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Abstract A special kind of substitution on languages called iteration is presented
and studied. These languages arise in the application of semantic automata to iter-
ations of generalized quantifiers. We show that each of the star-free, regular, and
deterministic context-free languages are closed under iteration and that it is decidable
whether a given regular or determinstic context-free language is an iteration of two
such languages. This result can be read as saying that the van Benthem/Keenan ‘Frege
Boundary’ is decidable for large subclasses of natural language quantifiers. We also
determine the state complexity of iteration of regular languages.

Keywords Semantic automata ·Generalized quantifiers · Iteration ·Frege boundary ·
Decidability

1 Introduction

Starting with Barwise and Cooper (1981), generalized quantifiers—introduced into
mathematical logic by Mostowski (1957) and Lindström (1966)—have been very
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fruitfully applied in the formal semantics of natural language. In particular, the mean-
ings of determiners in sentences like

(1) Every student attends classes.
(2) At least three people will attend.
(3) Most people enjoyed the show.

have been modeled as type 〈1, 1〉 generalized quantifiers. In other words, their deno-
tations have been given as binary relations between subsets of a domain of discourse.
For example, (3) is true iff

|�people� ∩ �enjoyed�| > |�people� \ �enjoyed�|

In natural language, it is also common that quantified expressions occur not just as
subjects of sentences but also as the object of transitive verbs:

(4) Every student takes at least three classes.
(5) Most professors teach two classes.

Tomodel these sentences, onemust iterate the relevant type 〈1, 1〉quantifiers to express
a property of the respective transitive verbs. These will be type 〈1, 1, 2〉 quantifiers:
relations between two subsets (the denotations of the restrictors of the determiners)
and a binary relation (the denotation of the transitive verb) on the domain of dis-
course. For instance, (5) is true iff �prof�, �classes�, and �teach� stand in the relation
It(�most�, �two�) which will hold iff

|�prof� ∩ �teach_two_classes�| > |�prof� \ �teach_two_classes�|

Aquestion then arises: are all type 〈1, 1, 2〉 quantifiers expressed in natural language
iterations of unary quantifiers? Frege can be read as advocating a ‘yes’ answer to this
question and so the line dividing iterated quantifiers from the rest of the type 〈1, 1, 2〉
quantifiers has been dubbed the Frege Boundary by van Benthem (1989). Keenan
(1992, 1996) does find examples of natural language sentenceswhose truth-conditions
lie on the other side of the Frege boundary, such as:

(6) Different students answered different questions.
(7) A majority of the students read those two books.
(8) The two professors graded a total of fifty exams.

The sentence (6) is to be understood as having the following truth-conditions: any two
distinct students answered distinct sets of questions.

Because there do appear to be sentences lying on the other side of the Frege bound-
ary, one wants to know exactly which sentences these are. To this end, Keenan (1992,
1996) also provides an exact characterization of which type 〈1, 1, 2〉 quantifiers are
iterations of unary quantifiers.1 This characterization, however, has a highly complex
formulation, making it hard to apply in practice. One would like to be able to turn the
characterization into an algorithm for decidingwhether a given type 〈1, 1, 2〉 quantifier

1 Dekker (2003) generalizes these results to handle more than one iteration.
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is an iteration or not. This would allow one to determine whether a given sentence with
truth-conditions of the appropriate kind is equivalent to one with iterated quantifiers.
But it has remained unknown whether his characterization is effective: given a type
〈1, 1, 2〉 quantifier, can we decide whether it is an iteration? In other words: is the
Frege boundary decidable?

In this paper, we take steps towards answering that question by using the semantic
automata framework pioneered by van Benthem (1986) and recently extended to han-
dle iterations by Steinert-Threlkeld and Icard III (2013). After a section containing
notation and preliminaries in formal language and automata theory, Sect. 3 introduces
semantic automata as well as an operation on languages called iteration, denoted by
•. The operation is so-named because if L1 and L2 are languages associated with type
〈1, 1〉 quantifiers Q1 and Q2, then L1 • L2 will be the language of the iteration of Q1
and Q2. Section 4 shows that the regular and star-free languages are closed under itera-
tion. Section 5 determines the state complexity of iteration of regular languages. Then,
in Sect. 6 we return to the decidability question and show that it is decidable whether
a given regular language is an iteration of two languages. We conclude in Sect. 7 by
discussing the prospects for extending the decidability result beyond the regular lan-
guages. In particular, we show that the deterministic context-free languages are closed
under iteration and that the decidability proof carries over to these languages.

2 Preliminaries

Though some familiarity with the theory of regular languages and deterministic finite-
state automata will be assumed, we here introduce basic concepts and notation. A
deterministic finite-state automaton (DFA) is a tuple 〈Σ, Q, δ, F, q0〉 where Σ is an
alphabet (a finite set of letters), Q is a set of states, q0 ∈ Q is the starting state, F ⊆ Q
is the set of final (or accepting) states, and δ : Q × Σ → Q is the transition function.
We will use M,M1,M2 to denote automata. The components of an automaton are
denoted by Q (M), δ (M), et cetera.

A language L is a subset of Σ∗, where Σ∗ is the set of all finite sequences in Σ .
Elements w ∈ Σ∗ are called words. ε denotes the empty sequence. For w ∈ Σ∗ for
finite alphabet Σ , wi ∈ Σ denotes the character at the i th position of w. We will
use L , L1, L2 to denote languages. A DFA accepts a language in the following sense.
Define δ∗ : Q × Σ∗ → Q by induction on Σ∗:

δ∗ (q, ε) = q

δ∗ (q, aw) = δ
(
δ∗ (q, w) , a

)

In other words, δ∗ (q, w) is the state arrived at by starting at q, transitioning according
to w1, then according to w2, and so on through wn , where n is the length of w. We
can now define the language of an automaton M by

L (M) = {
w ∈ Σ∗ : δ∗ (q0, w) ∈ F

}

123



S. Steinert-Threlkeld

Fig. 1 The automaton min (L∀)
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Fig. 2 The automaton
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The regular languages are the languages L such that L = L (M) for some DFA M.2

We use |·| as both a set cardinality function and a word-length function. We often
write |M| instead of |Q (M)|. The functions #a : Σ∗ → N for each a ∈ Σ are
recursively defined in such a way to return the number of as in a word w ∈ Σ∗. We
write

sgn (q,M) = χF(M) (q)

and sgn (M) as an abbreviation for sgn (q0 (M) ,M) where χS is the characteristic
function of set S. In other words, sgn (q,M) is 1 if q is an accepting state of M,
0 otherwise. We omit the second argument when context permits. If L is a regular
language, we denote the minimal automaton accepting L by min(L).

