Epistemic Modality and the Dynamics of Discourse

Peter Hawke and Shane Steinert-Threlkeld

Logic Seminar, April 14, 2015

1 Introduction

Consider the following conversation in ordinary language:

- (1) Context: Mark is running late but hasn't been able to find his keys in his pants, his bag, or on his nightstand. His partner, Sue, is also getting ready.
 - a) M: I think I've lost my keys.
 - b) S: They might be on the kitchen table.
 - c) M: Good point; I'll go look.

Major problem:

• provide a semantics for 'might' which, when coupled with a plausible pragmatic story, explains the information flow in (1) and other puzzling phenomena

Semantics-Focused Approaches:

- Descriptivism: Kratzer, DeRose, von Fintel and Gillies, Stalnaker
- Expressivism: Yalcin, dynamic semanticists (Veltman, Willer)

Our approach:

• Start directly from pragmatics and immediate intuitions about the dynamics of conversation

Our general claims:

- Assertion primarily functions to coordinate doxastic states
- 'Might' primarily functions to express *lack* of belief (abelief)

Our specific proposals:

- A very intuitive model of assertability
- Derivation of doxastic state expressed by a given assertion
- The update operation(s) performed when an assertion is accepted

This combination of tools solves all of the problems. Tentative conclusion: the informational dynamics of assertion provides the right level of explanation for these phenomena. Moreover, our explanation is compatible with (versions of) all of the leading semantic theories.

2 Proposal: 'Might' as Abelief Coordinator

Our model of doxastic states: a set of worlds W with a plausibility order \succeq .

• Belief that p: truth throughout most plausible worlds

Consider a 'factual' version of (1):

(2) Context: as in (1)

- a) M: I think I've lost my keys.
- b) S: They are on the kitchen table.
- c) M: Thanks!

Sue, in (2b):

- *expresses* that she believes that the keys are on the table
- *invites* Mark to modify his doxastic state so as to acquire that belief

Let t, b, n, and p be the propositions that the keys are on the table, in his bag, on his nightstand, or in his pocket, respectively. We can model Mark's doxastic state with 5 worlds: $W = \{t, b, n, p, L\}$. In our abused notation, the worlds t, b, etc. are worlds in which only the corresponding proposition is true. L is a world in which the keys are lost, i.e. a world in which none of t, b, n, p are true. What Mark's doxastic state looks like before:

(3) $L \succ b, n, p \succ t$

What Mark's doxastic state looks like after acceptance:

(4) $t \succ L \succ b, n, p$

What about (1)? Sue's 'might' assertion in (1b):

- expresses that she abelieves that $\neg t$
- *invites* Mark to modify his doxastic state so as to acquire that abelief

What Mark's doxastic state looks like after acceptance:

(5) $t, L \succ b, n, p$

In general, acceptance of:

• B-assertion triggers *conservative revision*:

 $\uparrow p(\succeq)$ is just like \succeq with the best p-worlds made more plausible than all others

• A-assertion triggers *conservative expansion*:

 $1~p\left(\succeq\right)$ is just like \succeq with the best p-worlds merged with the previous best worlds

3 Two Problems for Mixed Assertions

What about an assertion like: $(p \land \Diamond q) \lor \Diamond (s \land (\Diamond t \land \neg q))?$

- Problem 1: what doxastic state is expressed?
- Problem 2: what update operation is performed on acceptance?

3.1 Language

We work with a standard logical language containing: atomic proposition letters (p, q, r, ...), boolean operators $\neg, \lor, \land, \Diamond \varphi$ (" φ might be the case"), and $B\varphi$ ("the agent believes that φ ").

3.2 Assertability Logic

Let \mathbf{s} be an information set (a set of possible worlds). We will define what it means for a formula to be *assertable* relative to an information set.

Definition 1 (General Assertability Conditions). Given a set of worlds W, an information state $s \subseteq W$, and a valuation V:

- $\boldsymbol{s} \Vdash p$ iff: $\forall w \in \boldsymbol{s}: w \in V(p)$
- $s \Vdash \neg \varphi$ iff: $\forall w \in s: \{w\} \nvDash \varphi$
- $s \Vdash \varphi \land \psi$ iff: $s \Vdash \varphi$ and $s \Vdash \psi$
- $s \Vdash \varphi \lor \psi$ iff: $\exists s_1, s_2$: $s = s_1 \cup s_2$ and $s_1 \Vdash \varphi$ and $s_2 \Vdash \psi$
- $s \Vdash \Diamond \varphi$ iff: $s \nvDash \neg \varphi$

Quick consequences:

