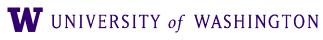
Transformers, II: Decoder, Limitations LING 574 Deep Learning for NLP

Shane Steinert-Threlkeld

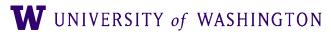
Announcements

- HW4 ref (/ sym-links) available. NB: no ReLU immediately after embeddings
- Why a character-level language model for HW5?
 - Primarily: *compute* efficiency. For SST data:
 - Size of char vocab: ~70. Size of word vocab: ~13000.
 - Softmax layer sums over the whole vocab (for denominator); becomes very expensive!
 - NB: will talk today/Wed about other approaches to solving this problem
 - Secondarily: very impressive! Still can work (e.g. char LSTM LMs from last week's slides).
 - Third: may learn interesting phenomena below the word level (e.g. morpheme discovery).
 - NB: *hard* problem so models may not work as well as word-level, esp. small ones (e.g. HW5).
- Finding the right middle ground between "words" and characters still an open and important problem (incl. for multilingual settings)

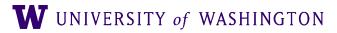


Today's Plan

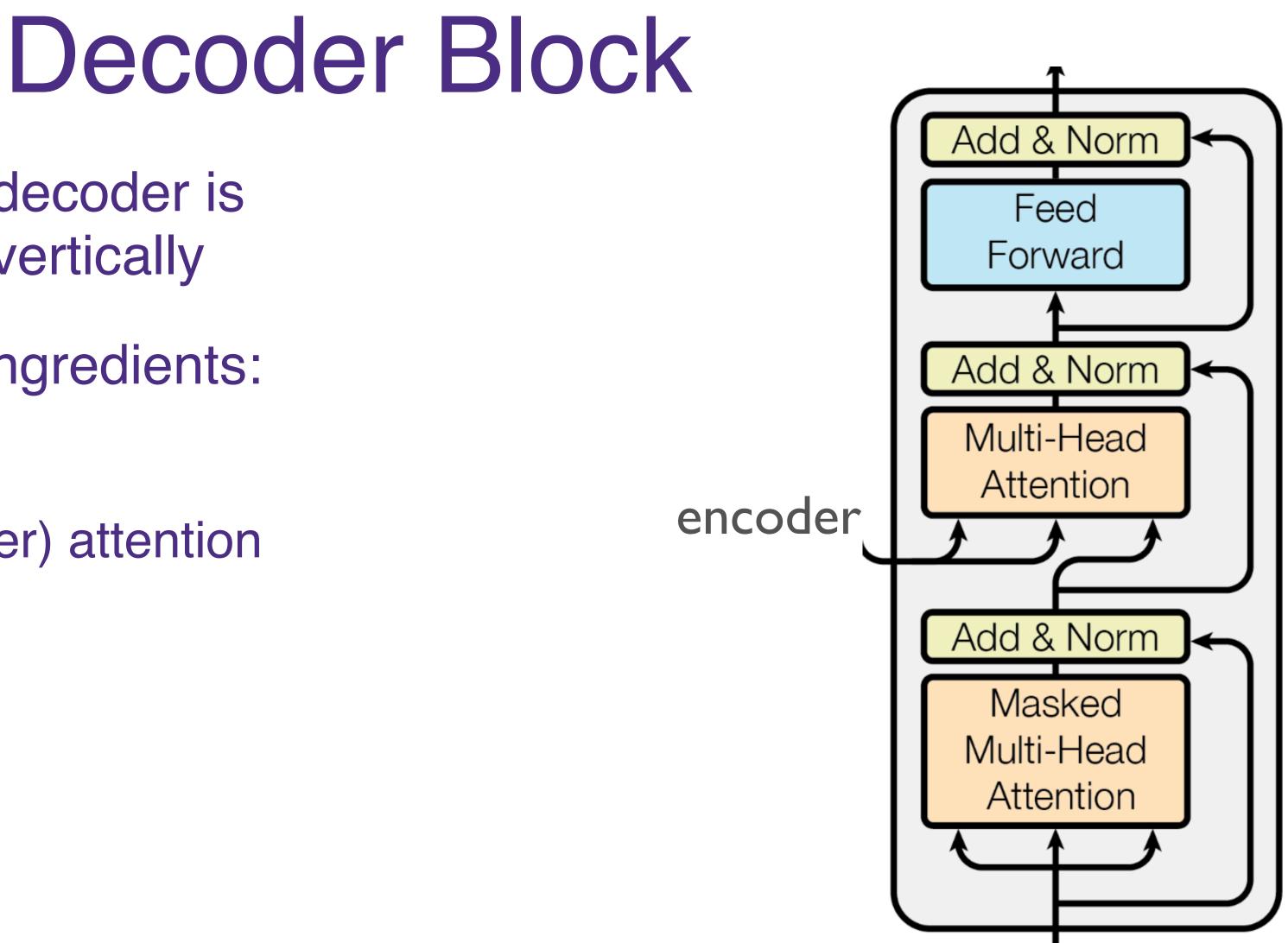
- Wrap up Transformer Encoder
- Transformer Decoder
 - Attention Masks
- Limitations
 - Quadratic attention
 - Sequential generation
- Subword Tokenization



