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What is Linear Logic?

Structural Motivations

Introduced by Jean-Yves Girard in 1987 [Gir87].
Linear logic is:

Sequent calculus without weakening and contraction.

As (or more) constructive than intuitionistic logic, while
maintaining desirable features of classical logic.

Finding more and more applications in theoretical computer
science.
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What is Linear Logic?

High-Level Motivations

Linear logic is: a logic of actions [Gir89].

In all traditional logics, consider modus ponens:

A A→ B
B

In the conclusion, A still holds. This is perfectly well-suited to
mathematics, which deals with stable truths. “But wrong in real
life, since real implication is causal.”
For beautiful connections with physics, see Baez and Stay 2011
“Physics, Topology, Logic, Computation: a Rosetta Stone” [BS11].
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What is Linear Logic?

High-Level Motivations

In linear logic, we do not have

A( A⊗ A

By eliminating weakening and contraction, we eliminate free
duplication and elimination of formulas. (We will develop tools to
restore these in a controlled manner.)

This motivates thinking of formulas in linear logic as resources as
opposed to eternally true/false propositions. For instance [Gir89,
p. 74]:

state of a Turing machine

state of a chess game

chemical solution before/after reaction
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Additive vs. Multiplicative Connectives

Two Sequent Calculi

Consider a standard sequent calculus. Call these “M”-rules:

Γ,A,B ` ∆
(LM∧)

Γ,A ∧ B ` ∆

Γ,A ` ∆ Γ′,B ` ∆′
(LM∨)

Γ, Γ′,A ∨ B ` ∆,∆′

Γ ` ∆,A Γ′ ` ∆′,B
(RM∧)

Γ, Γ′ ` ∆,∆′,A ∧ B

Γ ` A,B,∆
(RM∨)

Γ ` A ∨ B,∆

Table: “M”-rules for sequent calculus.
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Additive vs. Multiplicative Connectives

Two Sequent Calculi

Consider a standard sequent calculus. Call these “A”-rules:

Γ,A ` ∆
(LA∧-1)

Γ,A ∧ B ` ∆

Γ,A ` ∆ Γ,B ` ∆
(LA∨)

Γ,A ∨ B ` ∆

Γ,B ` ∆
(LA∧-2)

Γ,A ∧ B ` ∆

Γ ` ∆,A
(RA∨-1)

Γ ` ∆,A ∨ B

Γ ` ∆,A Γ ` ∆,B
(RA∧)

Γ ` ∆,A ∧ B

Γ ` ∆,B
(RA∨-2)

Γ ` ∆,A ∨ B

Table: “A”-rules for sequent calculus.
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Additive vs. Multiplicative Connectives

Interderivability of “M” and “A” Rules

In both intuitionistic and classical logic, the two formulations are
equivalent.
Here we derive the “M” rules for ∧ using the “A” rules:

Γ ` ∆,A

Γ, Γ′ ` ∆,∆′,A

Γ′ ` ∆′,B

Γ, Γ′ ` ∆,∆′,B
(RA∧)

Γ, Γ′ ` ∆,∆′,A ∧ B

Γ,A,B ` ∆
(LA∧-1)

Γ,A ∧ B,B ` ∆
(LA∧-2)

Γ,A ∧ B,A ∧ B ` ∆

Γ,A ∧ B ` ∆

Table: “M” rules derived in “A” system.
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Additive vs. Multiplicative Connectives

Interderivability of “M” and “A” Rules

In both intuitionistic and classical logic, the two formulations are
equivalent.
Here we derive the “A” rules for ∧ using the “M” rules:

Γ ` ∆,A Γ ` ∆,B
(RM∧)

Γ, Γ ` ∆,∆,A ∧ B

Γ ` ∆,A ∧ B

Γ,A ` ∆

Γ,A,B ` ∆
(LM∧)

Γ,A ∧ B ` ∆

Table: “A” rules derived in “M” system.

Exercise. Carry out the same procedure for the ∨ rules.
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Additive vs. Multiplicative Connectives

Interderivability of “M” and “A” Rules

Notice anything?

Every one of those proofs used contraction and/or weakening.
In linear logic, we will have both multiplicative and additive
connectives corresponding to these two sets of rules which are no
longer equivalent.
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The Plan

The Full Language of (Propositional) Classical Linear Logic

Propositional variables: A,B,C , · · · ,P,Q,R, · · ·
Constants:

Multiplicative: 1,⊥ (units, resp. of ⊗,`)
Additive: >, 0 (units, resp. of &,⊕)

Connectives:

Multiplicative: ⊗,`,(
Additive: &,⊕

Exponential modalities: !, ?

