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Brief Review of Inductive Definitions

Inductive Definitions as Sets of Clauses

Definition

A set B of clauses (of the form A⇒ b) is an inductive definition.
A set X is B-closed if A⇒ b ∈ B and A ⊆ X imply b ∈ X .
I (B) =

⋂
{X | X is B-closed} is inductively generated by B.

Example

A few motivating examples:

N = I ({∅ ⇒ 0} ∪ {{n} ⇒ n + 1})
WFF = I ({∅ ⇒ p | p ∈ PV } ∪ {{ϕ} ⇒ ¬ϕ} ∪
{{ϕ,ψ} ⇒ ϕ� ψ | � ∈ {∧,∨,→}})
Kleene’s O = I ({∅ ⇒ 0} ∪ {{a} ⇒ 2a} ∪ {{[e](n)} ⇒ 3 · 5e})

Note: what we generally refer to as “base cases” are clauses ∅ ⇒ b.
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Brief Review of Inductive Definitions

Inductive Definitions as Monotone Operators

A well-motivated generalization of the previous definition:

Definition

An inductive definition on a set A is a monotone operator
Φ : P(An)→ P(An)
A set S ⊆ P(An) is Φ-closed iff Φ(S) ⊆ S .

Definition

The α-th stage of an inductive definition Φ is defined by transfinite
recursion:

Φα := Φ(Φ<α)

where
Φ<α :=

⋃
ξ<α

Φξ

In other words, Φ0 = Φ(∅), Φ1 = Φ(Φ(0)), . . . .
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Brief Review of Inductive Definitions

Fixed Points of Monotone Inductive Definitions

Recall an important lemma and its proof:

Lemma (Lemma 6.3.2)

Let Φ be an inductive definition on a set A. Then there is an
ordinal σ < card(A)+ such that Φ<σ = Φσ.

Proof.

By definition and the monotonicity of Φ,

ξ < η ⇒ Φξ ⊆ Φη

Now, every Φξ ⊆ A, so card(Φξ) ≤ card(A). There are card(A)+

many ordinals below card(A)+. Therefore, if we had strict subset
above for every ordinal ≤ card(A), then there would be a
ξ < card(A)+ with card(Φξ) > card(A). Therefore, there is an
ordinal σ < card(A)+ such that Φ<σ = Φσ, i.e. σ is a fixed
point.
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Brief Review of Inductive Definitions

Monotonicity Too Strong

In this cardinality argument, we do not in fact need that Φ is a
monotone operator. Since we define the hierarchy of stages on
ordinals, which are transitive sets, it suffices simply for Φ to be
inflationary, i.e. to satisfy X ⊆ Φ(X ).

In fact, what we will do is:

1 Drop monotonicity condition from definition.

2 Revise definition of stages to induce an inflationary operator.
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Brief Review of Inductive Definitions

The Plan

In this talk (following [Poh09, ch. 13] and [Poh08]), I will:

1 Briefly introduce nonmonotone inductive definitions.

2 Introduce prewellorderings and analyze their relationship to
nonmonotone inductive definitions.

3 Describe a theory (Π0
1 − FXP)0 axiomatizing the existence of

fixpoints for all Π0
1-definable operators.

4 Prove that ||ID1|| ≤ ||(Π0
1 − FXP)0||.

5 Sketch an outline of the proof that ||(Π0
1 − FXP)0|| ≤ ||ID1||.
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Basic Theory

Stages of Nonmonotone Induction

Definition

Let Φ : P(N)→ P(N) be an operator. We define the hierarchy of
stages as

Φα := Φ<α ∪ Φ(Φ<α)

Definition

We call
Φ<∞ :=

⋃
ξ∈On

Φξ

the fixed-point generated by Φ.
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Basic Theory

Examples of Nonmonotone Inductive Definitions

Example

Let Φ0 and Φ1 be two monotone operators (on P(N)). Define

[Φ0,Φ1] = {x ∈ N | x ∈ Φ0(X ) ∨ (Φ0(X ) ⊆ X ∧ x ∈ Φ1(X ))}

In other words, we iterate Φ0 until a fixed point is reached and
then iterate Φ1 once, after which we keep repeating this process.