Transformer Decoder



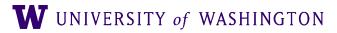
- Like the encoder, the decoder is many blocks stacked vertically
- Two slightly different ingredients:
 - Masked self-attention
 - Cross (encoder-decoder) attention



W UNIVERSITY of WASHINGTON

N×

Masked Self-Attention

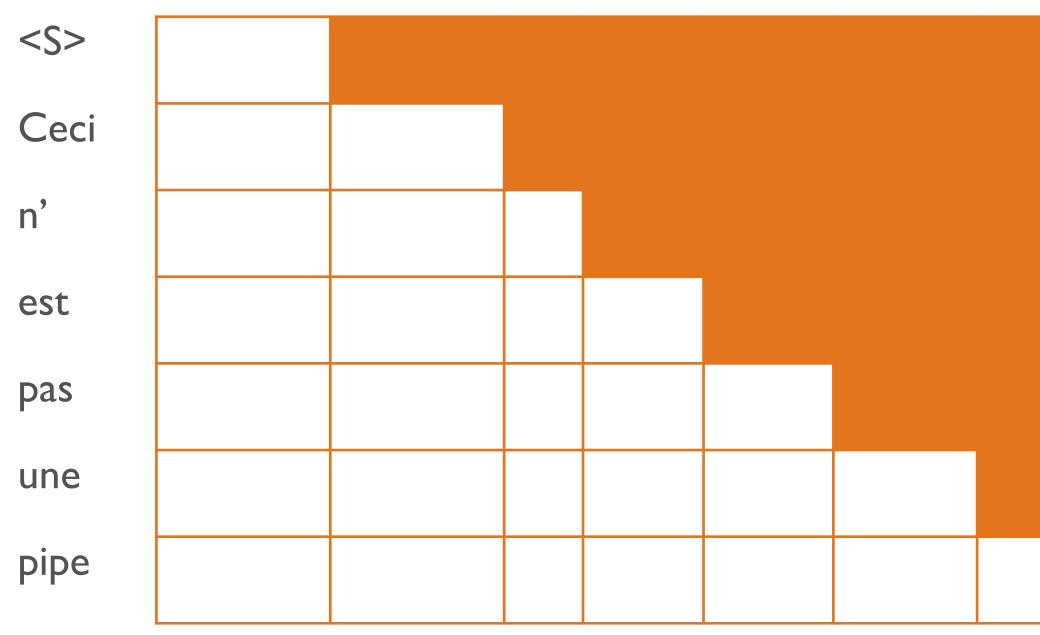


Masked Self-Attention

- Recall from seq2seq:
 - Decoder a kind of *conditional* language model
 - Predicts next tokens in output sequence, *given* the encoder representations
 - [Can also be used on its own as an unconditional LM; more later]
- Problem: self-attention "looks to the future"
 - Decoders should only be able to pay attention to *previous* positions

Masking Out the Future

- Key idea:
 - Use a "mask" to block out certain attention scores
- On the left:
 - Tokens in the rows (as queries) can *not* pay attention to the tokens in the columns (values) that are shaded in

