Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000

Nonmonotone Inductive Definitions

Shane Steinert-Threlkeld

March 15, 2012

STANFORD UNIVERSITY

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Brief Review of Inductive Definitions

Inductive Definitions as Sets of Clauses

Definition

A set \mathcal{B} of clauses (of the form $A \Rightarrow b$) is an *inductive definition*. A set X is \mathcal{B} -closed if $A \Rightarrow b \in \mathcal{B}$ and $A \subseteq X$ imply $b \in X$. $I(\mathcal{B}) = \bigcap \{X \mid X \text{ is } \mathcal{B}\text{-closed}\}$ is *inductively generated* by \mathcal{B} .
 Motivation
 Nonmonotone Inductive Definitions

 00000
 0000000000000

The Theory $(\Pi_1^0 - FXP)_0$ 0000000 ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Brief Review of Inductive Definitions

Inductive Definitions as Sets of Clauses

Definition

A set \mathcal{B} of clauses (of the form $A \Rightarrow b$) is an *inductive definition*. A set X is \mathcal{B} -closed if $A \Rightarrow b \in \mathcal{B}$ and $A \subseteq X$ imply $b \in X$. $I(\mathcal{B}) = \bigcap \{X \mid X \text{ is } \mathcal{B}\text{-closed}\}$ is *inductively generated* by \mathcal{B} .

Example

A few motivating examples:

•
$$\mathbb{N} = I(\{\emptyset \Rightarrow 0\} \cup \{\{n\} \Rightarrow n+1\})$$

- *WFF* = *I*({ $\emptyset \Rightarrow p \mid p \in PV$ } \cup {{ φ } $\Rightarrow \neg \varphi$ } \cup {{ φ, ψ } $\Rightarrow \varphi \odot \psi \mid \odot \in$ { \land, \lor, \rightarrow }})
- Kleene's $\mathcal{O} = I(\{\emptyset \Rightarrow 0\} \cup \{\{a\} \Rightarrow 2^a\} \cup \{\{[e](n)\} \Rightarrow 3 \cdot 5^e\})$

 Motivation
 Nonmonotone Inductive Definitions

 00000
 0000000000000

The Theory $(\Pi_1^0 - FXP)_0$ 0000000 ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Brief Review of Inductive Definitions

Inductive Definitions as Sets of Clauses

Definition

A set \mathcal{B} of clauses (of the form $A \Rightarrow b$) is an *inductive definition*. A set X is \mathcal{B} -closed if $A \Rightarrow b \in \mathcal{B}$ and $A \subseteq X$ imply $b \in X$. $I(\mathcal{B}) = \bigcap \{X \mid X \text{ is } \mathcal{B}\text{-closed}\}$ is *inductively generated* by \mathcal{B} .

Example

A few motivating examples:

•
$$\mathbb{N} = I(\{\emptyset \Rightarrow 0\} \cup \{\{n\} \Rightarrow n+1\})$$

- *WFF* = *I*({ $\emptyset \Rightarrow p \mid p \in PV$ } \cup {{ φ } $\Rightarrow \neg \varphi$ } \cup {{ φ, ψ } $\Rightarrow \varphi \odot \psi \mid \odot \in \{\land, \lor, \rightarrow\}$ })
- Kleene's $\mathcal{O} = I(\{ \emptyset \Rightarrow 0\} \cup \{\{a\} \Rightarrow 2^a\} \cup \{\{[e](n)\} \Rightarrow 3 \cdot 5^e\})$

Note: what we generally refer to as "base cases" are clauses $\emptyset \Rightarrow b$.

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Brief Review of Inductive Definitions

Inductive Definitions as Monotone Operators

A well-motivated generalization of the previous definition:

Definition

An *inductive definition* on a set A is a monotone operator $\Phi: \mathcal{P}(A^n) \to \mathcal{P}(A^n)$ A set $S \subseteq \mathcal{P}(A^n)$ is Φ -closed iff $\Phi(S) \subseteq S$.

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

₹ ** \ \ \

Brief Review of Inductive Definitions

Inductive Definitions as Monotone Operators

A well-motivated generalization of the previous definition:

Definition

An *inductive definition* on a set A is a monotone operator $\Phi : \mathcal{P}(A^n) \to \mathcal{P}(A^n)$ A set $S \subseteq \mathcal{P}(A^n)$ is Φ -closed iff $\Phi(S) \subseteq S$.

Definition

The α -th stage of an inductive definition Φ is defined by transfinite recursion:

$$\Phi^{lpha} := \Phi(\Phi^{< lpha})$$

where

$$\Phi^{<\alpha} := \bigcup_{\xi < \alpha} \Phi^{\xi}$$

In other words, $\Phi^0 = \Phi(\emptyset)$, $\Phi^1 = \Phi(\Phi(0))$, ..., Θ , and Θ , A = A

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Brief Review of Inductive Definitions

Fixed Points of Monotone Inductive Definitions

Recall an important lemma and its proof:

Lemma (Lemma 6.3.2)

Let Φ be an inductive definition on a set A. Then there is an ordinal $\sigma < \operatorname{card}(A)^+$ such that $\Phi^{<\sigma} = \Phi^{\sigma}$.

Proof.