Linear negation: (·)⊥
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The Plan

Outline I

1 Introduction
What is Linear Logic?
Additive vs. Multiplicative Connectives
The Plan

2 MILL
Syntax and Sequent Calculus
Natural Deduction and Term Calculus
Categorical Semantics

3 MLL
Sequent Calculus
Proof Nets

4 MALL
Additives
Proof Nets
Phase Semantics
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The Plan

Outline II

5 Exponentials
Exponential Modalities
Translation of Intuitionistic Logic
Extension of Phase Semantics

6 Conclusion
Other Topics
References
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Syntax and Sequent Calculus

Sequent Calculus

We now consider the (⊗,(, 1)-fragment, multiplicative
intuitionistic linear logic.

(Ax)
P ` P

Γ,P,Q,∆ ` C
(Ex)

Γ,Q,P,∆ ` C

Γ ` P P ,∆ ` Q
(Cut)

Γ,∆ ` Q
(1-R)

` 1
Γ ` P

(1-L)
Γ, 1 ` P

Γ ` P ∆ ` Q
(⊗-R)

Γ,∆ ` P ⊗ Q
Γ,P,Q ` R

(⊗-L)
Γ,P ⊗ Q ` R

Γ,P ` Q
((-R)

Γ ` P ( Q

Γ ` P Q,∆ ` R
((-L)

Γ,P ( Q,∆ ` R

Table: Sequent Calculus for MILL
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Syntax and Sequent Calculus

Consequences

Theorem

MILL satisfies cut-elimination.

Proof.

Requires defining new commuting conversions, but otherwise is
similar to regular intuitionistic case.
See [BBPH93] for a proof (also with !).
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Natural Deduction and Term Calculus

Natural Deduction of MILL

P ` P
Γ,P ` Q

((I)
Γ ` P ( Q

Γ ` P ( Q ∆ ` Q
((E)

Γ,∆ ` Q

` I
Γ ` P ∆ ` I

(IE)
Γ,∆ ` P

Γ ` P ∆ ` Q
(⊗I)

Γ,∆ ` P ⊗ Q
Γ ` P ⊗ Q ∆,P,Q ` R

(⊗E)
Γ,∆ ` R

Table: Natural Deduction (Sequent Style) for MILL
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Natural Deduction and Term Calculus

Term Assignment

x : P ` x : P
Γ, x : P ` f : Q

((I)
Γ ` λx .f : P ( Q

Γ ` f : P ( Q ∆ ` g : Q
((E)

Γ,∆ ` fg : Q

` ∗ : I
Γ ` f : P ∆ ` g : I

(IE)
Γ,∆ ` let g be ∗ in f : P

Γ ` f : P ∆ ` g : Q
(⊗I)

Γ,∆ ` f ⊗ g : P ⊗ Q

Γ ` f : P ⊗ Q ∆, x : P, y : Q ` g : R
(⊗E)

Γ,∆ ` let f be x ⊗ y in g : R

Table: Term Assignment for MILL Natural Deduction
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Natural Deduction and Term Calculus

Good Features of This Formulation

Substitution property

Subject reduction theorem (with commuting conversions
added to β)

Normalization and uniquenesss of normal form
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Natural Deduction and Term Calculus

Bad Features of This Formulation

No subformula property (because of ⊗-E)

Unnecessarily extends term calculus (with let construction)

[Min98] proves a uniqueness of normal form theorem for the
{⊗,&,(} fragment using an extended notion of substitution.
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Categorical Semantics

Closed Symmetric Monoidal Categories

In the same way that intuitionistic propositional logic is the logic of
Cartesian Closed Categories [Min00, Gol06, TS00], MILL is the
logic of closed symmetric monoidal categories.

I will fly through the relevant definitions; feel free to pursue them
when more time is available.
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Categorical Semantics

Category

Definition

A category C is given by a class of objects, ob(C) (we often write
X ∈ C when X is in ob(C) and for every pair of objects X and Y ,
a set of morphisms, hom(X ,Y ) (if f ∈ hom(X ,Y ), we write
f : X → Y ). These objects and morphisms must satisfy:

For each X ∈ ob(C), ∃1X ∈ hom(X ,X ).

Morphisms can be composed: given f ∈ hom(X ,Y ) and
g ∈ hom(Y ,Z ), then g ◦ f ∈ hom(X ,Z ). (We often write gf
for g ◦ f .)

If f ∈ hom(X ,Y ), then f 1X = f = 1Y f .