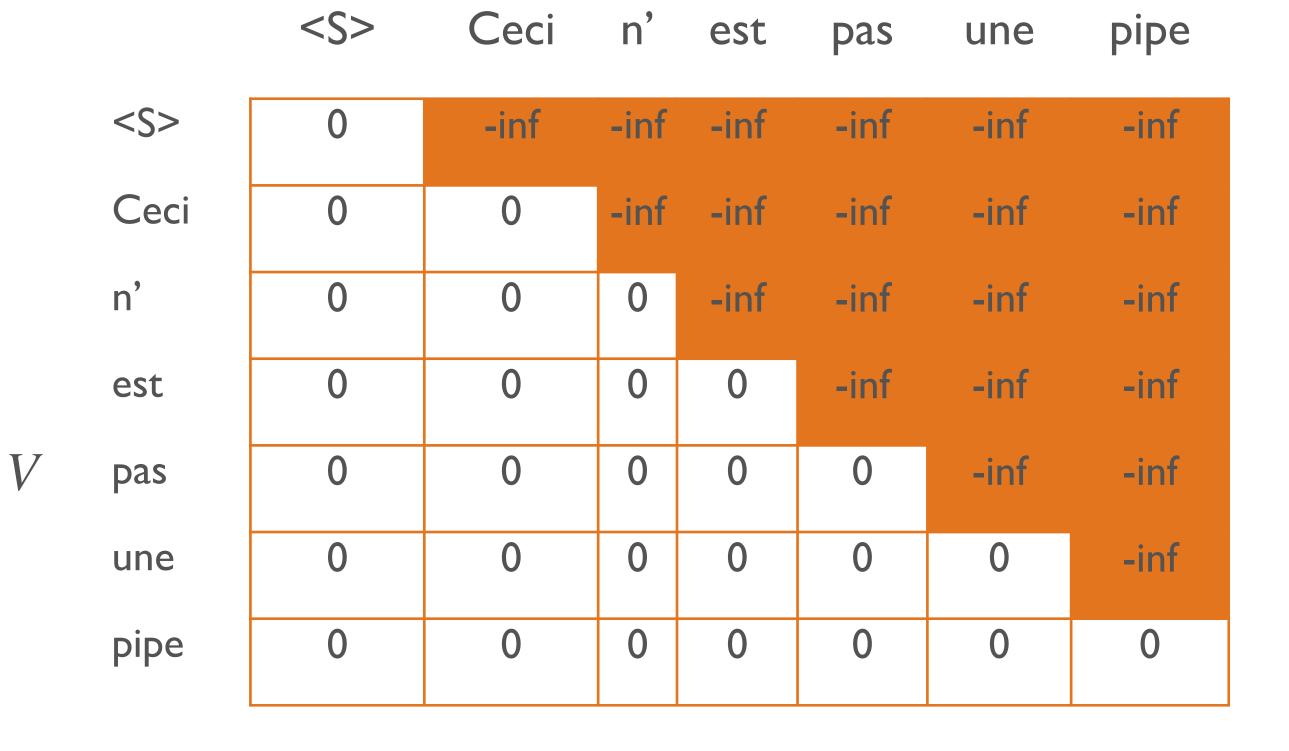


Masking Out the Future

$$QK^{T}: \text{ total attention scores}$$

$$\max_{ij} = \begin{cases} -\infty & j > i \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{MaskedAttention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{k}}} + \operatorname{mask}\right)$$



Masked Self-Attention

- In a nutshell:
 - Compute "raw" attention scores as before
 - Add a mask to "zero out" the future positions in a sequence
- As in the encoder:

 - This is one attention *head*, several used for multi-headed attention • Q, K, V are generated by applying learned matrices for each head

Cross-Attention

Cross-Attention

- Recall the original application of attention: allowing a decoder to attend to all of an encoder's representations, instead of just the final one
- How can we apply this form in Transformer-land?
 - What are the queries, keys, and values?

