computer Sciences, Englewood Cliffs, N J , Prentice-Hail.
Gr&tzer, G.: 1968, Univer sal Algebra, New York, Van Nostrand
GiMtzer, G : \91 \, Lattice-theory First concepts and distributive lattices, San Francisco, Freeman and Co
MacLane, S : 1971, Categories for the Working Mathematician, Berlin, Springer
MacLane, S, and G. Birkhoff: 1979, Algebra, 2nd edition, New York, Macmillan
Scott, D, S.: 1972, ‘ Continuous lattices’ , in: Toposes, Algebraic Geometry and Logic, F W, Lawvere (e d),

97-136, Berlin, Springer,

PARTD

Ajduciewicz, K,: 1935, Die syntakti sche KonnexitQl, Studia Philosophica 1
Asher, N, and D Bonevac: 1985, ‘ How extensional is extensional perception?’ , Linguistics and Philosophy 8.2,

203-228
Barendregt, H : 1984, The Lambda Calculus Its syntax and semantics, North-Holland, Amsterdam/New

York/Oxford,
Barwise, J..: 1981: ‘ Scenes and other situations’ , The Journal o f Philosophy 78, 369-397,
Barwise, J„ and R, Cooper: 1981, ‘ Generalized quantifiers and natural language’ , Linguistics and Philosophy 4,
Baiwise, J. and J, Perry: 1983, Situations and Attitudes, Cambridge, Bradford Books,
B&uerle, R., U, Egli and A, von Stechow (eds): 1979, Semantics from Different Points o f View, Berlin,

Springer.
vanBenthem, J : 1983, The Logic of Time, Dordrecht, Reidel,
van Benthem, J : 1985, A Manual o f Intensional Logic, Chicago, the University o f Chicago Press,
vanBenthem, I : 1986, Essays in Logical Semantics, Dordrecht, Reidel

van Benthem, J. and A ter Meulen (eds.): 1985, Generalized Quantifiers in Natural Language, Dordrecht Foris.
Bigelow, I.: 1978, ‘Believing in semantics’ , Linguistics and Philosophy 2.1, 101-144,.
Chellas, B.: 1980, Modal Logic An Introduction, Cambridge, Cambridge University Press
Church, A : 1941, The Calculi o f Lambda Conversion, Princeton University Press, Princeton.
Cooper, R : 1983, Quantification and Syntactic Theory, Dordrecht, Reidel
Cooper, R and T. Paisons: 1976, ‘ Montague grammar, generative semantics and interpretive semantics’ , in

Paitee (ed), Montague Grammar, New York, Academic Press, 311-362.
Cresswell, M, J : 1973, Logics and Languages, London, Methuen.
Cresswell, M, J.: 1985, Structured Meanings, Cambridge, MIT Press,
Davidson, D and G Haiman (eds.): 1972, Semantics o f Natural Language, Dordrecht, Reidel.
Dowty, D ,: 1979, Word Meaning and Montague Grammar, Dordrecht, Reidel..
Dowty, D„, R Wall and S Peters: 1981, Introduction to Montague Semantics, 2nd edition, Dordrecht, Reidel,
Dummett, M,: 1973, Frege Philosophy o f Language, London, Duckworth,,
vanEijck, J : 1985, ‘Generalized quantifiers and traditional logic’ in van Benthem and ter Meulen (eds.)* 1-19,
Frege, G.: 1960, Translations from the Philosophical Writings o f Gottlob Frege, P., Geach and M, Black (eds.,),

2nd edition, Oxford, Blackwell..
Gabbay, D. and F Guenthner (eds.,): 1983-7, Handbook o f Philosophical Logic, vo l. 1-1V, Dordrecht, Reidel,
Gallin, D : 1975, Intensional and Higher-Order Modal Logic With Applications to Montague Semantics, North-

Holland Publ,/Elsevier Publ., Amsterdam, New York
Gamut: 1982, Logica, Taal en Betekenis, vol, 1 and 2, Het Spectrum: Aula Pockets, De Meern English

translation forthcoming in 1989 with the University o f Chicago Press
Gardenfors, P., (ed,): 1987, Generalized Quantifiers Linguistic and logical approaches, Dordrecht, Reidel.
Gazdar, G , E Klein, G Pullum and I.. Sag: 1985, Generalized Phrase Structure Grammar, Harvard University

Press, Cambridge
Geach, P.: 1962, Reference and Generality, Ithaca, N Y , Cornell University Press
Halvorsen, P -K and Ladusaw, W : 1979, ‘ Montague’s “ Universal Grammar” : An introduction for the linguist’ ,

Linguistics and Philosophy 3, 185-223,
Henkin, L : ‘A theory of propositional types’ , Fundamenta Mathematica 52, 323-344,
Higginbotham, J.: 1983, ‘The logic o f perceptual reports: an extensional alternative to Situation Semantics’ , The

Journal of Philosophy 80, 100-127,
Hintikka, K, J J: 1969, Models for Modalities, Dordrecht, Reidel
Hintikka, K J J ; 1975, The Intentions o f Intentionality and Other New Models for Modalities, Dordrecht,

Reidel,
Hoeksema, J : 1983, ‘ Plurality and conjunction’ , in ter Meulen (e d) (1983), 63-83
Hughes, G E andM. J Cresswell: 1968, An Introduction to Modal Logic, London, Methuen,
Hughes, G, E, and M J. Cresswell: 1984, A Companion to Modal Logic, London, Methuen
Janssen, T. M V : 1983, Foundations and Applications o f Montague Grammar, Ph D Dissertation, Mathemati

cal Centre, Amsterdam,
de Jong, F and H. Verkuyl: 1985, ‘ Generalized quantifiers: the properness o f their strength’ , in van Benthem

and ter Meulen (1985), 2 M 3 ,
Kamp, H,: 1971, ‘ Formal properties of “now” ’ , Iheoria 31.
Kamp, H,: 1979, ‘ Events, instants and temporal reference’ , in R BMuerle et al. (eds), Semantics from Different

Points o f View, Berlin, Springer Verlag, 376-417
Kamp, H : 1980, ‘ Some remarks on the logic o f change’ , in Chr, Rohrer (ed,), Time, Tense and Quantifiers,

Tuebingen, Niemeyer Verlag
Kamp, H. and C„ Rohrer: 1983, ‘ Tense in texts’ , in R Bauerle et al (eds.), Meaning, Use and Interpretation of

Language, Berlin, de Gruyter, 250-269
Kaplan, D: 1978, ‘Dthat’ , in P Cole (ed,), Syntax and Semantics, vol 9, New York, Academic Press,
Kaplan, D: 1979, ‘On the logic o f demonstratives’ , in P. French et al (eds,), Contemporary Perspectives in the

Philosophy o f Language, Minneapolis, University o f Minnesota Press.
Linguistics and Philosophy 9.1, Feb 1986, special issue ‘ Tense and Aspect in Discourse’ , D. Dowty (ed.).
Keenan, E, (ed,): 1974, Formal Semantics o f Natural Language, Cambridge, Cambridge University Press..
Keenan, E„ and L Faltz: 1985, Boolean Semantics for Natural Language, Dordrecht, Reidel.
Keenan, E, and J„ Stavi: 1986, ‘A semantic characterization of natural language determiners’ , Linguistics and

Philosophy 9, 253-326.

Keenan, R : 1987, ‘ A semantic definition of “ indefinite NP’” , in Reuland and ter Meulen (eds), 286-317,
Ladusaw, W.: 1979, Polarity Sensitivity as Inherent Scope Relations, PhD Diss University of Texas, Austin.
Ladusaw, W,: 1982, ‘ Semantic constraints on the English partitive construction’ , in D Flickinger et al (eds,),

Proceedings of the First West Coast Conference on Formal Linguistics, Dept o f Linguistics, Stanford
University, 231-242

Lewis, D, K : 1973, Counterfactuals, Oxford, Basil Blackwell
Lindstrom, P : 1966, ‘First order predicate logic with generalized quantifiers’ , Theoria 32, 186-195.
Link, G 1979, Montague Grammatik I Die Logische Grundlagen, Wilhelm Fink, Mtinchen
Link, G 1983, ‘The logical analysis of plurals and mass terms, a lattice-theoretic approach’ , in R, Bauerle et al,

(eds,) (1983), Meaning, Use and Interpretation o f Language, Berlin, de Gruyter, 302-323
Link, G.: (1984), ‘ Hydras. On the logic of relative constructions with multiple heads’ , in F Landman and F„

Veltman (eds) (1984), Varieties o f Formal Semantics, Dordrecht, Foris, 245-258,,
Lo Cascio, V and C . Vet (eds): 1986, Temporal Structure in Sentence and Discour se, Dordrecht, Foris.
Loux, M. J., (ed): 1979, The Possible and the Actual, Ithaca, N Y , Cornell University Press
May, R : 19S5, Logical Form Its structure and derivation, MIT Press.,
ter Meulen, A. (ed,): 1983, Studies in Modeltheoretic Semantics, Dordrecht, Foris
Montague, R : 1974, Formal Philosophy, R H Thomason (ed), New Haven, Yale University Press,
Mostowski, A,.: 1957: ‘On a generalization of quantifiers’ , Fundamenta Mathematicae 44 ,12-36
Paitee, B„ Hall: 1975, ‘Deletion and variable binding’ , Linguistic Inquiry 6 ,203-300
Paitee, B, H„: 1979, ‘ Semantics - mathematics or psychology?’ in Semantics pom Different Points o f View, R,

Bauerle et al (eds), Berlin, Springer, 1-14,
Paitee, B. H,,: 1984, ‘Compositionality’ , in F. Landman and F, Veltman (eds,), Varieties o f Formal Semantics,

Dordrecht, Foris, 281-312,
Quine, W„ van Orman: 1953, From a Logical Point o f View, 2nd edition (1961), Cambridge, Harvard University

Press.
Quine, W, van Orman: 1956, ‘ Quantifiers and propositional attitudes’ , The Journal o f Philosophy 53,177-187,
Reichenbach, H.: 1947, Elements o f Symbolic Logic, New York, MacMillan
Reuland, E. and A ter Meulen (eds): 1987, The Representation of Jndefiniteness, Current Studies in Linguistics,

Cambridge, MIT Press.
Scott, D,: 1969, Models for the lambda-calculus, ms (unpublished) 53 pp
Scott, D.: 1980, ‘ Lambda-calculus: some models some philosophy’ , in Barwise, I et al (eds.), The Kleene

Symposium, North-Holland, Amsterdam/New York
Soames, S.: 1985, ‘ Lost innocence’ , Linguistics and Philosophy 8.1,59-71.
Turing, A : 1937, ‘Computability and lambda-definability’ , Journal of Symbolic Logic 2 ,153-163
Vendler, Z : 1968, Linguistics in Philosophy, Ithaca, Cornell University Press
Westerstahl, D : 1984, ‘Some results on quantifiers’ , Notre Dame Journal of Formal Logic 25,152-170.
Westerstahl, D : 1985a, ‘ Logical constants in quantifier languages’ , Linguistics and Philosophy 8 ,38 7—413.
Westerstahl, D.: 1985b, ‘Determiners and context sets’ , in van Benthem and ter Meulen (eds): (1985), 45-71.
Zwarts, F : 1983, ‘Determiners: arelational perspective’ , in ter Meulen (ed,) (1983), 37-62,,

PARTE

Textbooks:
Arbib, M. A : 1969, Theories o f Abstract Automata, Englewood Cliffs, New Jersey, Prentice-Hall,
Brainerd, W. S. and L H.. Landweber: 1974, Theory o f Computation, New York, John Wiley & Sons,
Cohen, D, I, A ,: 1986, Introduction to Computer Theory, New York, John Wiley & Sons,
Gill, A : 1963, Introduction to the Theory o f Finite-State Machines, New York, McGraw-Hill.
Ginsburg, S : 1962, An Introduction to Mathematical Machine Theory, Reading, Massachusetts, Addison-

Wesley Publ, Co,
Ginsburg, S.: 1966, The Mathematical Theory of Context-Free Languages, New York, McGraw-Hill.
Gross, M, and A, Lentin: 1970, Introduction to Formal Grammars, New York, Heidelberg, and Berlin,

Springer-Verlag
Harrison, M, A,: 1965, Introduction to Switching and AutomataTheory, New York, McGraw-Hill Book Co.
Hopcroft, J. E and J D, Ullman: 1979, Introduction to Automata Theory, Languages, and Computation,

Reading, Massachusetts, Addison-Wesley Publ Co

Lewis, H, R and C. H, Papadimitriou: 1981, Elements of the Theory of Computation, Englewood Cliffs, New
Jersey, Prentice-Hall,

Minsky, M, L : 1967, Computation ■ Finite and Infinite Machines, Englewood Cliffs, New Jersey, Prentice-Hall.
Nelson, R J : 1968, Introduction to Automata, New York, John Wiley & Sons..
Rogers, H , Jr.: 1967, Theory of Recursive Functions and Effective Computability, New York, McGraw-Hill
Salomaa, A,,: 1969, Theory o f Automata, Oxford, Pergamon Press
Salomaa, A.: 1973, Formal Languages, New York, Academic Press.