A particularly widely studied group of nonmonotone i.d.’s are

[F1, . . . ,Fn] := {[Φ1, . . .Φn] | Φi is positively Fi -definable}

See [RA74] for more details. (Also [Poh09, p. 335] for
generalization of Kleene’s O.)
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Basic Theory

Fixed Point Lemma

With our modified definition of the hierarchy of stages, the
fixed-point lemma holds in the nonmonotone case:

Lemma

Let Φ : P(N)→ P(N) be an operator. Then there is an ordinal
σ < ω1 such that Φ<σ = Φσ. Moreover, it also holds for this σ
that Φ<∞ = Φ<σ = Φσ.

Proof.

Note that ω1 = card(N)+. The exact same argument as before
yields a σ < ω1 that is a fixpoint of Φ. Clearly, Φσ ⊆ Φ<∞.
We prove by induction that σ ≤ τ ⇒ Φτ = Φ<σ. Trivial if σ = τ .
If σ < τ , the IH tells us Φ<τ = Φ<σ, from which we have

Φτ = Φ<τ ∪ Φ(Φ<τ ) = Φ<σ ∪ Φ(Φ<σ) = Φσ = Φ<σ
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Basic Theory

Some Norms

Some norms, as in the monotone case:

Definition

The closure ordinal of Φ is defined as |Φ| = min {σ | Φσ = Φ<σ}.
The inductive norm induced by Φ, | · |Φ : N→ On, is given by

|n|Φ =

{
min {α | n ∈ Φα} x ∈ Φ<∞

∞ otherwise

A few simple results:

Lemma

Φ∞ = Φ|Φ| = Φ<∞.
|Φ| = {|x |Φ | x ∈ Φ<∞} In other words, | · |Φ : Φ<∞ � |Φ|.
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Stage Comparison

Setting the Stage

Our goal: axiomatize Π0
1-definable (nonmonotone) inductive

definitions. Unlike in the case of monotone inductive definitions, we
can’t just proceed (as in ID1) by axiomatizing “the least Φ-closed
set”. This is because the smallest fixed-point of a nonmonotone
inductive definition may be an ordinal not available in LNT .
What we will axiomatize is properties of the stage comparison
relations

x �Φ y := ∃α(x ∈ Φα ∧ y /∈ Φ<α)

x ≺Φ y := ∃α(x ∈ Φα ∧ y /∈ Φα)

which we will prove are satisfied only by the appropriate fixed
points.
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Stage Comparison

Facts About Stage Comparison

Lemma

x �Φ y ⇔ x ∈ Φ<∞ ∧ (y ∈ Φ<∞ → y ⊀Φ x)
x ≺Φ y ⇔ x ∈ Φ<∞ ∧ (y ∈ Φ<∞ → y �Φ x)

Proof.

Only the ⇒ direction of the first. Let x �Φ y . For some α,
x ∈ Φα ∧ y /∈ Φ<α. Therefore, x ∈ Φ<∞. If y /∈ Φ<∞, done. If so,
there is α ≤ β with y ∈ Φβ. But also x ∈ Φβ, so y ⊀Φ x .
The others are similar and straightforward.

Lemma

Φ|y |Φ = {x | x �Φ y}
Φ<|y |Φ = {x | x ≺Φ y}
x �Φ y ⇔ x ≺Φ y ∨ x ∈ Φ({z | z ≺Φ y}).
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Prewellorderings

Prewellorderings

Definition

A prewellordering is a transitive, total, well-founded binary relation.