By definition and the monotonicity of Φ ,

$$\xi < \eta \Rightarrow \Phi^\xi \subseteq \Phi^\eta$$

Now, every $\Phi^{\xi} \subseteq A$, so $\operatorname{card}(\Phi^{\xi}) \leq \operatorname{card}(A)$. There are $\operatorname{card}(A)^+$ many ordinals below $\operatorname{card}(A)^+$. Therefore, if we had strict subset above for every ordinal $\leq \operatorname{card}(A)$, then there would be a $\xi < \operatorname{card}(A)^+$ with $\operatorname{card}(\Phi^{\xi}) > \operatorname{card}(A)$. Therefore, there is an ordinal $\sigma < \operatorname{card}(A)^+$ such that $\Phi^{<\sigma} = \Phi^{\sigma}$, i.e. σ is a fixed point.

Motivation 000€0	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi_1^0 - FXP)_0$ 000000000000
Brief Review of	Inductive Definitions		
Monoto	onicity Too Strong		

In this cardinality argument, we do not in fact need that Φ is a *monotone* operator. Since we define the hierarchy of stages on ordinals, which are transitive sets, it suffices simply for Φ to be *inflationary*, i.e. to satisfy $X \subseteq \Phi(X)$.

Motivation 000●0	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000
Brief Review of I	nductive Definitions		
Monoto	nicity Too Strong		

In this cardinality argument, we do not in fact need that Φ is a *monotone* operator. Since we define the hierarchy of stages on ordinals, which are transitive sets, it suffices simply for Φ to be *inflationary*, i.e. to satisfy $X \subseteq \Phi(X)$. In fact, what we will do is:

- Orop monotonicity condition from definition.
- **2** Revise definition of stages to induce an inflationary operator.

Motivation 0000●	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1-{\sf FXP})_0$ 0000000	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000
Brief Review of	Inductive Definitions		
The Pla	an		

In this talk (following [Poh09, ch. 13] and [Poh08]), I will:

- Briefly introduce nonmonotone inductive definitions.
- Introduce prewellorderings and analyze their relationship to nonmonotone inductive definitions.
- Obscribe a theory (Π⁰₁ FXP)₀ axiomatizing the existence of fixpoints for all Π⁰₁-definable operators.
- $\label{eq:prove that } ||ID_1|| \leq ||(\Pi_1^0 \mathsf{FXP})_0||.$
- Sketch an outline of the proof that $||(\Pi_1^0 FXP)_0|| \le ||ID_1||$.

00000 Basic Theory	• 000 000000000	0000000	00000000000
C		1	

Stages of Nonmonotone Induction

Definition

Let $\Phi:\mathcal{P}(\mathbb{N})\to\mathcal{P}(\mathbb{N})$ be an operator. We define the hierarchy of stages as

$$\Phi^{\alpha} := \Phi^{<\alpha} \cup \Phi(\Phi^{<\alpha})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000
Basic Theory			

Stages of Nonmonotone Induction

Definition

Let $\Phi:\mathcal{P}(\mathbb{N})\to\mathcal{P}(\mathbb{N})$ be an operator. We define the hierarchy of stages as

$$\Phi^{\alpha} := \Phi^{<\alpha} \cup \Phi(\Phi^{<\alpha})$$

Definition

We call

$$\Phi^{<\infty} := \bigcup_{\xi \in \mathit{On}} \Phi^{\xi}$$

the fixed-point generated by Φ .

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$ 0000000 ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basic Theory

Examples of Nonmonotone Inductive Definitions

Example

Let Φ_0 and Φ_1 be two monotone operators (on $\mathcal{P}(\mathbb{N})$). Define

 $[\Phi_0, \Phi_1] = \{x \in \mathbb{N} \mid x \in \Phi_0(X) \lor (\Phi_0(X) \subseteq X \land x \in \Phi_1(X))\}$

In other words, we iterate Φ_0 until a fixed point is reached and then iterate Φ_1 once, after which we keep repeating this process.

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$ 0000000 ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Basic Theory

Examples of Nonmonotone Inductive Definitions

Example

Let Φ_0 and Φ_1 be two monotone operators (on $\mathcal{P}(\mathbb{N})$). Define

 $[\Phi_0, \Phi_1] = \{x \in \mathbb{N} \mid x \in \Phi_0(X) \lor (\Phi_0(X) \subseteq X \land x \in \Phi_1(X))\}$

In other words, we iterate Φ_0 until a fixed point is reached and then iterate Φ_1 once, after which we keep repeating this process. A particularly widely studied group of nonmonotone i.d.'s are

 $[\mathcal{F}_1, \dots, \mathcal{F}_n] := \{ [\Phi_1, \dots \Phi_n] \mid \Phi_i \text{ is positively } \mathcal{F}_i \text{-definable} \}$

See [RA74] for more details. (Also [Poh09, p. 335] for generalization of Kleene's $\mathcal{O}.)$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory (II ₁ — FXP) ₀ 0000000	ID ₁ as a Sub-theory of $(\Pi_1^\circ - FXP)_0$
Basic Theory			
Fixed I	Point Lemma		

With our modified definition of the hierarchy of stages, the fixed-point lemma holds in the nonmonotone case:

Lemma

Let $\Phi : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be an operator. Then there is an ordinal $\sigma < \omega_1$ such that $\Phi^{<\sigma} = \Phi^{\sigma}$. Moreover, it also holds for this σ that $\Phi^{<\infty} = \Phi^{<\sigma} = \Phi^{\sigma}$.

Proof.