Composition associates: whenever either is defined,
(hg) f = h (gf ).
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Categorical Semantics

Isomorphism

Definition

A morphism f ∈ hom(X ,Y ) is an isomorphism if there is a
g ∈ hom(Y ,X ) such that fg = 1X and gf = 1y .

Note that one can provide similar conditions for epi- and
mono-morphisms which mirror standard cases of surjections and
injections respectively. I only define isomorphisms here because we
will see that some inference rules are natural isomorphisms. To
understand a natural isomorphism, we must get to the definition of
a natural transformation.
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Categorical Semantics

Functor

Definition

A functor between categories C and D, F : C → D sends every
X ∈ C to F (X ) ∈ D and every morphism f ∈ hom(X ,Y ) to a
morphism F (f ) ∈ hom(F (X ),F (Y )) such that

For every X ∈ C, F (1X ) = 1F (X ) (i.e. F preserves identity
morphisms).

For every f ∈ hom(X ,Y ), g ∈ hom(Y ,Z ) in C,
F (gf ) = F (g)F (f ).
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Categorical Semantics

Natural Transformation and Isomorphism

Definition

A natural transformation η : F → G between two functors
F ,G : C → D assigns to every X ∈ C a morphism
ηX ∈ hom(F (X ),G (X )) such that for any f ∈ hom(X ,Y ),
ηY F (f ) = G (f )ηX . That is to say that the following diagram
commutes:

F (X )
F (f ) //

ηX
��

F (Y )

ηY
��

G (X )
G(f )

// G (Y )

Definition

A natural isomorphism between functors F ,G : C → D is a natural
transformation such that ηX is an isomorphism for each X ∈ C.
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Categorical Semantics

Cartesian Product of Categories

Definition

The cartesian product of categories C and D, denoted by C × D, is
the category defined as follows:

Objects are pairs (X ,Y ) with X ∈ C and Y ∈ D.

Morphisms in hom((X ,Y ), (X ′,Y ′)) are a pair (f , g) with
f ∈ hom(X ,X ′) and g ∈ hom(Y ,Y ′).

Composition is componentwise:
(g , g ′) ◦ (f , f ′) = (g ◦ f , g ′ ◦ f ′).

Identity morphisms are componentwise: 1(X ,Y ) = (1X , 1Y ).
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Categorical Semantics

Monoidal Category

Definition

A monoidal category is a category C which also has

A functor, ⊗ : C × C → C , called the tensor product.

A unit object I ∈ C

A natural isomorphism, the associator, which gives
isomorphisms for any X ,Y ,Z ∈ C

aX ,Y ,Z : (X ⊗ Y )⊗ Z
∼→ X ⊗ (Y ⊗ Z )

Two natural isomorphisms called unitors which assign to each
X ∈ C isomorphisms

lX : I ⊗ X
∼→ X

rX : X ⊗ I
∼→ X
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Categorical Semantics

Monoidal Category (cont)

Definition

all of which satisfy the following two conditions:

for every X ,Y ∈ C, the following diagram (the triangle
equation) commutes:

(X ⊗ I )⊗ Y
aX ,I ,Y //

rX⊗1Y &&NNNNNNNNNNN
X ⊗ (I ⊗ Y )

1X⊗lYxxppppppppppp

X ⊗ Y



Introduction MILL MLL MALL Exponentials Conclusion

Categorical Semantics

Monoidal Category (cont)

Definition

for every W ,X ,Y ,Z ∈ C, the following diagram (the
pentagon equation) commutes:

((W ⊗ X )⊗ Y )⊗ Z )

aW⊗X ,Y ,Z

vvlllllllllllllll aW ,X ,Y⊗1Z
,,XXXXXX

(W ⊗ (X ⊗ Y ))⊗ Z

aW ,X⊗Y ,Z

��
(W ⊗ X )⊗ (Y ⊗ Z )

aW ,X ,Y⊗Z
((RRRRRRRRRRRRRRR

W ⊗ ((X ⊗ Y )⊗ Z )

1W⊗aX ,Y ,Z
rrffffff

W ⊗ (X ⊗ (Y ⊗ Z ))
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Categorical Semantics

Braided Monoidal Category

Definition

A braided monoidal category is a monoidal category C which also
has a natural isomorphism (called the braiding) which assigns to
every X ,Y ∈ C an isomorphism

bX ,Y : X ⊗ Y → Y ⊗ X

such that the following two diagrams (the hexagon equations)
commute:
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Categorical Semantics

Braided Monoidal Categories (cont)