We will develop this notion in more detail via norms

f : P � λ ∈ On

Our goal will be to find conditions that are uniquely satisfied by
the stage comparison relations. These, then, will be axiomatized
into (Π0

1 − FXP)0.
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Prewellorderings

Prewellorderings Defined

Definition

Let P be a set and f : P � λ be a norm. The triple (P,�,≺) is a
prewellordering if

x � y ⇔ x ∈ P ∧ (y ∈ P ⇒ f (x) ≤ f (y))

x ≺ y ⇔ x ∈ P ∧ (y ∈ P ⇒ f (x) < f (y))

Note that every norm on a set induces a prewellordering if we take
the above biconditionals as definitions.
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Prewellorderings

Prewellordering Theorem I

Theorem

(Φ<∞,�Φ,≺Φ) is the unique prewellordering which satisfies

x �Φ y ⇔ x ≺Φ y ∨ x ∈ Φ({z | z ≺Φ y}) (FPΦ)
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Prewellorderings

Prewellordering Theorem II

Proof.

From the facts about stage comparison, we have that | · |Φ is a
norm on Φ<∞ whose induced prewellordering exactly is (�Φ,≺Φ).
These previous facts also show that (FPΦ) is satisfied.
For uniqueness, let (P,�,≺) be a prewellordering satisfying (FPΦ).
One can show by induction that

y ∈ P ⇒ Φf (y) = {z | z � y}
y ∈ P ⇒ f (y) = |y |Φ
Φ|x |Φ = {z | z � x}

The first and third of these entail that P = Φ<∞. Since the
associated norm of P is | · |Φ, we are done.
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Prewellorderings

Eliminating Reference to Ordinals

In order to provide a sufficient axiomatization in LNT , we must
find sufficient conditions for prewellordering that do not make
reference to large ordinals via norms.

Theorem

Let P ⊆ N and (�,≺) be transitive relations. Then (P,�,≺) is a
prewellordering iff

x � y ⇔ x ∈ P ∧ (y ∈ P ⇒ y ⊀ x) (PWO1)

x ≺ y ⇔ x � y ∧ y � x (PWO2)

≺ is well-founded (PWO3)
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Prewellorderings

Eliminating Reference to Ordinals

Proof.

⇒: Assume (P,�,≺) is a pwo with norm f . Because f is onto an
ordinal, ≺ is well-founded. We then have:

x � y ⇔ x ∈ P ∧ (y ∈ P ⇒ f (x) ≤ f (y))

⇔ x ∈ P ∧ (y ∈ P ⇒ f (y) 6< f (x))

⇔ x ∈ P ∧ (y ∈ P ⇒ x ⊀ y) (PWO1)

x ≺ y ⇔ x ∈ P ∧ (y ∈ P ⇒ f (x) < f (y))

⇔ x ∈ P ∧ (y ∈ P ⇒ f (x) ≤ f (y))

∧ (y ∈ P ⇒ (x ∈ P ∧ f (x) < f (y)))

⇔ x � y ∧ y � x (PWO2)

⇐: Define f (x) := otyp≺(x) and verify the original two conditions
to be a prewellordering.
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Prewellorderings

Further Characterizations

Definition

D� := {x | x � x} is called the diagonalization of �.

Lemma

If (P,�,≺) satisfies (PWO1)-(PWO3), then P = D�.

Lemma

If (�,≺) are transitive and satisfy (PWO1)-(PWO3), then

x ≺ y � z ⇒ x ≺ z

x � y ≺ z ⇒ x ≺ z
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Prewellorderings

Definable Operators

Theorem

Let ΦF be definable, i.e. ΦF (X ) = {x ∈ N | F (X , x)} and
(�F ,≺F ) be transitive relations satisfying (PWO1)-(PWO3) and

x �F y ⇔ x ≺F y ∨ F ({z | z ≺F y} , x) (FIX)

Then (D�F
,�F ,≺F ) is a prewellordering, whence D�F

= Φ<∞
F .

Proof.

Trivially a prewellordering. The second half follows from the
Prewellordering Theorem.
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Syntactic Definitions

Basic Setup

In light of the previous theorem, (PWO1)-(PWO3) and (FIX) are
the statements we need to axiomatize in order to express the
existence of fixed-points for definable operators (which we will
restrict to Π0

1-definable).
We work in the language of second-order arithmetic. First, we will
introduce a number of syntactic abbreviations.

