
On the Decidability of Iterated Languages

Shane Steinert-Threlkeld

Department of Philosophy, Stanford University

450 Serra Mall, Stanford, CA 94305, USA

shanest@stanford.edu

Abstract: A special kind of substitution on languages called iteration is presented and studied. We show that each of the

star-free, regular, and deterministic context-free languages are closed under iteration and that it is decidable whether a given

regular language or a DCFL is an iteration of two languages. We also determine the state complexity of iteration of regular

languages. Connections to the van Benthem / Keenan ‘Frege Boundary’ are discussed.

1. Introduction

(Mostowski, 1957) and (Lindström, 1966) introduced generalized quantifiers into mathematical

logic. Starting with (Barwise & Cooper, 1981), these have been very fruitfully applied in the

formal semantics of natural language. In particular, the meanings of determiners in sentences

like

(1) Every student attends classes.

(2) Between five and ten people will attend.

(3) Most people enjoyed the show.

have been modeled as type 〈1, 1〉 generalized quantifiers. In other words, they have been given

as denotations relations between subsets of a domain of discourse. For example, (3) is true iff

|people ∩ enjoyed| > |people \ enjoyed|

This approach, however, has difficulty explaining sentences with quantified phrases in object

position, such as:

(4) Every student takes at least three classes.

(5) Most professors teach two classes.

To model these sentences, one must iterate the unary quantifiers to express a property of the

respective transitive verbs. These will be type 〈2〉 quantifiers. For instance, (5) is true iff teach

bears the property It(most prof, two classes) iff

|profs ∩ teach two classes| > |prof \ teach two classes|

A question then arises: are all type 〈2〉 quantifiers realized in natural language iterations of

unary quantifiers? The line dividing these quantifiers has been dubbed the Frege Boundary by

(van Benthem, 1989) and studied extensively by (Keenan, 1992, 1996).

In those papers, Keenan provides an exact characterization of which type 〈2〉 quantifiers are

iterations of unary quantifiers. But it has remained unknown whether his characterization is

effective: given a type 〈2〉 quantifier, can we decide whether it’s an iteration? In this paper,

we take steps towards answering that question by using the semantic automata framework pi-

oneered by (van Benthem, 1986, ch. 6) which was recently extended to handle iterations by

(Steinert-Threlkeld & Icard III., 2013).

In particular, given a language L in some alphabet Σ, define the function σL : {0, 1} →
P ((Σ ∪ {�})∗) by

1 7→ L · {�} 0 7→ Lc · {�}

where Lc = P (Σ∗) \ L and � is a fresh symbol not in Σ. Given L1, L2 ⊆ {0, 1}∗, we are

interested in languages of the form

L = σL2
[L1]

where σL2
is extended to a substitution on the whole language L1 in the usual way. We call

this language the iteration of L1 and L2 and denote it by L1 • L2. These languages are so

named because they arise in the study of iterations of generalized quantifiers.1 In particular,

if L1 and L2 are languages associated with unary quantifiers Q1 and Q2, then L1 • L2 will be

the language of the iteration of Q1 and Q2. In this note, we show that the star-free and regular

languages are closed under iteration and that it is decidable whether a given regular language

is an iteration of two languages. We conclude by discussing the prospects for extending the

decidability result beyond the regular languages. In particular, the decidability proof carries

over to the deterministic context-free case.

2. Preliminaries

We assume familiarity with the theory of regular languages and deterministic finite-state au-

tomata. We will use L, L1, L2 to denote languages and M,M1,M2 to denote automata. ε denotes

the empty sequence. For w ∈ Σ∗ for finite alphabet Σ, wi ∈ Σ denotes the character at the ith
position of w. We denote the components of an automaton by Q (M), δ (M), et cetera. We use

| · | as both a set cardinality function and a word-length function. We often write |M| instead

of |Q (M) |. The functions #a : Σ∗ → N for each a ∈ Σ are recursively defined in such a way

to return the number of as in a word w ∈ Σ∗. By L (M) we denote the language accepted by

automaton M. We write

sgn (q,M) = χF (M) (q)

and sgn (M) as an abbreviation for sgn (q0 (M) ,M) where χS is the characteristic function of

set S. We omit the second argument when context permits. If L is a regular language, we denote

the minimal automaton accepting L by min (L).
The star-free languages in Σ is the smallest set of languages which contains Σ∗, {a} for each

a ∈ Σ and which is closed under finite union, concatenation, and complementation. These

languages are accepted by the acyclic or counter-free automata; see (McNaughton & Papert,