Note that $\omega_1 = \operatorname{card}(\mathbb{N})^+$. The exact same argument as before yields a $\sigma < \omega_1$ that is a fixpoint of Φ . Clearly, $\Phi^{\sigma} \subseteq \Phi^{<\infty}$. We prove by induction that $\sigma \leq \tau \Rightarrow \Phi^{\tau} = \Phi^{<\sigma}$. Trivial if $\sigma = \tau$. If $\sigma < \tau$, the IH tells us $\Phi^{<\tau} = \Phi^{<\sigma}$, from which we have

$$\Phi^{\tau} = \Phi^{<\tau} \cup \Phi(\Phi^{<\tau}) = \Phi^{<\sigma} \cup \Phi(\Phi^{<\sigma}) = \Phi^{\sigma} = \Phi^{<\sigma}$$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1-{\sf FXP})_0$ 0000000	ID ₁ as a Sub-theory of (Π ⁰ ₁ — FXP) ₀ οοοοοοοοοοοο
Basic Theory			
Some N	lorms		

Some norms, as in the monotone case:

Definition

The closure ordinal of Φ is defined as $|\Phi| = \min \{\sigma \mid \Phi^{\sigma} = \Phi^{<\sigma}\}$. The inductive norm induced by Φ , $|\cdot|_{\Phi} : \mathbb{N} \to On$, is given by

$$|n|_{\Phi} = \begin{cases} \min \left\{ \alpha \mid n \in \Phi^{\alpha} \right\} & x \in \Phi^{<\infty} \\ \infty & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID ₁ as a Sub-theory of (Π ⁰ ₁ — FXP) ₀ οοοοοοοοοοοο
Basic Theory			
Some N	lorms		

Some norms, as in the monotone case:

Definition

The closure ordinal of Φ is defined as $|\Phi| = \min \{\sigma \mid \Phi^{\sigma} = \Phi^{<\sigma}\}$. The inductive norm induced by Φ , $|\cdot|_{\Phi} : \mathbb{N} \to On$, is given by

$$|n|_{\Phi} = \begin{cases} \min \left\{ \alpha \mid n \in \Phi^{\alpha} \right\} & x \in \Phi^{<\infty} \\ \infty & \text{otherwise} \end{cases}$$

A few simple results:

Lemma

$$\begin{split} \Phi^{\infty} &= \Phi^{|\Phi|} = \Phi^{<\infty}. \\ |\Phi| &= \{ |x|_{\Phi} \mid x \in \Phi^{<\infty} \} \text{ In other words, } |\cdot|_{\Phi} : \Phi^{<\infty} \twoheadrightarrow |\Phi|. \end{split}$$

(日) (同) (日) (日)

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000
Stage Compar	ison		
Setting	g the Stage		

Our goal: axiomatize Π_1^0 -definable (nonmonotone) inductive definitions. Unlike in the case of monotone inductive definitions, we can't just proceed (as in ID₁) by axiomatizing "the least Φ -closed set". This is because the smallest fixed-point of a nonmonotone inductive definition may be an ordinal not available in \mathcal{L}_{NT} . What we will axiomatize is properties of the *stage comparison* relations

$$\begin{array}{l} x \preceq_{\Phi} y := \exists \alpha (x \in \Phi^{\alpha} \land y \notin \Phi^{<\alpha}) \\ x \prec_{\Phi} y := \exists \alpha (x \in \Phi^{\alpha} \land y \notin \Phi^{\alpha}) \end{array}$$

which we will prove are satisfied only by the appropriate fixed points.

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

 ID_1 as a Sub-theory of $(\Pi_1^0 - FXP)_0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stage Comparison

Facts About Stage Comparison

Lemma

$$\begin{array}{l} x \preceq_{\Phi} y \Leftrightarrow x \in \Phi^{<\infty} \land (y \in \Phi^{<\infty} \rightarrow y \not\prec_{\Phi} x) \\ x \prec_{\Phi} y \Leftrightarrow x \in \Phi^{<\infty} \land (y \in \Phi^{<\infty} \rightarrow y \not\preceq_{\Phi} x) \end{array}$$

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Stage Comparison

Facts About Stage Comparison

Lemma

$$\begin{array}{l} x \preceq_{\Phi} y \Leftrightarrow x \in \Phi^{<\infty} \land (y \in \Phi^{<\infty} \rightarrow y \not\prec_{\Phi} x) \\ x \prec_{\Phi} y \Leftrightarrow x \in \Phi^{<\infty} \land (y \in \Phi^{<\infty} \rightarrow y \not\preceq_{\Phi} x) \end{array}$$

Proof.

Only the \Rightarrow direction of the first. Let $x \leq_{\Phi} y$. For some α , $x \in \Phi^{\alpha} \land y \notin \Phi^{<\alpha}$. Therefore, $x \in \Phi^{<\infty}$. If $y \notin \Phi^{<\infty}$, done. If so, there is $\alpha \leq \beta$ with $y \in \Phi^{\beta}$. But also $x \in \Phi^{\beta}$, so $y \not\prec_{\Phi} x$. The others are similar and straightforward.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Stage Comparison

Facts About Stage Comparison

Lemma

$$\begin{array}{l} x \preceq_{\Phi} y \Leftrightarrow x \in \Phi^{<\infty} \land (y \in \Phi^{<\infty} \rightarrow y \not\prec_{\Phi} x) \\ x \prec_{\Phi} y \Leftrightarrow x \in \Phi^{<\infty} \land (y \in \Phi^{<\infty} \rightarrow y \not\preceq_{\Phi} x) \end{array}$$

Proof.