Pair(x) :⇔ Seq(x) ∧ lh(x) = 2

Rel(X ) :⇔ ∀x ∈ X Pair(x)
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Syntactic Definitions

More Abbreviations

We introduce the x-slice of a relation:

Xx = {y | 〈x , y〉 ∈ X}

and define that X codes two transitive orderings:

Trans(X ) :⇔ Rel(X ) ∧ ∀xyz(Xxy ∧ Xyz → Xxz)

PO(X ) :⇔ ∀x(x ∈ X ↔ Pair(x) ∧ ((x)0 = 0 ∨ (x)0 = 1)

∧ Trans(X0) ∧ Trans(X1))

If PO(X ) holds, we write �X := X0 and ≺X := X1.
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Syntactic Definitions

(PWO1) and (PWO2) Formalized

To express (PWO1) and (PWO2) – in other words, that
(D�X

,�X ,≺X ) is a preordering – we define:

PRO(X ) :⇔ PO(X ) ∧ ∀x∀y(

[x �X y ↔ x �X x ∧ (y �X y → y ⊀X x)] (PWO1)

∧ [x ≺X y ↔ x �X y ∧ y �X x ]) (PWO2)
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Syntactic Definitions

(PWO3) Formalized

We can write X is well-founded as:

WF (X ) :⇔ ∀Y (Y ⊆ field(X ) ∧ ∃x(x ∈ Y )→
∃x(x ∈ Y ∧ ∀y(Xyx → y /∈ Y )))

We can then say (D�X
,�X ,≺X ) is a prewellordering by

PRWO(X ) :⇔ PRO(X ) ∧WF (≺X )

In other words, a prewellordering is a well-founded preordering, aka
a transitive, total, well-founded binary relation.
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Syntactic Definitions

Formalizing (FIX)

Lastly, to say that the diagonalization of a prewellordering is the
fixed-point of an operator defined by F (X , x), we write

FXPF (X ) :⇔ PRWO(X )∧
∀x∀y(x �X y ↔ x ≺X y ∨ F ({z | z ≺X y} , x))

If FXPF (X ) holds, we will also write

(ΦF ,�F ,≺F )

instead of
(D�X

,�X ,≺X )
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(Π0
1 − FXP)0 Defined

The Theory (ACA)0

Of its own interest in reverse mathematics, the second-order theory
of arithmetical comprehension, (ACA)0 comprises:

All axioms of NT

The second-order axiom (Ind)2 of induction:

∀X (0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X )→ ∀x(x ∈ X ))

The scheme (∆1
0 − CA) of arithmetical comprehension:

∃X∀x(x ∈ X ↔ F (x))

where F (x) is a first-order formula.
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1 − FXP)0

(Π0
1 − FXP)0 Defined

The Theory (Π0
1 − FXP)0

The theory (Π0
1 − FXP)0 contains:

All axioms of (ACA)0

For every Π0
1-formula F (X , x) with X the only free set

variable, the axiom

∃X (FXPF (X )) (FXP(F))

Exercise. Prove that (Π0
1 − FXP)0 ` ∃!X (FXPF (X )).

Hint: trivially proves existence. Formalize proof of Prewellordering
Theorem to show uniqueness.
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Through (Π1
1 − CA)−

Idea and (Π1
1 − CA)−

The theory (Π1
1 − CA)−0 is a second-order theory with nonlogical

axioms:

All axioms of (ACA)0

Parameter free Π1
1-comprehension: for F (x) Π1

1 with no free
set parameters,

∃X∀x(x ∈ X ↔ F (x)) (Π1
1 − CA−)

Denoting subtheory by v, we will show

ID1 v (Π1
1 − CA)−0 v (Π0

1 − FXP)0

whence

||ID1|| ≤ ||(Π1
1 − CA)−0 || ≤ ||(Π0

1 − FXP)0||
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ID1 v (Π1
1 − CA)−0

Embedding the Language

Let F (X ,~x) be X -positive arithmetical formula with all free
variables shown. The set

I(F ) := {~x | ∀X (∀~y [F (X , ~y)→ ~y ∈ X ]→ ~x ∈ X}

is a set by Π1
1 − CA−.