1971). We will use another characterization of the star-free languages in terms of first-order

definability.2

Given an alphabet Σ, we consider a standard first-order language with predicate symbols

Pa for each a ∈ Σ and a binary relation symbol <. We write Form (Σ) and Sent (Σ) for,

respectively, the set of first-order formulas and sentences in the appropriate signature. We

interpret formulas in this language in pairs (w, (p1, . . . , pn)) of a word w ∈ Σ∗ and a sequence

of positions pi, where 0 ≤ pi ≤ |w|. The relevant semantic clauses are given by

(w, (p1, . . . , pn)) |= xi < xj iff pi < pj

(w, (p1, . . . , pn)) |= Pa (xi) iff wpi = a

1See (Steinert-Threlkeld & Icard III., 2013) and references therein. Our definition of iteration is a more concise representa-

tion of their Definition 8.
2See (Diekert & Gastin, 2007) for a self-contained presentation of this equivalence and others.

A first-order sentence ϕ defines the language

Lϕ = {w ∈ Σ∗ | (w, ()) |= ϕ}

The following theorem was mentioned above.

Theorem 1 ((McNaughton & Papert, 1971)). A language L is star-free iff it is first-order defin-

able.

There are a few languages in {0, 1} that will recur below. These are:

L∀ = {w | #0 (w) = 0}

L≥n = {w | #1 (w) ≥ n}

L∃ = L≥1

L≤n = {w | #1 (w) ≤ n}

3. Closure

Proposition 1. The following classes of languages are closed under iteration:

• Star-free

• Regular

In other words, if L1 andL2 are star-free (resp. regular), thenL1•L2 is star-free (resp. regular).

Proof. The regular language case follows immediately from the closure of those languages

under complement and substitutions.

For the star-free case, let ϕ1(P0, P1) and ϕ2(P0, P1) be first-order sentences defining L1 and

L2. We will use the � symbol, with its corresponding predicate P� to convert predications in

ϕ1 into quantifications over words. We need the following string of defined symbols:

prev (xj) = xk := (xk < xj ∧ ∀xi (xi < xj → xi ≤ xk))

∨ (xk = xj ∧ ¬∃xi (xi < xj))

next (xj) = xk := (xj < xk ∧ ∀xi (xj < xi → xk ≤ xi))

∨ (xk = xj ∧ ¬∃xi (xj < xi))

Start (xj) := prev (xj) = xj ∨ P� (prev (xj))

End (xj) := next (xj) = xj ∨ P� (next (xj))

Word (xj , xk) := xj ≤ xk ∧ Start (xj) ∧ End (xk)∧

∀xi (xj < xi < xk → ¬P� (xi))

Inspection of these definitions shows that (w, (pj , pk)) |= Word (xj , xk) iff the subwordwpj · · ·wpk

is a maximal sub-word of w containing only 0s and 1s.

Given a formula ϕ, we denote by ϕ[xi,xj] the formula obtained by gaurding all quantifiers in

ϕ over x with xi ≤ x ≤ xj . We will now define a translation

τ : Form ({0, 1})× Form ({0, 1}) → Form ({0, 1,�})

In the definition below, we stipulate that if i 6= j, then ik 6= jk for k ∈ {1, 2}.

τ (xi = xj , ϕ2) = xi1 = xj1 ∧ xi2 = xj2
τ (xi < xj) = xi2 < xj1

τ (P1 (xi) , ϕ2) = ϕ
[xi1

,xi2]
2

τ (P0 (xi) , ϕ2) = ¬ϕ
[xi1

,xi2]
2

τ (¬ϕ1, ϕ2) = ¬τ (ϕ1, ϕ2)

τ (ϕ1 ∧ ψ1, ϕ2) = τ (ϕ1, ϕ2) ∧ τ (ψ1, ϕ2)

τ (∃xiϕ1, ϕ2) = ∃xi1∃xi2 (Word (xi1 , xi2) ∧ τ (ϕ1, ϕ2))

It’s easy to see that if ϕ1 and ϕ2 are sentences, then so too is τ (ϕ1, ϕ2).