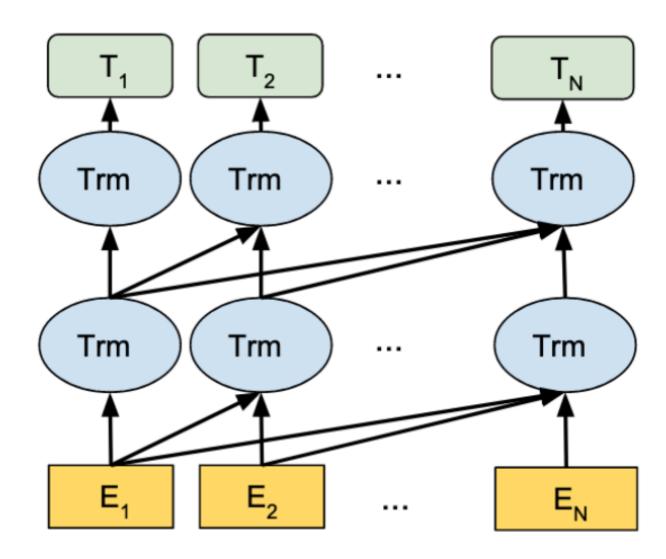
Cross-Attention

- Queries: decoder representations X
- Keys and values: top-layer encoder representations Z
- Learned weight matrices W_q , W_k , W_v as before

CrossAttention = Attention (XW_q, ZW_k, ZW_v)

Transformer Decoders

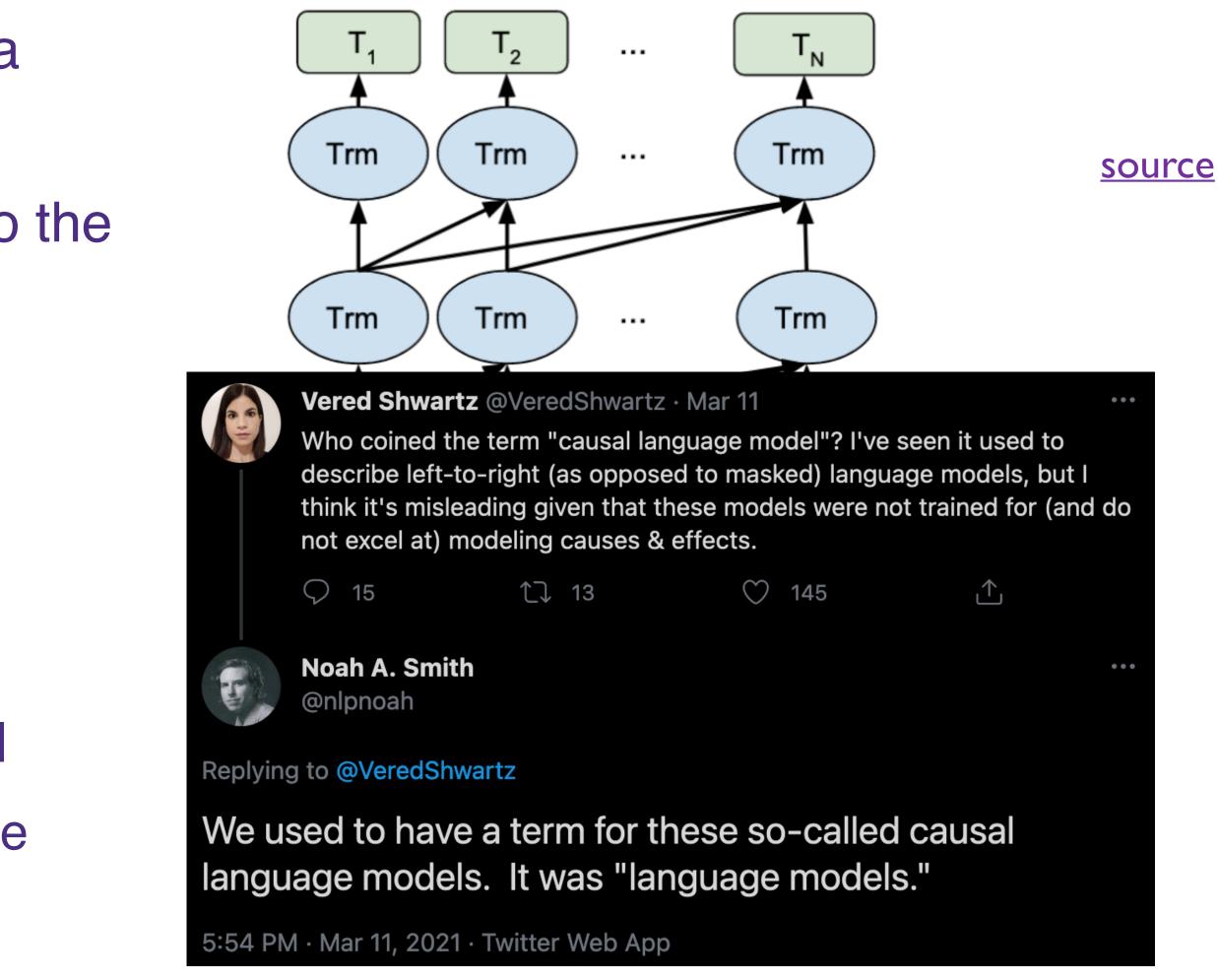
- Can be used any place you would use a decoder
- Masked attention prevents "peeking into the future"
- In seq2seq, for conditional language modeling, e.g.
 - Translation
 - Summarization
- On its own, as a "pure" language model
 - [NB: people now call this "causal language modeling" sometimes]