For an example, consider the language L∀ = {
w ∈ {0, 1}∗ : #0 (w) = 0

}
of words

in {0, 1}∗ containing all and only 1s. This language is regular; its minimal automaton
is depicted in Fig. 1. The choice of name for this language will become clear in the
next section. In this diagram and others like it later in the paper, states are denoted by
circles. q0 is the state with an arrow leading in to it. States in F have two circles. An
arrow from state q to q ′ labeled by a means that δ (q, a) = q ′.

The star-free languages in Σ is the smallest set of languages which contains
Σ∗, {a} for each a ∈ Σ and which is closed under finite union, concatenation,
and complementation. These languages are accepted by the acyclic or counter-free
DFAs; see McNaughton and Papert (1971). Thus, every star-free language is reg-
ular. The converse, however, is not true: a paradigmatic regular language which
is not star-free is Leven = {

w ∈ {0, 1}∗ : #1 (w) is even
}
. The minimal automaton

accepting this language is depicted in Fig. 2. A similar construction shows that
L/m = {

w ∈ {0, 1}∗ : #1 (w) is divisible by m
}
is also regular and that its minimal

automaton has m states.

2 Many alternative characterizations exist: acceptance by a non-deterministic finite-state automaton and
generation by a regular expression, for example. See Hopcroft and Ullman (1979) for details.
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We will use another characterization of the star-free languages in terms of first-
order definability.3 Given an alphabet Σ , consider a standard first-order language
with unary predicate symbols Pa for each a ∈ Σ , a binary relation symbol <, and a
countably infinite set of variables denoted Var. We write Form (Σ) and Sent (Σ) for,
respectively, the set of first-order formulas and sentences in this signature.We interpret
formulas in this language in words w ∈ Σ∗ with respect to variable assignments
g : Var → {1, 2, . . . , |w|}. The relevant semantic clauses are given by

w, g |� xi < x j iff g (xi ) < g
(
x j

)

w, g |� Pa (xi ) iff wg(xi ) = a

A first-order sentence ϕ defines the language

Lϕ = {
w ∈ Σ∗ | w |� ϕ

}

where the variable assignment g is omitted since a sentence is satisfied with respect
to some g iff it is with respect to all g. The following theorem was mentioned above.

Theorem 1 (McNaughton and Papert 1971) A language L ⊂ Σ∗ is star-free iff it is
first-order definable in the following sense: there is a sentence ϕ ∈ Sent (Σ) such that
L = Lϕ .

3 Semantic Auomata and Iterated Languages

Wewill now see how these tools can be used to study quantification in natural language.
In formal semantics of natural language, the denotations of the determiners ‘every’,
‘at least three’, and ‘most’ in examples (1)–(3) above have been given as type 〈1, 1〉
generalized quantifiers.4 A type 〈1, 1〉 generalized quantifier is a class of finite models
of the form 〈M, A, B〉 with A, B ⊆ M . For example, the determiners above have the
following denotations:5

∀ = {〈M, A, B〉 : A ⊆ B}
≥3 = {〈M, A, B〉 : |A ∩ B| ≥ 3}

most = {〈M, A, B〉 : |A ∩ B| > |A \ B|}

Semantic automata theory shows how such denotations can be given correspond-
ing formal languages and automata accepting these languages. This works as follows.

3 See Diekert and Gastin (2007) for a self-contained presentation of this equivalence and others.
4 Barwise and Cooper (1981) pioneered this approach. See Peters and Westerståhl (2006) for a compre-
hensive overview. Szabolcsi (2010) is an overview of quantifiers from a linguistic perspective, including
some problems for the generalized quantifier approach.
5 Note that I am using the symbols ∀ and ∃ to denote type 〈1, 1〉 generalized quantifiers whereas they are
standardly used to denote type 〈1〉 quantifiers. They are, however, intimately related: the 〈1, 1〉 ones here
are the relativizations of the normal type 〈1〉 quantifiers. See §4.4 of Peters and Westerståhl (2006).
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Fig. 3 The automaton min
(
L≥3

)

Under standard assumptions about generalized quantifiers—conservativity and exten-
sion6—it follows that 〈M, A, B〉 ∈ Q iff 〈A, A, A ∩ B〉 ∈ Q. Now, given an
enumeration a of A, a word in alphabet {0, 1} corresponding to such a model can
be defined by

(τ (a, B))i =
{
0 ai ∈ A \ B

1 ai ∈ A ∩ B

The language of Q—denoted LQ—is then defined as the image of Q under τ ; that
is, as the set of all strings that can be generated from models in Q (together with
an enumeration of A) by τ . One can verify that L∀ from the previous section is the
languageof∀ in precisely this sense because A ⊆ B iff |A\B| = 0 iff #0 (τ (a, B)) = 0
for any enumeration a. Similarly, we have

L≥3 = {
w ∈ {0, 1}∗ : #1 (w) ≥ 3

}

Lmost = {
w ∈ {0, 1}∗ : #1 (w) > #0 (w)

}

Note that the quantifier ≥3 and its corresponding language are instances of a schema
≥n for any n. In particular, ≥1 is the standard denotation for ‘some’ and so will be
denoted ∃; the corresponding language is L∃ = {

w ∈ {0, 1}∗ : #1 (w) ≥ 1
}
.

Example 1 Consider a model given as follows: M = B = {a, b, c, d}, A = {a, b, c}
with �student� = A and �attended� = B. Clearly, (1) will be true in this model with
this interpretation, i.e. M ∈ ∀. For any ordering a, we have that τ (a, B) = 111, which
is in L∀. The automaton in Fig. 1 can thus be seen as a verifier of the truth of sentences
of the form ‘Every A is a B’.

Example 2 Figure 3 shows an automaton accepting L≥3 .

Definability of a generalized quantifier in certain logics corresponds to the type of
automaton recognizing its language as the following results show.

Theorem 2 (van Benthem 1986) Q is definable in first-order logic iff LQ is star-free.

Theorem 3 (Mostowski 1998) LQ is regular iff Q is definable in first-order logic
augmented with all divisibility quantifiers Dn = {〈M, A〉 : |A| is divisible by n}.