Claim 1. Let ϕ1, ϕ2 ∈ Sent ({0, 1}). Then

Lτ(ϕ1,ϕ2) = Lϕ1
• Lϕ2

Proof. Put ϕ1 in prenex normal form and generate τ (ϕ1, ϕ2) ‘from the outside in’. Quantifiers

over positions in words in L1 are converted into quantifiers over maximal subwords in {0, 1}∗.

The translation of < ensures that the order of the subwords reflects the order of the characters.

The translation of P0 and P1 ensure that 0s are replaced by words in Lc
ϕ2

and 1s by words in

Lϕ2
. But that is just the definition of Lϕ1

• Lϕ2
.

By Theorem 1, this shows that L1 • L2 is star-free.

Note that our use of the separator symbol � in the above proof is in a sense essential. This

is because the star-free languages are not closed under substitution in general. As an exam-

ple, let Σ = {1} and consider L1 = {1}∗, L2 = {11} and σ (1) = L2. Then σ [L1] =
{w | #1 (w) is even}, which is quintessentially not star-free.

Example 1. ϕ∀ := ∀xP1 (x) defines L∀ and ϕ∃ := ∃xP1 (x) defines L∃. We have that

τ (ϕ∀, ϕ∃) = ∀x1∀x2 (Word (x1, x2) → τ (P1(x), ϕ∃))

= ∀x1∀x2
(

Word (x1, x2) → ϕ
[x1,x2]
∃

)

= ∀x1∀x2 (Word (x1, x2) → ∃x (x1 ≤ x ≤ x2 ∧ P1 (x)))

which clearly defines L∀ • L∃.

One may hope to prove closure for context-free languages. An immediate problem, however,

arises since these languages are not closed under complement. But certain subclasses are. In

particular, the deterministic context-free languages are. These, however, are not closed under

substitution. Nevertheless, we will later see that they are still closed under iteration by using

a novel construction on dterministic pushdown automata. Another subclass, however, is the

two-letter permutation-closed CFLs:

Theorem 2 ((van Benthem, 1986)). The permutation-closed context-free grammars on a two-

letter alphabet are closed under complement.

We cannot conclude from this, however, that these languages are closed under iteration since,

in general, an iterated language will not be closed under permutations. Nevertheless, we get a

‘semi-closure’ result:

Proposition 2. If L1 and L2 are permutation-closed context-free languages in a two-letter al-

phabet, then L1 • L2 is context-free.

Proof. Immediate from Theorem 2 and the closure of context-free languages under substitution.

4. State Complexity

The state complexity of a (binary) operation O on regular languages is the number of states

sufficient and necessary in the worst case for a DFA M to accept O(L1, L2) given DFAs M1

and M2 for the languages L1 and L2; see (Yu, Zhuang, & Salomaa, 1994; Cui, Gao, Kari, & Yu,

2012). In our case, this requires knowing how to build an automaton for an iterated language

out of automata for the two given languages. To rule out certain edge cases, we need one helper

definition.

Definition 1. We will define the one-step unraveling of M, denoted M
+. If sgn (M) = 0 or

〈q0, c, q0〉 /∈ δ (M) for all c ∈ Σ, then M
+ = M. Otherwise:

• Q+ = {∗} ∪Q (M)

• q+0 = ∗

• F+ = {∗} ∪ F (M)

• δ+ = δ (M) ∪ {〈∗, c, q〉 | 〈q0, c, q〉 ∈ δ (M)}

Essentially, if the start state is final and has any loops, we unwind those loops by one step.

It’s easy to verify that the above definition does not change the language accepted.

Lemma 1. L (M+) = L (M)

Definition 2 (Iteration Automaton). Let M1 and M2 be DFAs in alphabet {0, 1}. We define the

iteration of M1 and M2, denoted It(M1,M2) as follows:

• Σ = {0, 1,�}

• Q = Q (M1)×Q
(

M
+
2

)

• q0 = 〈q0 (M1) , q0
(

M
+
2

)

〉

• F = F (M1)×
{

q0
(

M
+
2

)}

• Transition function:

δ =
{〈

〈q, q1〉, c, 〈q, q2〉
〉

| q ∈ Q (M1) and 〈q1, c, q2〉 ∈ δ
(

M
+
2

)}

(1)

