Computability and Logic

MWF, 9:30 - 10:20am @ Cubberley 334

Contact Information

Shane Steinert-Threlkeld shanest@stanford.edu Office Hours: Wednesday, 10:30am - 12pm in 90-92H (or by appointment) Course Website: on Canvas

Description

The main goal of this course will be to prove Gödel's two Incompleteness Theorems. These landmark results state that any sufficiently strong formal theory will have true-but-unprovable sentences and cannot prove its own consistency. To get there, we will look at the expressivity of various formal theories of arithmetic, different approaches to effective computation (recursive functions, Turing machines), and the connection between the two.

Reading Material

We will work through Chapter 3 of the following book, which is required:

• Herbert B Enderton, *A Mathematical Introduction to Logic*, Second Edition, Academic Press, 2001.

I will supplement this book on occasion. When necessary, additional required readings will be made available on the Canvas website.

The following books are recommended for supplementing the technical material:

- Boolos, Burgess, and Jeffrey, Computability and Logic.
- Smith, An Introduction to Gödel's Theorems, second edition.
- For other books on recursion theory, first-order logic, and the like, ask the instructor.

Other books for further reading:

- Franzen, Godel's Theorem: An Incomplete Guide to its Use and Abuse
- Penrose, Shadows of the Mind

All of these will be on reserve in Tanner Library, in Building 90.

Requirements / Grading

The workload for the course will be three problem sets and a take-home final exam. You may discuss and collaborate on the homeworks, but must write up the solutions on your own. The final exam must be done alone. Solutions will be made available in Tanner Library. The grading breakdown will be:

• Homeworks 1-3: 20% each

- Final exam: 30%
- Attendance and participation: 10%

Disability Accommodation

Students who have a disability which may necessitate an academic accommodation or the use of auxiliary aids and services in a class must initiate the request with the Office of Accessible Education (OAE). The OAE will evaluate the request with required documentation, recommend appropriate accommodations, and prepare a verification letter dated in the current academic term in which the request is being made. Please contact the OAE as soon as possible: timely notice is needed to arrange for appropriate accommodations. The OAE's contact details are as follows.

Address: 563 Salvatierra Walk, Stanford, CA 94305 Phone: (650) 723-1066 Web address: http://studentaffais.stanford.edu/oae

Schedule

- 03/28 Introduction and Motivation
- 03/30 Basic Concepts • Sections 1.7, 2.6, 3.0 of Enderton
- 04/01 Class Cancelled (at a conference) Decidable Fragments

04/04	Natural numbers with successor	
04/06	Natural numbers with successor	HW1 out
	• Section 3.1 of Enderton	
04/08	Successor and Order	
04/11	Successor and Order	
04/13	Successor and Order	
	• Section 3.2 of Enderton	
	A Sufficiently Strong Arithmetic	
04/15	Successor, Order, Multiplication, and Exponentiation	HW1 due
04/18	Representability	
04/20	Representability in A_E	
	• Section 3.3 of Enderton	
04/22	Arithmetization of Syntax	
04/25	Arithmetization of Syntax	
04/27	Arithmetization of Syntax	HW2 out
	• Section 3.4 of Enderton	
	Incompleteness and Undecidability	

- 04/29 First Incompleteness Theorem + Undefinability of Truth
- 05/02 Incompleteness and Undecidability

	• Section 3.5 of Enderton	
05/04	Second Incompleteness Theorem	
05/06	Second Incompleteness Theorem	HW2 due
	• Section 3.7 of Enderton	
05/09	Philosophical Consequences	
	• Peter Koellner, "On the Question of whether the Mind can be Mechanize	ed"
05/11	Johan van Benthem: Provability Logic	HW3 out
	Turing Machines and Recursive Functions	
05/13	(Universal) Turing Machines	
05/16	Undecidability of the Halting Problem	
	 Chapters 3 and 4 of Boolos, Burgess, and Jeffrey 	
05/18	(Primitive) Recursive Functions	
05/20	Recursive Functions	HW3 due
	• Section 3.6 of Enderton	
	Overcoming the Limitations	
05/23	Tenenbaum's Theorem	
	 §25.2 of Boolos, Burgess, and Jeffrey 	
05/25	Second-Order Logic	Final exam out
05/27	Second-Order Logic	
	• Section 4.1 of Enderton	
05/30	Memorial Day: NO CLASS	
06/01	Review and Discussion	
06/03	E CONTRACTOR OF CONTRACTOR	Final exam due