6 Conservativity states that 〈M, A, B〉 ∈ Q iff 〈M, A, A∩B〉 ∈ Q. Extension states that if 〈M, A, B〉 ∈ Q,
then 〈M ′, A, B〉 ∈ Q for any M ′ ⊇ M .
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Corollary 1 Lmost is not regular.

Moreover, both neuroimaging and behavioral experiments have shown that competent
speakers verify the truth of sentences with first-order definable quantifiers differently
than sentences with determiners like ‘most’ in a way that seems to track the difference
in automata needed.7

While the framework as described has proven fruitful both logically and empirically,
the above methods can only handle sentences of the form ‘Q A B’. A natural larger
fragment of natural language comes from considering examples like (4) and (5) in
which a quantified noun phrase appears as both subject and object of a transitive
verb. These sentences can be given truth-conditions using iteration of quantifiers.
This operation takes two type 〈1, 1〉 quantifiers and generates a new type 〈1, 1, 2〉
quantifier as follows:

It (Q1, Q2) = {〈M, A, B, R〉 : 〈M, A, {x ∈ M : 〈M, B, Rx 〉 ∈ Q2}〉 ∈ Q1}

where Rx = {y : Rxy}. To see how this works, consider again

(4) Every student takes at least three classes.

It (∀,≥3)will be the class of models 〈M, A, B, R〉 such that A ⊆ {x : |B ∩ Rx | ≥ 3}.
Interpreting (4) in such a model, we find that the sentence is true iff

�student� ⊆ {
x : |�class� ∩ �takex�| ≥ 3

}

which says that each student is such that the number of classes taken by that student
is at least three.

To extend the semantic automata framework to handle iterated quantifiers, onemust
show how to define formal languages corresponding to iterations. Steinert-Threlkeld
and Icard III (2013) take an approach modeled on the previous case: they define
an encoding τ (a,b, R) for finite models of the form 〈M, A, B, R〉 (with orderings
for A and B) as strings in an alaphabet {0, 1,�}. A slightly different approach is
pursued here: because It(Q1, Q2) is ‘built from’ Q1 and Q2, we provide a definition
of a language for iterations in terms of two given languages. In particular, given a
language L in some alphabet Σ , define the function σL : {0, 1} → P (

(Σ ∪ {�})∗)
by

1 �→ L · {�} 0 �→ Lc · {�}

where Lc = Σ∗ \ L and � is a fresh symbol not in Σ . Here, · is concatenation of
languages. For example, L · {�} := {w� : w ∈ L}. Given L1, L2 ⊆ {0, 1}∗, we are
interested in languages of the form

L = σL2 [L1]

7 See McMillan et al. (2005) for a neuroimaging experiment and Szymanik and Zajenkowski (2010) for a
behavioral one. Clark (2011) is a useful overview of this literature.
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where σL2 is extended to a substitution on thewhole language L1 in the usual way.8 We
call this language the iteration of L1 and L2 and denote it by L1 • L2. This language
is aptly named: if L1 and L2 are the languages of type 〈1, 1〉 quantifiers Q1 and Q2,
then L1 • L2 will be the language of the iteration of Q1 and Q2.9,10

Example 3 We can apply this definition to sentence (4), by observing:

L∀ • L≥3 = {
w ∈ (wi�)∗ : |{wi : #1 (wi ) < 3}| = 0

}

where wi ranges over maximal subwords of w containing only 0s and 1s. Consider
the following model and interpretation (where the si are the students, the ci are the
classes, and a � means that 〈si , c j 〉 ∈ �take�):

c1 c2 c3 c4

s1 � � � �
s2 � � �
s3 � � �

The encoding from Steinert-Threlkeld and Icard III (2013) will generate the string
1111�1011�1101� which is in L∀ • L≥3 . This is at it should be: every student does
take at least three classes.

Now thatwehave shownhow to define formal languages for iterations of quantifiers,
we can turn towards addressing ourmotivating question: is it decidablewhether a given
type 〈1, 1, 2〉 quantifier is an iteration? En route to answering this question, we will
prove the closure of the regular and star-free and languages under iteration and define
automata for iterated languages in order to establish the state-complexity of iteration.
After answering the decidability question for regular languages, we look at semantic
automata for iterations of context-free and deterministic context-free languages. These
languages are needed for sentences like (3) and (5) with proportional quantifiers.

4 Closure

Fact 1 The regular languages are closed under iteration. In other words, if L1 and L2
are regular, then L1 • L2 is regular.

Proof This follows immediately from the closure of the regular languages under com-
plement and substitution. ��

8 That is: σL2 (ε) = ε, σL2 (aw) = σL2 (a) σL2 (w) and σL2 [L1] = ⋃
w∈L1 σL2 (w).

9 See Steinert-Threlkeld and Icard III (2013) and references therein. The present definition of iteration can
be seen as a more concise representation of their Definition 8.
10 Szymanik et al. (2013) contains a preliminary experiment looking at processing consequences of seman-
tic automata for iterated quantifiers.
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The proof for star-free langauges will have to bemore complex because this class of
languages is not closed under substitution in general. As an example, let Σ = {1} and
consider L1 = {1}∗, L2 = {11} and σ (1) = L2. Then σ [L1] = {w | #1 (w) is even},
which we have seen is quintessentially not star-free.

Proposition 1 The star-free languages are closed under iteration.

Proof Let ϕ1(P0, P1) and ϕ2(P0, P1) be first-order sentences defining L1 and L2 (see
Theorem 1).Wewill use the� symbol, with its corresponding predicate P� to convert
predications in ϕ1 into quantifications over words in {0, 1}∗. We need the following
string of defined symbols:

prev
(
x j

) = xk := (
xk < x j ∧ ∀xi

(
xi < x j → xi ≤ xk

))

∨ (
xk = x j ∧ ¬∃xi

(
xi < x j

))

next
(
x j

) = xk := (
x j < xk ∧ ∀xi

(
x j < xi → xk ≤ xi

))

∨ (
xk = x j ∧ ¬∃xi

(
x j < xi

))

Start
(
x j

) := prev
(
x j

) = x j ∨ P�

(
prev

(
x j

))

End
(
x j

) := next
(
x j

) = x j ∨ P�

(
next

(
x j

))

Word
(
x j , xk

) := x j ≤ xk ∧ Start
(
x j

) ∧ End (xk)

∧ ∀xi
(
x j < xi < xk → ¬P� (xi )

)

Inspection of these definitions shows that w, g |� Word
(
x j , xk

)
iff the subword

wg(x j ) · · ·wg(xk ) is a maximal sub-word of w containing only 0s and 1s.