source

Transformer Decoders

- Can be used any place you would use a decoder
- Masked attention prevents "peeking into the future"
- In seq2seq, for conditional language modeling, e.g.
 - Translation
 - Summarization
- On its own, as a "pure" language model
 - [NB: people now call this "causal language modeling" sometimes]



W UNIVERSITY of WASHINGTON

Transformer LM (Decoder-only) Results

- Character-level:
 - NB: used several auxiliary losses

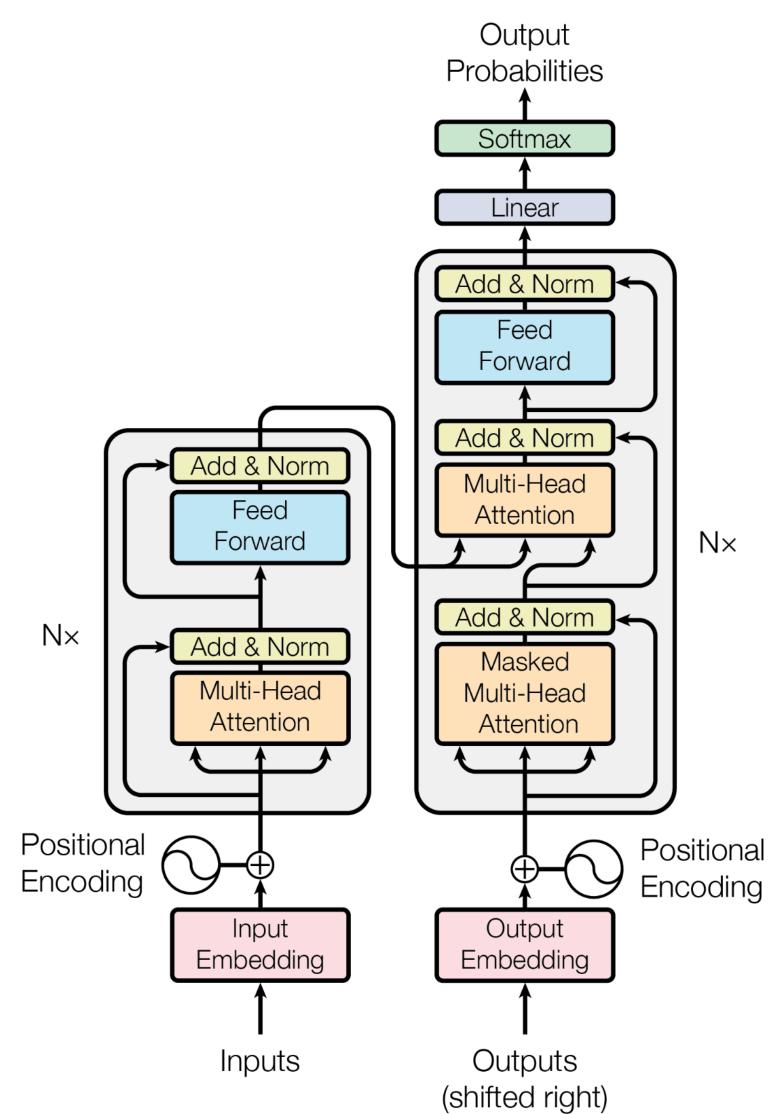
- <u>GPT2</u> results (more next time)
 - benchmarks. *Caveat emptor*: can't compare PPLs directly!