∪
{〈

〈q1, q〉,�, 〈q2, q0
(

M
+
2

)

〉
〉

| 〈q1, sgn(q,M
+
2), q2〉 ∈ δ (M1)

}

(2)

Fact 1. |It (M1,M2) | = |M1| · |M
+
2 |

Example 2. Figure 1 shows the minimal automata for L∀, L∃. Figure 2 shows It (M∃,M∀).
Figure 3 shows It (M∀,M∃). This machine illustrates the need for the one-step unraveling:

without it, 0∗ ⊂ L (It (M∀,M∃)), which we want to prevent. The states are labelled to enhance

readability; the pair (a, b) is abbreviated ab.

Proposition 3. L (It (M1,M2)) = L (M1) • L (M2)

Proof. For simplicity, in this proof we write L1 and L2 for L (M1) and L (M2) and It for

It (M1,M2).
⊇: Write Ln

1 = {w ∈ {0, 1}n | w ∈ L1}. We show by induction on n that Ln
1 • L2 ⊆ L (It)

for all n.

(a) ba 0

1

0

1

(b) dc 1

0 0

1

Figure 1: The minimal automaton for (a) L∀, (b) L∃.

ca cb

da db

0

�

1 0, 1

�

1,�

0

0, 1
�

Figure 2: The automaton It (min (L∃) ,min (L∀)).

The base case is n = 0. We have that L0
1 is either ∅ or {ε}. The former case is trivial. For the

latter case, we have that L0
1 = {ε} iff sgn (M1) = 1, i.e. iff q0 (M1) ∈ F (M1). By the definition

of the iteration automaton, this holds iff q0 (It) ∈ F (It), i.e. iff ε ∈ L (It). Since L0
1 • L2 = {ε}

iff L0
1 = {ε}, this completes the base case.

Now, suppose that Ln
1 • L2 ⊆ L (It) and let w ∈ Ln+1

1 • L2. This means that there is a word

w′ = a1 . . . an+1 ∈ L1 and wi ∈ {0, 1}∗ such that w = w1 � . . . wn+1� with wi ∈ L2 iff ai = 1.

By clause (2) of the definition of δ (It), the run on w1 � . . . wn� ends in a state 〈q, q0
(

M
+
2

)

〉.

By our inductive hypothesis, this state is in F (It) iff a1 . . . an ∈ L1. Now, we have that wn+1 ∈
L2 iff an+1 = 1. Moreover, by clause (1) of the definition of δ (It) and Lemma 1, reading

wn+1 will lead to a state 〈q, q2〉 such that sgn
(

q2,M
+
2

)

= 1 iff wn+1 ∈ L2. In other words,

sgn
(

q2,M
+
2

)

= an+1. Since, by assumption, a1 . . . an+1 ∈ L1, we know that 〈q, an+1, q1〉 ∈

δ (M1) for some q1 ∈ F (M1). Then clause (2) of the definition of δ (It) yields a transition

〈〈q, q2〉,�, 〈q1, q0
(

M
+
2

)

〉〉. This latter state, by definition, is in F (It), so w ∈ L (It), as desired.

This completes the induction. Now, w ∈ L1 • L2 iff w ∈ Ln
1 • L2 for some n, whence it

follows that L1 • L2 ⊆ L (It).
⊆: The definitions of iteration automaton and one-step unraveling ensure that It accepts only

words of the form (wi�)∗ where wi ∈ {0, 1}∗. By reasoning similar to the previous direction,

we have that

〈〈q1, q0
(

M
+
2

)

〉, wi�, 〈q2, q0
(

M
+
2

)

〉〉 ∈ δ∗ (It) ⇔ 〈q1, χL2
(wi) , q2〉 ∈ δ (M1)

where δ∗ denotes the transitive closure of δ. Combined with the definition of F (It), this shows

that w ∈ L (It) ⇒ w ∈ L1 • L2.

Inspection of the definition above shows that if M1 and M2 are counter-free (and thus accept

star-free languages), then so too is the iterated machine. This provides an alternative proof of

Proposition 1.

The above proposition and fact show that given DFAs with m and n states, there is a DFA

withm·(n+1) states which accepts the iteration of the languages of the given DFAs. Moreover,

this number of states is necessary in the worst case.

a∗ ac

b∗ bc

ad

bd

0

0

1

1

��
�

0

0

1

1

�

�
�

Figure 3: The automaton It (min (L∀) ,min (L∃)).