Given a formula ϕ, we denote by ϕ[xi ,x j ] the formula obtained by gaurding all
quantifiers in ϕ over x with xi ≤ x ≤ x j . We will now define a translation

τ : Form ({0, 1}) × Form ({0, 1}) → Form ({0, 1,�})

In the definition below, we stipulate that if i �= j , then ik �= jk for k ∈ {1, 2}.

τ
(
xi = x j , ϕ2

) = xi1 = x j1 ∧ xi2 = x j2
τ

(
xi < x j , ϕ2

) = xi2 < x j1

τ (P1 (xi ) , ϕ2) = ϕ

[
xi1 ,xi2

]

2

τ (P0 (xi ) , ϕ2) = ¬ϕ

[
xi1 ,xi2

]

2

τ (¬ϕ1, ϕ2) = ¬τ (ϕ1, ϕ2)

τ (ϕ1 ∧ ψ1, ϕ2) = τ (ϕ1, ϕ2) ∧ τ (ψ1, ϕ2)

τ (∃xiϕ1, ϕ2) = ∃xi1∃xi2
(
Word

(
xi1 , xi2

) ∧ τ (ϕ1, ϕ2)
)

It’s easy to see that if ϕ1 and ϕ2 are sentences, then so too is τ (ϕ1, ϕ2).
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Claim Let ϕ1, ϕ2 ∈ Sent ({0, 1}). Then

Lτ(ϕ1,ϕ2) = Lϕ1 • Lϕ2

Proof Put ϕ1 in prenex normal form and generate τ (ϕ1, ϕ2) ‘from the outside in’.
Quantifiers over positions in words in L1 are converted into quantifiers over maximal
subwords in {0, 1}∗. The translation of< ensures that the order of the subwords reflects
the order of the characters. The translation of P0 and P1 ensure that 0s are replaced
by words in Lc

ϕ2
and 1s by words in Lϕ2 . But that is just the definition of Lϕ1 • Lϕ2 . ��

By Theorem 1, this shows that L1 • L2 is star-free. ��
Example 4 ϕ∀ := ∀x P1 (x) defines L∀ and ϕ∃ := ∃x P1 (x) defines L∃. We have that

τ (ϕ∀, ϕ∃) = ∀x1∀x2 (Word (x1, x2) → τ (P1(x), ϕ∃))

= ∀x1∀x2
(
Word (x1, x2) → ϕ

[x1,x2]∃
)

= ∀x1∀x2 (Word (x1, x2) → ∃x (x1 ≤ x ≤ x2 ∧ P1 (x)))

which clearly defines L∀ • L∃.

5 State Complexity

The state complexity of a (binary) operation O on regular languages is the number
of states sufficient and necessary in the worst case for a DFA M to accept O(L1, L2)

given DFAs M1 and M2 for the languages L1 and L2; see Yu et al. (1994), Cui et al.
(2012). In our case, this requires knowing how to build an automaton for an iterated
language out of automata for the two given languages. To rule out certain edge cases
(see Example 5 below), we need one helper definition.

Definition 1 Wewill define the one-step unraveling of M, denotedM+. If δ (q0, c) �=
q0 for all c ∈ Σ , thenM+ = M. Otherwise:

– Q+ = {∗} ∪ Q (M)

– q+
0 = ∗

– F+ = F (M) ∪
{

{∗} if sgn (M) = 1

∅ otherwise

– δ+ = δ (M) ∪ {〈∗, c, q〉 | 〈q0, c, q〉 ∈ δ (M)}
Essentially, if the start state has any loops, we unwind those loops by one step. It’s
easy to verify that the above definition does not change the language accepted.

Lemma 1 L
(
M+) = L (M)

We are now in a position to define an automaton for the iteration of two languages.
First, we intuitively describe how it works. Let M1 and M2 be DFAs for the two
languages. By the definition of iteration, we want to replace 1 transitions in M1 by

123



Some Properties of Iterated Languages

a b
0

1 1

0

c d
1

0

1

0

(a) (b)

Fig. 4 The minimal automaton for a L∀, b L∃

accepting runs of M2. We do this as follows: at each state of M1, we attach a copy of
M+

2 and remove all 0 and 1 transitions fromM1. Now, any timeM1 would have made
a 1 transition from q to q ′, we add a � transition from all of the accepting states of the
q copy ofM+

2 to the start state of the q ′ copy ofM+
2 . This works because reading a �

while in an accepting state of M+
2 means the previous subword is done and has been

accepted, corresponding to a 1 in M1; the machine then goes to the start state of the
q ′ copy of M+

2 to begin processing the next subword. Similarly, 0 transitions in M1
are replaced by � transitions from rejecting states of the relevant copy of M+

2 . These
intuitions are made precise in the following definition, after which some examples are
given.

Definition 2 (Iteration automaton) Let M1 and M2 be DFAs in alphabet {0, 1}. We
define the iteration of M1 and M2, denoted It(M1,M2) as follows:

– Σ = {0, 1,�}
– Q = Q (M1) × Q

(
M+

2

)

– q0 = 〈q0 (M1) , q0
(
M+

2

)〉
– F = F (M1) × {

q0
(
M+

2

)}

– Transition function:11

δ = {〈〈q, q1〉, c, 〈q, q2〉
〉 | q ∈ Q (M1) and 〈q1, c, q2〉 ∈ δ

(
M+

2

)}
(1)

∪ {〈〈q1, q〉,�, 〈q2, q0
(
M+

2

)〉〉 | 〈q1, sgn (q,M+
2 ), q2〉 ∈ δ (M1)

}
(2)

Example 5 Figure 4 shows theminimal automata for L∀, L∃, Fig. 5 shows It (M∃,M∀),
and Fig. 6 shows It (M∀,M∃). The states are labelled to enhance readability; the pair
(a, b) is abbreviated ab.

Both iteration machines illustrate the need to use one-step unraveling. In the
machine It (M∃,M∀) (Fig. 5), ifM∀ were not unraveled, the word 111�11, which does

11 This definition can be re-written in more traditional function notation:

δ (〈q1, q2〉, c) =
⎧
⎨

⎩

〈
q1, δ

(
M+
2

)
(q2, c)

〉
c ∈ {0, 1}

〈
δ (M1)

(
q1, sgn

(
q,M+

2

))
, q0

(
M+
2

)〉
c = �

Some readers may find this definition easier to comprehend.
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c∗ ca cb

d∗ da db

1

0

1

0

0

1
0, 1

0

1
0, 1

Fig. 5 The automaton It (min (L∃) ,min (L∀))

a∗ ac ad

b∗ bc bd

0

1

0

1

1

0
0, 1

1

0
0, 1

Fig. 6 The automaton It (min (L∀) ,min (L∃))

not end in �, would be accepted. Similarly, if M∃ were not unraveled in It (M∀,M∃),
then 0∗ ⊂ L (It (M∀,M∃)), which we want to prevent.