Collections:
Davis, M, (ed): 1965, The Undecidable Basic Paper s on Undecidable Propositions, Unsolvable Problems and

Computable Functions, Hewlett, New York, Raven Press.
Dowty, D R., L, Karttunen, and A M Zwicky (eds): 1985, Natural Language Processing Theoretical,

Computational and Psychological Perspectives, New York, Cambridge Univ Press
Luce, R, D , R, R Bush, and E Galanter (eds): 1963, Handbook o f Mathematical Psychology, Vol, 2, New

York, John Wiley & Sons.
Luce, R. D , R R. Bush, and E, Galantei (eds): 1965, Readings in Mathematical Psychology, Vol 2, New

York, John Wiley & Sons,
Manas ter-Ramer, A (ed): 1987, Mathematics o f Language, Amsterdam, John Benjamins,
Moore, E F. (ed.): 1964, Sequential Machines Selected Papers, Reading, Massachusetts, Addison-Wesley

Publ, Co.
Oehrle, R. T ,, E Bach, and D, Wheeler (eds): 1988, Categorial Grammar s and Natural Language Structures,

Dordrecht, Reidel.
Shannon, C E, and J. McCarthy (eds): 1956, Automata Studies, Princeton, New Jersey, Princeton Univ. Press..
Savitch, W J, E. Bach, W Marsh, and G, Safran-Naveh (eds,): 1987, The Format Complexity of Natural

Languages, Dordrecht, Reidel,,

Other books and articles:
Ades, A, E and M, J Steedman: 1982, ‘On the order of words’ , Linguistics and Philosophy 4,517-558,
Aho, A. V.: 1968, ‘ Indexed grammars - an extension o f context-free grammars’ , Journal o f the Association for

Computing Machinery No,, 15, No., 4,647-671
Ajdukiewicz, K.: 1935, ‘Die syntaktische Konnexitat’ , Studia Philosophica 1, 1-27 English translation in

Storis McCall (ed.) (1967), Polish Logic, Oxford, Oxford Univ, Press
Bar-Hillel, Y.: 1953, ‘A quasi-arithmetical notation for syntactic description’ , Language 29,47-58,
Bar-Hillel, Y„, C Gaifman, and E. Shamir: 1960, ‘On categorial and phrase structure grammars’ , Bulletin o f the

Research Council of Israel 9, 1-16 Reprinted in Bar-Hillel, Y : 1964, Language and Information : Selected
Essays on their Theory and Application, Reading, Massachusetts, Addison-Wesley Publ Co.

van Benthem, J.: 1986, Essays in Logical Semantic s, Dordrecht, Reidel.,
van Benthem, J.: 1988, ‘The Lambek calculus’ , in Oehrle, Bach, and Wheeler (eds.), pp. 35-68.
Chomsky, N.: 1956, ‘Three models for the descriprion o f language’ , IRE Transactions on Information Theory 2,

No. 3, 113—124 A corrected version appears in Luce, Bush, and Galanter (eds): 1965.
Chomsky, N : 1957, Syntactic Structures, The Hague, Mouton & Co,
Chomsky, N : 1959, ‘On certain formal properties of grammars’ , Information and Control 2, No, 2, 137-167.
Chomsky, N : 1963, ‘Formal properties of grammars’ , in Luce, Bush, and Galanter (eds,,), pp, 323-418..
Chomsky, N : 1965, Aspects of the Theory of Syntax, Cambridge, Massachusetts, MIT Press.
Chomsky, N, and G. A, Miller: 1958, ‘Finite-state languages’ , Information and Control 1, 91-112 Reprinted in

Luce, Bush and Galanter' (eds.,): 1965.
Chomsky, N, and G A, Miller: 1963, ‘ Introduction to the formal analysis of natural languages’ , in Luce, Bush

and Galanter (eds) (196,3), pp, 269-321
Davis, M ,: 1958, Computability and Unsolvability, New York, McGraw-Hill,,
Friedman, J , D, Dai, and W, Wong: 1986, ‘ The weak generative capacity o f parenthesis-free categorial

grammars’ , proceedings o f the 11th International Conference on Computational Linguistics,
Friedman, J„ and R, Venkatesan: 1986, ‘ Categorial and non-categorial language’ , proceedings o f the 24th

Meeting of the Association for Computational Linguistics.
Gazdar, G„: 1985, ‘Applicability of indexed grammars to natural languages’ , Report No,, CSLI-85-34, Center for

the Study of Language and Information, Stanford University,

642 B ibliography

Gazdai, G. and G K Pullum: 1985, ‘Computationally relevant properties o f natural languages and their
grammars’ , New Generation Computing 3, 273-306; also appeared as Report CSLI-85-24, Center for the
Study o f Language and Information, Stanford University

Ginsburg, S.: 1975, Algebraic and Automata-Iheoretic Properties o f Formal Languages, Amsterdam, Noith-
Holland,

Ginsburg, S. and B, H Partee: 1969, ‘ A mathematical model of transformational grammar’ , Information and
Control 15, 297-334

Ginzburg, A,: 1968, Algebraic Theory o f Automata, New York, Academic Press
Hayashi, T.:1973, ‘On derivation trees o f indexed grammars - an extension of the uvwxy theorem’ , publ, of the

Research Institute for Mathematical Sciences, Kyoto University, Vol, 9, pp, 61-92,
Joshi, A K : 1985, ‘ How much context-sensitivity is necessary for characterizing structural descriptions - tree

adjoining grammars’ , in Dowty, Karttunen, and Zwicky (eds).
Joshi, A, K,, L Levy, and M. Takahashi: 1975, ‘Tree adjunct grammars’ , Journal of the Computer and System

Sciences 10, No, 1,136-163.
Kuroda, S. Y : 1964, ‘Classes of languages and linear bounded automata’ , Information and Control 7,207-223,,
Lambek, J,: 1958, ‘The mathematics of sentence structure’ , American Mathematical Monthly 65,154-170
Langacker, R W,: 1969, ‘On pronominalization and the chain of command’ , in D„ A., Reibel and S. A, Schane

(eds.), Modern Studies in English Readings in Transformational Grammar, Englewood Cliffs, New Jersey,
Prentice-Hall.

Marsh, W. E.: 1985, ‘Some conjectures on indexed languages’ , paper presented to the Association for Symbolic
Logic Meeting, Stanford Univ., July 15-19

Peters, P, S„, Jr: 1973, ‘ On restricting deletion transformations’ , in Gross, Halle, and Schutzenberger, The
Formal Analysis o f Natural Languages, The Hague, Mouton.

Peters, P, S , Jr, and R. W.. Ritchie: 1973, ‘On the generative power of transformational grammars’ , Information
Sciences 6,49-83,

Pollard, C : 1984, Generalized Phrase Structure Grammars, Head Grammars, and Natural Language, Ph D
Dissertation, Stanford University,

Pullum, G, K, and G.. Gazdar: 1982, ‘ Natural languages and context-free languages’ , Linguistics and Philosophy
4,471-504. Reprinted in Savitch, Bach, Marsh, and Safran-Naveh (eds).

Rabin, M, O and D. Scott: 1959, ‘Finite automata and their decision problems’ , IBM Journal o f Research and
Development 3, No, 2,114-125.

Roach: 1987, ‘Formal properties of head grammars’ , in A Manaster-Ramer (ed,)
Shieber, S M.: 1985, ‘ Evidence against the context-freeness of natural language’ , Linguistics and Philosophy 8,

333-343, Reprinted in Savitch, Bach, Marsh, and Safran-Naveh (eds,),
Vijay-Shankar, K ,: 198 7, A Study o f Tree Adjoining Grammars, Ph.D. Dissertation, Univeisity of Pennsylvania,
Wasow, T\: 1978, ‘ On constraining the class of transformational languages’ , Synthese 39, 81-104, Reprinted in

Savitch, Bach, Marsh, and Safran-Naveh (eds),
Weir, D. J, and A K Joshi: 1988, ‘Combinatory categorial grammars: generative power and relationship to

linear context-free rewriting systems’ , proceedings of the 26th Meeting of the Association for Computa
tional Linguistics,

Weir, D. J,,, K. Vijay-Shanker, and A, K, Joshi: 1986, ‘The relationship between tree adjoining grammars and
head grammars’ , proceedings of the 24th Meeting of the Association for Computational Linguistics,

General collections and r eaders:
Bernacerraf, P, and H, Putnam (eds,): 1964, Philosophy o f Mathematics Selected Readings, Englewood Cliffs,

N, J., Prentice-Hall,
Copi, I, M, and J A, Gould: 1967, Contemporary Readings in Logical Theory, New York, Macmillan
van Heijenoort, J : 1967, From Frege to Gddel, a sourcebook in Mathematical Logic 1879-1931, Cambridge,

M.A,, Harvard University Press.
Kline, M ,: 1972, Mathematical Thought from Ancient to Modern Times, New York/Oxford, Oxford University

Press.
Martinich, A P, (ed.): 1985, The Philosophy of Language, New York/Oxford, Oxford University Press.

Index
Abelian group 257,266,312,607

monoid 264—266,434
Absorption 283,293

law 282, 292
Abstract collection 3

concept 7
relation 28

Abstraction, lambda 338-371
Acceptance for ever after state 569
Acceptor 454
Accessibility 414-419,424,429
Ackermann, W. 220-224
Acoustic phonetics vi
Action, collective v

distributive v
Acyclic automaton 572
Adamczyk, K. vii
Addition 20,21, 31,73,76-80, 83,215,413,

593,599
law 274, 603, 608

Ades, A. 553
Adjective, autological 26

heterological 26
Adjunction 545-547,555
Agentless passive 363, 367
Aho, A. 536, 541
Ajdukiewicz, K. 550
Algebra 20, 215, 247, 249-256, 257-276,

277-296, 297-314, 334, 335,369,388,
414,415,609

Algorithm 517-519, 523, 527, 531, 533, 542
Allophone 52,578
Almost connectedness 391
Alphabet 66, 71, 188-190, 235, 254,433,

435-437, 451,453,454,456,458,465,
472,476,478,484,485,487,491,492,
494, 502, 508-515,519-522, 529, 532,
558,573,574

Alphabetic variant 150-153
Alternation 135
Analogue, arithmetic 21
Analysis 3,373-375,388, 391, 295,399,401,

403,408,427
Anaphora 389, 419
Andrews, A. vii
Anti-euclideanness 391
Anti-symmetric relation 41
Antipersistent 381
Antisymmetric relation 44,47,48
Antisymmetry 44,45,47,48, 207, 208,209,

210, 212, 213, 277, 278, 282,391-394,
398,401,440,444,579,581,583, 620

Application 351
Argument 31,34,65, 97,115-120,134,135,

137,155, 159,161,162,164-169,175,
178,179, 233,303,339-343,348,351,
362,363, 366,373, 376,380,381,398,
421,444, 513,518,551,588,604

Aristotelian syllogistic logic 333
Aristotle 333
Arithmetic analogue 21
Arithmetic, language of ordinary 93
Aronszajn, M. vii
Asher, N. 411
Assertability condition 242
Assignment 346
Associative operation 73, 214, 215, 251, 257,

261, 263, 265,274, 284, 293,434,576,
577

Associative law 18, 19, 21, 22, 112,114, 120,
199, 281, 292, 297,421

Associativity 270,273,604,606,607,608,
609, 612

Asymmetric relation 40,42,43,44,45,47,
49, 85

Asymmetry 208,209, 212,213,349,366,
391-393, 396,424,444,579

‘At least one’ automaton 566, 567
‘At least one’ tree 568
Atom 298,303
Atomic formula 140,152,308,325

sentence 100
statement 99, 100,106,107,110,113,115,
125-132, 155,184, 185,191, 220, 221,
235, 254,307,319, 321,322,368

Autological adjective 26
Automatagu, 94,433-574,624,625,627, 633
Automorphism 253,274,378, 605
Auxiliary alphabet 188-190,236, 596,597
Auxiliary premise 120-123,161, 162,173,

174,586, 587,593, 595, 600-603, 614
Auxiliary proof 172
Auxiliary symbol 6,140
Auxiliary tree 543,544,546
Axiom 90-94, 185-246, 249,250, 257,260,

266, 268, 269,299,312,313,314,348,
349,437,596, 597,599,604,606

of asymmetry 210
of choice 219,232,288
of extension 171

643

644 In dex of subjects

of iireflexivity 210
of regularity 218
of separation 219
of transitivity 210
schemata 191, 225-227

Axiomatic system vi, 185-188,191,192, 194,
211,235, 236

Axiomatization 8, 89, 90, 92, 181, 195, 201,
208, 213, 217, 219,223,225, 226, 228,
230, 234, 349