- Relative to singletons $\{w\}$, this logic is classical
- $\mathbf{s} \Vdash \Diamond \varphi$ iff $\exists w \in \mathbf{s} : \{w\} \Vdash \varphi$
- Relative to singletons, $\Diamond \varphi$ and φ are equivalent

3.3 Doxastic Logic

Definition 2 (Doxastic model). A doxastic model is a tuple $\mathcal{M} = \langle W, \{\succeq_w\}, V \rangle$ where:

- W is a set of worlds
- \succeq_w , the plausibility order on W at w, is a total pre-order on W: a reflexive, transitive, total relation.
- V is a valuation function assigning a proposition (i.e. a set of worlds) to each atom p.

We will denote by \mathbf{b}_w the set of 'belief worlds' at w, that is the set of worlds maximal in \succeq_w .

Definition 3 (Static Semantics).

- $\mathcal{M}, w \vDash p$ iff: $w \in V(p)$
- $\mathcal{M}, w \vDash \neg \varphi$ iff: $\mathcal{M}, w \nvDash \varphi$
- $\mathcal{M}, w \vDash \varphi \land \psi$ iff: $\mathcal{M}, w \vDash \varphi$ and $\mathcal{M}, w \vDash \psi$
- $\mathcal{M}, w \vDash Best(\varphi)$ iff: for every v such that $v \succ_w w$: $\mathcal{M}, w \vDash \neg \varphi$
- $\mathcal{M}, w \vDash B\varphi$ iff: for every $v \in \mathbf{b}_w, \ \mathcal{M}, v \vDash \varphi$

As a warm-up to our main theorem, note the following:

$$\mathbf{b}_w \Vdash \Diamond \varphi \text{ iff } \mathcal{M}, w \vDash \neg B \neg \varphi$$

Theorem 1 (From assertion to doxastic state expression). For every sentence φ in the assertability language, there exists a sentence φ^* with the features:

- (1) φ^* is of the form: $B\varphi \wedge \neg B(\neg \psi_1) \wedge \ldots \wedge \neg B(\neg \psi_n)$
- (2) φ^* contains no \Diamond operators

such that for every doxastic model \mathcal{M} and world w:

$$\boldsymbol{b}_w \Vdash \varphi \text{ iff } \mathcal{M}, w \vDash \varphi^*$$

3.4 Dynamics

To address the second problem, we enrich the language with expressions of the form $[\uparrow\uparrow \varphi] \psi$ with intended reading: "after radical revision by φ, ψ holds".

Definition 4 (Radical Revision). We denote by $\uparrow\uparrow P$ the radical revision operation on doxastic models, where: the model that results from applying $\uparrow\uparrow P$ to \mathcal{M} updates the ordering \succeq of \mathcal{M} so that all of the P-worlds in \mathcal{M} are moved to the top of the ordering. Call the resulting model $\mathcal{M}\uparrow\uparrow P$.

Definition 5 (Dynamic Semantics). We can extend the static semantics with the following clause:

• $\mathcal{M}, w \models [\uparrow\uparrow \varphi] \psi$ iff: $\mathcal{M} \uparrow\uparrow \varphi, w \models \psi$

Using this framework, we have the resources to define *conservative revision* and *conservative expansion* operations, respectively as follows:

- i. $\uparrow \varphi ::= \Uparrow Best(\varphi)$
- ii. $\uparrow \varphi ::= \uparrow [Best(\varphi) \lor Best(\top)]$

Now, we can define an operation that tells us how to update on a doxastic state expression.

Definition 6 (Simultaneous Update). By simultaneous update to believe φ and abelieve ψ_1, \ldots, ψ_n , we mean to perform the operation:

 $[\uparrow \uparrow \varphi, \psi_1, \dots, \psi_n] ::= [\uparrow \uparrow Best(\varphi) \lor (Best(\neg \psi_1) \land \varphi) \lor \dots \lor (Best(\neg \psi_n) \land \varphi)]$

We show that this definition handles our keys cases with aplomb. If φ^* is a doxastic state expression, we will abbreviate the above by $[\uparrow \varphi^*]$. In the case when φ^* has no conjunct $B\varphi$, replace φ with \top . In the case when φ^* has no conjunct $\neg B\psi_i$, set n = 1 and $\psi_1 = \bot$.

Proposition 1. Let φ be a sentence in the assertability language. Then:

i. If φ expresses no abeliefs, then

$$[\uparrow \uparrow \varphi^*] = [\uparrow \varphi]$$

ii. If φ expresses a single abelief, then

$$[\uparrow 1 \varphi^*] = [1 \psi_1]$$

Q: is every sentence in the language with dynamic operators equivalent to some sentence in the static 'base' language? Yes!