Only the \Rightarrow direction of the first. Let $x \leq_{\Phi} y$. For some α , $x \in \Phi^{\alpha} \land y \notin \Phi^{<\alpha}$. Therefore, $x \in \Phi^{<\infty}$. If $y \notin \Phi^{<\infty}$, done. If so, there is $\alpha \leq \beta$ with $y \in \Phi^{\beta}$. But also $x \in \Phi^{\beta}$, so $y \not\prec_{\Phi} x$. The others are similar and straightforward.

Lemma

$$\begin{aligned} \Phi^{|y|_{\Phi}} &= \{ x \mid x \preceq_{\Phi} y \} \\ \Phi^{<|y|_{\Phi}} &= \{ x \mid x \prec_{\Phi} y \} \\ x \preceq_{\Phi} y \Leftrightarrow x \prec_{\Phi} y \lor x \in \Phi(\{ z \mid z \prec_{\Phi} y \}). \end{aligned}$$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID ₁ as a Sub-theory of (Π ⁰ ₁ — FXP) ₀ οοοοοοοοοοο	
Prewellorderings				
Prewellorderings				

Definition

A *prewellordering* is a transitive, total, well-founded binary relation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi_1^0 - FXP)_0$ 00000000000	
Prewellorderings	5			
Prewellorderings				

Definition

A *prewellordering* is a transitive, total, well-founded binary relation.

We will develop this notion in more detail via norms

 $f: P \twoheadrightarrow \lambda \in \mathit{On}$

Our goal will be to find conditions that are uniquely satisfied by the stage comparison relations. These, then, will be axiomatized into $(\Pi_1^0 - FXP)_0$.

Motivation	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)$
	000000000000	

 ID_1 as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Prewellorderings

Prewellorderings Defined

Definition

Let P be a set and $f: P \twoheadrightarrow \lambda$ be a norm. The triple (P, \preceq, \prec) is a *prewellordering* if

$$x \preceq y \Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) \leq f(y))$$

 $x \prec y \Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) < f(y))$

Note that every norm on a set *induces* a prewellordering if we take the above biconditionals as definitions.

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)_0$	ID $_1$ as a Sub-theory of $(\Pi^0_1 - FXP)_0$ 00000000000
Prewellordering	s		
Prewellordering Theorem I			

Theorem

 $(\Phi^{<\infty}, \preceq_{\Phi}, \prec_{\Phi})$ is the unique prewellordering which satisfies $x \preceq_{\Phi} y \Leftrightarrow x \prec_{\Phi} y \lor x \in \Phi(\{z \mid z \prec_{\Phi} y\})$ (FP_{Φ})

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Prewellorderings

Prewellordering Theorem II

Proof.

From the facts about stage comparison, we have that $|\cdot|_{\Phi}$ is a norm on $\Phi^{<\infty}$ whose induced prewellordering exactly is $(\preceq_{\Phi}, \prec_{\Phi})$. These previous facts also show that (FP_{Φ}) is satisfied. For uniqueness, let (P, \preceq, \prec) be a prewellordering satisfying (FP_{Φ}) . One can show by induction that

$$egin{aligned} y \in P \Rightarrow \Phi^{f(y)} &= \{z \mid z \preceq y\} \ y \in P \Rightarrow f(y) &= |y|_{\Phi} \ \Phi^{|x|_{\Phi}} &= \{z \mid z \preceq x\} \end{aligned}$$

The first and third of these entail that $P = \Phi^{<\infty}$. Since the associated norm of P is $|\cdot|_{\Phi}$, we are done.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prewellorderings

Eliminating Reference to Ordinals

In order to provide a sufficient axiomatization in \mathcal{L}_{NT} , we must find sufficient conditions for prewellordering that do not make reference to large ordinals via norms.

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Prewellorderings

Eliminating Reference to Ordinals

In order to provide a sufficient axiomatization in \mathcal{L}_{NT} , we must find sufficient conditions for prewellordering that do not make reference to large ordinals via norms.

Theorem

Let $P \subseteq \mathbb{N}$ and (\preceq, \prec) be transitive relations. Then (P, \preceq, \prec) is a prewellordering iff

 $x \leq y \Leftrightarrow x \in P \land (y \in P \Rightarrow y \not\prec x)$ (PWO1) $x \prec y \Leftrightarrow x \leq y \land y \not\leq x$ (PWO2) $\prec is well-founded$ (PWO3)

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Prewellorderings

Eliminating Reference to Ordinals

Proof.

⇒: Assume (P, \preceq, \prec) is a pwo with norm f. Because f is onto an ordinal, \prec is well-founded. We then have:

$$x \leq y \Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) \leq f(y))$$

$$\Leftrightarrow x \in P \land (y \in P \Rightarrow f(y) \not< f(x))$$

$$\Leftrightarrow x \in P \land (y \in P \Rightarrow x \not< y)$$
(PWO1)

$$x \prec y \Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) < f(y))$$

$$\Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) \leq f(y))$$

$$\land (y \in P \Rightarrow (x \in P \land f(x) < f(y)))$$

$$\Leftrightarrow x \leq y \land y \nleq x$$
(PWO2)

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

Prewellorderings

Eliminating Reference to Ordinals

Proof.