Fact 2 |It (M1,M2)| = |M1| · |M+
2 |≤ |M1| · |M2 + 1|

Proposition 2 L (It (M1,M2)) = L (M1) • L (M2)

Proof For simplicity, in this proof we write L1 and L2 for L (M1) and L (M2) and It
for It (M1,M2).

⊇: Write Ln
1 = {

w ∈ {0, 1}n | w ∈ L1
}
. We show by induction on n that Ln

1 •L2 ⊆
L (It) for all n.
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The base case is n = 0.We have that L0
1 is either ∅ or {ε}. The former case is trivial.

For the latter case, we have that L0
1 = {ε} iff sgn (M1) = 1 iff q0 (M1) ∈ F (M1). By

the definition of the iteration automaton, this holds iff q0 (It) ∈ F (It) iff ε ∈ L (It).
Since L0

1 • L2 = {ε} iff L0
1 = {ε}, this completes the base case.

Now, suppose that Ln
1 • L2 ⊆ L (It) and let w ∈ Ln+1

1 • L2. This means that there
is a word w′ = a1 . . . an+1 ∈ L1 and wi ∈ {0, 1}∗ such that w = w1 � . . . wn+1�
with wi ∈ L2 iff ai = 1.

By clause (2) of the definition of δ (It), the run on w1 � . . . wn� ends in a state
〈q, q0

(
M+

2

)〉. By our inductive hypothesis, this state is in F (It) iffa1 . . . an ∈ L1.Now,
we have thatwn+1 ∈ L2 iff an+1 = 1.Moreover, by clause (1) of the definition of δ (It)
and Lemma 1, reading wn+1 will lead to a state 〈q, q2〉 such that sgn

(
q2,M

+
2

) = 1
iff wn+1 ∈ L2. In other words, sgn

(
q2,M

+
2

) = an+1. Since, by assumption,
a1 . . . an+1 ∈ L1, we know that 〈q, an+1, q1〉 ∈ δ (M1) for some q1 ∈ F (M1). Then
clause (2) of the definition of δ (It) yields a transition 〈〈q, q2〉,�, 〈q1, q0

(
M+

2

)〉〉. This
latter state, by definition, is in F (It), so w ∈ L (It), as desired.

This completes the induction. Now, w ∈ L1 • L2 iff w ∈ Ln
1 • L2 for some n,

whence it follows that L1 • L2 ⊆ L (It).
⊆: The definitions of iteration automaton and one-step unraveling ensure that It

accepts only words of the form (wi�)∗ where wi ∈ {0, 1}∗. By reasoning similar to
the previous direction, we have that

〈〈q1, q0
(
M+

2

)〉, wi�, 〈q2, q0
(
M+

2

)〉〉 ∈ δ∗ (It) ⇔ 〈q1, χL2 (wi ) , q2〉 ∈ δ (M1)

where δ∗ is as defined in Sect. 2. Combined with the definition of F (It), this shows
that w ∈ L (It) ⇒ w ∈ L1 • L2. ��

Inspection of the definition above shows that if M1 and M2 are counter-free (and
thus accept star-free languages), then so too is the iterated machine. This provides an
alternative proof of Proposition 1.

The above proposition and fact show that given DFAs with m and n states, there is
a DFA withm · (n+ 1) states which accepts the iteration of the languages of the given
DFAs.Moreover, this number of states is necessary in theworst case.The following fact
can be verified using standard techniques from automata theory (e.g. by counting the
number of equivalence classes of the Myhill-Nerode equivalence relation). It provides
an exact characterization of the state complexity of iteration.

Proposition 3 The minimal automaton accepting L/m • L≥n−1 has m · (n+1) states,
where the minimal automata accepting L/m and L≥n−1 have m and n states respec-
tively.

Theorem 4 Iteration has state complexity m · (n + 1).

6 Decidability

We now pursue the original question: given a language L ⊆ {0, 1,�}∗, is it decidable
whether or not there are languages L1 and L2 such that L = L1 • L2? We start with
the regular case.
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Theorem 5 (Decidability) Let L ⊆ {0, 1,�}∗ be a regular language. Then it is decid-
able whether there are regular languages L1, L2 ⊆ {0, 1}∗ such that L = L1 • L2.

The proof works as follows: first, a case distinction is made between L having a
certain ‘uniformity’ property or not. It’s shown to be decidable which case obtains.
Then, in each case, languages L1 and L2 are extracted such that L is an iteration iff it
is the iteration of L1 and L2. All of the methods used for extraction are effective and
language equality is decidable, so this suffices to prove the main result.

Proof 12 Let L ⊆ {0, 1,�}∗ be a regular language. Write Sn := ({0, 1}∗ �
)n and

S∗ := ({0, 1}∗ �
)∗. There are two cases:

∀n ≥ 1, w,w′ ∈ Sn, w ∈ L ⇔ w′ ∈ L (1)

∃n ≥ 1, w,w′ ∈ Sn, w ∈ L and w′ /∈ L (2)

First, we can decide which case holds. Let h : {0, 1,�} → {0, 1,�}∗ be the string
homomorphism given by

h(0) = h(1) = ε

h(�) = 0�

It is clear that (1) holds iff L ∩ S∗ = h−1(L) ∩ S∗. Because automata for intersection
and inverse homormosphism can be effectively constructed and language equality is
decidable, we can check the right-hand side of this equivalence.

If (1) holds, we proceed as follows. Define the homomorphism g : {0, 1} →
{0, 1,�}∗ by

g(0) = g(1) = 0�

and let

L1 = g−1(L)

L2 = ∅

It is clear that L1 and L2 are regular and that L ∩ S∗ = L1 • L2. Thus, L is an iteration
of two regular languages iff L = L ∩ S∗. This can easily be decided.

If (2) holds, there are words w1, . . . , wn, w
′
1, . . . , w

′
n ∈ {0, 1}∗ such that

w = w1 � · · ·wn�

w′ = w′
1 � · · ·w′

n�

with w ∈ L and w′ /∈ L . Then there must be an i ∈ {1, . . . , n} s.t.