X ⊗ (Y ⊗ Z )

bX ,Y⊗Z

��

a−1
X ,Y ,Z // (X ⊗ Y )⊗ Z

bX ,Y⊗1Z// (Y ⊗ X )⊗ Z

aY ,X ,Z

��
(Y ⊗ Z )⊗ X Y ⊗ (Z ⊗ X )

a−1
Y ,Z ,X

oo Y ⊗ (X ⊗ Z )
1Y⊗bX ,Z

oo

(X ⊗ Y )⊗ Z

bX⊗Y ,Z

��

aX ,Y ,Z // X ⊗ (Y ⊗ Z )
1X⊗bY ,Z// X ⊗ (Z ⊗ Y )

a−1
X ,Z ,Y

��
Z ⊗ (X ⊗ Y ) (Z ⊗ X )⊗ YaZ ,Y ,X

oo (X ⊗ Z )⊗ Y
bX ,Z⊗1Y
oo
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Categorical Semantics

Symmetric Monoidal Category

Definition

A symmetric monoidal category is a braided monoidal category C
such that for every X ,Y ∈ C, bX ,Y = b−1Y ,X .
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Categorical Semantics

Closed Symmetric Monoidal Category

Definition

A closed symmetric monoidal category is a symmetric monoidal
category C with, for any two objects X ,Y ∈ C,

an object X ( Y

a morphism appX ,Y : X ⊗ (X ( Y )→ Y

which satisfies a universal property: for every morphism
f : X ⊗ Z → Y , there exists a unique morphism
λX ,YZ : Z → (X ( Y ) such that f = appX ,Y ◦ (1X ⊗ λX ,YZ ), i.e.
such that the following diagram commutes:

X ⊗ Z
1X⊗λX ,Y

Z //

f ""FF
FF

FF
FF

F X ⊗ (X ( Y )

appX ,Y
xxqqqqqqqqqqq

Y
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Categorical Semantics

Soundness and Completeness

Theorem

For any closed symmetric monoidal category C, there is an
interpretation function

J·K : LMILL → C

such that Γ `MILL A iff there is a morphism t : JΓK→ JAK in C.
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Sequent Calculus

Linear Negation

Linear negation, (·)⊥, is involutive and defined by De Morgan
equations:

1⊥ := ⊥
⊥ := 1(

p⊥
)⊥

:= p

(P ⊗ Q)⊥ := P⊥ ` Q⊥

(P ` Q)⊥ := P⊥ ⊗ Q⊥

Note: p⊥ is now considered atomic. Linear implication is a defined
connective:

P ( Q := P⊥ ` Q
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Sequent Calculus

One-Sided Sequent Calculus

With linear negation, we may consider calculi with no formulas on
the left of `. For each subsystem, one can show that Γ ` ∆ iff
` Γ⊥,∆.1

` P⊥,P
` Γ,P ` P⊥,∆

` Γ,∆

` 1
` Γ
` Γ,⊥

` Γ,P ` ∆,Q

` Γ,∆,P ⊗ Q

` Γ,P,Q

` Γ,P ` Q

Table: Sequent Calculus for MLL

1For a two-sided sequent calculus of the full first-order classical linear logic,
see [TS00, p. 294-295].
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Proof Nets

Motivation

Limitations of natural deduction [Gir95]:

1 Cannot handle symmetry (desire multiple conclusions)

2 Rules with assumption discharge (i.e. (-I) apply to whole
proofs, not formulas

3 Our ⊗-E rule requires commuting conversions just like ∀-E
does in NJ; these conversions are cumbersome

Girard develops a new notation, proof nets, to avoid these worries.
First, we focus on just the (⊗,`)-fragment, ignoring constants.
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Proof Nets

Proof Structures

Definition

A proof structure consists of

1 Occurrences of formulas, Ai

2 Links between said occurrences, of three kinds:
1 Axiom links

Pi P⊥
j

2 Times link:

Pi Qj

(P ⊗ Q)k

Here, Pi and Qj are premises and (P ⊗ Q)k is a conclusion.
3 Par link:

Pi Qj

(P ` Q)k

Here, Pi and Qj are premises and (P ` Q)k is a conclusion.



Introduction MILL MLL MALL Exponentials Conclusion

Proof Nets

Proof Structures

Definition

such that

1 every occurrence of a formula is the conclusion of exactly one
link

2 every occurrence of a formula is the premise of at most one
link
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Proof Nets

Need for a Criterion of Correctness

The idea is that a proof structure with conclusions A1, . . . ,An in
fact proves A1 ` · · ·` An.
As defined, proof structures can be well-formed even if the
associated ` is not provable.