⇒: Assume (P, \leq, \prec) is a pwo with norm f. Because f is onto an ordinal, \prec is well-founded. We then have:

$$\begin{array}{l} x \leq y \Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) \leq f(y)) \\ \Leftrightarrow x \in P \land (y \in P \Rightarrow f(y) \not\leq f(x)) \\ \Leftrightarrow x \in P \land (y \in P \Rightarrow x \not\prec y) \\ x \prec y \Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) < f(y)) \\ \Leftrightarrow x \in P \land (y \in P \Rightarrow f(x) \leq f(y)) \\ \land (y \in P \Rightarrow (x \in P \land f(x) < f(y))) \\ \Leftrightarrow x \leq y \land y \not\leq x \\ \end{array}$$
 (PWO2)

 \Leftarrow : Define $f(x) := \operatorname{otyp}_{\prec}(x)$ and verify the original two conditions to be a prewellordering.

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^{U}_1-FXP)_0$
Prewellorderings			
Further	Characterizations		

Definition

$$D_{\leq} := \{x \mid x \leq x\}$$
 is called the diagonalization of \leq .

Lemma

If
$$(P, \leq, \prec)$$
 satisfies (PWO1)-(PWO3), then $P = D_{\leq}$.

Lemma

If (\preceq, \prec) are transitive and satisfy (PWO1)-(PWO3), then

$$x \prec y \preceq z \Rightarrow x \prec z$$

$$x \preceq y \prec z \Rightarrow x \prec z$$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi_1^0 - FXP)_0$ 00000000000
Prewellorderings			
Definat	le Operators		

Theorem

Let Φ_F be definable, i.e. $\Phi_F(X) = \{x \in \mathbb{N} \mid F(X, x)\}$ and (\leq_F, \prec_F) be transitive relations satisfying (PWO1)-(PWO3) and

$$x \preceq_F y \Leftrightarrow x \prec_F y \lor F(\{z \mid z \prec_F y\}, x)$$
(FIX)

Then $(D_{\preceq_F}, \preceq_F, \prec_F)$ is a prewellordering, whence $D_{\preceq_F} = \Phi_F^{<\infty}$.

Proof.

Trivially a prewellordering. The second half follows from the Prewellordering Theorem.

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)_0$ •000000	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$
Syntactic Defini	tions		
Basic Setup			

In light of the previous theorem, (PWO1)-(PWO3) and (FIX) are the statements we need to axiomatize in order to express the existence of fixed-points for definable operators (which we will restrict to Π_1^0 -definable).

We work in the language of second-order arithmetic. First, we will introduce a number of syntactic abbreviations.

 $Pair(x) :\Leftrightarrow Seq(x) \land lh(x) = 2$ $Rel(X) :\Leftrightarrow \forall x \in X Pair(x)$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi_1^0 - FXP)_0$ 0 \bullet 00000	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000	
Syntactic Defi	nitions			
More Abbreviations				

We introduce the *x*-slice of a relation:

$$X_x = \{y \mid \langle x, y \rangle \in X\}$$

and define that X codes two transitive orderings:

$$egin{aligned} & \mathsf{Trans}(X):\Leftrightarrow \mathsf{Rel}(X)\wedge orall xyz(Xxy\wedge Xyz
ightarrow Xxz)\ & \mathsf{PO}(X):\Leftrightarrow orall x(x\in X\leftrightarrow \mathsf{Pair}(x)\wedge ((x)_0=0ee(x)_0=1)\ & \wedge \mathsf{Trans}(X_0)\wedge \mathsf{Trans}(X_1)) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If PO(X) holds, we write $\leq_X := X_0$ and $\prec_X := X_1$.

 $\begin{array}{cccc} & \text{Monimonatione Inductive Definitions} & \text{The Theory} (\Pi_1^0 - FXP)_0 & \text{ID}_1 \text{ as a Sub-theory of } (\Pi_1^0 - FXP)_0 \\ & \text{occorrel} & \text{occorre} & \text{occo$

To express (PWO1) and (PWO2) – in other words, that $(D_{\leq_X}, \leq_X, \prec_X)$ is a preordering – we define:

$$PRO(X) :\Leftrightarrow PO(X) \land \forall x \forall y ([x \preceq_X y \leftrightarrow x \preceq_X x \land (y \preceq_X y \to y \not\prec_X x)] \quad (PWO1) \land [x \prec_X y \leftrightarrow x \preceq_X y \land y \not\preceq_X x]) \quad (PWO2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We can write X is well-founded as:

$$WF(X) : \Leftrightarrow \forall Y(Y \subseteq field(X) \land \exists x(x \in Y)
ightarrow \\ \exists x(x \in Y \land \forall y(Xyx
ightarrow y \notin Y)))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000
Syntactic Defi	nitions		
(PWO	3) Formalized		

We can write X is well-founded as:

$$WF(X) :\Leftrightarrow orall Y(Y \subseteq field(X) \land \exists x (x \in Y)
ightarrow \ \exists x (x \in Y \land orall y(Xyx
ightarrow y \notin Y)))$$

We can then say $(D_{\preceq_X}, \preceq_X, \prec_X)$ is a prewellordering by

 $PRWO(X) :\Leftrightarrow PRO(X) \land WF(\prec_X)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1-FXP)_0$ 00000000000
Syntactic Defin	nitions		
(PWO	3) Formalized		

We can write X is well-founded as:

$$WF(X) :\Leftrightarrow orall Y(Y \subseteq field(X) \land \exists x (x \in Y)
ightarrow \ \exists x (x \in Y \land orall y(Xyx
ightarrow y \notin Y)))$$

We can then say $(D_{\preceq_X}, \preceq_X, \prec_X)$ is a prewellordering by

$$PRWO(X) :\Leftrightarrow PRO(X) \land WF(\prec_X)$$

In other words, a prewellordering is a well-founded preordering, aka a transitive, total, well-founded binary relation.