Fact 2. The minimal automaton accepting L≥m•L≤n−1 hasm·(n+1) states, where the minimal

automata accepting L≥m and L≤n−1 have, respectively, m and n states.

We can summarize these results as:

Theorem 3. Iteration has state complexity m · (n+ 1).

5. Decidability

We now pursue the question: given a language L ⊆ {0, 1,�}, is it decidable whether or not

there are languages L1 and L2 such that L = L1 • L2? We start with the regular case.

5.1. Regular Languages

Theorem 4 (Decidability). Let L ⊆ {0, 1,�}∗ be a regular language. Then it is decidable

whether there are regular languages L1, L2 in {0, 1} such that L = L1 • L2.

Proof. 3 Let L ⊆ {0, 1,�}∗ be a regular language. Write Sn := ({0, 1}∗ �)
n

and S∗ :=
({0, 1}∗ �)

∗
. There are two cases:

∀n ≥ 1, w, w′ ∈ Sn, w ∈ L⇔ w′ ∈ L (1)

∃n ≥ 1, w, w′ ∈ Sn, w ∈ L and w′ /∈ L (2)

First, we can decide which case holds. Let h be the homomorphism given by

h(0) = h(1) = ε

h(�) = 0�

It is clear that (1) holds iff L ∩ S∗ = h−1(L) ∩ S∗. Because automata for intersection and

inverse homormosphism can be effectively constructed and language equality is decidable, we

can check the right-hand side of this equivalence.

If (1) holds, we proceed as follows. Define the homomorphism g by

g(0) = g(1) = 0�

and let

L1 = g−1(L)

L2 = ∅

3I am grateful to Makoto Kanazawa for suggesting this proof.

It is clear that L1 and L2 are regular and that L ∩ S∗ = L1 • L2. Thus, L is an iteration of two

regular languages iff L = L ∩ S∗. This can easily be decided.

If (2) holds, there are words w1, . . . , wn, w
′
1, . . . , w

′
n ∈ {0, 1}∗ such that

w = w1 � · · ·wn�

w′ = w′
1 � · · ·w′

n�

with w ∈ L and w′ /∈ L. Then there must be an i ∈ {1, . . . , n} s.t.

w1 � · · ·wi−1 � wi � w′
i+1 � · · ·w′

n� ∈ L

w1 � · · ·wi−1 � w′
i � w′

i+1 � · · ·w′
n� ∈ L

(3)

Let f be the homomorphism

f(0) = w′
i�

f(1) = wi�

and

L1 = f−1 (L)

L2 =
{

v ∈ {0, 1}∗ | w1 � · · ·wi−1 � v � w′
i+1 � · · ·w′

n� ∈ L
}

It is clear that L1 and L2 are regular.

Now, L is an iteration L′
1 • L

′
2 iff L = L1 • L2. To see this, suppose that L = L′

1 • L
′
2. The

condition (3) implies that χL′

2
(wi) 6= χL′

2
(w′

i) and that

w1 � · · ·wi−1 � v � w′
i+1 � · · ·w′

n� ∈ L iff χL′

2
(v) = χL′

2
(wi)

Here again there are two cases. (i) χL′

2
(wi) = 1 and χL′

2
(w′

i) = 0. Then L′
2 = L2 and L′

1 = L1.

(ii) χL′

2
(wi) = 0 and χL′

2
(w′

i) = 1. Then L′
2 = {0, 1}∗ − L2 and L′

1 = k (L1) where k is the

homomorphism k(0) = 1 and k(1) = 0. It’s easy to see that L′
1 • L

′
2 = L1 • L2.

All that remains is to show that automata for L1 and L2 can be found effectively. There must

be w1, . . . , wn, w
′
1, . . . , w

′
n ∈ {0, 1}∗ satisfying (3). We can find these by brute-force search

(since membership in L is decidable). With these strings in hand, automata for L1 and L2 can

be obtained by the usual constructions.

5.2. Beyond

The main obstacle to using the above strategy to try and prove the decidability of iteration for

context-free languages is that language equality is undecidable. This leads us to conjecture:

Conjecture 1. It is undecidable whether a given context-free language L in {0, 1,�} is an

iteration of two context-free languages in {0, 1}.