A B
A⊗ B

A⊥ B⊥

A⊥ ⊗ B⊥

To establish a criterion of correctness, we first introduce the notion
of a trip.
(This is Girard’s original criterion. See [DR89] for an alternative
with lower computational complexity.)
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Proof Nets

Links and Time

We now view each formula as a box through which a particle can
travel:

A

The two operations of entering and exiting A along the same
arrowed path are performed in the same unit of time, t↑ or t↓. At
t↑, the particle is between the two upward arrows and nowhere else.
We must reformulate the notion of proof structure to
accommodate this picture.
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Proof Nets

Trips: Axiom Link

A A⊥

t
(

A⊥↓

)
= t

(
A↑

)
+ 1

t (A↓) = t
(

A⊥↑
)

+ 1
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Proof Nets

Trips: Terminal Formula

A

t
(

A↑
)

= t (A↓) + 1
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Proof Nets

Trips: Times Link

“L” “R”

t
(
B↑

)
= t

(
A⊗ B↑

)
+ 1 t

(
A↑

)
= t

(
A⊗ B↑

)
+ 1

t
(
A↑

)
= t (B↓) + 1 t

(
B↑

)
= t (A↓) + 1

t (A⊗ B↓) = t (A↓) + 1 t (A⊗ B↓) = t (B↓) + 1

Table: Time Equations for Two Switches of Times Link
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Proof Nets

Trips: Par Link

“L” “R”

t
(
A↑

)
= t

(
A` B↑

)
+ 1 t

(
B↑

)
= t

(
A` B↑

)
+ 1

t (A` B↓) = t (A↓) + 1 t (A` B↓) = t (A↓) + 1
t
(
B↑

)
= t (B↓) + 1 t

(
A↑

)
= t (A↓) + 1

Table: Time Equations for Two Switches of Par Link



Introduction MILL MLL MALL Exponentials Conclusion

Proof Nets

Short vs. Long Trips

Set switches arbitrarily. Pick an arbitrary formula and exit gate at
t = 0. By construction, there are clear, unambiguous directions on
how to proceed indefinitely.
Because this is a finite structure, however, every trip is periodic.
Let k be the smallest positive integer such that the particle inters
through the gate from which it left at t = 0. Denoting by p the
number of formulas in the structure, we call a trip

short, if k < 2p

long, if k = 2p

Two examples, on board.
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Proof Nets

Proof Net Defined

Definition

A proof net is a proof structure which admits no short trip.

Equivalently, but slightly more formally:

Definition

A proof net is a proof structure with p formulas (and n switches, a
set E of exits) such that for any position of the switches, there is a
bijection

t : Z/2pZ→ E

such that for any e, e ′ ∈ E , t(e ′) = t(e) + 1 iff e ′ immediately
follows e in the travel process.
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Proof Nets

A Net for Every Proof

Theorem

If π is a proof ` A1, . . . ,An in the sequent calculus of
multiplicative linear logic without exponentials, constants, and cut,
then there is a proof-net π− whose terminal formulas are exactly
one occurrence each of A1, . . . ,An.

Proof

Base case: π =` A,A⊥. Trivially, take π− to be the proof-net

A A⊥

Case 1: π is obtained from λ by exchange rule. Take π− = λ−.
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Proof Nets

A Net for Every Proof

Proof (cont)

Case 2: π is

λ
` A,B,C

` A` B,C

Let π− be the structure (invoking the inductive hypothesis)

λ−

A B
A` B

π− is a net: set all switches of λ− arbitrarily and assume (WLOG)
new link is on “L”. By IH, λ− is a sound net with n swithces. At
t = 2n − 1, arrive at A↓. Travelling through A` B↓, A` B↑ at
t = 2n, 2n + 1 yields a long trip.
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Proof Nets

A Net for Every Proof

Proof.

Proof (cont) Case 3: π is

λ
` A,C

µ

` B,D

` C ,D,A⊗ B

Let π− be the structure

λ−

A

µ−

B
A⊗ B

Assume λ− has n formulas, and µ− m. Starting at A↑ at t = 0,
one arrives at A↓ at 2n − 1. Then t

(
B↑

)
= 2n. Since µ− is sound

(IH), t (B↓) = 2n + 2m − 1. Then, travelling through A⊗ B↓ and
A⊗ B↑ at 2n + 2m, 2n + 2m + 1 yields a long trip.
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Proof Nets

Not Injective

Theorem

The map (·)− from proofs to proof nets is not injective.