Bach, E. 362,363, 364,553
Backward function composition 553
Bar-Hillel, Y, 550,552
Barendregt, H. 351
Barwise, J. 373,384,385, 387,389, 397,411
Basic alphabet 188, 189
Basic clause 320, 321
Basic concepts of logic and formal systems 89
Basic concepts of set theory 3
Basic result m recursive function theory 518
Behavioral science vii
Bell, J 231, 301,303
Bernays, P. 224
Beth, E. 123,124,128,135,165,168,169,

179, 229, 230, 234, 246
Beth tableaux 123, 135,165,168,169, 179,

229,230, 234, 246
construction rules for 128

Biconditional 99,105,113,135,171,174
laws 112
proof 599,602
statement 110

Bigelow, J. 405
Bijection 253,285,286,378
Binary connective 100

notation 66, 69
operation 266, 267,282, 297,312
product 191
relation 30, 39,40,47,174,175,180,205,
206, 208, 374,391,459,460

Binding 150, 323, 342,373
Biikhoff, 52, 250, 291, 292, 302
Bolyai, J. 90,91
Bonevac, D. 411
Boole, G.E. v, 21,215,297, 298, 300-304,

309, 314, 352, 354, 388,478,611
Boolean algebra v, 21,215,297,298,

301-303,388,478
laws 300
phrasal conjunction 354

Boolean lattice 611
Bound, upper 71

Bound variable 141,142,144,177
Bounded function 70

lattice 290
Branch 440,497, 581
Bresnan, J. 362,364
Brolio, J vii
Brouwer, L.E.J. 305, 306
Brouwerian lattice 305

Calculus 82,95,135,142,144, 147, 160, 235,
317, 339, 341, 343, 348, 349, 350, 351,
367, 553

Cancellation law 266
Cantor, G, 7, 62,64,73, 82, 300, 351,520
Cantor ’s set theory 7

Theorem 62,64,73, 300, 351,520
Cardinal number 56, 59, 62, 63, 65,73
Cardinality 9,11,58,60,64-72, 300,379,

390,395, 396, 398, 399,435, 580,581,
618

equivalent set and 55
set of 82
set-theoretic identity and 8

Carnap, R. 366
Cartesian product 27-30, 60,62,464
Categorial grammar 550, 552

language vi
Categorical system 206, 207
Category 318,320,323, 324,339,351,354,

359,364, 368, 373, 375, 376, 386,440,
443, 503,550, 551, 553

theory 250,254, 281
Cell 46,47
Center embedded constituent structure 541
Choice-function 232
Chomsky, N, 94,436,451,452,453,463,

481, 503,505,535, 555,561
Chomsky hierarchy 436,451,452,535, 561
Chomsky normal form 505
Chomsky’s program 94
Chronological order 86
Church, A. 317, 338,350, 352,517,518,519,

523,531
Church’s hypothesis 517-519,523,531
Church-Rosser theorem 350
Circularity 391,392, 394
Circumlocution 101
Class 301, 306, 311,313,379,383,435,464,

578,613-615
context free vi
context sensitive vi
equivalence 45-47,56,58,59,135,209
of finite sets 59

In dex o f sub jects 645

Clause 320, 321, 351,355,357,373,415,505
Clause mate 445,446
Clitic 351
Closed formula 142, 150
Closure 249, 250, 263,335,462,464,492,

499, 511, 533, 542,551, 553,561, 563,
604

Coextension 417
Cohen, P.J. 65,219
Collection, abstr act 3
Commutative 73, 224,251, 252,257,262,

263, 274, 284, 293,434, 576,577, 609,
613

Commutative group 311
Commutative law 18, 20, 22, 112, 114, 120,

121, 281, 292,297,421, 599,600,601,
602

operation 264
Commutativity 270,552
Complement 20,218,293,294,364,405,

410,413,418,478,485,576,577,610,
625

definition of 19
inverse of 36
inverse relation and 52
law 18,19, 22,112,114,120,123,156,
421
of arbitrary set, difference and 14
of relation 15, 29,33,44
of set 16,17

Complementary distribution 52
relation 36

Complementation 26,298,300,477,498,
499, 542, 547,548, 563

laws 298
Complements, properties of inverses and 44,

45
Completeness 202, 203

proof 227, 228
theorem 308

Complex statement 113,115,126,127,145
Component, semantic 93,95

syntactic 95
Composite 37
Composition 33—35,258,285

of operations 263
Compositionality 317-338, 339,340,

351-357, 360,368, 369, 387,407-409
Compositionality principle 254,337
Computability 350
Computation, mathematics of vi
Computational linguistics vi
Computing function 454

Concatenation 21.3—215, 318, 324,434-436,
464—468,471,477,498, 53.3,547, 548

Concept, abstract 7
of equality 78
of infinity 55
of logic and formal systems, basic 89
of set theory 45

Conclusion (of deduction) 115-126, 129,155,
162-168,183,421

Condition 398,442-444,450
Conditional99,104-106,108, 111, 115,119,

124,129,135,146,147, 162,166, 173,
239,242,243,246,307-309,333,473

connective 124
law 112-114,120,154,421,614
premise 270, 608,609
proof 120-123,133,160,161,171, 172,
174,198, 586, 59.3,599, 600,601, 602,
603,614

sentence 104
statement 127

Conjunction 95, 99,102,103,118,120,122,
125,129,135,149,156,159,161, 184,
199, 239, 246, 251,33.3,350, 351, 352,
354,357, 364, 382,383,407,420, 421,
547,587, 592, 593,595, 599,600-602

Connected 45,51
relation 42-44

Connectedness 39,42,44, 210, 211, 268,
391-393,401, 579,620

Connective 100-107, 111, 115, 124-126,
130-1.32,135,139,140, 145,15.3, 159,
166, 169, 220,22.3, 225, 236, 239, 240,
243, 250, 318, 320, 324, 368,420

binary 100
sentential 95,97,100

Connotation, temporal 102
Conover, L. vii
Consequence and laws, logical equivalence,

logical 110
Consequence, logical 111,116
Conservative 387,388
Conservativity 376, .377, .379,380,383, .387,

388,392, 394-398,618, 620,621
Consistency 202,203, 221, 22.3

principle 18,20, 22,577
Constancy .377, .378
Constant 138, 140,141,143,155, 156, 157,

158,160, 163,167, 168, 169,195, 225,
228,307, .308,319,419,496,617

Constituent 101,114, 1.38,360,439,440,441
sentence 102
statement 106,110,124

040 In dex of subjects

structure tree 439,442,444,449
Constraint on coordination 382
Construction, intensional vi
Construction rules for Beth tableaux 128
Construction, set-theoretic 79
Construction, tableau 130
Context 396-399,404,406,408,409,413,

418,420,421,425,427-429
dependence 395,398,546
free 449,450

class vi
grammar 492,494,496,497, 500, 501,

502, 505, 525,535,536, 542, 544-546,
548, 552,555

language 494,496-500,505,506,525,
535,540-542, 545,553,562,563, 572

sensitive 449-451
class vi
grammar 530-534, 556
language 529-535,542,553,555,562,

563
Contingent 108-110,132,144, 584
Continuity 383
Continuous structures v
Continuum hypothesis 65, 66
Contradiction 107,110,113, 122, 123, 125,

126,132,143,144,228,242, 269,301,
385, 388,389,393,407,421, 523,585

Convention 345, 353,368,370
Convergence, definition 82
Converse 40
Conversion 342,349,350,353,357,359,360,

361
Cooper, R. 334,338, 373,384,385,387,389,

397
Coordinate, first 30

projection onto first 28, 29
projection onto second 28, 29
system 31

Copi, 1,202
Correspondence 31,46, 63,311,313,318,

319,336,579,580, 605, 606, 612
one to one 32-36,55-62, 67,69,76, 86,
198, 200,204,205, 253, 271

Count, frequency vi
Countably infinite set 59
Cresswell, M. 352,358,413
Cross-serial dependency 503,538,547
Curry, H. 206
Cycle 555, 558

Dagger 239
Dahl, 0. 361

Daughter 440,441, 547, 549
De dicto interpretation 409,410,412
De Jong, F. 398
De re interpretation 409
Decidability 229,563
Declarative sentence 95,100,1-2
Decreasing 381,382, 389, 399

determiner 383
simple quantifier 384

Dedekind, R. 82, 194,195,291
Dedekind infinite 195
Deduction 246

natural 115,154,170
Definability 374
Definition 234, 236, 270, 302,325,327, 339,

346, 350, 366, 367, 374, 383, 384, 387,
388,389,399,417,421,435,438,443,
445,446,447,458,459,460,462,464,
465,491, 492, 510,512,577, 594,607,
608, 609, 610

of complement 19
of composition 34
of convergence 82
of intersection 17,19,20
of inverse 174,175
of subset 10,17, 20
of union 17,19,20
recursive 181-186,188,194,196

Deletion 360-362, 555, 556-558, 597, 598
Demonstrative 390
DeMorgan, A. 18,20-22,112,136,149,154,

173, 200, 294, 296,421, 576, 577, 592,
595.600-602

identity 294, 296
DeMorgan’s laws 18,20-22,112,136, 149,

154,173, 200,421,499, 576, 577, 592,
595.600-602

Denotation 348
Dense relation 51
Denumerability of set 58,59
Denumerably infinite set 59,60,71
Deontic logic 413
Dependence 395, 546

law of quantifier 150
Dependency 398,481,503,538, 541
Derivation 119,185-189,190,192,193,225,

227,318, 322, 327, 328, 331, 337,345,
359, 362,365,437,438,449,474-477,
493,494,496,497, 500,501, 516,517,
530,531,532, 536, 546, 549,558,599,
629

schema 114
tree 367-370,370,537-539, 540, 542, 552

In dex of subjects 647

Descartes, R. (Cartesian) 27-30,60, 62,464
Designator 419,421,429
Determiner 95,373,374-401,439,440,449,

565,567, 571, 572
Determinism 490,506,508, 512,515, 530,

533, 625
Deterministic finite automaton 457-463,477

language 562
pushdown automaton language 562, 563

Diagonal argument 65
Diagram 278-280,441,442, 457,459,461,

476,479,482,484, 581, 606
of relation 43,440
Venn 5, 12-15,17, 19, 20, 25

Difference and complement of arbitrary set
14-16

symmetric 25
Discontinuous connective 104
Discourse, domain of 16,142,147,149,158

universe of 16,25, 145,147,149,155,157,
166,168,169,176

Discrete entities v
mathematics v, 82

Disjoint set 73
Disjunction 99, 103, 107,126-129, 149, 220,

223, 227, 240, 251, 308, 350,352, 354,
382,413

inclusive 12
Disjunctive syllogism 118,120-122,173,

586, 587, 593, 599-601
Distinct element 42,262

pair of integer s 43
set 9

Distribution, complementary 52
laws of quantifier 149

Distributive 251, 309,390, 576, 577
lattice 297,302, 305, 308

Distributive laws 18,19,21,22, 25,112,198,
199, 266, 275, 290, 296, 297,421

Distributivity 585,586, 607, 608, 611
Division 31, 80, 81
Domain 29,30, 34, 36,45, 168, 169,170,

200, 208, 212, 219, 230-232, 242,
266-272, 275-277, 286,312,313,325,
331, 340,346, 347, 351, 360,373,
374-379, 383, 387, 390,392, 394, 395,
398-400,415, 419,421,423,426,443,
514, 549, 555

of discourse 16, 142, 147,149,158
of function 31
subset of 32

Dominance relation 440-445
Double indexing interpretation 428

Double negation 614, 620
law of 148, 154

Dowty, D. vii, 320, 334,352,362,364,365,
415,425

Dual 384,385
atom 298

Duality 277, 278, 280, 282, 283,385,401

Effective enumeration 230
Effectively listing 62
Element 49, 51,62, 63, 67,78, 80, 86,168,

169,203-205,207, 212, 215, 219, 232,
249, 251-253,255, 257, 258, 261-269,
274, 276-280, 283, 288-290,292, 295,
297, 298, 300, 302, 303- 306, 309, 311,
328, 329, 366, 377, 380,390,391,398,
399,434,441,446, 538, 546, 578,582,
583,603-607,611,612

distinct 42
finite 76
first and second 29
greatest 50,51,53
least 50, 51, 53
maximal 50, 51,53
minimal 50, 51,53
of set 3

Elementary statement 137
Emptiness 501

question 479
Empty list notation 9

set 4, 9,75, 218,237
axiom 218

string 58, 214, 215,434
Enderton, H. 231
Entity 346, 347, 374,380,398,415,419, 620
Enumeration 230
Epistemology 409-414,418
Equal relation 76

set 55
Equality 79, 81

set-theoretic 17,18,25, 26
Equation 34
Equivalence 118,148,177, 313, 332,337,

342,350, 353,367, 376,377, 392,394,
401,417,418,420,421-423,462,463,
477,490,492, 514, 516, 530, 578,579,
585, 588, 590,591,613-615

class 45-47,56, 58,59, 135, 209,302, 306,
311

logical 111, 113,120,121,172
consequence and laws 110

relation 46,47, 52, 56,71,79,135, 205,
272,301,311

048 INDEX OF SUBJECTS

and partitions 45
Equivalent infinite set 58

set 56,57, 62
and cardinality 55

statement 120,123,132
Etchemendy, J, vii
Euclid 89-91,195, 200, 216,394
Euclidean axiom 90, 91, 200

axiomatization 195
Euclideanness 391 392
Evaluation 331,416-419,423
Even integers, positive 56
‘Every AB’ automaton 565
‘Every’ automaton 566
‘Exactly two AB’ automaton 568