Some hope, however, comes from finding a large subclass of the context-free languages for

which equality is decidable. That class is the deterministic context-free languages; these are the

languages accepted by deterministic pushdown automata, which are those having at most one

choice at every machine configuration. It’s famously known that language equality is decid-

able for determinstic context-free langauges (Sénizergues, 1997, 2001, 2002). Moreover, the

deterministic context-free languages are in fact closed under complement; see, e.g., (Hopcroft

& Ullman, 1979). Unfortunately, however, closure under iteration does not follow immediately

since these languages are not closed under substitution. However, as in the star-free case, we

can use the separator � to prove closure.

Proposition 4. The deterministic context-free languages are closed under iteration.

Proof Sketch. Given two DPDAs M1 and M2, the construction of a new DPDA for the iterated

langauge proceeds very similarly to Definition 2. We must, however, also add � (or any fresh

symbol) to the stack alphabet. Now, whenever a � is read on input, we erase the stack up to and

including the first � and perform whatever stack manipulations M1 specifies. Then, we push a

� on top. This has the effect of maintaining M1’s stack “insulated below” the stacks needed for

each time a copy of M2 is run. Clearly this machine accepts the iterated language.

Corollary 1. It is decidable whether a given deterministic context-free language in {0, 1,�} is

an iteration.

Proof. The proof of Theorem 4 carries over unchanged into the DCFL case since these lan-

guages are effectively closed under all the constructions used there.

References

Barwise, J., & Cooper, R. (1981). Generalized Quantifiers and Natural Language. Linguistics

and Philosophy, 4(2), 159–219.

Cui, B., Gao, Y., Kari, L., & Yu, S. (2012, June). State complexity of combined

operations with two basic operations. Theoretical Computer Science, 437, 82–

102. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/

S030439751200182X doi: 10.1016/j.tcs.2012.02.030

Diekert, V., & Gastin, P. (2007). First-order definable languages. In J. Flum, E. Grädel, &

T. Wilke (Eds.), Logic and automata: History and perspectives (pp. 261–306). Amster-

dam: Amsterdam University Press.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley.

Keenan, E. L. (1992). Beyond the Frege Boundary. Linguistics and Philosophy, 15(2), 199–

221.

Keenan, E. L. (1996). Further Beyond the Frege Boundary. In J. van der Does & J. van

Eijck (Eds.), Quantifiers, logic, and language (Vol. 54, pp. 179–201). Stanford: CSLI

Publications.

Lindström, P. (1966, December). First order predicate logic with generalized quantifiers. Theo-

ria, 32, 186–195. Retrieved from http://onlinelibrary.wiley.com/doi/

10.1111/j.1755-2567.1966.tb00600.x/abstract

McNaughton, R., & Papert, S. A. (1971). Counter-free Automata (Vol. 65). The MIT Press.

Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematicae, 44,

12–36.

Sénizergues, G. (1997). The Equivalence Problem for Deterministic Pushdown Automata is

Decidable. In P. Degano, R. Gorrieri, & A. Marchetti-Spaccamela (Eds.), Automata, lan-

guages and programming (Vol. 1256, pp. 671–681). Berlin: Springer Berlin Heidelberg.

Sénizergues, G. (2001). L(A) = L(B)? decidability results from complete formal systems.

Theoretical Computer Science, 251, 1–166.

Sénizergues, G. (2002). L (A) = L (B)? A simplified decidability proof. Theoretical Computer

Science, 281, 555–608.

Steinert-Threlkeld, S., & Icard III., T. F. (2013). Iterating semantic automata. Linguistics and

Philosophy, 36(2), 151–173.

van Benthem, J. (1986). Essays in Logical Semantics. Dordrecht: D. Reidel Publishing Com-

pany.

van Benthem, J. (1989, August). Polyadic quantifiers. Linguistics and Philosophy, 12(4),

437–464. Retrieved from http://www.springerlink.com/index/10.1007/

BF00632472 doi: 10.1007/BF00632472

Yu, S., Zhuang, Q., & Salomaa, K. (1994, March). The state complexities of some ba-

sic operations on regular languages. Theoretical Computer Science, 125(2), 315–

328. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/

030439759200011F doi: 10.1016/0304-3975(92)00011-F