Proof.

The two proofs below are distinct but mapped to the same net.

` A,A⊥ ` B,B⊥

` A⊥,B⊥,A⊗ B

` A⊥ ` B⊥,A⊗ B ` C ,C⊥

` A⊥ ` C⊥,C⊥, (A⊗ B)⊗ C

` A,A⊥ ` B,B⊥

` A⊥,B⊥,A⊗ B ` C ,C⊥

` A⊥,B⊥,C⊥, (A⊗ B)⊗ C

` A⊥ ` B⊥,C⊥, (A⊗ B)⊗ C

Table: Two Distinct Proofs With Same Net
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Proof Nets

A Proof for Every Net

Theorem

For every proof-net β, there is a sequent calculus proof π such that
β = π−.

Proof

Induction on the number of links in β.
Base case: one link. π is an axiom.
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Proof Nets

A Proof for Every Net

Proof (cont)

Case 1: β has more than one link. Assume β has a terminal
formula which is the conclusion of a par link:

β′

A B
A` B

Because β is a proof-net, so too is β′ (exercise). By IH, there is a
proof π′ such that β′ = π′−. Then let π be:

π′

` A,B

` A` B
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Proof Nets

A Proof for Every Net

Proof.

Case 2: β has more than one link, but no terminal formula is the
conclusion of a par link.
This case is surprisingly subtle and much more complex than the
previous case.
See [Gir87, p. 35-40] for the details.
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Proof Nets

What About Cut?

Define a cut-link in a proof structure as:

A A⊥

CUT

In what follows, let β be a proof-net containing a CUT link. We
define a contractum β′ as follows.
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Proof Nets

Contraction

If β ends

...
B

...
C

BmC

...

B⊥

...

C⊥

B⊥m⊥C⊥

CUT

where m,m⊥ are dual multiplicatives, β′ has this part replaced with

...
B

...

B⊥

CUT

...
C

...

C⊥

CUT
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Proof Nets

Contraction

If A is conclusion of an axiom link, unify the A⊥ in the axiom with
the A⊥ in the CUT:

...

A⊥

...

Same for when A⊥ conclusion of an axiom link. If both are
conclusions of different axiom links, contract to

A A⊥

...
...
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Proof Nets

Cut Elimination

Write β red β′ if β′ results from one or more contractions of β.
A few results (see [Gir87, p. 42-43] for proofs):

Theorem

1 If β is a proof-net and β red β′, then β′ is a proof-net.

2 If β red β′, β is strictly larger than β′ (in terms of number of
formulas).

3 Church-Rosser property: If β red β′ and β red β′′, there exists
β′′′ such that β′ red β′′′ and β′′ red β′′′.

4 Strong Normalization: A proof-net of size n normalizes into a
cut-free proof-net in less than n steps.
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Additives

Additive Connectives

We introduce the additive connectives &,⊕ with units >, 0
respectively.

(P & Q)⊥ := P⊥ ⊕ Q⊥

(P ⊕ Q)⊥ := P⊥ & Q⊥

` Γ,> no rule for 0

` Γ,P ` Γ,Q

` Γ,P & Q

` Γ,P

` Γ,P ⊕ Q

` Γ,Q

` Γ,P ⊕ Q

Table: Sequent Calculus Rules for Additives
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Additives

Intuition Behind Additives

These correspond to the additive formulation of the connectives
given in the introduction.
Because of common context, & (“with”) is something like a
superposition.
Consider a metaphor: I have $1 (call this P) and am at a vending
machine which has both a candy bar (Q) and a bag of chips (R)
each for sale for $1.
I have P ( Q and P ( R, but not P ( Q ⊗ R since this
combination would require $2. But, I do have P ( Q & R. This
says I can get either a candy bar or a bag of chips, but not both,
with my dollar.
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Proof Nets

Extending Proof Nets

Given the beautiful picture of proof nets that we just saw, it’s
natural to want to extend them to include the additives. This,
however, is not a trivial task and gave Girard a lot of trouble.
[HvG05] has developed proof-nets for the multiplicative-additive
fragment without exponentials or units.
Because this development is quite complex and different from the
nets we developed for the multiplicatives, I will only sketch the
approach.
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Proof Nets

Extending Proof Nets

1 For MLL, inductively define a “linking” on a sequent. The
corresponding graph will be a proof-net if all `-switchings are
trees.

2 Extend definition of linking to MALL.

Using notion of “additive resolution”: delete one argument
subtree from each additive connective.
Each additive resolution induces an MLL proof structure.