	WikiText2 (PPL)	PTB (PPL)	enwik8 (BPB)	text8 (BPC)	WikiText103 (PPL)	1BW (PPL)
SOTA	39.14	46.54	0.99	1.08	18.3	21.8
117M	29.41	65.85	1.16	1.17	37.50	75.20
45M	22.76	47.33	1.01	1.06	26.37	55.72
52M	19.93	40.31	0.97	1.02	22.05	44.575
542M	18.34	35.76	0.93	0.98	17.48	42.16

Parameters (×10 ⁶)		eters ($\times 10^6$)	
Model	train	inference	bpc
LSTM (Cooijmans et al. 2016)	-	-	1.43
BN-LSTM (Cooijmans et al. 2016)	-	-	1.36
HM-LSTM (Chung, Ahn, and Bengio 2016)	35	35	1.29
Recurrent Highway (Zilly et al. 2016)	45	45	1.27
mLSTM (Krause et al. 2016)	45	45	1.27
T12 (ours)	44	41	1.18
T64 (ours)	235	219	1.13
mLSTM + dynamic eval (Krause et al. 2017)	45	-	1.19

• Zero-shot evaluation: trained on very large corpus, evaluated on standard

Full Transformer Encoder-Decoder

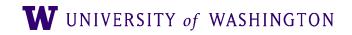


W UNIVERSITY of WASHINGTON

Transformer Architecture Summary

- Main building block: *attention*
 - Encoder: self-attention
 - Decoder: *masked* self-attention
 - Decoder-encoder: cross-attention
- Position encodings/embeddings to inject information about sequence order
- Position-wise feed-forward networks for element-wise nonlinearities
- Residual connections + LayerNorm around every component

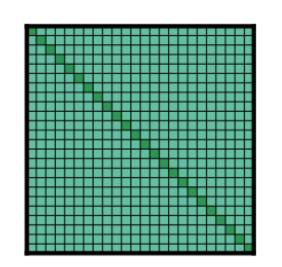
Transformers: Limitations

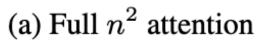


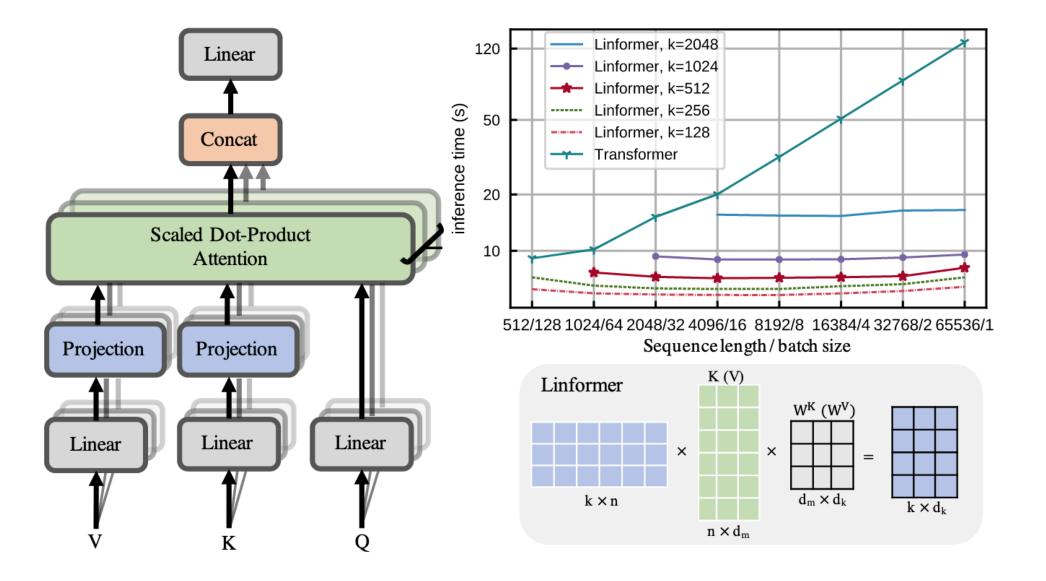
Quadratic Attention

- Attention computes similarity scores between all pairs of tokens
 - QK^T : [seq_len, seq_len] shape
 - In other words, size of attention is $O(n^2)$
- Prevents scaling to long sequences
 - Document-level:
 - Summarization
 - QA
 - •
- One big area of research: linear(-ish) attention mechanisms.