12 Thanks to Makoto Kanazawa for suggesting this proof.
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w1 � · · ·wi−1 � wi � w′
i+1 � · · ·w′

n� ∈ L

w1 � · · ·wi−1 � w′
i � w′

i+1 � · · ·w′
n� /∈ L (3)

Let f : {0, 1} → {0, 1,�}∗ be the string homomorphism

f (0) = w′
i�

f (1) = wi�

and

L1 = f −1 (L)

L2 = {
v ∈ {0, 1}∗ | w1 � · · · wi−1 � v � w′

i+1 � · · · w′
n� ∈ L

}

It is clear that L1 and L2 are regular.
Now, L is an iteration L ′

1•L ′
2 iff L = L1•L2. To see this, suppose that L = L ′

1•L ′
2.

The condition (3) implies that χL ′
2
(wi ) �= χL ′

2

(
w′
i

)
and that

w1 � · · · wi−1 � v � w′
i+1 � · · ·w′

n� ∈ L iff χL ′
2
(v) = χL ′

2
(wi )

Here again there are two cases. (i) χL ′
2
(wi ) = 1 and χL ′

2

(
w′
i

) = 0. Then L ′
2 = L2

and L ′
1 = L1. (ii) χL ′

2
(wi ) = 0 and χL ′

2

(
w′
i

) = 1. Then L ′
2 = {0, 1}∗ \ L2 and

L ′
1 = k (L1) where k is the homomorphism k(0) = 1 and k(1) = 0. It’s easy to see

that L ′
1 • L ′

2 = L1 • L2.
All that remains is to show that automata for L1 and L2 can be found effectively.

There must be w1, . . . , wn, w
′
1, . . . , w

′
n ∈ {0, 1}∗ satisfying (3). We can find these by

brute-force search (since membership in L is decidable). With these strings in hand,
automata for L1 and L2 can be obtained by the usual constructions. ��

7 Beyond

7.1 Context-Free Languages

A natural class of languages beyond the regular languages are the context-free lan-
guages. To understand these, we again look at the class of machines accepting them.
Essentially, these are automata which extend DFAs with a form of memory called a
stack. A stack stores symbols. The top symbol can be read and removed (referred to
as popping). Moreover, a string of symbols can be pushed on to the top of the stack.

A pushdown automaton (PDA) is a tuple 〈Q,Σ, Γ, δ, q0, Z0, F〉 where Q, Σ , q0,
and F are as in a DFA. Γ is another alphabet called the stack alphabet; Z0 is a special
symbol designating an empty stack; δ : Q × (Σ ∪ {ε}) × Γ → P (Q × Γ ∗) is the
transition function. Intuitively,

(
q ′, γ

) ∈ δ (q, a, b) means that if the PDA reads letter
a while in state q1 with letter b ∈ Γ on top of the stack, it can transition into q2 and
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q q

1, 0/ε

0, x/0x

1, Z0/Z0
1, x/1x

0, 1/ε
0, Z0/Z0

Fig. 7 PDA accepting Lmost

replace b with γ on top of the stack.13 The case when γ = ε captures popping the top
of the stack. In transition diagrams, we will draw an arrow from q to q ′ labelled by
a, b/γ .

To define the language accepted by a PDA, we need a bit more notation. A
triple 〈q, w, γ 〉 of a state, word in Σ , and word in Γ will be called an instan-
taneous description of a PDA. We write 〈q1, aw, bγ 〉 �M

〈
q2, w, γ ′γ

〉
whenever

〈q2, γ ′〉 ∈ δ (q1, a, b). We omit the subscript when context allows and write �∗ for
the reflexive, transitive closure of �. The language accepted by a PDA M is:

L (M) = {
w ∈ Σ∗ : 〈q0, w, Z0〉 �∗ 〈q, ε, γ 〉 for some q ∈ F and γ ∈ Γ ∗}

A language L is context-free iff L = L (M) for some PDA M.14 See van Benthem
(1986) for a logical characterization of the quantifiers with context-free languages.

Example 6 The language

Lmost = {
w ∈ {0, 1}∗ : #1 (w) > #0 (w)

}

is context-free. Figure 7 depicts a pushdown automaton accepting that language. The
states are labeled for future reference.

The closure under iteration result does not immediately extend to context-free
languages because these languages are not closed under complement. But certain
subclasses are. For instance, the permutation-closed languages on a two-letter alphabet
are:

Theorem 6 (van Benthem 1986) The permutation-closed context-free languages on
a two-letter alphabet are closed under complement.

We cannot conclude from this, however, that these languages are closed under iter-
ation since, in general, an iterated language will not be closed under permutations.
Nevertheless, we get a ‘semi-closure’ result:15

13 The ‘can’ here reflects that the present definition defines nondeterministic PDAs which, unlike in the
finite-state case, are strictly more powerful than their deterministic counterparts, to be discussed below.
14 These languages can equally be characterized as those generated by a context-free grammar.
15 Theorem 6 of Steinert-Threlkeld and Icard III (2013) states this result as a full closure result for context-
free languages. This is because in that paper, the authors assumed—in addition to conservativity and
extension—the isomorphism closure of quantifiers, which has the result that all of the languages discussed
were permutation-closed. While this assumption is often made, natural language determiners like ‘the first
five’ and ‘every other’ seem to be counterexamples.
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Proposition 4 If L1 and L2 are permutation-closed context-free languages in a two-
letter alphabet, then L1 • L2 is context-free.

Proof Immediate from Theorem 6 and the closure of context-free languages under
substitution. ��

Themain obstacle to using the strategy in Sect. 6 to try and prove the decidability of
iteration for context-free languages is that language equality is undecidable. Several
steps in the proof of Theorem5 depended on the fact that language equality is decidable
for regular languages. This leads us to conjecture:

Conjecture 1 It is undecidable whether a given context-free language L ⊆ {0, 1,�}∗
is an iteration of two context-free languages in alphabet {0, 1}.

7.2 Deterministic Context-Free Languages

Somehope, however, comes fromfinding a large subclass of the context-free languages
for which equality is decidable. One such class is the deterministic context-free lan-
guages; these are the languages accepted by deterministic pushdown automata, which
are those having at most one choice at every machine configuration in a sense to be
made precise below. It is famously known that language equality is decidable for deter-
ministic context-free langauges; see Sénizergues (1997, 2001, 2002). In this section,
we will introduce these languages and then extend both the closure and decidability
results to them.