3 Associate with each sequent a set of linkings.

4 Two more notions: toggling, switching cycle
5 A set θ of linkings on ` Γ is a MALL proof-net iff:

1 Exactly one λ ∈ θ is on each additive resolution
2 Each λ ∈ θ induces an MLL net.
3 Every set Λ of ≥ 2 linkings toggles a & that is not in any

switching cycle.
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Phase Semantics

Phase Semantics

I will introduce a basic semantics in terms of phase spaces. There
is a more complex semantics in terms of coherent spaces that
would take too long to develop in this talk.

Definition

A phase space (P,⊥P) consists of:

1 a commutative monoid P (an abelian group without inverse
property)

2 a set ⊥P ⊆ P called the antiphases of P.
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Phase Semantics

Facts

Definition

For every G ⊆ P, we define

G⊥ := {p ∈ P | ∀q ∈ G , pq ∈ ⊥P}

Definition

A set G ⊆ P is a fact if G⊥⊥ = G . The elements of a fact G are
called phases. A fact G is valid when 1 ∈ G .

Proposition

G is a fact iff G = H⊥ for some H ⊆ P.
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Phase Semantics

Examples of Facts

Examples

1 ⊥ = {1}⊥ is a fact.

2 1 := ⊥⊥ is a submonoid.

3 > := ∅⊥ = P

4 0 := >⊥ is the smallest fact.



Introduction MILL MLL MALL Exponentials Conclusion

Phase Semantics

Closure Under Intersection

Theorem

Facts are closed under arbitrary intersection.

Proof.

Let (Gi )i∈I be a family of facts. We show that ∩iGi =
(
∪G⊥i

)⊥
which is a fact by the previous proposition.

∩Gi ⊆
(
∪G⊥i

)⊥
: Suppose g ∈ ∩Gi = ∩G⊥⊥i . Let q ∈ ∪G⊥i . For

some i0 ∈ I , q ∈ G⊥i0 . But g ∈ G⊥⊥i0
, so gq ∈ ⊥.(

∪G⊥i
)⊥ ⊆ ∩Gi : Suppose g /∈ ∩Gi . Then for some i0,

g /∈ Gi0 = G⊥⊥i0
. Therefore, ∃q ∈ G⊥i0 such that gq /∈ ⊥. But we

also have q ∈ ∪G⊥i , and so g /∈
(
∪G⊥i

)⊥
. Take contrapositive.
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Phase Semantics

Definition of Connectives

First, we define the product of subsets. For any G ,H ⊆ P,

G · H := {gh ∈ P | g ∈ G , h ∈ H}

From here out, suppose G and H are facts.

Definition

The “connectives” are defined as follows:

1 G ( H = {p ∈ P | ∀g ∈ G , pg ∈ H}
2 G ⊗ H = (G · H)⊥⊥

3 G ` H =
(
G⊥ · H⊥

)⊥
4 G & H = G ∩ H

5 G ⊕ H = (G ∪ H)⊥⊥
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Phase Semantics

Properties

The facts 1,⊥, 0,> are units of the operations on facts ⊗,`,⊕,&
respectively.
The three multiplicatives can be defined from any one of them plus
(·)⊥.
For a whole host of other properties (such as distribution, etc), see
[Gir87, p. 19-21].
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Phase Semantics

Phase Structures

Definition

A phase structure for the language of propositional linear logic is a
phase space (P,⊥P) with a function s that maps each
propositional letter p to a fact s (p) of P.

An interpretation function S from the full language of
propositional linear logic to facts is defined in the obvious way:
associate with each connective the equivalent operation on facts.
We then say:

Definition

1 A is valid in S when 1 ∈ S(A).

2 A is a linear tautology when A is valid in any phase structure.
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Phase Semantics

Soundness and Completeness

Theorem

The sequent calculus of MALL is sound and complete with respect
to phase semantics.

Proof.