Therefore, by replacing all occurrences of IF by I(F ), we can
embed L(ID) in the language of second-order arithmetic. Denote
the translation by (·)∗. We have(

ID1
1

)∗
:= ∀~x(F (I(F ),~x)→ ~x ∈ I(F ))(

ID2
1

)∗
:= ∀~x(F (G ,~x)→ G (~x))→ ∀~x(~x ∈ I(F )→ G (~x))
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Proving ID2
1

Lemma

(Π1
1 − CA)−0 `

(
ID2

1

)∗
Proof.

For X -positive arithmetical formula F (X ,~x), define
MF (X ) :⇔ ∀~x(F (X ,~x)→ ~x ∈ X ). For G (~x) an L(ID) formula,
S := {~x | G (~x)} is a set. Then we have, inferring from the
definition of I(F ),

~x ∈ I(F )↔ ∀X (MF (X )→ ~x ∈ X )

MF (S)→ ~x ∈ I(F )→ ~x ∈ S

∀~y(F (S , ~y)→ ~y ∈ S)→ ∀~x(~x ∈ I(F )→ ~x ∈ S) (
(
ID2

1

)∗
)
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Proving ID1
1

Lemma

(Π1
1 − CA)−0 `

(
ID2

1

)∗
Proof.

MF (X )→ ∀~x(~x ∈ I(F )→ ~x ∈ X )

MF (X )→ F (I(F ),~x)→ F (X ,~x) (X -positivity)

MF (X )→ F (X ,~x)→ ~x ∈ X (defn)

F (I(F ),~x)→MF (X )→ ~x ∈ X

F (I(F ),~x)→ ∀X (MF (X )→ ~x ∈ X )

F (I(F ),~x)→ ~x ∈ I(F ) (
(
ID1

1

)∗
)
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First Subtheory

Theorem

ID1 v (Π1
1 − CA)−0

Proof.

All axioms of primitive recursive functions, equality are the same.
Similarly, any instance of induction in ID1 has translation provable
in (Π1

1 − CA)−0 . The rest follows from the previous two
lemmas.
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Final Embedding: Basic Idea

We will show that (Π1
1 − CA)−0 v (Π0

1 − FXP)0 using facts from
Chapters 5 and 6, roughly as follows:

1 (Π0
1 − FXP)0 captures positive Π0

1-definable inductive
definitions

2 A Π1
1-formula with no free set parameters holds iff its search

tree is well-founded

3 Those facts can be proved in (Π0
1 − FXP)0

4 This search tree is well-founded iff 〈〉 ∈ Φ where Φ is a
positive Π0

1-definable inductive set

5 Use this to show (Π0
1 − FXP)0 ` Π1

1 − CA−
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Positive Π0
1 Inductive Definitions

Lemma

Let F (X , x) be an X -positive Π0
1-formula and write

ΦF := {x | x �F x}. Then

(Π0
1 − FXP)0 ` F (ΦF , x)→ x ∈ ΦF

(Π0
1 − FXP)0 ` ∀y(F ({z | G (z)} , y)→ G (y))→ ΦF ⊆ {z | G (z)}

Proof.

Straightforward from FXPF (X ) and X -positivity of F .
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Recalling Results

Lemma (Lemma 5.4.7)

If Sω〈∆〉 is well-founded, then
otyp(s)

δ(s) for all s ∈ Sω〈∆〉.

Lemma (Lemma 5.4.8)

If Sω〈∆〉 is not well-founded then there are S1, . . . ,Sn such that

N 2 F [S1, . . . ,Sn] for every F ∈ ∆.

Theorem (Theorem 5.4.9)

For all Π1
1-sentences of the form ∀X1 · · · ∀XnF (X1, . . . ,Xn),

N |= ∀X1 · · · ∀XnF (X1, . . . ,Xn)⇔ ∃α < ωCK
1

α
F (X1, . . . ,Xn)
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Proving (Π1
1 − CA)−0 v (Π0

1 − FXP)0

Recall for an arithmetically defined tree T , IT is the fixed point of

FT (X , x) :⇔ T (x) ∧ ∀z(T (x a 〈z)→ x a 〈z〉 ∈ X

Theorem (Theorem 6.5.5)

An arithmetically definable tree T is well-founded iff 〈〉 ∈ IT .