A deterministic pushdown automaton (DPDA) is a PDA such that:

– for every q ∈ Q and b ∈ Γ , if δ (q, ε, b) �= ∅, then δ (q, a, b) = ∅ for every
a ∈ Σ

– for every q ∈ Q, a ∈ Σ ∪ {ε}, and b ∈ Γ , |δ (q, a, b)| ≤ 1.

These two constraints have the effect that at most one transition can occur at any
instantaneous description of the DPDA.16 A language L is deterministic context-free
iff L = L (M) for some DPDA M. Note that the PDA in Fig. 7 is in fact a DPDA,
so Lmost is in fact deterministic context-free. Another example is given below. For a
complete characterization of the generalized quantifiers with languages accepted by
DPDAs, see Kanazawa (2013).

Example 7 The language L≥1/3 = {
w ∈ {0, 1}∗ : #1 (w) ≥ 1

3 (#1 (w) + #0 (w))
}
,

which can be used to verify the truth of sentences like (9), is deterministic context-free.

(9) At least one third of the students are happy.

A DPDA accepting the language is given in Fig. 8. The states are labeled for future
reference.

16 As presently defined, a DPDA may not read the entire input. However, for every DPDA M, there is
another DPDA M′ that does read the entire input such that L (M) = L

(
M′). See Lemma 10.3 (p. 236)

of Hopcroft and Ullman (1979). Because of this, in what follows we will assume that all DPDAs read the
entire input.

123



S. Steinert-Threlkeld

b a c d

1, x/1x

0, 1/ε

0, Z0/Z0ε, x/1x

1, Z0/1Z0

0, x/0x

1, 0/ε

ε, 0/ε

ε, Z0/Z0

Fig. 8 A DPDA accepting L≥1/3

Importantly, the deterministic context-free languages are in fact closed under
complement; see, e.g., Theorem 10.1 on p. 238 of Hopcroft and Ullman (1979).
Unfortunately, however, closure under iteration does not follow immediately since
these languages are not closed under substitution. However, as in the star-free case,
we can use the separator � to prove closure under iteration. We first offer a proof of
closure under complement since some intermediate steps will be useful in defining a
DPDA for iteration.

As a first step, we will define a DPDA that keeps track of whether or not a given
DPDA has entered a final state since reading the last input symbol. This helps in
distinguishing acceptance from rejection because a DPDA may make ε-transitions
through both accepting and rejecting states after reading an input symbol. The states
of the new DPDA will have a second component: 0, 1, or 2. A 0 will mean that the
machine has not entered an accepting state since the last input, while a 1 means that
it has entered an accepting state.

Definition 3 Given a DPDAM, define the tracking extension of M—denotedMT—as
follows:

– Q = Q (M) × {0, 1, 2}
– Σ = Σ (M)

– Γ = Γ (M)

– Transition function:

δ =
{ 〈〈q, 1〉 , ε, b,

〈
q ′, 1

〉
, γ

〉
〈〈q, 0〉 , ε, b,

〈
q ′, sgn

(
q ′,M

)〉
, γ

〉 : 〈q, ε, b, q ′, γ 〉 ∈ δ (M)

}
∪

⎧
⎨

⎩

〈〈q, 0〉 , ε, b, 〈q, 2〉 , b〉〈〈q, 1〉 , a, b,
〈
q ′, sgn

(
q ′,M

)〉
, γ

〉
〈〈q, 2〉 , a, b,

〈
q ′, sgn

(
q ′,M

)〉
, γ

〉 : 〈q, a, b, q ′, γ 〉 ∈ δ (M) for a ∈ Σ

⎫
⎬

⎭

– q0 = 〈q0, sgn (M)〉
– F = {〈q, 1〉 : q ∈ Q (M)}

Lemma 2 L
(
MT

) = L (M)

Theorem 7 The deterministic context-free languages are closed under complement.
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Proof Given L , let M be a DPDA such that L = L (M). Consider the automaton Mc

constructed as follows: Mc is just likeMT except that

F
(
Mc) = {〈q, 2〉 : q ∈ Q (M)}

Clearly, Mc is a DPDA. The accepting states of Mc are those ending in a 2. Note that
these are only entered from states ending in a 0 by an ε-transition. But a state ending
in a 0 encodes that the machine has not entered an accepting state since reading the
last input. The reader can use these ideas to show that L (Mc) = Lc or consult p. 239
of Hopcroft and Ullman (1979) for details. ��

This proof shows that membership in L versus Lc is fully encoded by the second
component of states of MT . This allows us to prove the following proposition—a
light generalization of Lemma 6.1.1 of McWhirter (2014)—which will be crucial in
proving closure under iteration.

Proposition 5 Given a DPDA M, there is another DPDA M� with Σ
(
M�

) =
Σ (M) ∪ {�} and unique states qacc and qrej such that for any γ with γ1 /∈ Γ (M):

– 〈q0, w�, γ 〉 �∗ 〈qacc, ε, γ 〉 iff w ∈ L (M)

– 〈q0, w�, γ 〉 �∗ 〈
qrej, ε, γ

〉
iff w /∈ L (M)

Proof M� will be just like MT but with two new states qacc and qrej and the following
modification to the transition function:

δ
(
M�

) = δ
(
MT

)

∪
{
〈q,�, b, qacc, b〉 : q ∈ F

(
MT

)
and b ∈ Γ (M)

}

∪ {〈q,�, b, qrej, b〉 : q ∈ F
(
Mc) and b ∈ Γ (M)

}

∪ {〈qi , ε, b, qi , ε〉 : i ∈ {acc, rej} and b ∈ Γ (M)}

In other words: upon reading �, the machine transitions to qacc or qrej according to
whether the machine has entered an accepting state since the last input or not and
then empties the stack of all contents from Γ (M). This clearly implements the desired
behavior. ��

We are now in position to define a DPDA for the iteration of two others. As before,
we want to replace 1 transitions from M1 with accepting runs from M2 (and mutatis
mutandis for 0 transitions and rejecting runs). By Proposition 5, we know that an
accepting run of M2 corresponds to a run ending in qacc without altering the stack in
M�

2 . So we do the following: we have a copy both ofM1 and ofM
�

2 . All ε-transitions
in M1 are left intact. When M1 is about to read a 1 in state q, it does the following:
it takes an ε-transition to the start state of M2 while pushing a q on to the stack. This
has two effects: the q both ‘insulates’ M1’s use of the stack from M�

2 ’s and also tells
the latter machine which state M1 was previously in. Now, when M�

2 gets to qacc, it
sees the q on the stack and transitions to a new state named aq while popping the q.
This has the effect of ‘lifting the lid’ off of M1’s stack. The state aq then makes an
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ε-transition to the state thatM1 would have transitioned on reading a 1 in q while also
making the appropriate stack manipulations. The 0 transitions are treated similarly,
but with qrej and other new states rq . The following definition and lemmamake this all
precise. An example demonstrating the construction is given at the end of the section.