Lastly, to say that the diagonalization of a prewellordering is the fixed-point of an operator defined by F(X, x), we write

$$\begin{aligned} \mathsf{FXP}_{\mathsf{F}}(X) &:\Leftrightarrow \mathsf{PRWO}(X) \land \\ & \forall x \forall y (x \preceq_X y \leftrightarrow x \prec_X y \lor \mathsf{F}(\{z \mid z \prec_X y\}, x)) \end{aligned}$$

If $FXP_F(X)$ holds, we will also write

$$(\Phi^F, \preceq_F, \prec_F)$$

instead of

$$(D_{\preceq_X}, \preceq_X, \prec_X)$$

Of its own interest in reverse mathematics, the second-order theory of arithmetical comprehension, $(ACA)_0$ comprises:

- All axioms of NT
- The second-order axiom (Ind)² of induction:

 $\forall X (\mathbf{0} \in X \land \forall x (x \in X \rightarrow x + \mathbf{1} \in X) \rightarrow \forall x (x \in X))$

 $\bullet\,$ The scheme ($\Delta_0^1-CA)$ of arithmetical comprehension:

 $\exists X \forall x (x \in X \leftrightarrow F(x))$

where F(x) is a first-order formula.

The theory $(\Pi_1^0 - FXP)_0$ contains:

- All axioms of (ACA)₀
- For every Π₁⁰-formula F(X, x) with X the only free set variable, the axiom

$$\exists X(FXP_F(X))$$
 (FXP(F))

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The theory $(\Pi_1^0 - FXP)_0$ contains:

- All axioms of (ACA)₀
- For every Π₁⁰-formula F(X, x) with X the only free set variable, the axiom

$$\exists X(FXP_F(X))$$
 (FXP(F))

Exercise. Prove that $(\Pi_1^0 - FXP)_0 \vdash \exists ! X(FXP_F(X))$. Hint: trivially proves existence. Formalize proof of Prewellordering Theorem to show uniqueness.

Motivation 00000	Nonmonotone Inductive Definitions	The Theory (Π ⁰ — FXP) ₀ 0000000	ID ₁ as a Sub-theory of (Π ⁰ ₁ − FXP) ₀ ●○○○○○○○○○○○
Through $(\Pi_1^1 -$	– CA) [–]		
ldea ar	nd $(\Pi_1^1 - CA)^-$		

The theory $(\Pi_1^1 - CA)_0^-$ is a second-order theory with nonlogical axioms:

- All axioms of (ACA)₀
- Parameter free Π¹₁-comprehension: for F(x) Π¹₁ with no free set parameters,

$$\exists X \forall x (x \in X \leftrightarrow F(x)) \qquad (\Pi_1^1 - CA^-)$$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory (Π ⁰ — FXP) ₀ 0000000	ID ₁ as a Sub-theory of (Π ⁰ ₁ − FXP) ₀ ●○○○○○○○○○○○
Through $(\Pi_1^1 \cdot$	– CA) [–]		
ldea ar	nd $(\Pi_1^1 - CA)^-$		

The theory $(\Pi_1^1 - CA)_0^-$ is a second-order theory with nonlogical axioms:

- All axioms of (ACA)₀
- Parameter free Π¹₁-comprehension: for F(x) Π¹₁ with no free set parameters,

$$\exists X \forall x (x \in X \leftrightarrow F(x)) \qquad (\Pi_1^1 - CA^-)$$

Denoting subtheory by \sqsubseteq , we will show

$$\mathsf{ID}_1 \sqsubseteq (\mathsf{\Pi}^1_1 - \mathsf{CA})^-_0 \sqsubseteq (\mathsf{\Pi}^0_1 - \mathsf{FXP})_0$$

whence

$$||ID_1|| \le ||(\Pi_1^1 - CA)_0^-|| \le ||(\Pi_1^0 - FXP)_0||$$

Let $F(X, \vec{x})$ be X-positive arithmetical formula with all free variables shown. The set

$$\mathcal{I}(F) := \{ \vec{x} \mid \forall X (\forall \vec{y} [F(X, \vec{y}) \to \vec{y} \in X] \to \vec{x} \in X \}$$

is a set by $\Pi_1^1 - CA^-$.

Therefore, by replacing all occurrences of I_F by $\mathcal{I}(F)$, we can embed $\mathcal{L}(ID)$ in the language of second-order arithmetic. Denote the translation by $(\cdot)^*$. We have

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1 - FXP)_0$
$ID_1 \sqsubseteq (\Pi_1^1 - C)$	(A)_		
Proving	$g ID_1^2$		

Lemma

$$(\Pi_1^1 - \mathsf{CA})_0^- \vdash \left(\mathsf{ID}_1^2\right)^*$$

Proof.