Proposition 2. The following recursion axioms are valid for the class of doxastic models:

$\left[\Uparrow \varphi \right] p$	\leftrightarrow	p
$[\mathop{\uparrow\uparrow} \varphi] \neg \psi$	\leftrightarrow	$ eg \left[\Uparrow \varphi \right] \psi$
$\left[\uparrow\uparrow \varphi\right]\psi\wedge\chi$	\leftrightarrow	$\left[\uparrow\uparrow \varphi\right]\psi\wedge\left[\uparrow\uparrow \varphi\right]\chi$
$\left[\uparrow\uparrow \varphi\right] B\psi$	\leftrightarrow	$(E\varphi \land U (\varphi \to [\uparrow\uparrow \varphi] \psi)) \lor (\neg E\varphi \land B [\uparrow\uparrow \varphi] \psi)$

Proposition 3. The following recursion axioms are valid for the class of doxastic models: the ones for atoms, negations, and conjunctions above but with $| \varphi$ and

$$[1 \varphi] B \psi \qquad \leftrightarrow \qquad B [1 \varphi] \psi \wedge B^{\varphi} [1 \varphi] \psi$$

Theorem 2. The following recursion axioms are valid for the class of doxastic models:

$$\begin{split} [\uparrow\uparrow\varphi] \, B^{\chi}\psi &\leftrightarrow \left(\neg E\left(\varphi \wedge [\uparrow\uparrow\varphi]\chi\right) \wedge B^{[\uparrow\uparrow\varphi]\chi}\left[\uparrow\uparrow\varphi\right]\psi\right) \vee \\ & \left(E\left(\varphi \wedge [\uparrow\uparrow\varphi]\chi\right) \wedge U\left(\varphi \wedge [\uparrow\uparrow\varphi]\chi \rightarrow [\uparrow\uparrow\varphi]\psi\right)\right) \\ [\uparrow\varphi] \, B^{\chi}\psi &\leftrightarrow \left(B^{\varphi}\neg [\uparrow\varphi]\chi \wedge B^{[\uparrow\varphi]\chi}\left[\uparrow\varphi]\psi\right) \vee \\ & \left(\neg B^{\varphi}\neg [\uparrow\varphi]\chi \wedge B^{\varphi\wedge [\uparrow\varphi]\chi}\left[\uparrow\varphi\right]\psi \wedge \left(\neg B\neg [\uparrow\varphi]\chi \rightarrow B^{[\uparrow\varphi]\chi}\left[\uparrow\varphi\right]\psi\right)\right) \end{split}$$

4 Welcome Consequences

• Epistemic contradictions

 $\mathbf{s} \nVdash p \land \Diamond \neg p$

- Disagreement
 - Possibility of disagreement
 - Nature / content of disagreement
- Interactions with conjunction and disjunction

 $\mathbf{s} \Vdash \Diamond p \land \Diamond q \text{ iff } \mathbf{s} \Vdash \Diamond p \lor \Diamond q$

- Abelief in explicit reasoning
 - Broome: natural language is insufficient for active reasoning because it cannot express abelief. But it can, with 'might'!

5 Competitors

- 'Might' as B-assertion (cf. Kratzer, Papafragou, von Fintel and Gillies)
- 'Might' as test (cf. Veltman, Willer)
- 'Might' as credence expresser (cf. Moss, Swanson)
- 'Might' as awareness-raiser (cf. Lyons, Swanson, Yalcin)
- 'Might' as retraction (cf. Portner, Yablo)
- 'Might' as update on context set (cf. Stalnaker)

6 Semantic Neutrality

A principle linking assertability and semantic conditions:

(AH) φ is assertible with respect to s iff: φ 'holds' throughout s

view	priority	'holds'	(AH)?	extra conditions
expressivism	\Leftarrow	$\mathcal{M}, w, \mathbf{s} \vDash \varphi$	\checkmark	none
$\operatorname{contextualism}$	\Leftarrow	$\mathcal{M}, w, \mathbf{s}_w \vDash \varphi$	\checkmark	$\forall v \in \mathbf{s}_w : \mathbf{s}_v = \mathbf{s}_w$
force modifier	\Rightarrow	$\{w\}\Vdash\varphi$	Х	N/A

7 Conclusion

Summary: theorizing about 'might' at the level of discourse dynamics – as an abelief expresser and coordinater – has proven to be a very fruitful strategy. Absent an alternative as successful, it's the best strategy.