‘two’ automaton 570
‘two’ tree 570

Exclusive disjunction 103
Exclusivity condition 442-444
Exercises 23,36,51,71, 85,1.30, 175,234,

255,273,295,309, .367,400,429,482,
505,525, 534, 572

Existential generalization 154,157,159,161,
162,164,419,592

instantiation 154,157,159,162-165,592
quantifier 138,141, 149,150, 225

Existentiality 407,408,416,421,424,426
Expression 21,348,352,466,485,513,573
Extended axiomatic system 188-193
Extension 377, 379,380,38.3,385,392,394,

395-398,414,415,417-419,421-424,
426,428, 618, 620,621

axiom of 171
to the set of all integers 78
to the set of all rational numbers 80
to the set of all real numbers 82

Extensional equivalence 417
Extensionality 218,413

Factorization 497
Fallacy 117
False conditional 146
Faltz, L. 354, 379,390
Filter 287-289, 298,299, 301, 305-308,389,

.390,398, .399,620
Filtering effect 555 557
Final state 455,457,458,469,475,476,479,

488, 625
Finite alphabet 66,71

automaton 455-457, 460-462,464,467,
469,473,475-480,483,486,487,490,
507, 508

language 464,466-468,470-472,476,

477,479,481,494,497,498
cardinals 6.3
element 76
linearly ordered set 51
numbers 72
power 73
set 6,9,56, 58,70, 86, 212, 266,458
class of 59
state 485
string 66, 71,86

First and second coordinates, projection onto
28

elements 29
members 42,44

coordinate .30
projection onto 29

member 27
order definability 374

logic 93
predicate calculus 95

quantifier law 148
Form, argument 97

prenex normal 151
quantifier laws and prenex normal 148

Formal and informal proofs 170
definition 545
grammar 433,435,4.38,449,47.3,481,565
language vi, 95,115,155, 250, 277,306,
.317,318, 322- .343, .374, 385, 425,437,
481,503,513, 561-563

natural languages and 93
logic v, 96
proof 173, 180
semantics 95
system vii, 91,92, 94, 181, 202, 205, 210,
212, 220, 277,304, .33.3

basic concept of logic and 89
theory 348

Formalization v, vii, 89,91, 92
Formula 140-142,144,145, 148,150-154,

156, 160,166, 167,169, 176,177,
183-185,188,190,191, 208, 225, 228,
2.35, 2.36, 246, .308, 309,318, .320-332,
336-338, 342, 350, 353, .369, 373,414,
415,417,429, 596

well-formed 99,100-102,114,121,122
Fortran 93
Found 440,442
Foundation 348
Frame 306-308
Frankel, A. 217-219,348
Frege, G. 317,318,323,3.33,382,403^05,

408,414,415,428

Index of subjects 649

principle of 317,333
Frequency count vi
Friedman, B. 553
Function 30-32, 36,37, 55,138,142,144,

145, 163, 196, 219, 231-234, 241, 249,
253,271, 307, 312,318, 326, 329,331,
335, 336, 339-343, 346,348, 349, 351,
352, 355, 356,362-364, 368,374,388,
414,415,417,421,422,424,426,428,
434,443,444,454, 458,459,462, 510,
513, 514, 518, 520,526, 529-531,551,
578, 579, 584

bounded 70
composition 33, 251, 552
graph of 31
identity 34, 35
infinite vs unbounded 70
into 32,34
inverse of 33
many to one 32
mapping 62
negative 59
one to one 32, 34, 56,62
onto 32, 34
partial 31, 32
positive 59
quaternary 36
range of 32, 34
relation and 27
ternary 36
value of 34

Fuzzy set 6

Godel, K 219, 227, 230,231, 234
incompleteness proof 234
incompleteness theorem 230

Gaifman, C. 552
Gallin, D 350
Gamut, 320
Gazdar, G. 354,358,503,536,541,542,547
Geach, P T 552
Geach rule 552
Generalization 154-164, 171-174, 358,407,

408,419,421,426
Generalized quantifier vi, 358-360,373, 374,

376, 377, 387, 390, 391, 395,565
theory 375, 385

Generative grammar 94
sytax 94
transformational theory 433

Generator 454
Ginsburg, S. 555
Glottochronology vi

Goldblatt, R. 250, 254
Grttzer, G, 250, 303
Gradual membership 6
Grammar 227, 234,337,353, 363,364,415,

433,435,437-439,446-455,473-477,
481,482,486,492-494,496-498,
500-502,505, 515-517, 525, 527,
529-532, 534, 536-539, 542,546,
547-550, 552, 553,555, 556,559, 565,
573,629,632

generative 94
Montague 7
transformational vi

Grammatical constituent 138
Graph of function 31
Greatest element 50, 51,53
Grelling’s Paradox 26
Groenendijk, J. 358
Group 257, 261-263, 266, 271-274,311,312,

314,434, 506, 580, 606, 612,614
operation 258
theory 263, 281

Halfway membership 6
Halting problem 512, 513,522-524
Halvorsen, P. 334
Hao Wang 205
Hasse diagram 279
Hayashi, T. 542
Head grammar 548, 549
Head language 548
Heim, I 389
Henkin, L 227,228,350
Heterological adjective 26
Heuristics 123
Heyting, A., v, 215, 297, 303,305,308,309,

414,415,612
algebia v, 215,297, 303,308
lattice 612

Hierarchical categorization 503
Hierarchy 436,452,453,535, 561

Chomsky 451
Higginbotham, J. 411
Higher order analysis 374

logic 231, 234
quantifier 571, 572
system 232

HUbert, D. 94, 220, 223, 224
program 94

Hoeksema, J. 390
Hofstadter, D, 231
Homomorphism 253,254, 271, 274, 286-289,

295, 299, 302, 313, 314,334-337, 605,

650 In d ex of subjects

Hopcroft, D. 463,466,492,530,531,533,
536

Hughes, G. 413
Hukaii, T, vii
Hypothesis 517, 531,558

continuum 65, 66
Hypothetical syllogism 118,156,163,165,

172,593

Ideal 287-289, 298
Idempotence 309
Idempotent 21, 251,274, 284, 293,577

law 18,22,112, 281,607,609, 610
Identity 262,266,269, 273, 311,403-405,

421,428,429,475,576,577,479, 585,
603, 604,606,607,612

and cardinality, set-theoretic 8
element 215, 252,257, 258,261,26:3-265,
274,434

function 34,35
law 18,19,21,22,112, 114
relation 35, 39
set-theoretic 9

Imperative 95
Imperfective paradox 247
Implication 224
Inclusion relation 561
Inclusive disjunction 12,103
Incompleteness theorem 231
Inconsistency 228
Increasing 380-382, 385,389,399-401

determiner 383
Independence 202, 203, 220, 224

law of quantifier 150
of axiom 224

Index 533,537,547,621
Indexed grammar 536,541,542,547,549,

553
Indexed language vi, 540-542,546,547
Indexical 427,428
Indexicality 427
Indices 414-419,422-429,536, 538,540,549
Indirect proof 122, 123,133, 580, 595, 601,

602
Individual constant 138

variable 138
Induced partition 47, 52
Induction 235, 276, 309,434,596, 608, 609
Induction, principle of mathematical 195-199,

217, 269, 270
step 197,198

Inductive proof 194-199

606 Inference 221,224-226, 235,375,404,405,
409,437

productions of 186,189
rules of 45, 95,118,119,122,151,153,
154,162,172, 185,196,197, 220

Infinite cardinal number 65,73
Dedekind 195
denumerably 71
numbers 72
sequence 69
set 6, 9,55-60, 65,70, 86, 212

countably 59
denumerably 59 60
equivalent 58
nondenumerably 69

vs unbounded function 69, 70
Infinity 218,219

concept of 55
Informal proof 173-175, 180

formal and 170
Information-state 306,307,309
Initial state 455,457,458,461,469,475,476,

479,484,488, 507,510, 517, 520
Initial symbol 437

tree 543, 544, 547
Input 453-457,461,463,484,489, 512,514,

519,529-531,567, 573
alphabet 484,485,491
string 477,483,489,490,508, 521,532
symbol 491
tape 487,488,507

Instantiation 154-174,183, 184,196,197,
617

Integer 62, 64,73, 75,78,79,177, 178,
196-200, 235, 253, 257,258, 263,265,
267, 269-273,311,313,434, 527, 556,
575, 576,581,585, 591, 606,608, 609,
613

distinct pair of 43
extension to the set of all 78
negative 62,71,79, 80
nonnegative 80
odd 60
ordered pair of 81
positive 6,9,49,59-61,79, 80
relation of 85
relation of positive 43
set of 31, 32

positive 55,56
positive and negative 51

Integral domain 266-272,275,276,312,313
power 71

Intended model 91

Index of subjects 651

Intension 414—429
Intensional construction vi

equivalence 417
logic 429

Intensionality 403,413,414
Interpretation 409,410,412,414,415,422,

425,428,429
Interrogative 95
Intersection 12, 19,20, 26, 300,302,308,

382,388,477,481,498,499, 533, 542,
546, 547, 5783,576

definition 17,19, 20
operation of 255
set-theoretic 14
union and 11

Into function 32,34,443
Intransitive 45

relation 41,42,44
Invalid argument 115,116, 119
Inversal instantiation 592,593,603
Inverse 30, 34, 35, 37, 218, 225, 252, 253,

261-263, 265-267, 274, 275, 286, 311,
313,434, 578,603, 604,606, 607

definition of 174,175
element 255, 257
law 613,614
of complement 36
of function 33
of relation 29
properties 45
relation and complement 44,52
schema 192

Irrational numbers 64
Irreflexive relation 39-51, 85, 205
Irreflexivity 208, 209, 213,391-393,429,

442,444,578,579
Isomorphic model 206, 207

subsystem to the old system 78
system 204

Isomorphism 80, 81, 203-205,253,254,267,
271, 272, 274, 275, 285, 286, 292, 300,
301, 303, 311, 378, 476, 605, 612

Isotone 285

Jacobson, P. vii
James, W. 72
Janssen, Th. 250, 334, 352
Joshi, A. 535, 542,546, 548,553

Kalish, D. 318
Kamp, H. 424, 425,427
Karttunen, L. vii
Keenan, E 354,361, 379,388-390

Kernel 271
Kleene, S. 241-243,464,465,466,469,471,

477,498,518, 533,542,547
closure 542
star 464-466,469,471,477,498, 533,547

Kripke, S.. 254, 306-309,414,415,419,429
semantics 254, 306,308
valuation 307

Kuroda, Y. 556

Labeling 443,446,447, 545, 624
function 444

Ladusaw, W. 334,385,390
Lambda 351,352,354-367,374

abstraction 338,341, 348
Lambda calculus 317,339, 348-351

conversion 353
rule 347

Lambek, J. 206, 553
calculus 553

Landman, F. vii, 303
Langacker, R. 445
Language 67,104, 115,137,138,140,155,

230, 231, 242, 250, 254, 277,300,303,
306, 309,317-324,326, 333,334, 338,
340- 347, 351-353, 355,360,373, 375,
378-380, 383,385, 389, 392,393, 395,
399,401,403, 405,406,409,413^tl5,
421,423, 424,425, 427,429,433,
435-438, 448,451^57,460,462-472,
474- 484,486-489,491, 492,494,
496-501, 503, 505-507, 511-513, 515-
517,519, 520, 522-525, 527,529-535,
540-542, 545-549, 556-558,561-563,
572, 573

categorial vi
formal vi, 95
indexed vi
logical 100,102
meta 92,93
natural 3, 7, 92, 95, 96,100,101,103
object 92
of logic 93-97
of ordinary arithmetic 93
programming 7, 8, 93
tree adjoining vi

Lasersohn, P. vii
Lattice 277, 280, 282-297,302, 304, 306,

308,309, 314, 389,609-612
theory 281,283,390

Law 148,149, 267, 268, 275, 282, 291
associative 18,19,21,22
commutative 18, 20, 22

652 In d ex of subjects

complement 18,19, 22
DeMoigan’s 18,20-22
distributive 18,19,21,22, 25
idempotent 18,22
identity 18, 19,21, 22
of double negation 148
of quantifier dependence 150
of quantifier independence 150
of transivity 275
of trichotomy 268

Laws and prenex normal form, quantifier 148
logical equivalence, logical consequence
and 110

of quantifier distribution 149
of quantifier movement 151
of set theory 45
of statement logic 112