For X-positive arithmetical formula $F(X, \vec{x})$, define $\mathfrak{M}_F(X) :\Leftrightarrow \forall \vec{x} (F(X, \vec{x}) \to \vec{x} \in X)$. For $G(\vec{x})$ an $\mathcal{L}(\mathsf{ID})$ formula, $S := \{ \vec{x} \mid G(\vec{x}) \}$ is a set. Then we have, inferring from the definition of $\mathcal{I}(F)$,

$$\begin{split} \vec{x} &\in \mathcal{I}(F) \leftrightarrow \forall X(\mathfrak{M}_{F}(X) \to \vec{x} \in X) \\ \mathfrak{M}_{F}(S) \to \vec{x} \in \mathcal{I}(F) \to \vec{x} \in S \\ \forall \vec{y}(F(S, \vec{y}) \to \vec{y} \in S) \to \forall \vec{x} (\vec{x} \in \mathcal{I}(F) \to \vec{x} \in S) \qquad ((ID_{1}^{2})^{*}) \end{split}$$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory (II ₁ — FXP) ₀ 0000000	ID ₁ as a Sub-theory of $(\Pi_1^{\circ} - FXP)_0$
$ID_1 \sqsubseteq (\Pi_1^1 - I_1)$	CA)_		
Proving	g ID ₁		

Lemma

$$(\mathsf{\Pi}_1^1 - \mathsf{CA})_0^- \vdash \left(\mathsf{ID}_1^2\right)^*$$

Proof.

$$\begin{split} \mathfrak{M}_{F}(X) &\to \forall \vec{x} (\vec{x} \in \mathcal{I}(F) \to \vec{x} \in X) \\ \mathfrak{M}_{F}(X) &\to F(\mathcal{I}(F), \vec{x}) \to F(X, \vec{x}) \\ \mathfrak{M}_{F}(X) \to F(X, \vec{x}) \to \vec{x} \in X \\ \mathfrak{M}_{F}(X) \to \mathcal{M}_{F}(X) \to \vec{x} \in X \\ F(\mathcal{I}(F), \vec{x}) \to \forall X(\mathfrak{M}_{F}(X) \to \vec{x} \in X) \\ F(\mathcal{I}(F), \vec{x}) \to \vec{x} \in \mathcal{I}(F) \\ \end{split}$$
((ID¹₁)*)

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi^0_1 - FXP)_0$		
$ID_1 \equiv (\Pi_1^1 - CA)_0^-$					
First Subtheory					

Theorem

$$\mathsf{ID}_1 \sqsubseteq (\Pi_1^1 - CA)_0^-$$

Proof.

All axioms of primitive recursive functions, equality are the same. Similarly, any instance of induction in ID₁ has translation provable in $(\Pi_1^1 - CA)_0^-$. The rest follows from the previous two lemmas.

We will show that $(\Pi_1^1 - CA)_0^- \sqsubseteq (\Pi_1^0 - FXP)_0$ using facts from Chapters 5 and 6, roughly as follows:

- $(\Pi_1^0 FXP)_0$ captures positive Π_1^0 -definable inductive definitions
- **②** A Π^1_1 -formula with no free set parameters holds iff its search tree is well-founded

- **③** Those facts can be proved in $(\Pi_1^0 FXP)_0$
- This search tree is well-founded iff $\langle \rangle \in \Phi$ where Φ is a positive Π_1^0 -definable inductive set
- **③** Use this to show $(\Pi_1^0 \mathsf{FXP})_0 \vdash \Pi_1^1 CA^-$

 $\begin{array}{c|c} \mbox{Motivation} & \mbox{Nonmonotone Inductive Definitions} & \mbox{The Theory} (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a Sub-theory of } (\Pi_1^0 - FXP)_0 \\ \mbox{(} \Pi_1^1 - CA)_n^- & \sqsubseteq (\Pi_1^0 - FXP)_0 & \mbox{Positive } \Pi_1^0 \mbox{ Inductive Definitions} & \mbox{ID}_1 \mbox{ as a Sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of } (\Pi_1^0 - FXP)_0 & \mbox{ID}_1 \mbox{ as a sub-theory of$

Lemma

Let F(X, x) be an X-positive Π_1^0 -formula and write $\Phi^F := \{x \mid x \leq_F x\}$. Then

$$\begin{aligned} (\Pi_1^0 - \mathsf{FXP})_0 &\vdash F(\Phi^F, x) \to x \in \Phi^F \\ (\Pi_1^0 - \mathsf{FXP})_0 &\vdash \forall y (F(\{z \mid G(z)\}, y) \to G(y)) \to \Phi^F \subseteq \{z \mid G(z)\} \end{aligned}$$

Proof.

Straightforward from $FXP_F(X)$ and X-positivity of F.

Lemma (Lemma 5.4.7)

If
$$S^{\omega}_{\langle \Delta \rangle}$$
 is well-founded, then $\models^{otyp(s)} \delta(s)$ for all $s \in S^{\omega}_{\langle \Delta \rangle}$.

Lemma (Lemma 5.4.8)

If $S_{\langle \Delta \rangle}^{\omega}$ is not well-founded then there are S_1, \ldots, S_n such that $\mathbb{N} \nvDash F[S_1, \ldots, S_n]$ for every $F \in \Delta$.

Theorem (Theorem 5.4.9)

For all Π_1^1 -sentences of the form $\forall X_1 \cdots \forall X_n F(X_1, \dots, X_n)$,

$$\mathbb{N} \models \forall X_1 \cdots \forall X_n F(X_1, \dots, X_n) \Leftrightarrow \exists \alpha < \omega_1^{CK} \models F(X_1, \dots, X_n)$$

Recall for an arithmetically defined tree T, I_T is the fixed point of

$$F_T(X,x):\Leftrightarrow T(x)\wedge \forall z(T(x \land \langle z) \to x \land \langle z \rangle \in X)$$

Theorem (Theorem 6.5.5)

An arithmetically definable tree T is well-founded iff $\langle \rangle \in I_T$.