- Carefully control positions attended to
- Linformer:
 - Additional projection of Keys/Values to smaller space
 - O(nk), with k a hyperparameter

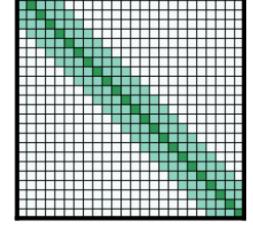




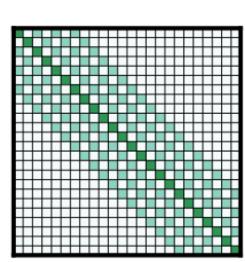


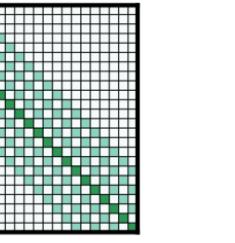
• <u>Survey paper</u>

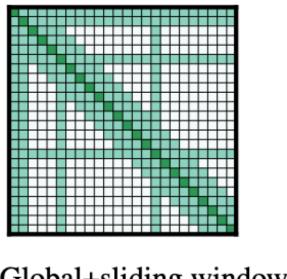
Some Examples



(b) Sliding window attention







(c) Dilated sliding window

(d) Global+sliding window

Inference speed does not scale with seq length



Recurrence in Generation

- Recall the basic method for generating from a decoder:
 - Feed initial token (e.g. BOS, or just a word/character)
 - Generate probability over next tokens
 - Sample next token from this distribution
 - Repeat until [EOS | max length | other criterion]
- This loop is unavoidable during generation
 - Transformer's gains on paralellizability: work for training, vanish for generation
 - In fact, RNN decoders tend to be much faster at inference time

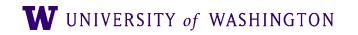
Mixed/Hybrid Architectures

- Encoder-decoder: a general architecture
 - In principle, any model of the right type can be encoder and/or decoder
- "The Best of Both Worlds" for NMT
 - Transformer encoder + RNN decoder
- <u>Google Translate's newest version</u>

Encoder	Decoder	En→Fr Test BLEU
Trans. Big	Trans. Big	40.73 ± 0.19
RNMT+	RNMT+	41.00 ± 0.05
Trans. Big	RNMT+	$\textbf{41.12} \pm \textbf{0.16}$
RNMT+	Trans. Big	39.92 ± 0.21

• "Transformer models have been demonstrated to be generally more effective at machine translation than RNN models, but our work suggested that most of these quality gains were from the transformer *encoder*, and that the transformer *decoder* was not significantly better than the RNN decoder. Since the RNN decoder is much faster at inference time, we applied a variety of optimizations before coupling it with the transformer encoder. The resulting hybrid models are higher-quality, more stable in training, and exhibit lower latency."

Subword Tokenization



- Word-level models:
 - Tokenize training data
 - Build vocabulary
 - Learn representations
- Two problems:
 - Cannot generalize at test time to OOV (out of vocab) words
 - [various subtleties, tricks, etc, but generally true]
 - Larger training data -> larger vocabulary
 - Its own problems, e.g. very expensive softmax over vocab in decoders
 - [Or put a cap on vocab size, but then miss lower-frequency words entirely.]

OOV and Vocab Size

Finer Representation Levels

- One solution: *character-level* models
 - Pros:
 - Small vocabulary size
 - No (or very little) OOV
 - Cons:
 - phrases, sentences, etc.
- In-between solution: sub-word tokenization
 - Split words into pieces, but don't go all the way down to character level
 - Many methods: WordPiece, BytePair Encoding (BPE), ...

• Much harder learning problems; need to learn everything about words, on top of

WordPiece Embeddings

- Another solution to OOV problem, from NMT context (see <u>Wu et al 2016</u>)
- Main idea:
 - Fix vocabulary size IVI in advance [e.g., for BERT: 30k]
 - Choose IVI wordpieces (subwords) such that total number of wordpieces in the corpus is minimized
- Frequent words aren't split, but rarer ones are, e.g.:
- "Backpropagation was confusing at first, but now we grok it."
 - ["Back", "##prop", "##ag", "##ation", "was", "confusing", "at", "first", ",", "but", "now", "we", "gro", "##k", "it", "."]

Next Time

- This wraps up our general overview of the Transformer architecture
- Next time: why they have become so dominant in NLP in the last several years
 - *Pre-training* and fine-tuning paradigm
 - General idea
 - Several examples
- Then: how to interpret/analyze NLP models, followed by a series of special guest lectures