Leaf 441,444,447,449,556, 557
Least element 50,51, 53,212,232,441

number 395
Left identity element 251, 252

increasing 398
inverse 252
linear grammar 474

tree structure 541
monotone decreasing 381,382

increasing 380-382,400,620
zero 253

Lemma 299,302,303
Level of representation 334
Levy, L. 542
Lewis, D. 463,466,492
Lexical rule 364—367
Lexicon 347,356,364,550
Lindenbaum algebra 301
Linear bounded automata 529-533

function 529-531
gr ammar 474
list 67
order 51,66, 69,76,210,434
sequence 62, 64

Linearly ordered set, finite 51
system 86

Linguistic object 5
theory 437, 559

Link, G. 334,390
Lisp 93, 214,351
List, linear 67

notation 4-6
Listing, effectively 62
Lo Cascio, V. 425
Lobachevsky, N. 90,91
Logic vi, 95, 140, 142, 143, 147, 148,153,

169,175, 177, 183, 190,199, 212, 214,
219, 220, 223, 225-232, 234, 236,241,
246, 307,308,317-330, 333, 348, 350,
359,360, 362, 368,369, 373, 378,382,
385,403,405,408,409,413-415,417,
419-421,423,429

and formal systems, basic concept of 89
and predicate logic, statement 95
first-order 93
formal v, 96
language of 93-97
laws of statement 112
of statement 140,144, 239, 241,250,307,
335

predicate vi, 95-97,99, 100, 102,118,119,
130

system of 92
Logical connective 102, 103
Logical consequence 111,116

and laws, logical equivalence 110
equivalence 111, 114, 113,118,120,121,
172,417, 418

language 100,102,104,137, 300,550
negation 101
omniscience 422
paradox 7
predicate 138

Logics 306

Machine translation vi
Machover, P. 231,301,303
MacLane, S. 52, 250, 302
Manipulation, symbol 95
Many to one function 32
Map 31
Mapping 31,33,34,36,57,58,63, 200, 234,

249,253, 254, 271, 272, 285-287, 302,
312, 313, 326, 334-336, 346,373,434,
443, 555, 556, 581, 605

function 62
one to one 56
single-valued 32

Markov, 518
Marsh, W. 542
Mass terms v
Massey, G. 236
Mate, clause 445
Mathematical and linguistic analysis 3

induction 596, 608, 609
principle of 195-199

Mathematics, discrete v, 82
of computation vi
of wave theory vi

Index of sub jects 653

Matrix 141
Maximal element 50, 51,53
May, R. 334, 338
McCawley, J. 361
McKinsey, J. 305
Meaning 403,429

postulate 364—366
Member 465

first 27
of set 3, 5, 7, 8,10-12,15, 21, 24,25, 27,
30, 32, 36,43,52,53,56,58-60,62, 63,
66,69,70,75,76,142,143,155,171,173,
182,184, 237, 262

second 27, 28
Members, first and second 44

nonidentical 42
Membership 500,501, 510,533, 573,578,

579, 581, 582,596
gradual 6
halfway 6
multiple 6
question 479
relation 4
status 6

Memory 453
Meta-language 92,93, 230,319,320,

322-324,424
Miller, G. 463,481
Minimal element 50,51, 53
Modal logics 306
Modality 413,418
Model 90, 91,143-146,168,170, 206,207,

209-211,214, 221, 223, 224, 232, 237,
246,266, 267, 269, 300, 301, 303,307,
325- 327, 329-332, 337, 338, 346-348,
351, 368, 369, 376, 378,380, 383, 389,
391, 398, 399,401, 414-417,421^t25,
428,429, 433, 535, 594, 617

intended 91
standard 91
theoretic semantics v
theory 92,94, 95, 181, 194,200, 201, 203,
205, 208, 215, 228, 233, 353,374, 375,
387,414,415, 417

Modified head grammar 548,549,553
language 549

Modular law 290, 291
Modularity 293
Modus Ponens 116-118,121,122, 155,161,

174, 182-184, 196, 197, 220, 221,
226-228,586, 587,599, 600, 602, 603

Modus Toiiens 118,123,164,586,587,599,
601

Monadic predicate logic 229
Monoid v, 215, 263, 264, 266, 271, 274, 275,

434, 606
Monotone 285, 383

decreasing 383,384,389,620
determiner 381
set 385-387

increasing 383, 384, 389, 399,401, 620
Monotonicity 381-383,385,397,400
Montague Grammar 7, 234, 250, 363,415
Montague, R 7,233, 234, 250, 317, 318,333,

334,338, 339, 352, 353, 359,363, 366,
374,415,425, 550

Montague semantics 233
Morpheme 203, 351,433
Morphism 253, 254, 271
Morphology 365,424
Morse, S. 93
Moss, L. 390
Move 491,492

produces in one 459-462
Movement, laws of quantifier 151
Multiple 575

membership 6
Multiplication 20,21,31, 73,76-78, 80, 81,

204, 215
law 267

N-place relations 30
n-tuple, ordered 27

set of 62
Named object 5
Natural deduction 115,154,170
Natural language 3, 7, 92,95, 96,100,101,

103, 104, 115, 137, 138, 230, 231, 242,
250, 254, 277, 303, 306,309, 317, 322,
333, 338, 351, 360, 373,375, 379,380,
383, 385, 392-395,399,401,403-406,
409,413-415,421,423,427,429,433,
436,453,482, 503,535,542, 550,551,
557, 558

formal languages and 93
Natural number 3, 9,11, 36,51, 56-60, 62,

66,75,76,78-80, 85, 86,194-196, 200,
216, 217, 230, 237, 263

Negated determiner 566
Negated quantifier 565
Negation 99, 101, 122, 123,125, 126,135,

159, 167,220, 223, 228, 231, 236, 239,
240, 243, 307,308, 351, 352, 368,383,
384,385,400,567, 602

law of double 148
symbol 100

034 Index of subjects

Negative function 59
integers 62,71,79, 80
rational numbers 62,86
set of positive and 51
strong 387,388

New York Times 65
Newton, I. 89 91
Newtonian system 90 91
‘No’ automaton 567
Node 440-447, 544, 545,547,567,568, 581,

619
Node admissibility condition 450
Non-Abelian group 612
Non-determinism 490-492,497,499,512,

515, 516, 530-533
Non-deterministic automata 457,485,486

finite automata 460,462,477,484
language 562

linear bounded automaton language 562
pushdown automaton language 562

Non-distributivity 291-293
Non-empty set 46,206,219,232, 281, 288
Non-fmite automaton 462,463

of primitives 92
Non-empty subset 283, 287
Non-modularity 291,292
Non-monotone 382
Non-reflexive relation 39,40
Non-terminal alphabet 437

symbol 439,446,451
Non-triviality 379
Non-Turing acceptable language 562
Nonconnected relation 42,43
Nonconnectedness 578,579
Nondenumerable set 62,64,69

infinite 69, 86
Nonidentical first and second members 42
Nonnegative integers 80
Noraeflexive relation 51
Nonsymmetric 45

relation 40,43,44
Nonsymmetry 578,579
Nontangling condition 442-444
Nontransitive relation 41-^4
Nontransitivity 578,579
Normal form, prenex 151

quantifier laws and 148
Not every automaton 566
Notation 34,135,136,234,236, 239

binary 66,69
empty list 9
list 4-6
predicate 6,11, 12,14,16, 28, 31,33

set-theoretic 4
Notion, primitive 27
Noun 231,439,440
Noun phrase 102,395, 399,404-408,410,

411,418,419,426,439,440-443,480,
504

Null set 4,10, 19, 21,123,189
string 192

Number 230,263, 267,274, 340,395
cardinal 56,59, 62,63, 73
extension to the set of all rational 80
extension to the set of all real 82
finite 72
infinite 72

infinite cardinal 65,73
irrational 64
natural 3, 9,11,36,51, 56-60, 62,66,75,
76,78-80, 85, 86,194-196,200

negative rational 86
positive rational 86
rational 60, 64, 81-83
real 51,64, 65,69, 70
set of real 66
systems, set-theoretic reconstruction 75
theoretic tree 379,380
theory 16,400
unique real 69

Object 3,4, 11, 16, 28,29, 31
language 92,319
linguistic 5
named 5

Odd integers 60
Oehrle, R. 553
Omniscience 422
One to one conespondence 32-36, 55-63,67,

69,76,78, 86, 198, 200, 204, 205, 253,
271,311,579, 580,612

function 32, 34, 37,56,62
mapping 56

Onto function 32,34, 37
Opacity 405,406,408^15,418^21,423,

425,426
Open formula 142,208

statement 138,139,144
Operation 250,252,253, 257-261,263, 264,

266, 267, 271, 273- 275, 281-284, 297,
311,312, 314, 318-321, 324, 325,334,
335, 348, 350, 362-364,420,612

complementation 477
intersection 255,477
order and v
set-theoretic 12

Index of sub jects 655

Operator, unary 100
Order 50, 208-213, 232, 264, 267, 278,

280-283, 306, 363, 391, 393,434,435,
442-444, 580,588, 607

and operation v
chronological 86
linear 51, 66, 69,76
partial 51
strict 47-49,51
strong 47
theory 277, 285
total 51, 53
weak 47-51

partial 53
Ordered n-tuple 27

set of 36f
pair 28, 29, 34,39,40,41,44,47,48,60,
62, 79, 81, 143,145, 146, 174,186,313,
438,444

and Cartesian products 27
set of 30,31

quadruples 30, 62
set, finite linearly 51

partially 51
system, linearly 86

partially 86
triple 27, 30, 62

Ordering 47,79,81
Ordinary arithmetic, language of 93
Ordinary set 27
Output 453,454,565

Pair 313
ordered 28, 29,34, 39,40,41,44,47,48,
60,62,79, 81,143, 145, 146,174,186

reversed members of 40
Pairing 218
Papadimitriou, Ch. 463,466,492
Paradox 427

Grelling’s 26
logical 7
Russell’s 7, 10, 26,6.3

Paradox, set-theoretic 8
Parallel Postulate 89, 90
Parameter 395-397,422,425,427-429
Parse tree 494,495, 501, 502
Parsing vi
Parsons, 334
Partee, B.H. v, vii, 334, 352,254, 257, .358,

366, 379,427, 555
Partial function 31,32

order 51, 277, 278, 280,282,306, 393
weak 53

recursive function 520
Partially ordered set 51

system 86
Partition 135

equivalence relation and 45
induced 47,52
trivial 46

Partitioning 46
Pascal, B 93
Passive 363,367
Peano, G 194, 195, 197, 200, 212, 215-217,

230,232, 234, 237, 269
axiom 194, 197, 200, 212, 215-217, 230,
2.34, 237

axiomatization 2.32
fifth postulate 269

Performative 95
Permutation invariance 572
Persistent 381
Peters, S. 320, 334, 352,415, 555-558
Phoneme 3,52,433, 578
Phonemic overlap 578
Phones 52
Phonetics, acoustic vi
Phrasal conjunction 103,352, 354

passive rule 363
rule 364

Phrase 102,480
structure 322

tree 474,515
PNF 152, 153, 159,178,229
Polarity 386

reversal 385
Polish notation 135,136,234, 236
Pollard, C 548
Polygons, regular 70
Poset 277-285, 288, 295,306,308, 609
Positive and negative integers, set of 51

closure 533
element 268, 269
even integers 56
function 59
integer 6,9,49,59, 60,61,79,80, 2.35,
265,434

relation of 43
set of 55, 56

rational numbers 86, 257
strong 387, 388, 394

Possessive 390
Post, E 518
Post correspondence problem 525
Postulate 364—366

parallel 89, 90

656 In dex of subjects

Power, finite 73
integral 71
set 11,62, 63-65, 185, 218, 219, 232, 235,
275,280, 295, 300-302, 376,435, 596

lattice 304
Precedence 441,442

relation 444,446
Predecessor 49-53,76, 217,442
Predicate 8,23,42,138,139,140,143,144,

166,170, 171,173,176,178,182, 183,
185,195,196, 199,205, 216,242

calculus 95,142,144,147,160, 341, 343
logic vi, 96,97,137,140,142,143,147,
148,153,169,175,177, 212, 214,
225-231, 234,236,241, 246, 307,308,
318, 323, 324-328, 330, 333, 350, 359,
360,362,363, 368,369, 373,382,385,
405,408,409,413-415,419-421

statement logic and 95
notation 6,11,12,14, 16,28, 31,33

Prefix 435
Premise 115,117,119, 120, 122-126,129,

155, 156,160-168,171,173,174,197,
221,236,270,412,418-421

Prenex normal form, quantifier laws and 148,
151

Preorder 209
Presupposition 242,243,398
Prime 99,128,188
Primitive 94, 217,220, 237,319,414,415,

434
non-empty set of 92
notion 27
predicate 216

Principal filter 620
ideal 288

Principle, consistency 18,20, 22
of compositionality 254, 317, 318
of finite induction 269,270
of mathematical induction 195-199, 235,
596,608, 609