Definition 4 (Iteration of DPDAs) Let M1 and M2 be DPDAs in alphabet {0, 1}. We
define the iteration of M1 and M2, denoted It (M1,M2) as follows:

– Q = Q (M1) ∪ Q
(
M�

2

)
∪ {

aq , rq : q ∈ Q (M1)
}

– Σ = {0, 1,�}
– Γ = Γ (M1) ∪ Γ (M2) ∪ Q (M1)

– Transition function:

δ = δ (M2) ∪ {〈q, ε, b, q ′, γ 〉 : 〈q, ε, b, q ′, γ 〉 ∈ δ (M1)
}

∪ {〈q, ε, b, q0 (M2) , qb〉 : 〈q, a, b, q ′, γ 〉 ∈ δ (M1) for some a ∈ {0, 1}}

∪
{〈qacc, ε, q, aq , ε〉

〈aq , ε, b, q ′, γ 〉 : 〈q, 1, b, q ′, γ 〉 ∈ δ (M1)

}

∪
{〈qrej, ε, q, rq , ε〉

〈rq , ε, b, q ′, γ 〉 : 〈q, 0, b, q ′, γ 〉 ∈ δ (M1)

}

– q0 = q0 (M1)

– F = F (M1)

When context allows, It (M1,M2) will be abbreviated as It.

Lemma 3 Let M1 and M2 be as in Definition 4.

(1) If 〈q, 1w, xβ〉 �M1 〈q ′, w, γβ〉, then

〈q, w � w′, xβ〉 �∗
It 〈q ′, w′, γβ〉 iff w ∈ L (M2)

(2) If 〈q, 0w, xβ〉 �M1 〈q ′, w, γβ〉, then

〈q, w � w′, xβ〉 �∗
It 〈q ′, w′, γβ〉 iff w /∈ L (M2)

Proof We only show (1), since (2) is completely analogous. Suppose 〈q, 1w, xβ〉 �M1〈q ′, w, γβ〉, i.e. 〈q, a, x, q ′, γ 〉 ∈ δ (M1). First, in a configuration 〈q, w � w′, xβ〉, It
will take an ε-transition to q0

(
M�

2

)
while pushing a q on to the stack. By Proposi-

tion 5,

〈q0
(
M�

2

)
, w � w′, qxβ〉 �∗

It 〈qacc, w′, qxβ〉

iff w ∈ L (M2). Then, from qacc, It will make an ε-transition to aq while popping the
q off the top of the stack. It will then make an ε-transition to q ′ while replacing x by
γ on top of the stack. ��
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b1 a1 c1 d1

b0 a0 c0 d0

b2 a2 c2 d2

qacc

aq aq

qrej

rq rq

q

q
0, 1/ε

1, x/1x

ε, x/1x
1, Z0/Z0

0, x/0x 1, 0/ε

ε, 0/ε

ε, Z0/Z0

, x/x

, x/x , x/x

, x/x

ε, x/x

ε, x/1x

ε, 0/ε

ε, Z0/Z0

1, x/bx
0, 1/ε

0, Z0/Z0

1, 0/ε

1, Z0/Z0

0, x/0xε, x/x

, x/x

, x/x , x/x

, x/x

ε, q/ε ε, q /εε, 0/ε
ε, 1/ε

ε, q/ε ε, q /ε
ε, 0/ε
ε, 1/ε

ε, x/qx

ε, x/q x

ε, Z0/Z0

ε, 1/ε

ε, x/1x

ε, x/0x

ε, Z0/Z0

ε, 1/ε

Fig. 9 The DPDA It
(
Mmost,M≥1/3

)

Theorem 8 It (M1,M2) is a DPDA with L (It (M1,M2)) = L (M1) • L (M2). Thus,
the deterministic context-free languages are closed under iteration.17

17 McWhirter (2014) has obtained this result independently. My exposition of this result has improved
greatly from reading her work.
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Proof That It is a DPDA can be seen from inspection of Definition 4. ε-transitions in
M1 are left in-tact, while 0 and 1 transitions are replaced by ε-transitions to q0 (M2),
which preserves determinism. Transitions into and out of the new states aq and rq are
also deterministic.

That L (It) = L (M1) • L (M2) follows from repeated application of Lemma 3
and the observation that the only paths to accepting states which are not q0 (It) must
process an input of the form w� for w ∈ {0, 1}∗. ��
Theorem 9 It is decidable whether a given deterministic context-free language L ⊆
{0, 1,�}∗ is an iteration.

Proof The proof of Theorem 5 carries over unchanged into the DCFL case because
language equality for DCFLs is decidable and the DCFLs are effectively closed under
inverse homomorphism and intersection with a regular language (and S∗ is regular).

��
Example 8 Figure 9 depicts the automaton It

(
Mmost,M≥1/3

)
. Note that the DPDA

could be pruned: the states d1, b0, a0, b2, a2, and d2 are not reachable. They have
been included to illustrate Definition 4 exactly.

8 Conclusion

This paper has taken up the question of whether the Frege boundary is decidable by
using tools from formal language and automata theory. In particular, an operation
on languages called iteration was introduced, after which it was shown that the star-
free, regular, and deterministic context-free languages are closed under iteration. The
state complexity of iteration of regular languages was also determined. Then, the
decidability of the Frege boundary was addressed via the following question: given a
language L ⊆ {0, 1,�}∗, is it decidable whether there are languages L1 and L2 such
that L = L1 • L2? We answered this question in the affirmative for both the regular
and deterministic context-free languages.

There are two main lines of work to pursue. First, one would like to settle
Conjecture 1 above. That is: is it undecidable whether a given (non-deterministic)
context-free language is an iteration? Second, although this paper demonstrates that
formal languages can be very useful in studying iterated quantifiers, one would like a
characterization in language/automata terms of the Frege Boundary. A more natural
setting for that pursuit may be the so-called ‘picture languages’, which are binary
matrices (instead of words) of alphabet symbols.18 We leave both of these pursuits to
future work.

18 See Giammarresi and Restivo (1997) for details.
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