Recall for an arithmetically defined tree T, I_T is the fixed point of

$$F_T(X,x):\Leftrightarrow T(x)\wedge \forall z(T(x \land \langle z) \to x \land \langle z \rangle \in X)$$

Theorem (Theorem 6.5.5)

An arithmetically definable tree T is well-founded iff $\langle \rangle \in I_T$.

Note. Lemmas 5.4.7, 5.4.8, and Theorem 6.5.5 can be proved in $(\Pi_1^0 - FXP)_0$. For the first two, replace induction on otyp(s) by bar induction.

Recall for an arithmetically defined tree T, I_T is the fixed point of

$$F_T(X,x):\Leftrightarrow T(x)\wedge \forall z(T(x \land \langle z) \to x \land \langle z \rangle \in X)$$

Theorem (Theorem 6.5.5)

An arithmetically definable tree T is well-founded iff $\langle \rangle \in I_T$.

Note. Lemmas 5.4.7, 5.4.8, and Theorem 6.5.5 can be proved in $(\Pi_1^0 - FXP)_0$. For the first two, replace induction on otyp(s) by bar induction.

Theorem

$$(\Pi_1^0 - \mathsf{FXP})_0 \vdash \Pi_1^1 - CA^-.$$

Nonmonotone Inductive Definitions

The Theory $(\Pi_1^0 - FXP)_0$

ID₁ as a Sub-theory of $(\Pi_1^0 - FXP)_0$

 $(\Pi_1^1 - CA)_0^- \sqsubseteq (\Pi_1^0 - FXP)_0$

Proving $(\Pi_1^1 - CA)_0^- \sqsubseteq (\Pi_1^0 - FXP)_0$

Proof.

Let $\forall XF(X,x)$ be Π_1^1 with no other free set parameters. By lemmas 5.4.7 and 5.4.8, $\forall XF(X,n)$ iff $S_{F(X,n)}^{\omega}$ is well-founded. This search tree is definable by a primitive-recursive formula. Then $G(Y, y, n) :\Leftrightarrow \forall z(y \frown \langle z \rangle \in S_{F(X,n)}^{\omega} \rightarrow y \frown \langle z \rangle \in Y)$ is thus a Y-positive Π_1^0 formula. By Theorem 6.5.5, $S_{F(X,n)}^{\omega}$ is well-founded iff $\langle \rangle \in \Phi^{G(n)}$. Then $\{x \mid \langle \rangle \in \Phi^{G(x)}\}$ is a set by arithmetical comprehension, whence

$$egin{aligned} (\Pi^0_1 - \mathsf{FXP})_0 dash orall X(F(X,n)) &\leftrightarrow \langle
angle \in \Phi^{G(n)} \ (\Pi^0_1 - \mathsf{FXP})_0 dash \exists Z orall x(x \in Z \leftrightarrow orall X(F(X,x))) & (\Pi^1_1 - CA^-) \end{aligned}$$

Motivation 00000	Nonmonotone Inductive Definitions	The Theory (Π ⁰ ₁ — FXP) ₀ οοοοοοο	ID ₁ as a Sub-theory of (Π ⁰ ₁ − FXP) ₀ ○○○○○○○○○○		
$(\Pi_1^1 - CA)_n^- \sqsubseteq (\Pi_1^0 - FXP)_0$					
The Lo	wer Bound				

Therefore, we have

 $\psi(\varepsilon_{\Omega+1}) = ||\mathsf{ID}_1|| \le ||(\mathsf{\Pi}_1^1 - \mathsf{CA})_0^-|| \le ||(\mathsf{\Pi}_1^0 - \mathsf{FXP})_0||$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID ₁ as a Sub-theory of (Π ⁰ ₁ − FXP) ₀ ○○○○○○○○○○		
$(\Pi_1^1 - CA)_0^- \sqsubseteq (\Pi_1^0 - FXP)_0$					
The Lower Bound					

Therefore, we have

 $\psi(\varepsilon_{\Omega+1}) = ||\mathsf{ID}_1|| \le ||(\mathsf{\Pi}_1^1 - \mathsf{CA})_0^-|| \le ||(\mathsf{\Pi}_1^0 - \mathsf{FXP})_0||$

By taking a detour through $(\Pi_2 - \text{REF})^2$, a second-order theory of Π_2 reflection, we can show that this bound is in fact exact.

- [Poh08] Wolfram Pohlers. Ordinal analysis of non-monotone Π_1^0 -definable inductive definitions. Annals of Pure and Applied Logic, 156(1):160–169, 2008.
- [Poh09] Wolfram Pohlers. *Proof Theory: The First Step into Impredicativity*. Springer-Verlag, Berlin, 2009.
- [RA74] Wayne Richter and Peter Aczel. Inductive Definitions and Reflecting Properties of Admissible Ordinals. In JE Fenstad and PG Hinman, editors, *Generalized Recursion Theory I, (no 79 in Studies in Logic and the Foundations of Mathematics)*, pages 301–381.
 North-Holland Publishing Company, Amsterdam, 1974.

Motivation 00000	Nonmonotone Inductive Definitions	The Theory $(\Pi^0_1 - FXP)_0$	ID_1 as a Sub-theory of $(\Pi_1^0 - FXP)_0$		
$(\Pi_1^1 - CA)_0^- \subseteq (\Pi_1^0 - FXP)_0$					
Thank You					

Questions?