Probability and statistics vi
Problem 512,513, 523,524
Produces in one move 459,460,462,491,

492,510,511
Product 498

Cartesian 28,29, 30, 60, 62
Production 187,191,192,536,537,549,596

schemata 187,189-191,193,197
Productions of inference 186, 189
Program 455

Chomsky’s 94
Hilbert’s 94

Programming language 7,8,93,348,351,491
semantics 8

Projection onto first and second coordinates
28

onto first coordinate 29
onto second coordinate 29
problem 243

Prolog 93, 214
Proof, conditional 120-122

formal and informal 170
Proper ideal 289

subset 10
Properties 251

inverses and complements 44
of complements 45
of connectedness 44
of inverses 45
of operation 250
of reflexivity 44
of relations 39,45, 51, 52
of set 7
of symmetries 44
of transitivity 44
truth-functional 101

Proposition 100,162
Propositional calculus 95,135,138,142,144,

145, 163
logic 142

Pseudo-complement 304,611
Pseudo-complementation 305-309,314
Pseudocleft 358
Pullum, G. 503, 542
Pumping lemma 571

theorem 471-473,480,481,494,496,497,
499, 502, 505, 506,545

Push and copy rule 536
Pushdown automata 487-493,497,499,506,

508,512,529, 530,541,571-573

Quadruple 438,491, 508, 510,520, 526,548,
551

ordered 30, 62
Quantification 395,418,424

vacuous 140,141
Quantified variable 140
Quantifier 138-156, 159-161,163,164,167,

169,170, 177, 208, 225, 229, 231-233,
308,318, 323, 324, 358-360, 373,374,
375-380, 383-385, 387,388, 390-393,
395,397-400,409,416,424,426,565,
567,571,572, 591

automata 565
dependence, law of 150

Index of sub jects 657

distribution 172
laws of 149,161,171

generalized vi
independence, law of 150
law, first 148
laws and prenex normal form 148
movement, laws of 151,154
negation 159, 164,595

laws 154,173
word 97

Quantity 378-380, 383, 392,394-397,
618,621

Quasi-reflexivity 620
Quasi-model 223
Quasi-order 209
Quaternary function 36

relation 30, 36
Question 479
Quine, W.V.O, 239,406
Quine’s dagger 239
Quintuple 458,462

Rabin, M 463
Range 29,30, 36,56

of f unction 32,34
Rasiowa, H, 306
Rational numbers 60,64,75, 81-83, 257, 267,

274
extension to the set of all 80
negative 62, 86
positive 86
subsystem of 80

Real numbers 51,64, 65,69,70,267,340
extension to the set of all 82
set of 66
unique 69

Reconstruction of number systems, set-
theoretic 75

Reconstruction, set-theoretic 79
Recoverability 556-558
Recursion 555
Recursive 354

clause 320, 321
definition 181-186,188,194, 196, 234,
236, 270

function 513,514
language 532,533,563
rule 8, 23, 335
set 519, 520,531,558

Recursively enumerable language 507,558,
563

set 520,524, 531,556,557, 562
Recursively enumerated set 514,516

Reduction, set-theoretic 29
Reference 404

time 427
Reflexive 45, 272,277

clitic 351
relation 41,43,44, 46,47,48, 85
transitive closure 461,462

Reflexivity 39,42,43,52, 208-210, 212,213,
279,282, 305, 391, 392,394,440,459,
460,492,511,578, 579, 581,588, 614,
615, 621

properties of 44
symmetry, transivity and connectedness 39

Regular expr ession 466,485
gr ammar 451
language 455,464-466,477,478,480,492,
499,503, 533, 547, 562, 563

polygons 70
Regularity 218
Reichenbach, H. 427
Rejection with 0 state 569

with 1 state 569
Relation 28-31,36,37,44,78,80,134,135,

174,175, 180,186, 204-209, 211-213,
218, 219,232, 267, 268, 272, 277-280,
286, 301, 311,313, 317, 329. 337, 365,
374, 389, 391-394, 398,401,409, 414,
415,418,424,426,436,440-446,452,
459,460,462,492, 511, 551,561, 565,
578, 579, 582,583,588, 613-615, 620

abstract 28
and complement, inverse 52
and function 27
and partition, equivalence 45
anti-symmetric 41,44,47,48
asymmetric 40,42-^4,47,49, 85
binary 30, 39,40,47
complement 44, 29,33, 36
connected 42,43,44
dense 51
diagram of 43
equal 76
equivalence 46,47,52,56,71,79
identity 35,39
intransitive 41,42,44
inverse of 29
irreflexive 39,40,43,47,49, 51, 85
membership 4
n-place 30
non-reflexive 39,51
nonconnected 42,43
nonsymmetric 40,43,44
nontransitive 41,42,44

658 In d ex of subjects

of integer 85
of positive integers 43
properties of 39,45,51,52
quaternary 30,36
reflexive 41,43,44,46,47-48,85
set-theoretic 29
subset 28,48, 85
symmetric 43,44,46,47, 85
ternary 30, 36
transitive 41,43,46-49,85

Relative clause 355,357,373
complement 15

Replacement 218, 219
Representation 334

ideal 288
Restriction 398
Reuland, E. 389
Reversal 434,435
Reversed members of pair 40
Review exercises 85, 245,311,573
Rewrite rules 94
Rewriting, string 95
Riemann, B. 90
Right identity element 251,252

increasing 398
inverse 252
linear grammar 451,474,492

language 562
tree structure 541

monotone decreasing 381, 382, 399
increasing 381,382,384,385,400,620

zero 253
Rigid designator 419,421,426,429
Ritchie, R 555-558
Roach, K, 548
Roberts, C„ vii
Rogers, H. 518
Rohrer, Ch. 425,427
Root 441,445,447,494
Rooth, M, 354
Ross, JR. 71,361
Rosser, J. 350
Rozwadowski, K. vii
Rule 318-320,322, 324,325, 328, 329,

331-333,3.35,344-346,352,353,356,
357, 359, 362-366,367,474,476,493,
536,575, 576, 629

for Beth tableaux, construction 128
of function application 551,553
of implication 224
of inference 45,94,118,119,122,151,
153,154,162, 172,185, 196,197,220,
221, 224-226, 235,404,405,437

of substitution 114,120, 220, 221, 224, 225
recursive 8,23
rewrite 94
well-formedness 94

Russell, B. 7,10, 26,6.3, 216, 220,224, 339
paradox 7,10,26,63

Salomaa, A. 536, 542
Schema 114, 187-193, 225-227, 2.35, 354,

488,617
Schieber, S.. 504
Scott, D, .351,463
Second coordinate, projection onto 28, 29

elements, first and 29
member 27,28

first and 44
nonidentical first and 42

Self-dual determiner 384
Semantic automata 565

component 93,95
rule 319, 346
tableaux 124,130
value 142,143,155

Semantics 89,101,104,115,125,138,140,
142,144,148, 200, 231,241,250, 254,
281, 297,306, .308, 309,317-321,
323-327, 329,332-335, 338-348, .351,
35.3-359, 361, .362,364-368, .370,
373-375,377, .379,380, 383-385, .387,
390,395,399,401,403,404,406-410,
412-415,419,422-429, 504,550, 551

formal 95
programming 8
syntax and 94

Semi-Thue system 191-193, 2.36,596
Semigroup 263-265, 274,275,606
Semilattice 280,283-286, 295,609
Sense 404,405,407,415
Sensitive, context 449-451
Sentence 104,142,295

atomic 100
constituent 102
declarative 95, 100,102
set of 67,68,70

Sentential conjunction 103
connective 95,97,100,102,103,145
negation 101
tree 546

Separation 219
Sequence, infinite 69

linear 62,64
Set 3,5,19, 23,52, 57, 85,134,142,143,

170-174, 176, 181- 185,189,198, 205,

Index of subjects 659

206, 209, 211, 213, 219, 227, 228, 230,
232, 235, 237,249,251, 258, 262,265,
266, 273, 275, 281, 288, 295, 301,302,
306,307,308, 311, 324, 325, 333,335,
338, 339, 340,342, 343, 376,377,379,
385-388,390,391, 396-399,415,417,
422-425,433,435,440,442-444,
455-458,463,466,474,477,487,491,
492,510, 514,516,519, 520, 524,526,
529,531, 535, 536, 553, 556-558,578,
580, 582,596, 597, 603-605, 607, 611,
620, 622

and cardinality, equivalent 55
arbitrary 12,13,14
Cantor’s theory 7
class of finite 59
complement of 16
countably infinite 59
denumerability of 58
denumerable 59
denumerably infinite 59 60
disjoint 73
distinct 9
empty (null) 4,9,75
equal 55
equivalent 56,57, 62
finite 6,9, 56, 58,70, 86

linearly ordered 51
fuzzy 6
infinite 6, 8, 9, 55-60, 65,70, 86
member of 5,7, 8,10—12,15, 21, 24, 25,
27,30,32,36,43,52, 53, 56,58-60, 62,
63, 66, 69,70,75,76,155

non-empty 46
nondenumerable 62, 64,69
nondenumerably infinite 69, 86
null (empty) 4,10,19,21,123
of all integers, extension to the 78
of all rational numbers, extension to the 80
of all real numbers, extension to the 82
of axioms 92
of cardinality 82
of elements 203
of entities 375
of integers 31,32, 267
of languages 68
of n-tuples 62
of ordered n-tuples 36
of ordered pairs 30, 31
of positive and negative integers 51
of positive integers 55, 56
of primitives, non-empty 92
of real numbers 66

of rules 437
of sentences 67,68,70,295
of sets 12
of statements 245,307
of strings 186,214,438,464,481,484
of transition rules 483
ordered pair s of 30
ordinary 27
partially ordered 51
power 11, 62-65
product 498
properties of 7
specification of 4
subset of 10
theory 3, 6-8, 30, 80, 82,85,93,148,171,
208, 212, 217- 219, 251, 254, 255,274,
277,279, 280, 295, 299,300, 302,348,
381,383, 384, 388,392,400,434,477,
606

and logic v, vi
axiomatization of 8
basic concepts of 3
concepts of 45
laws of 45

uncountable 69
universal 19, 21
unordered 28
well-ordered 51

Set-theoretic complement 17
concept 55
construction 79
difference 15,16
equality 17, 18, 25, 26
expression 21
identity 9

and cardinality 8
intersection 14
notation 4
operation 12
paradox 8
reconstruction 79

of number systems 75
reduction 29
relation 29
union 12,13
universe 17

Sextuple 491
Shamir, E. 552
Sheffer stroke 240
Sikorski, R. 306
Simple decreasing 389

increasing 389
Simplification 118,121,127,156,159,161,

660 In dex of subjects

162, 172-174, 183, 184,362,586,587,
592,595, 599,600-603

Single root condition 441,443
Single-value 31

mapping 32
Singleton 4, 12,27
Sister 441,442,444
Situation 458-460,462
Skolem, function 23,232

normal form 229,232,233,237
Solutions 575
Soundness theorem 308
Specification of set 4
Square o f opposition 566
Stack 487,489,490,536, 542, 571, 572

alphabet 487,491
automata 541
symbol 491

Standard model 91
notation 135,136
theory vi, 555, 557

Star 464-466,471,477,547
Kleene 469,498,533

State 306,307,453,454-459,461,463,466,
469,471,472,474- 477,479,485,
487-489,492,507-510,512, 517, 520,
521,529, 567-569,572, 573, 625

diagram 457,461,476,479,482,484
transition 478

Statement 106,107,110, 111, 113,115, 117,
119,120,122, 123- 132,137-140,
142-145,147-150,154, 155,157,159,
161,162,164- 166,168,170, 171, 176,
180, 182,183,185,191, 206, 207, 216,
219-221,223, 227, 239, 241,242, 245,
250, 252, 254,270,283, 300, 301,306,
307, 319, 322,323,327,335,350,359,
364, 367,368,392,403-405,407,408,
413,414,418,420-422,425,428,429,
444,489,519,520, 588, 596,617

atomic 99,100
calculus 95, 137, 234, 235
logic 99,100, 102, 118,119, 130,190,199,
219,220, 223, 226, 229, 319-322

and predicate logic 95
laws of 112

syntactic component 101
Statistics, probability and vi
Status, membership 6
Steedman, M. 553
Step 510,511
Stokhof, M 358
Stone, M F. 301,303

representation 301,303
Strict linear order 211

order 47^9, 51
partial order 209,210, 443,444
total order 444

String 181-183,186-192,200, 214, 215,234,
311,312,433-438,447-449,451,
453-455,457-460,462-469,471^73,
476-481,483- 485, 488,489,491^94,
496-498, 500-502, 506,507, 509-514,
517, 519, 521, 523-525, 527, 530-536,
538,545,546, 548, 549, 551- 553, 556,
558,5 73, 574, 583, 596,612,613,622,
626,629

concatenation 213
empty 58
finite 66,71,86
rewriting 95
unique 58

Stroke 240
Strong 387,388, 394

connectedness 391,392
conservativity 377
order 47

Structure 322
algebraic v
continuous v
syntactic 101

Subalgebra 301
Subformula 113,114, 329
Subgroup 263-265, 274,311, 313,605,606
Sublattice 280,283, 284, 287,292, 302
Submonoid 265
Subposet 284
Subscript 99,138
Subset 9-11, 24, 28-31,45,46, 51,53,