Soundness: interpret ` Γ as `Γ and do a straightforward induction
on the sequent.
Completeness: define Pr(A) = {Γ |` Γ,A}. Verify: Pr(A) is a fact
for every formula A. Define a phase structure as follows: M
contains all multisets of formulas (exercise: prove that multisets of
formulas form a monoid with concatenation as operation and ∅ as
unit), ⊥M = {Γ |` Γ} = Pr(⊥), and S(a) = Pr(a). Verify that
S(A) = Pr(A) by induction on A. Now, assume A a linear
tautology. Then A is valid in S and so ∅ ∈ S(A) = Pr(A), i.e.
` A.
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Exponential Modalities

Introducing the Exponential Modalities

As defined so far, linear logic is strictly weaker than either
intuitionistic or classical logic. To restore the expressive power that
was lost by eliminating structural rules, we re-introduce these rules
in a controlled manner via the modalities ! (“of course”) and ?
(“why not”).
[These roughly correspond to � and ♦.]
Extend linear negation:

(P!)⊥ :=?
(

P⊥
)

(?P)⊥ :=!
(

P⊥
)
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Exponential Modalities

Extending Sequent Calculus

`?Γ,A

`?Γ, !A

` Γ,A

` Γ, ?A

` Γ
` Γ, ?A

` Γ, ?A, ?A

` Γ, ?A

Table: Sequent Calculus Rules for Exponentials

Think of ! as free duplication of a resource and ? as discarding
thereof. Operational semantics of linear logic [Abr93] make the
connection with memory management explicit.
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Exponential Modalities

Examples
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Translation of Intuitionistic Logic

Embedding Intuitionistic Logic in Linear Logic

Define a translation (·)∗ from formulas of intuitionistic logic to
formulas of linear logic as follows (atomic formulas directly carried
over):

(P → Q)∗ = (!P∗)( Q∗

(P ∧ Q)∗ = P∗ & Q∗

(P ∨ Q)∗ =!P∗⊕!Q∗

(¬P)∗ =? (P∗)⊥

Then Γ ` A is provable intuitionistically iff !Γ∗ ` A∗ is provable
linearly.
Gödel’s double-negation translation of classical logic into
intuitionistic logic can be composed with this translation to embed
classical logic inside linear logic as well.
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Extension of Phase Semantics

Phase Semantics for Exponentials

First, define (recalling that 1 = ⊥> = {1}⊥⊥)

I := {p ∈ 1 | pp = p}

Then our soundness and completeness results extend by extending
the interpretation of formulas by (G is assumed to be a fact)

!G := (G ∩ I )⊥⊥

?G :=
(

G⊥ ∩ I
)⊥

Nota bene. Girard originally developed topolinear spaces to
accommodate the exponentials. The definition given here appears
in [Gir95].
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Other Topics

Explore More

Some topics that I did not include that have been well-explored:

Quantifiers. These don’t add much unexpected complexity.
Girard is also famous for his System F of second-order
propositional logic which underlies the programming language
ML; he has developed an analogous version of linear logic.

Coherent space semantics.
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Other Topics

Unrestricted Comprehension and Russell’s Paradox

Unrestricted comprehension says, informally, that for any property
ϕ(x), we can form the set {x | ϕ(x)}. Russell famously proved a
paradox by forming the set

R = {x | x /∈ x}

It follows that R ∈ R ⇔ R /∈ R.
Two ways to respond:

1 Weaken comprehension. By far the dominant approach.
Whence restricted comprehension, the axiom of foundation,
and the hierarchical set-theoretic universe.

2 Weaken the underlying logic.
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Other Topics

Unrestricted Comprehension in Linear Logic

Mints’ student Shirahata [Shi94] pursued the second approach and
proved that unrestricted comprehension is consistent in (various
systems of) linear logic.
Won’t go into details here, but notice that a standard proof of one
direction of Russell’s paradox uses contraction:

R ∈ R ` R ∈ R ⊥ ` ⊥
R ∈ R → ⊥,R ∈ R ` ⊥

R ∈ R,R ∈ R ` ⊥
R ∈ R ` ⊥
` R ∈ R → ⊥
` R ∈ R
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Other Topics

Geometry of Interaction

Three levels of semantics in logic:

Formulas 7→ model theory

Proofs 7→ denotational semantics

Cut elimination 7→ geometry of interaction

Basic idea: formulas are spaces, proofs are operators on these
spaces, operators interact. Also gives some geometrical intuition to
negation as orthogonality.
I personally need to explore this area more.
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Other Topics

Chemical Logic

The subject of my undergraduate thesis.
Basic idea: Girard many places mentions analogy with chemistry
and writes a chemical formula as

H2 ⊗ H2 ⊗ O2( H2O ⊗ H2O

My idea: incorporate covalence (sharing of resources) into linear
logic so that well-balanced chemical equations are derivable.
Extend language with set of valences e, f , g , . . ., new atomic form

(e, . . . , en)P, and a connective
e

| for every valence item.
Status: no good inference rule candidates (none changed expressive
power of the logic). But did develop it more fully than this sketch.
Needs more motivation; any thoughts?
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Thank You

Questions?
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