Note. Lemmas 5.4.7, 5.4.8, and Theorem 6.5.5 can be proved in
(Π0

1 − FXP)0. For the first two, replace induction on otyp(s) by
bar induction.

Theorem

(Π0
1 − FXP)0 ` Π1

1 − CA−.



Motivation Nonmonotone Inductive Definitions The Theory (Π0
1 − FXP)0 ID1 as a Sub-theory of (Π0

1 − FXP)0

(Π1
1 − CA)−0 v (Π0

1 − FXP)0

Proving (Π1
1 − CA)−0 v (Π0

1 − FXP)0

Recall for an arithmetically defined tree T , IT is the fixed point of

FT (X , x) :⇔ T (x) ∧ ∀z(T (x a 〈z)→ x a 〈z〉 ∈ X

Theorem (Theorem 6.5.5)

An arithmetically definable tree T is well-founded iff 〈〉 ∈ IT .

Note. Lemmas 5.4.7, 5.4.8, and Theorem 6.5.5 can be proved in
(Π0

1 − FXP)0. For the first two, replace induction on otyp(s) by
bar induction.

Theorem

(Π0
1 − FXP)0 ` Π1

1 − CA−.



Motivation Nonmonotone Inductive Definitions The Theory (Π0
1 − FXP)0 ID1 as a Sub-theory of (Π0

1 − FXP)0

(Π1
1 − CA)−0 v (Π0

1 − FXP)0

Proving (Π1
1 − CA)−0 v (Π0

1 − FXP)0

Recall for an arithmetically defined tree T , IT is the fixed point of

FT (X , x) :⇔ T (x) ∧ ∀z(T (x a 〈z)→ x a 〈z〉 ∈ X

Theorem (Theorem 6.5.5)

An arithmetically definable tree T is well-founded iff 〈〉 ∈ IT .

Note. Lemmas 5.4.7, 5.4.8, and Theorem 6.5.5 can be proved in
(Π0

1 − FXP)0. For the first two, replace induction on otyp(s) by
bar induction.

Theorem

(Π0
1 − FXP)0 ` Π1

1 − CA−.



Motivation Nonmonotone Inductive Definitions The Theory (Π0
1 − FXP)0 ID1 as a Sub-theory of (Π0

1 − FXP)0

(Π1
1 − CA)−0 v (Π0

1 − FXP)0

Proving (Π1
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Proof.

Let ∀XF (X , x) be Π1
1 with no other free set parameters. By

lemmas 5.4.7 and 5.4.8, ∀XF (X , n) iff SωF (X ,n) is well-founded.
This search tree is definable by a primitive-recursive formula. Then
G (Y , y , n) :⇔ ∀z(y a 〈z〉 ∈ SωF (X ,n) → y a 〈z〉 ∈ Y ) is thus a

Y -positive Π0
1 formula. By Theorem 6.5.5, SωF (X ,n) is well-founded

iff 〈〉 ∈ ΦG(n). Then
{

x | 〈〉 ∈ ΦG(x)
}

is a set by arithmetical
comprehension, whence

(Π0
1 − FXP)0 ` ∀X (F (X , n))↔ 〈〉 ∈ ΦG(n)

(Π0
1 − FXP)0 ` ∃Z∀x(x ∈ Z ↔ ∀X (F (X , x))) (Π1

1 − CA−)
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The Lower Bound

Therefore, we have

ψ(εΩ+1) = ||ID1|| ≤ ||(Π1
1 − CA)−0 || ≤ ||(Π0

1 − FXP)0||

By taking a detour through (Π2 − REF)2, a second-order theory of
Π2 reflection, we can show that this bound is in fact exact.
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Thank You

Questions?
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