57-58,63,65,66,68,69,72, 80,123,143,
157,171, 173, 182,185,209, 212, 219,
231, 264, 265, 268, 273,283, 287,288,
299, 301,306,338, 374, 378, 381,433,
435,462,481,491, 503,505, 536,562,
565, 581, 582, 583,606

definition of 10,17,20
of domain 32
of set 10
proper 10
relation 28,48, 85,452
symbol 10

Substitutability 418
Substitution 115,116, 124,196, 220, 221,

224,225,404,405,421,555
rule of 114,120

Substring 435,437,449, 546, 574

In dex of sub jects 661

Subsystem, isomorphic to the old system 78
of rationals 80

Subtraction 77, 78, 80, 81
Subtree 447,544,558
Successor 49,76-78, 195, 196, 217, 232, 234,

237, 279, 348,350, 598
Suffix 435
Sum 36
Suppes, P. 213
Surface structure 555,556
Surjective 253
Syllogism 118,120-122

disjunctive 173
hypothetical 156,163,165,172

Symbol 437-439,446,448,451,455-457,
459,461,471,474,476,487,488,490,
492,493,497, 507, 515, 517,531, 532,
536, 541, 543, 544,547, 548, 551,553,
556, 557,571, 573,580, 629

auxiliary 6
connective 126
manipulation 95
negation 100
subset 10

Symmetric 45
difference 25
relation 43,44,46,47, 85

Symmetries, properties of 44
Symmetry 39,40,42,43, 52, 255, 263,266,

272, 274, 275,313,391, 394, 396,398,
400,424,444,459,578, 579, 588,603,
606,608,612,614,615, 621

Syntactic component 95
statement 101

constituent 114
rule 318, 319
statement 115
structure 101

Syntax 92,95, 99,137,140,181,200, 232,
254, 281,300,307,317-320,322-325,
328, 330, 331, 333-335, 337, 338,
340-345, 349- 360, 362, 364, 367,
369-373,375, 383,389,390,410,414,
415,423,425,439,443, 535,550, 555

and semantics 94
generative 94

System 188-194, 202-207, 210-212,227,
232, 235, 304,312, 318,333, 350, 357,
360,404,414

axiomatic vi, 187
basic concept of logic and formal 89
coordinate 31
formal vii, 91,92, 94,181

linearly ordered 86
Newtonian 90, 91
of logic 92
partially ordered 86
theorems of the 93
well-ordered 86

Table 368
truth 101-106,108, 110, 111, 113-116,
118, 119, 125-127,131, 229, 240, 241,
250

Tableau 166-168,170,588, 589
Beth 12.3—129,135,165
semantic 124,130

Takahashi, M. 542
Tarski, A. .305
Tautologies, contradictions and contingencies

106
Tautologous conditional 111
Tautology 107,107,110, 111, 113,115,116,

123,132,143, 144,162, 220,223, 229,
2.36,242, 301, .388,405,420-422, 584

Temporal connotation 102
order 306

Tense 423,426,427
Ter Meulen, A. v, vii, 389, .390
Term 137,138,142,144,160,324
Terminal alphabet 437

symbol 438,447,451
Ternary f unction 36

relation 30, .36
Theorem 94,185,186,189-191,19.3,195,

198,200, 218-220,226, 229,2.30, 234,
236, 260-264, 267,269, 270,276, 289,
295, 299, 302, 308,311,313,350, .351,
385, 387, 388,392-394,437,444, 466,
471-473,480, 496,497,499,502, 505,
523, 524, 545, 572, 608-610, 620

Cantor’s 62,64, 73
provers 123

Theory 212,215, 217,218, 228,233, 250,
251, 254, 26.3, 274,277, 279-281, 283,
285, 295, 299, .300, .306, 333,334, 338,
3.39, 348, 351, .353, 374, .375,381, .384,
385, 387, .388,390,392, .395,400,404,
414,415,417,433,434,437,477, 502,
518, 555, 557,558, 606

model 92,94, 95,181,194, 200, 201,203,
205, 208

number 16
of automata 565
of functions 349
of generalized quantifiers 380

662 Index of subjects

of meaning 403,429
set 3, 6-8,30, 80,82, 85, 93,148,171, 208
type 7, 8

Thomason, R„ 202
Thue, A. 191-193, 236, 596
Time 423
Times, New York 65
Top and bottom 298,301
Total order 51, 53
Transformation 31
Transformational cycle 555

grammar vi, 555-558
language 556,558
rule 555,557, 558

Transition 467,468,475,476, 478,479,483,
487,491,530, 624, 625

function 458, 459
relation 462

Transitive 45, 272, 277
relation 41,43,46-49, 85
verb 28,138

Transitivity 39,41^3, 52, 208-210, 212,
269, 275, 279, 282, 305, 362,391, 393,
394,401,424,442,444,459,460,492,
511, 578-581, 588, 606, 608, 609, 612,
615, 620,621

properties 44
relation 207

Translation 96
machine vi

Tree 345,359,362, 367-370,379,380,400,
439,442-450,474,494-497, 501, 502,
515, 537-540, 542-544,546,547, 550,
552, 555,556, 567, 570

adjoining grammar 542-544,546-548,553
language vi, 545-548

diagr am 439-442, 581
of numbers 567
structure 556

Triple 458,459,462
ordered 27, 30,62

Trivial element 262
partition 46

Truth 94
table 101-108,110-119,125-127,131,
229, 240, 241, 250, 254,368

value 101, 102,104-111,113-115,120,
125, 131, 132,142, 144, 146, 151, 165,
243, 250, 320,322, 330, 335,340, 356,
368, 374, 377,405,414,419, 421,428,
429, 584,588

Truth-functional property 101
Turing, A.M. .350,502, 507-5.32,556, 574,

632
acceptability 514, 520, 523
acceptable language 513, 519, 522, 562
computability 350
decidability 520, 52.3,525
decidable language 513,519, 522
machine 507-5.32, 556, 574,6.32

theory 502
Turnstile 459,460
Two-sided identity 255

inverse 252, 253
Two-sided zer o 253
Type 340, 343-347,351, 356, .359, 362, 364,

.370,374, .381
Type 0 grammar 507, 515-517, 527, 531,532,

556
free character 351
grammar 451
language 5.32
1 grammar 529, 556
2 grammar 492
3 grammar 455,473,475-477,486
raising 552
theory 7, 8, 2.34, .338, .339

Ullman, J. 463,466,492, 5.30,531, 53.3, 536
Ultrafilter 288, 299,301

theorem 299
Unary operator 100
Unbounded function, infinite vs 69 70
Uncountable set 69
Undecidability 502
Union 19,26, 218, 219, 255,300, .302, .308,

.314,466,471,485,498, 506, 526, 533,
547, 576,60.3

and intersection 11
definition of 17, 19, 20
set-theoretic 12,13

Unique real number 69
string 58
value 32,36,56,458

Uniqueness 250
Universal 383, .385

base hypothesis 558
condition 398
determiner 397
generalization 154-156, 158,160-164,
171-174,593, 595, 603

instantiation 154-156, 158, 159,161-166,
171, 172, 174, 183, 184, 196, 197

negation 384
quantifier 1.38, 149, 150, 15.3, 208,397
set 19, 21

In dex of subjects 663

Turing machine 521
Universe of discourse 16, 25,145,147,149,

155, 157, 166, 168, 169, 176, 594
set-theoretic 17

Unordered set 28
Unquantified variable 139
Unrestricted grammar 515
Upper bound 71, 558

Vacuous quantification 140,141
Valid argument 115-117
Valuation 307-309
Value 31, 70,139, 14.3-146,151, 155,165,

.319-323, 327, .330, 333, .335, 340-342,

.356, 364, .368,370, .374, .376,377,404,
405,414,415,419,421,427,429,458,
518, 526, 529, 551, 584, 588, 596, 613,
629

of function .34
truth 101,102, 104,106-115, 120,125,
131, 132, 24.3, 250

unique .32, 36,56
Van Benthem, I 374, .378, .379, 383,390, .391,

393, 394,413,424, 553, 565,572
Van Eijck, J. .382
Variable 6,138-140,144,148,150,154,157,

163, 165,171, 175, 177, 187, 188, 192,
212, 220, 223, 224, 226, 228,229, 231,
234, 308, 323,324,326,415,416,425,
529, 591

alphabetic 150-153
convention 345

Variation 379, 380, 388, 392,394, 400, 620
Variety 393, 618
Venn diagram 5,12-15,17, 19,20, 25,400,

606
Verb 231

phrase 102, 424,439-441
transitive 28

Verkuyl, H. 398
Vet, C. 425
Vijay-Shankar, K 547, 548
Vocabulary 433,435,473,486, 525
VP deletion 360-362

Waismann, F. 216
Wall, R, 320, 3.34,352,415
Wave theory, mathematics of vi
Weak linear order 211

non-cardinal 389
order 47-49, 51, 210
partial order 53, 208, 209,211,212,443
quantity 378

Weir, D. 548, 553
Weisler, S. vii
Well-formed formula 99-102,114,121,122,

183-185, 188, 190, 191, 225, 2.35, 236,
318,320-322

Well-formedness rules 94
Well-ordered set 51, 211

system 86
Well-ordering axiom 269
WesterstShl, D 377, 378,390, 395,396,398
Wheeler, D. 553
Whitehead, A..N. 220, 224
Williams, E„ .352
Witness set .399
Word, quantifier 97
Wrapping 548

Yield 447,448,494,495,545, 546

Zadeh, L. 6
Zaenen, A vii
Zermelo, E. 217-219, 348

axiomatization 219
Zermelo-Frankel axiom 217, 218
Zero 79, 80, 86, 253
ZFC 219, 231
Zorn’s lemma 299
Zwarts, F 391,393,394
Zwicky, A, vii

Studies in Linguistics and Philosophy

H. Hiz (ed): Questions. 1978 ISBN Hb: 90-277-0813-4; Pb: 90-277-10.35-X
W„ S. Cooper: Foundations of Logico-Linguistics A Unified Theory of Information,
Language, and Logic. 1978 ISBN Hb: 90-277-0864-9; Pb: 90-277-0876-2
A, Margalit (ed): Meaning and Use, 1979 ISBN 90-277-0888-6
F. Guenthner and S,I, Schmidt (eds.): Formal Semantics and Pragmatics for Natural
Languages. 1979 ISBN Hb: 90-277-0778-2; Pb: 90-277-09.30-0
E. Saarinen (ed,): Game-Theoretical Semantics Essays on Semantics by Hintikka,
Carlson, Peacocke, Rantala, and Saarinen. 1979 ISBN 90-277-0918-1
F, J. Pelletier (ed): Mass Terms: Some Philosophical Problems. 1979

ISBN 90-277-09.31-9
D, R. Dowty: Word Meaning and Montague Grammar. The Semantics o f Verbs and
Times in Generative Semantics and in Montague’s PTQ. 1979

ISBN Hb: 90-277-1008-2; Pb: 90-277-1009-0
A F, Freed: The Semantics of English Aspectual Complementation 1979

ISBN Hb: 90-277-1010-4; Pb: 90-277-1011-2
J. McCloskey: Transformational Syntax and Model Theoretic Semantics. A Case Study
in Modern Irish, 1979 ISBN Hb: 90-277-1025-2; Pb: 90-277-1026-0
.J, R, Searle, F, Kiefer and M, Bierwisch (eds,,): Speech Act Theory and Pragmatics.
1980 ISBN Hb: 90-277-104.3-0; Pb: 90-277-1045-7
D. R, Dowty, R, E, Wall and S, Peters: Introduction to Montague Semantics, 1981; 5th
printing 1987 ISBN Hb: 90-277-1141-0; Pb: 90-277-1142-9
F, Heny (ed): Ambiguities in Intensional Contexts, 1981

ISBN Hb: 90-277-1167-4; Pb: 90-277-1168-2
W, Klein and W, Levelt (eds): Crossing the Boundaries in Linguistics. Studies
Presented to Manfred Bierwisch, 1981 ISBN 90-277-1259-X
Z, S, Harris: Papers on Syntax Edited by H, Hiz 1981

ISBN Hb: 90-277-1266-0; Pb: 90-277-1267-0
P, .Jacobson and G. K. Pullum (eds,,): The Nature of Syntactic Representation 1982

ISBN Hb: 90-277-1289-1; Pb: 90-277-1290-5
S, Peters and E, Saarinen (eds,): Processes, Beliefs, and Questions. Essays on Formal
Semantics of Natural Language and Natural Language Processing 1982

ISBN 90-277-1.314-6
L. Carlson: Dialogue Games An Approach to Discourse Analysis. 198,3; 2nd printing
1985 ISBN Hb: 90-277-1455-X; Pb: 90-277-1951-9
L, Vaina and ,J„ Hintikka (eds,,): Cognitive Constraints on Communication. Representa
tion and Processes 1984; 2nd printing 1985

ISBN Hb: 90-277-1456-8; Pb: 90-277-1949-7
F Heny and B, Richards (eds): Linguistic Categories, Auxiliaries and Related Puzzles
Volume I: Categories 198.3 ISBN 90-277-1478-9
F. Heny and B. Richards (eds..): Linguistic Categories. Auxiliaries and Related Puzzles
Volume II: The Scope, Order, and Distribution of English Auxiliary Verbs. 1983

ISBN 90-277-1479-7
R Cooper: Quantification and Syntactic Theory. 198,3 ISBN 90-277-1484-3

J. Hintikka (in collaboration with J. Kulas): The Game of Language Studies in Game-
Theoretical Semantics and Its Applications. 1983; 2nd printing 1985

ISBN Hb: 90-277-1687-0; Pb: 90-277-1950-0
E. L. Keenan and L. M, Faltz: Boolean Semantics for Natural Language 1985

ISBN Hb: 90-277-1768-0; Pb: 90-277-1842-3
V. Raskin: Semantic Mechanisms of Humor 1985

ISBN Hb: 90-277-1821-0; Pb: 90-277-1891-1
G, T. Stump: The Semantic Variability of Absolute Constructions 1985

ISBN Hb: 90-277-1895-4; Pb: 90-277-1896-2
J. Hintikka and .J, Kulas: Anaphora and Definite Descriptions. Two Applications of
Game-Theoretical Semantics, 1985 ISBN Hb: 90-277-2055-X; Pb: 90-277-2056-8
E Engdahl: Constituent Questions. The Syntax and Semantics of Questions with
Special Reference to Swedish, 1986 ISBN Hb: 90-277-1954-3; Pb: 90-277-1955-1
M, .J. Cresswell: Adverbial Modification. Interval Semantics and Its Rivals, 1985

ISBN Hb: 90-277-2059-2; Pb: 90-277-2060-6
J. van Benlhem: Essays in Logical Semantics 1986

ISBN Hb: 90-277-2091-6; Pb: 90-277-2092-4
B H. Partee, A, ter Meulen and R, E, Wall: Mathematical Methods in Linguistics. 1990

ISBN Hb: 90-277-2244-7; Pb: 90-277-2245-5
P, Gardenfors (ed): Generalized Quantifiers Linguistic and Logical Approaches 1987

ISBN Hb: 1-55608-017-4; Pb: 1-55608-018-2
R, T, Oehrle, E, Bach and D Wheeler (eds): Categorial Grammars and Natural
Language Structures. 1988 ISBN Hb: 1-55608-030-1; Pb: 1-55608-0.31-X
W, J, Savitch, E, Bach, W„ Marsh and G Safran-Naveh (eds): The Formal Complexity
of Natural Language. 1987 ISBN Hb: 1-55608-046-8; Pb: 1-55608-047-6
,J, E, Fenstad, P.-K. Halvorsen, T, Langholm and J. van Benthem: Situations, Language
and Logic 1987 ISBN Hb: 1-55608-048-4; Pb: 1-55608-049-2
U, Reyle and C, Rohrer (eds,): Natural Language Parsing and Linguistic Theories.
1988 ISBN Hb: 1-55608-055-7; Pb: 1-55608-056-5
M J. Cresswell: Semantical Essays Possible Worlds and Their Rivals. 1988

ISBN 1-55608-061-1
T. Nishigauchi: Quantif ication in the Theory of Gi ammar 1990

ISBN Hb: 0-792,3-064.3-0; Pb: 0-7923-0644-9
G, Chierchia, B..H Partee and R. Turner (eds..): Properties, Types and Meaning
Volume I: Foundational Issues, 1989 ISBN Hb: 1-55608-067-0; Pb: 1-55608-068-9
G. Chierchia, B.H Partee and R Turner (eds.): Properties, Types and Meaning
Volume II: Semantic Issues 1989 ISBN Hb: 1-55608-069-7; Pb: 1-55608-070-0

Set ISBN (Vol. I + II) 1-55608-088-3; Pb: 1-55608-089-1

ther information about our publications on Linguistics are available on request.
Kluwer Academic Publishers - Dordrecht / Boston / London

	Table of Contents
	List of Symbols
	Preface
	Part A SET THEORY
	Chapter 1 Basic Concepts of SetTheory
	1.1 The concept of a set
	1.2 Specification of sets
	1.3 Set-theoretic identity and cardinality
	1.4 Subsets
	1.5 Power sets
	1.6 Union and intersection
	1.7 Difference and complement
	1.8 Set-theoretic equalities
	Exercises

	Chapter 2Relations and Functions
	2.1 Ordered pairs and Cartesian products
	2.2 Relations
	2.3 Functions
	2.4 Composition
	Exercises

	Chapter 3Properties of Relations
	3.1 Reflexivity, symmetry, transitivity, and connectedness
	3.2 Diagrams of relations
	3.3 Properties of inverses and complements
	3.4 Equivalence relations and partitions
	3.5 Orderings
	Exercises

	Chapter 4Infinities
	4.1 Equivalent sets and cardinality
	4.2 Denumerability of sets
	4.3 Nondenumerable sets
	4.4 Infinite vs. unbounded
	Exercises

	Appendix A Set-Theoretic Reconstructionof Number Systems
	A.1 The natural numbers
	A.2 Extension to the set of all integers
	A.3 Extension to the set of all rational numbers
	A.4 Extension to the set of all real numbers

	Review Exercises

	Part B LOGIC AND FORMAL SYSTEMS
	Chapter 5 Basic Concepts of Logic andFormal Systems
	5.1 Formal systems and models
	5.2 Natural languages and formal languages
	5.3 Syntax and semantics
	5.4 About statement logic and predicate logic

	Chapter 6Statement Logic
	6.1 Syntax
	6.2 Semantics: Truth values and truth tables
	6.2.1 Negation
	6.2.2 Conjunction
	6.2.3 Disjunction
	6.2.4 The Conditional
	6.2.5 The Biconditional

	6.3 Tautologies, contradictions and contingencies
	6.4 Logical equivalence, logical consequence andlaws
	Laws of statement logic

	6.5 Natural deduction
	Rules of Inference
	6.5.1 Conditional Proof
	6.5.2 Indirect Proof

	6.6 Beth Tableaux
	Construction Rules for Beth Tableaux

	Exercises

	Chapter 7Predicate Logic
	7.1 Syntax
	7.2 Semantics
	7.3 Quantifier laws and prenex normal form
	7.4 Natural deduction
	7.5 Beth Tableaux
	7.6 Formal and informal proofs
	7.7 Informal style in mathematical proofs
	Exercises

	Chapter 8 Formal Systems, Axiomatization, and ModelTheory
	8.1 The syntactic side of formal systems
	8.1.1 Recursive definitions

	8.2 Axiomatic systems and derivations
	8.2.1 Extended axiomatic systems

	8.3 Semi-Thue systems
	8.4 Peano’s axioms and proof by induction
	8.5 The semantic side of formal systems: modeltheory
	8.5.1 Theories and models
	8.5.2 Consistency, completeness, and independence
	8.5.3 Isomorphism
	8.5.4 An elementary formal system
	8.5.5 Axioms for ordering relations
	S.5.6 Axioms for string concatenation
	8.5.7 Models for Peano’s axioms
	8.5.8 Axiomatization of set theory

	8.6 Axiomatizing logic
	8.6.1 An axiomatization of statement logic
	8.6.2 Consistency and independence proofs
	8.6.3 An axiomatization of predicate logic
	8.6.4 About completeness proofs
	8.6.5 Decidability
	8.6.6 Gödel’s incompleteness theorems
	8.6.7 Higher-order logic
	Exercises

	Appendix B-I Alternative Notationsand Connectives
	Appendix B-IIKleene’s Three-valued Logic
	Review Exercises

	Part CALGEBRA
	Chapter 9 Basic Concepts of Algebra
	9.1 Definition of algebra
	9.2 Properties of operations
	9.3 Special elements
	9.4 Maps and morphisms
	Exercises

	Chapter 10Operational Structures
	10.1 Groups
	10.2 Subgroups, semigroups and monoids
	10.3 Integral domains
	10.4 Morphisms
	Exercises

	Chapter 11Lattices
	11.1 Posets, duality and diagrams
	11.2 Lattices, semilattices and sublattices
	11.3 Morphisms in lattices
	11.4 Filters and ideals
	11.5 Complemented, distributive and modular lattices
	Exercises

	Chapter 12 Boolean and HeytingAlgebras
	12.1 Boolean algebras
	12.2 Models of BA
	12.3 Representation by sets
	12.4 Heyting algebra
	12.5 Kripke semantics
	Exercises

	Review Exercises

	Part D ENGLISH AS A FORMALLANGUAGE
	Chapter 13Basic Concepts
	13.1 Compositionality
	13.1.1 A compositional account of statement logic
	13.1.2 A compositional account of predicate logic
	13.1.3 Natural language and compositionality

	13.2 Lambda-abstraction
	13.2.1 Type theory
	13.2.2 The syntax and semantics of A-abstraction
	13.2.3 A sample fragment
	I. Syntax of TL
	II. Semantics of TL

	13.2.4 The lambda-calculus
	13.2.5 Linguistic applications
	I. Phrasal conjunction
	II. Relative clauses
	III. Generalized quantifiers
	IV. VP-deletion
	V. Passive
	VI. Meaning postulates and lexical rules

	Exercises

	Chapter 14Generalized Quantifiers
	14.1 Determinersand quantifiers
	14.2 Conditions on quantifiers
	14.3 Properties of determiners and quantifiers
	14.4 Determiners as relations
	14.5 Context and quantification
	Exercises

	Chapter 15Intensionality
	15.1 Frege’s two problems
	15.2 Forms of opacity
	15.3 Indices and accessibility relations
	15.4 Tense and time
	15.5 Indexicality
	Exercises

	Part E LANGUAGES, GRAMMARS, ANDAUTOMATA
	Chapter 16Basic Concepts
	16.1 Languages, grammars and automata
	16.2 Grammars
	16.3 Trees
	16.3.1 Dominance
	16.3.2 Precedence
	16.3.3 Labeling

	16.4 Grammars and trees
	16.5 The Chomsky Hierarchy
	16.6 Languages and automata

	Chapter 17 Finite Automata, Regular Languages and Type 3 Grammars
	17.1 Finite automata
	17.1.1 State diagrams of finite automata
	17.1.2 Formal definition of deterministic finite automata
	17.1.3 Non-deterministic finite automata
	1 7.1.4 Formal definition of non-deterministic finite automata
	17.1.5 Equivalence of deterministic and non-deterministic finite automata

	17.2 Regular languages
	17.2.1 Pumping Theorem for fal’ s

	17.3 Type 3 grammars and finite automaton languages
	17.3.1 Properties of regular languages
	17.3.2 Inadequacy of right-linear grammars for natural languages

	Exercises

	Chapter 18 Pushdown Automata, Context Free Grammars andLanguages
	18.1 Pushdown automata
	18.2 Context free grammars and languages
	18.3 Pumping Theorem for cfl’s
	18.4 Closure properties of context free languages
	18.5 Decidability questions for context free languages
	18.6 Are natural languages context free?
	Exercises

	Chapter 19 Turing Machines, Recursively Enumerable Languages and Type 0Grammars
	19.1 Turing machines
	19.1.1 Formal definitions

	19.2 Equivalent formulations of Turing machines
	19.3 Unrestricted grammars and Turing machines
	19.4 Church’s Hypothesis
	19.5 Recursive versus recursively enumerable sets
	19.6 The universal Turing machine
	19.7 The Halting Problem for Turing machines
	Exercises

	Chapter 20 Linear Bounded Automata, Context Sensitive Languagesand Type 1 Grammars
	20.1 Linear bounded automata
	20.1.1 Lba’s and context sensitive grammars

	20.2 Context sensitive languages and recursive sets
	20.3 Closure and decision properties
	Exercises

	Chapter 21 Languages Between Context Free andContext Sensitive
	21.1 Indexed grammars
	21.2 Tree adjoining grammars
	21.3 Head grammars
	21.4 Categorial grammars

	Chapter 22Transformational Grammars
	Appendix E-IThe Chomsky Hierarchy
	Appendix E-II Semantic Automata
	Exercises

	Review Exercises

	Solutions to selected exercises
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	REVIEW PROBLEMS, PART A
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	REVIEW PROBLEMS, PART B
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	REVIEW EXERCISES, PART C
	CHAPTER 13
	CHAPTER 14
	CHAPTER 15
	CHAPTER 17
	CHAPTER 18
	CHAPTER 19
	CHAPTER 20
	APPENDIX E II
	REVIEW PROBLEMS, PART E

	Bibliography
	Index
	Studies in Linguistics and Philosophy

